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MONODROMY FILTRATION AND MOTIVES

ABHIJIT LASKAR

ABSTRACT. Given a (pure) motive M over a number field F' and a non-archimedean val-
uation v on F, we state an analogue of the weight monodromy conjecture for M, via a
local weight filtration 2. on the f-adic realization H,(M). We prove special cases of this
conjecture. In some of these cases, we are able to show that the local L-factor at v, of the
L-function of M, is well-defined i.e., rational and independent of ¢.

0. INTRODUCTION AND NOTATION

Let F be a number field with an embedding 7 : F < C; F is a fixed algebraic closure of
F; 7:F — C is an extension of 7. Let v be a discrete valuation on F'; F, is the completion
of F at v; ¥ is an extension of v to F; F, is the localization of F' at ©. The residue fields
of F, and F, are denoted by k, and k,, respectively. The characteristic of k, is p > 0. We
write T, := Gal(F,/F,) C T'r := Gal(F/F) and I, C T, is the inertia group. A geometric
Frobenius ¥, € I';, is an element which induces the inverse of the Frobenius automorphism
¢ of k,. We denote by W, the Weil group of F,,, i.e., the dense subgroup formed by elements
w € T', which induce on k, an integral power qﬁvo‘(w). The map « : W, — Z thus defined is
a group homomorphism and ker(«) = I,. We will suppose all our algebraic varieties to be
geometrically irreducible.

Consider a (pure) motive M over F. For any prime number ¢, the /-adic realization
Hy(M) gives us a representation py : I'r — GL(Hy(M)) of I'r. Let v be a non-archimedean
valuation of F', by restricting p, to I';, and using Grothendieck’s ¢-adic monodromy theorem,
we obtain a nilpotent morphism Ny : Hy(M)(1) — Hy(M) of T',-modules. This morphism
induces the local monodromy filtration 9, on Hy(M). In case if H,(M) = H},(Xz, Q) ( as
I'p-modules) for some smooth projective algebraic variety X over F, then Deligne’s weight
monodromy conjecture ( cf. [3]) predicts that for any element w € W, the eigenvalues of the
induced autormphisms py;(w) on the j-th graded of Ma, are algebraic integers with identical
complex absolute value qf,rﬂ)a(w)ﬂ. We generalize (see Con D this conjecture to the case of
any arbitrary motive M, via a local (w.r.t. v) weight filtration s on Hy(M). We verify this
conjecture (see Cor for the category of motives which is ®-generated by Artin motives;
abelian varieties; surfaces; and smooth complete intersections in any projective space, as a
consequence of some more general results.

Next we prove (see Thm that for any motive M and w € W, the characteristic
polynomial of pys¢(w) has coefficients in Q and is independent of £. This fact combined with
the above mentioned results, allows us to verify in a large number of new cases ( see Thm
and Cor, that the local L-factors in the expression for the L-function of motives, are
well-defined, i.e., rational and independent of £. In particular, we deduce that if X is finite
product of hyperkéhler varieties of K3 type; unirational varieties of dim < 4; uniruled
varieties of dim < 3; cubic 4-folds; moduli spaces of stable vector bundles of coprime rank
and degree over smooth projective curves and Fermat hypersurfaces; then H, (X7, Q) has
a well-defined L-function for 0 < r < 2dim X, which is independent of the choice of £.
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1. MONODROMY FILTRATION

1.1. Generalities. Let A be an abelian category and A € Ob(A). Let N € End(A) be
a nilpotent endomorphism. Then, we define the kernel filtration associated to N, as the
increasing filtration §, on A satisfying

e 5,A =Ker (NP*1: A — A) for p >0 and
e 5,A=0forp<0.
We define the image filtration &® associated to N, as the decreasing filtration on A, satisfying
e 94 =Im (N?: A— A) for ¢ > 0 and
e 74 = A for ¢ <0.

The convolution 9 = § * & is the increasing filtration on A satisfying

MA= Y FpAn&iAforr €,
p—q=r
where + stands for product in A. Now, by the universal property of coproducts, the

(0,--1,---0)
e

natural “inclusion” morphisms §,A4 N GIA M, A induces a morphism

I: P FpAn&iA — M, A,
p—q=r
where € stands for coproduct in A.
Now, note that the filtration & also induces a filtration

QqurgA =1Im (TANF,A — GrgA)

on the graded pieces GrgA = §pA/Fp-1A. The following is an elementary, but useful
characterization of graded pieces of IM,, in terms of the above filtration.

Lemma 1.2. There is a natural isomorphism € GréGrgA — Gr?A

p—q=r
Proof. First note that the morphism II : ®,_,—,F,A N &IA — M, A defined above is surjec-
tive, i.e., coker Il = 0. Now, as (BIANF,A)N(BITTANT,_14) = (BANF,—1A)+ (BT AN
§pA), it follows that

kerlI= @ (B94N§p-14) + (67T AN F,HA)).
p—gq=r
Now, as

GréGriA = 61ANF,14/(81ANFp-14) + (61T AN F,HA)),

the assertion follows.

The next lemma is well-known

Lemma 1.3. The convolution M = §*& is the unique filtration on A satisfying the following
properties :
(i) is an increasing filtration ---9M;_1 A C M;A C M1 A--- of Ty representations, such
that M; A = 0 for sufficiently small i and ;A = A for sufficiently large i.
(ZZ) Ng(gﬁlA) g Sﬁi,QA fO’I“ all 1.
(iii) Using the second condition we can define an induced map N : Gr" A — Gr", A, where
Gr"A = O A/M; 1 A. Then N7 : Gr™ A — Gr™ A is an isomorphism for each r > 0.
2



Monodromy Filtration and Motives

1.4. Local monodromy filtration for motives. Let the notation be as We denote by
Vr the category of smooth projective varieties over F. In this article, we will be interested
in the following three different categories M, (F') of pure motives over F :
e the category of (Grothendeick) motives, Mpo,, (F') defined in terms of algebraic cycles
modulo homological equivalence.
e the category of motives M, (F), defined in terms of motivated correspondences;
e the category of motives M 457 (F') defined in terms of absolute Hodge correspondences.
In each of these categories, there is a functor hy : Vi — My (F), such that classical Weil-
cohomology theories (with Tate twists) Hp (Betti cohomology), Hy ( ¢-adic cohomology, for
any prime number ¢) and Hyr (De Rham cohomology) on Vg, factors through M, (F'). This
allows to define various realization functors on M (F'), corresponding to these cohomology
theories. In particular, if M := (X,p,n) € ObMy(F), then its ¢-adic realization is defined

as
2dim X

@ PHEP (X5, Qo)(n),

where p* denotes the image of p € Corr (X x X ) under the T'p-invariant isomorphism

2dim X
HztdimX(X XXFan dlmX @ End Xp,@é))

It is also clear that the Qg-vector space Vp := Hg(M ) has a natural action of I'p. This
gives rise to the f-adic representations p % I'r — GL(V;), which in turn gives us the local
representations

Pry 'y — GL(Vp).

For any prime number ¢, we denote by s the group of ¢"-th roots of unity in k, and
Zy(1 h% en. For any Qg-vector space U, we write U(1) := U ® Qp(1), where Qg(1) =
Qe

Q ®z, Ze( ).
The inertia group I, C I',, fits into the following exact sequence

1P =1, 5 Zgy(1) — 1,

where P is a pro-p-group and Z, HZe (1). Let ¢ # p be a prime number. We

L#p
denote by ty : Ix — Zy(1), the ¢-component of ¢. Explicitly, the surjective map t, is given

as T (x(ﬂe”) /ﬂé") , where m € O, is an uniformizer. The map t, is unique upto
n
multiplication by an element of Zj .
By Grothendieck’s monodromy theorem there exists a unique nilpotent morphism Ny :

Vi(1) — Vp of T',-representations such that for a sufficiently small open subgroup J of I, we
have

(1) p, (@) = exp(te(z)Ne), forallz € J.

The morphism N, is called the monodromy operator associated to Py.v Let 91, be the
unique filtration on V; induced by N, and satisfying the properties of Lemma
We leave it to the reader to verify the validity of the next lemma.
Lemma 1.5. Let M and M’ be motives in My (F).
(a) If M is a sub-motive of M', then Nare = Ny 4]
for all 1.

and M;Hy(M) = 9, Hy(M')|

Hy(M) Hy(M)

3
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(b) The monodromy operator associated to the direct sum of motives M & M', is given by
Nyemre = Nye © Ny o and M, Hy(M @ M/) = gﬁzHg(M) @ ?Jﬁng(M’).

(¢) The monodromy operator associated to the tensor product of motives M & M' is given
by NM®M/7g = NM@ ®Id+1d®NM/g and

M Ho(M @ M') = M Hy(M) @ My Hy(M).
f+g

e monodromy operator associated to the dua is given by Nyv e = —"Npye an
d) Th d d he dual MY by Nv, *Nas, d
M Hy(MY) = (M1 He(M))*-

Theorem 1.6. Let M be any motive over F' and v a non-archimedean valuation on F'. Then
there exists an open subgroup J of I, such that pare|y is unipotent for every £ # p.

Proof. Let M be a direct summand of a motive hA(X)(n) for some smooth projective algebraic
variety X and n € Z. Then it follows that the (-adic realization Hy(M) of M, is a I'p-
submodule of the (-adic realization Hy(h(X)(n)) of h(x)(n). Let us denote by px¢: I'r —
GL(Hy(h(X))) the ¢-adic representation associated to the motive h(X). Let &, : T'r —
GL(Q¢(n)) be the f-adic representation associated to the motive Q(n). Write px ¢(n) :=
pxt @ &y, then it is clear that px¢(n) is the f-representation associated to the motive
h(X)(n). Assume that there exists a Jx C I, such that px |, is unipotent for all £ # p,
i.e., there exists a r € N such that (px (o) —1d)" =0 for all 0 € Jx. As & is unramified
at all non-archimedean places v of F, the same holds for &, ¢ = (£1,0)®". Therefore,

(pxe(n)(o) —1d)" = (px (o) —1d)" ®Id = 0, for all o € Jx.

This implies that pase|s, is unipotent for all £ # p.

It remains to show that that there exists a Jx C I, such that px |;, is unipotent for all
¢ # p. In order to see this, first note that h(X) has a direct sum decomposition as h(X) =
@2AmXpi(X). Let pgw : T — GL(Hy(R(X))) be the f-adic representation associated to
the motive h'(X). Then it follows that

2dim X

i
PXt = @ Px.e
i=0

Assume that for every i, there exists a Jg( C I, such that pg(’g] Ji, is unipotent for all £ # p.
By setting Jx = ﬂ?j(i)mXJg(, we see that px |s, is unipotent for all £ # p.

So we are reduced to showing that for every 0 < ¢ < 2dim X, there exists a J}'( C I, such
that p&jw( is unipotent for all ¢ # p.

First assume that X, has a proper strictly semi-stable model X over the ring of integers
O, of F,. Let X, = X ®o, k, be the geometric special fiber of X. Now it is a well-known
fact that I, acts trivially on the sheaf of vanishing cycles R7W(Qy) on A . It now follows
from the I',-invariant spectral sequence of vanishing cycles

R = H(X,, RIW(Q0) = H (X5, Q0),

that for all o € I,,, (o —Id)"™! acts trivially on HY,(Xf, , Q) for every £ # p.

Now in general the existence of a semi-stable model for Xp, is unknown. But we know
from [2, Thm. 6.5]that, there is a finite extension F}, of F;, and a strictly semi-stable scheme
Y’ over the ring of integers O, of F),, with generic fiber X’ and a F,-alteration f : X' — Xp, .
The induced morphism f": X’ — X is again an alteration. Since f’ is finite of degree
deg f’ on some open dense subscheme of X, the pull back f™* : H.,(Xp,, Q¢) = HL (X} ,Qp)
and the pushforward f, : H:,(X} ,Q¢) — HL (X, Q) satisfy fL o f* = deg f'-id. As f™

and f! commute with the action of Iy, it follows that H?,(X 7,» Q) is a direct summand
4



Monodromy Filtration and Motives

of Hi (X% .-Q), as I'y-module and hence as I,/ (inertia subgroup of I'y/) module. As X !
has a seml stable model, it follows from our previous discussion that I, acts trivially on
Hét(X%v,Qg) and hence on H}, (X , Qp), for every £ # p.
Finally, as the (-adic realization Hy(h'(X)) of the motive h*(X) is isomorphic to H (X, , Q)
as I'p-modules, the proposition follows.
U

2. WEIGHT FILTRATION

Definition 2.1. A T',- mdoule U is said to have a (unique) weight filtration 20, if it verifies
the following properties :
(i) W, is an increasing filtration ---W; U C W, U C W; 11U --- of T',-representations
such that Q0,;U = 0 for sufficiently small ¢ and 20;,1U = U for sufficiently large ¢;
(ii) the action of I, on Gr{’ = 20;U/20,_1U is through a finite quotient;
(iii) the eigenvalues of the action of ¥, on Grl’ = 20;,U/20;_1U are all algebraic integers of
complex absolute value ¢*/2, where q = |k,|.

Example 2.2. Q(1) is a one-dimensional I';-representation which is unramified for every
v ( such that p # ¢). Moreover, we know that the action of any arithmetic Frobenius on
Q¢(1) is through multiplication by ¢, hence the action of the geometric Frobenius is through
multiplication by ¢~—!. This allows, us to define the weight filtration as following

0,Q(1) = Qg(1) for j > —2 and 2;Qy(1) =0 for j < —2.

Lemma 2.3. Let U, U’ be I',- modules.
(a) If U has weight filtration and U’ is a sub-module of U, then U’ has weight filtration.
(b) If both U and U’ has weight filtrations, then the T',,-modules U@ U’ and U®U'’ has weight

filtrations.
(c) If U has weight filtration then the dual U\’ has weight filtration.

Proof. (a) We verify that 20,U" := 20,U N U’ defines the weight filtration on U’.
(b) We verify that 20;(U & U’) := 20,U @ 20;U’ defines the weight filtration on U & U’ and

WURU)= > WU WU,
f+g=i
defines the weight filtration on U ® U’.
(c) we verify that the dual filtration 23,U" := (W_;_1U)* defines the weight filtration on
Uv.
O

Proposition 2.4. Let M be any motive over F. Then for every prime number { # p, there
exists a weight filtration on the I'y-module Hy(M).

Proof. Let M = (X,p,n) be a motive over F, where X is a smooth projective algebraic
variety, p € Corr®(X x X) and n € Z. By definition, the f-adic realization of M is

2dim X

@ p*Hw+2n XF‘?QZ)(”)

Now, *Hw+2”(XF,Qg) is a I',-sub-representation of Hw+2”(XF,Q@) = H:;””(XFU,Q@.

Now suppose that H(Xp ,Q¢) has a weight filtration. Then by [2.3(a) we get a weight

filtration on p*H%™"(X 7, Q). Now, it follows from [2.2 . and . (b), that there exists

a weight filtration on p*HZer"(XF,@g) ® Q1) = p Hw””(XF,Qg)( ). Finally, using
S
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2.3[(b)] we conclude that there exists a weight filtration on @23 Xy HYF2"(X 1 Qy)(n) =
Hy(M).

It remains to exhibit that Hg (X5 , Q) has a weight filtration. To start with let us assume
that X, has a proper strictly semi-stable model X over the ring of integers O, of F,. Let
X1, -+, Xy, be the irreducible components of the special fiber of X', and set

x®= I Xyn-nX,.

1< << <m

Then X*) is a proper smooth variety of dimension n — k + 1 over the residue field k, of
F,. Now, by [0], there is a I',- invariant spectral sequence

—7rw+r wW—Tr— k+r w
2 BT = @ HETTRITY Qu(-r - k) = HY(Xg,, Q).
k>max{0,—r}

Now the inertia group I, acts trivially on each Ei] and hence there is an action of
Gal(k,/k,). By the Weil conjectures, we know that H:{‘T_zk(ngHH),@g(—r — k)) has
weight (w —r — 2k) — 2(r — k) = w + r. Thus, Ei’j has weight j and the filtration induced
by the spectral sequence , is the required weight filtration defined in

We now treat the general case. As in the proof of Thml[I.6] there is a finite extension
F!, of F,, such that there is a strictly semi-stable scheme Y’ over the ring of integers O, of
F),, with generic fiber X’ and a F-alteration f: X" — Xp,. It follows that H}(Xf , Q) is
a direct summand of Hg (X% ,Qy), as I'y-modules. As X’ has a semi-stable model, hence
by the above observation, there is a weight filtration on HY (X % ,Qp). It now follows from

Lemma that H(Xg, , Q) has a weight filtration.
U

3. ON THE PURITY OF LOCAL MONODROMY FILTRATION

Definition 3.1. Let M be a motive over F. The weight wt(M) of M is defined to be the
weight of the underlying Hodge structure of the Betti realization H,(M). It is independent
of the choice of the embedding .

The weight monodromy conjecture (WMC) predicts that the monodromy filtration on the
absolute /-adic cohomology of any proper smooth variety over F},, coincides with the weight
filtration but upto a shift. This conjecture has the following analogue for motives.

Conjecture 3.2. Let M be any motive over F' of weight w. Then,
M Hy (M) = 2y Ho(M) Vi
Proposition 3.3. Let M be an Artin motive over F. Then, conjecture[3.3 holds for M.

Proof. We know that the category of Artin motives MY, 2 Repg(L'r). Let p: I'p — GL(V)
be the image of M under this isomorphism. Then we have,

H.(M)=V and H(M)=V ®Qy, as a I'r — module.

Thus, the f-adic representation p, e — GL(Hy(M)) associated to M, is simply p ® Q.
Now, as p is continuous for the Krull topology on I'r and the discrete topology on V', there
exists a finite extension F’/F, such that Gal(F/F') acts trivially on V. In particular, if v’ is
an extension of v to F’, then Gal(F,/ F!,) and hence the inertia group corresponding to this
extension, acts trivially on V. Thus, the f-adic representation p . is potentially unramified

at every v such that p # £. This implies that the monodromy operators corresponding to
6
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the local representations p 0.0 1€ all trivial. In particular, the monodromy filtration 9, of
Hy(M) is trivial, i.e.
M Hy(M) = Hy(M) for j > 0 and M H,(M) =0 for j < 0.

Now, as the weight of an Artin motive is 0, in order to prove the proposition, we only
need to show that the weight filtration on H;(M) coincides With the monodromy filtration
on Hy(M). It is obvious that 90, Hy(M), verifies property (i) of 2.1, As, p, is potentially
unramified at every v, so M Hy(M) also verifies property (11) of |2.1] Flnally, note that
as pr = p @ Qy, the eigenvalues of the action of ¥, on GrgﬁHg(M) = H/(M)=V®Q
are algebraic integers ( independent of ¢ ). Now, as Gal(F/F') acts trivially on V, the
eigenvalues of the action of UlErk] on Voare all 1, where k!, denotes the residue field of F,.
This implies that the eigenvalue of the action of ¥, on V is a root of unity and hence of
complex absolute value ¢°/2 = 1. This establishes property (iii) of By the uniqueness of
the weight filtration, we conclude that on Hy(M), the monodromy filtration coincides with
the weight filtration. O

Definition 3.4. For § = mot or AH, we denote by /\/lgmf(F ) the Tannakian subcategory of
Mg (F), which is ®-generated by the family C := (M;| ¢ € I) of motives, such that each M;
verifies Conjecture

Proposition 3.5. Conjecture holds for every M e Ob(Mgmf(F)).

Proof. Any motive M € Ob(Mgmf(F )) is isomorphic to a sub-quotient of an object of the
form P(Mj}) ( a polynomial expression), where {M}};cjcs consists of objects of C or their
duals and P(t;) € N[t;j]jes; multiplication in P(Mj) is interpreted as ® and addition as
®. As Mg(F) is a semi-simple Tannakian category, it follows that every quotient object
of P(Mj), can be identified with a subobject. Thus, in view of it suffices to verify the
conjecture for the motive P(Mj}). Now, by combining Lemma(l.5{and Lemma2.3} we see that
Conjecture [3.2) is stable under sub-objects, @, ® and taking duals of motives. A repeated

application of this fact and the definition of C, implies the proposition. (]
Definition 3.6. Define M7, (F) ( resp. M2, (F')) to be the Tannakian subcategory of

Mag(F) (resp. Mpor(F) ) Wthh is ®-generated by the following motives
(i) Artin motives;
(ii) h ( )’s of abelian varieties;
(iii) h2(S)’s of surfaces;
(iv) for any m € N, hm( )’s of m-dimensional (smooth) complete intersections in any
projective space.
We also define M3 (F') to be the abelian ®-subcategory of My, (F), generated by (i)
the Tate motive Q(1) (ii) abelian varieties (iii) 0 dimensional varieties (iv) surfaces and (v)
complete intersections in projective spaces.

Corollary 3.7. For a = hom,mot or AH, Conjecture[3.2 holds for every M € Ob(M2S(F)).

Proof. First note that it suffices to show the corollary for M3% (F)), as Mpem (F) and
Mot (F') are subcategories ( a priori not full) of M 45 (F) and the the ¢-adic realization of
a motive is unchanged by passing from one category to the other.

Now, by Prop. the Artin motives verifies Conjecture by [1] we know that h!(A)’s
for A any abelian variety, verifies the conjecture, by [6] the conjecture is true for h%(S)
for any surface S, and finally by [8], the conjecture holds for A™(Y)’s (for any m € N )
of m-dimensional (smooth) complete intersections in any projective Space It follows that

acs (F) is a subcategory of MO (F) and hence verifies Conjecture O

7
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Remark 3.8. Denote by M, (F) the category of (Grothendieck) motives for numerical
equivalence on algebraic cycles. Let M2 (F) be the abelian ®-subcategory of M ,ym (F),
generated by (i) the Tate motive Q(1) (i) abelian varieties and (iii) 0 dimensional varieties.
By [4], we know that M2 (F)is a F-linear semi-simple Tannakian category. As homological
equivalence coincides with numerical equivalence for zero dimensional varieties and abelian
varieties [5], we can identify MY, (F) to a subcategory of M7, (F'). Hence it makes sense
to speak of f-adic realizations of motives in M%  (F'). The previous corollary then implies

num
that Conjecture |3.2| holds for objects in MY (F).

Corollary 3.9. Let X be a smooth projective variety over F which is a finite product of
(i) hyperkihler varieties of K3 type;
(ii) unirational varieties of dim < 4;
(14i) uniruled varieties of dim < 3;
(iv) cubic 4-folds;
(v) moduli spaces of stable vector bundles of coprime rank and degree over smooth projective
curves;
(vi) Fermat hypersurfaces;
(vii) curves;
(viii) surfaces;
(iz) abelian varieties;

then the weight monodromy conjecture holds for H*(X z, Q) for any i > 0.

Proof. In view of it suffices to establish the result for each of the varieties in the list.
If X is either a hyperkéhler variety of K3[" type, a cubic 4-fold, a unirational variety of
dim < 3, a Fermat hypersurface, moduli space of stable vector bundles of coprime rank and
degree over a smooth projective curve, then the motive h(X) € Ob(M%’). So, in these cases
the weight monodromy conjecture follows from

The case of curves [I] and surfaces [6], are well known. The case of unirational varieties
of dimension 4, follows from the fact that the motive of any such variety is an object of the
Tannakian category generated by the motive of variety of dimension at most 2. Similarly,
the motive of a uniruled 3-fold belongs to the Tannakian category of motives generated by
a surface, and hence the WMC holds in this case as well.

In the case of any abelian variety A the only new thing that we obtain is that WMC
holds for the higher cohomology groups H'(A /5,2 Qe) (i > 2) as well, since the motive

h"(A) = /\ihl(A). O
4. L-FUNCTIONS

Let M be any motive in M (F'), for « = hom, mot or AH. For any prime number ¢, we
denote by Vy := Hy(M). For any non-archemdean valuation v on F' of residual characteristic
p, consider the characteristic polynomial

Z(V, T) := detq, (1 — Tpare(,)|V/™)), (1 # p)

for the action of a geometric Frobenius element ¥, € I';, on the inertia invariant part VZI”
part of V;. By definition, Z(V,, T) € Qu[T].

Definition 4.1. A motive M as above is said to have a well-defined L-function, if Z(V,,T) €
Q[T and is independent of . In this case, the L-function of M is defined as the Euler product

L(M,s) =[] Lo(M,s),
8
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where the local L-factors L, (M, s) is defined as

1
Z(Ve,qu”)
Theorem 4.2. Let M € Ob MIX?If(F) be a motive, such that for every non-archemdean val-

uation v on F' and w € W, the characteristic polynomial Py(w,T') of pare(w) has coefficients
i Q and is independent of £. Then M has a well-defined L-function.

L,(M,s) = , for £ # p.

Proof. We need to verify that Z(Vp,T) has coefficients in Q and is independent of .
First consider the non-archemdean valuations v, where M has good reduction, i.e., V} is
unramified at v for every £ # p. In this case

Z(Ve, T) = Py(W, T),

hence by hypothesis, Z(V;, T') has coefficients in Q and is independent of /.

Now consider the non-archemdean valuations v, where M has bad reduction. As VEI” is a
subspace of V, it follows from the hypothesis, that for every w € W, the coeflicients of the
characteristic polynomial detg, (1 —T)p M}g(w)\VZI”)) are algebraic numbers independent of /.
Thus, in order to prove our claim, it suffices to show that Tr(w* : V,;) € Q and independent
of £ and then use Newton’s lemma.

Let pg; : I'y — GL(GrEJng) denote the representation induced by pas, on the graded
parts of the local monodromy filtration 9, on V;. For every w € Wy, let Py j(w,T) be the
characteristic polynomial of py ;(w).

Lemma 4.3. Fiz a w € Wy, then for every j, P ;(w,T) € Q[T] and is independent of L.

Proof. Let L be the sub-field of an algebraic closure Q; of Qp, generated by the roots of
Py(w,T). By hypothesis, P;(w,T) € Q[T] and has coefficients independent of ¢. This implies
that if Py(w,B) = 0, then Py(w,o(B)) = 0, for every o € Gal(L/Q). Now, from linear
algebra, we know that Py(w,T) = []; Py j(w,T). Let n be an eigenvalue py ;(w) and hence
of pg(w). By Prop. the complex absolute value

Q e = gm0+
As |Blc = |o(8)]c, it follows from (3)), that 8 and o(8) occurs as the roots of a same factor
(say) Ppj,(w,T) of Py(w,T). Now suppose Py ,(w,T) = T™ + > " | Gy T™". As the
coefficients a,’s are symmetric polynomials in the roots of Pg,jo (w,T), it follows from the
previous observation that o(a,) = a,, for every o € Gal(L/Q). In other words, a, € Q,
ie., Prj,(w,T) € Q[T] and is independent of £. By varying 3 over all roots of Py(w,T), we
conclude the Py ;(w,T) € Q[T] and is independent of ¢, for every j. O

for every j.

Now, let us denote by §. and &* the kernel filtration and image filtration on V,. By lemma
. v
[1.2] we have an equality of I',-modules

GTQEE-HVK = GTéGTf‘/e @ GT?B_IW(l), for every j > 0.

As, GréGerg = GréSOVg (this is the graded for the filtration induced by &*® on §oV;), we
get that

Gr™ Ve = GrioVe ® Gr™_ Vi(1)

for every j > 0. This implies that the traces Tr(w* : Gré&ng) € Q and is independent of /.
It now follows from linear algebra that Tr(w* : §V;) € Q and is independent of £.

Now, the action of I,, on FoV} factors through a finite quotient I,,/J and VKI“ = (SOW)I“/J.
9
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Hence for a complete set of T' C I, of representatives of I, / J, we have

L, J) - Tr(w* - V) =) "Tr((wo )™ : FoVh).
TeT
Now by our previous discussion, Tr((w o 7)* : §V;) € Q and is independent of ¢ and by
Thm [I, : J] is independent of £. It follows that Tr(w* : VEI“) € Q and independent of 4.
This completes the proof of the theorem. O

Theorem 4.4. Assume that the Kinneth Standard conjecture holds for (absolute) (-adic
cohomology (with Tate twists) of varieties defined over F. Then, for every motive M €
Mpom (F), and non-archimedean valuation v on F, the characteristic polynomial Py (w,T)
for the action of any element w € W,,, has coefficients in Q and is independent of €.

Proof. First note that it suffices to show that for every w € W, the traces Tr (pa¢(w))
are in Q and is independent of ¢, for then one can resolve the Newton’s identities relating
symmetric polynomials and power sums, to conclude that the polynomial Py ¢(w,T) € Q[T
and is independent of /.

Let M := (X,p,n) and M’ := (X, p,0). Then it is easy to see that

Tr (pare(w)) = X7 (w) - Tr (pare(w))

where x; : I'p — Q; is the f-adic cyclotomic character of I'p. As x¢(A) = 1, for every X in
the inertia subgroup I, it follows that if w = ¥I" - \ (for some m € Z), then

X' (w) = g,
As ¢ € Q and is independent of ¢, thus it suffices to show the proposition for motives of
the form M’ = (X, p,0).
First, we make an observation. Let e,e/ € CH%(X x X) be any two algebraic correspon-
dences. Then, by definition

¢ o e = priz«(prize - praze’),
where prqs denotes the projection maps from X x X x X to X x X, for o, 8 € {1,2,3}.
Write d := dim X and 7%, v : CHY(X x X) — H%(Xz x X5, Qp)(d) be the cycle class map
to f-adic cohomology of X x X. As cycle class maps are compatible with push-forward , we
get 74, (/o) = pris(YE o xvw x (Prise-prise’)). Since cycle class maps are compatible with
intersection products in C H*(—) and cup products in cohomology, we have 7% (e’ o) =
Pr1se(VE o o x (PT52€) - Y& o xw x (PT35€")). Finally, as cycle class maps are compatible with
pull-backs we get 74, (' 0 e) = prig«(pris(vh, x(€)) - pris(v%, ¢ (€'))). But this is by
definition the composition of correspondneces 7% (€') 0 7%, v (€) under the identification

(4) H2(Xp x Xp, Q) (d) = ©r>oEndg, (HL, (X 5, Q).

Hence, writing e := 7% i (e), when viewing it as a Qg-linear endomorphism of the (graded)
vector space V := @%‘éngt(X 7 Q¢) (under the identification (), we conclude that

doe=¢oe.

Now consider the motive M’ = (X, p,0), by definition p is an idempotent in CH(X x X),
i.e., pop = p. It follows from the above discussion that p is an idempotent linear map. This
implies that B

V = Ker(p) ® Im(p),
as I'p-modules. Let w, be the automorphism of V, induced by the action of w. It now
follows by linear algebra that

Tr (par o(w)) = Tr (w*|Im(B)) =Tr (w0 p).
10
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Thus in order to prove the proposition it suffices to show that Tr (w* o B) € Q and is inde-
pendent of /.
For brevity, let us denote by Tr¥!*(w, o p) the alternating sum

2d

D (=) Tr(w, o p: Hyy (X5, Q).

r=0
By hypothesis the Kiinneth standard conjecture holds for X, i.e, for every 0 < r < 2d, there
exists an algebraic cycle 7, such that 7, is the canonical projection

V = H (X5, Qo) =V,
followed by inclusion. It now follows from the above discussion that
Tr (ws o (pom,)) = Tr (weop: Hyy(Xp, Q) = Tr* (wy 0 (pom,)).
By [7, Thm 0.1], Tratt (w* o(po 7r,,)) € Q and is independent of £. It follows that
2d 2d
ST (we o HI(Xp, @) = T (ws 0 (pomy)) = Tr (w0 (po Axx)) =T (wsop),
r=0 r=0
is in Q and is independent of /.
U
Corollary 4.5. Every motive M € M2 (F) has a well-defined L-function.

hom

Proof. As M7 (F') is a subcategory of M%ﬁ;(F), thus in view of Thm we only need
to verify that for any non-archemdean valuation v on F' and w € W, the characteristic
polynomial Pys¢(w,T) of pare(w) has coefficients in Q and is independent of /.

Write M = (X, p,n), then X is a product of abelian varieties, zero dimensional varieties,
surfaces or complete intersection in projective spaces. As each of these varieties satisfies
Kiinneth standard conjecture, it follows that X satisfies Kiinneth standard conjecture. It

now follows from the proof of Thm[4.4] that Py ¢(w,T) € Q[T] and is independent of ¢. O

Corollary 4.6. Let X be as in Cor. [5.9. Then, for every i € N, the cohomology groups
Hgt(X/p,Qg) has well defined L-function, which is independent of the choice of £.
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