
HAL Id: hal-01068057
https://hal.science/hal-01068057v1

Submitted on 26 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Linear Consensus Approach to Quality-Fair Video
Delivery

Laura Dal Col, Sophie Tarbouriech, Luca Zaccarian, Michel Kieffer

To cite this version:
Laura Dal Col, Sophie Tarbouriech, Luca Zaccarian, Michel Kieffer. A Linear Consensus Approach
to Quality-Fair Video Delivery. 53rd IEEE Annual Conference on Decision and Control (CDC 2014),
Dec 2014, Los Angeles, CA, USA, United States. pp. 5296-5301, �10.1109/cdc.2014.7040217�. �hal-
01068057�

https://hal.science/hal-01068057v1
https://hal.archives-ouvertes.fr


A Linear Consensus Approach to Quality-Fair Video Delivery

L. Dal Col, S. Tarbouriech, L. Zaccarian, M. Kieffer

Abstract— We consider the problem of delivering encoded
video to several mobile users sharing a limited wireless resource.
The aim is to provide some fairness among the terminals in
terms of utility, which is cast in the framework of discrete-
time linear distributed consensus. To this end, the rate-utility
characteristics of each stream is linearized, which allows to get
necessary and sufficient conditions on the controller parameters
to asymptotically reach the consensus. To prove our statement
we also provide a general result on consensus of identical
continuous- or discrete-time linear systems. Simulation results
illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

Multimedia contents delivered to mobile clients repre-

sent a growing part of the internet traffic [1]. Even if the

development of 4G networks increases the available wire-

less resources, high-quality video contents are increasingly

demanding in terms of transmission rates. When several

users share some communication link to get streamed video

contents, simple bit-rate or bandwidth fair allocation strate-

gies are usually inappropriate. Such strategies are agnostic

of the rate-quality characteristics of the delivered contents.

Rather static video contents such as news may be efficiently

delivered with a moderate bit rate, that would be insufficient

to enjoy an action motion picture of decent quality. This

has motivated the recent development of quality-fair video

delivery techniques, such as [2], [6], [7], [12].

For example, [6] considers an utility max-min fair resource

allocation, which tries to maximize the worst utility. Nev-

ertheless, it does not consider the temporal variability of

the rate-utility characteristics of the contents, or the delays

introduced by the network and the buffers of the delivery

system. In [12], a content-aware distortion-fair video delivery

scheme is proposed assuming that the characteristics of video

frames are known in advance, which restricts its usage to the

streaming of stored videos. In [7], a Lagrangian optimization

framework is considered to maximize the sum of the achiev-

able rates while minimizing the distortion difference among

streams. This requires to gather all rate-utility characteristics

of the streams at the control unit. The user experience is

accurately modeled in [5] using the empirical cumulative

distribution function of the predicted video quality. This

L. Zaccarian, S. Tarbouriech and L. Dal Col are with CNRS,
LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France and Univ
de Toulouse, LAAS, F-31400 Toulouse, France. L. Zaccarian is also
with the Dipartimento di Ing. Industriale, University of Trento, Italy.
zaccarian@laas.fr, tarbour@laas.fr, ldalcol@laas.fr

M. Kieffer is with L2S - CNRS - Univ Paris-Sud, 3 rue Joliot-Curie, F-
91192 Gif-sur-Yvette, kieffer@lss.supelec.fr. M. Kieffer is partly
supported by the Institut Universitaire de France.

Work supported by the ANR project LimICoS contract number 12 BS03
005 01.

paper also considers admission control and uses constrained

optimization techniques, but again, rate-utility characteristics

of the videos are required.

Feedback control techniques have been considered in [3],

[4] to reach a quality fairness among users, while controlling

the level of the buffers in the network or the buffering

delay. However, the tuning of the parameters is nontrivial

and has been performed heuristically in these works. The

main goal of this paper is to systematically select those

gains based on a linear consensus approach. Consensus

and synchronization problems are extensively studied in the

literature for identical multi-agent systems, see, e.g., [17]

[8], [9], [26]. In consensus problems, the emphasis is on

communication constraints, where the individual systems are

modeled as simple integrators, and the collective evolution

is determined by the exchange of information modeled by

some communication graph. It has been shown in [13], [14]

that mild assumptions on graph connectivity ensure to uni-

formly exponentially reach consensus, see also [11] and [16].

Compared to consensus problems, in the synchronization

literature the focus is primarily in the individual dynamics.

As in the consensus problem the objective is to synchronize

the system to a common trajectory by exchanging relative

information [10], [22], [23]. Recently, some efforts have

been made to understand consensus and synchronization

problems in which both the individual dynamics as well as

communication constraints play an important role [27], [15],

[21], [29].

The aim of this paper is to formulate the quality-fair video

delivery problem as a distributed consensus problem. Using

linearized rate-utility characteristics of the video contents,

it is possible to derive necessary and sufficient conditions

for the coupled system to converge to a constant consensus

state. Optimal control gains may then be chosen to maximize,

e.g., the convergence rate. Simulation results show that the

control gains are appropriately designed, providing better

performance in terms of quality fairness than the reference

scheme [3], [4], where a heuristic technique is used for the

tuning. Moreover, the dependency in the characteristics of the

video contents and in the number of users in the expression

of the optimal gains is evidenced.

To prove our results, we derive a fairly general result on

continuous- and discrete-time consensus seeking for identical

linear systems (given in Theorem 2). As the main con-

tribution in the present work, Theorem 1 gives necessary

and sufficient conditions for the uniform global exponential

synchronization between the agents. Section II describes the

system under consideration. Section III casts the problem

as a linear consensus problem and gives the main result. In



Section IV, a way to select suboptimal controller gains is

proposed and the effectiveness of this selection is illustrated

on experimental tests in Section V. Detailed proofs of these

results are posponed in Section VI, whereas Section VII con-

cludes the paper. Appendix I contains a detailed derivation

of the results in Lemma 1, while Appendix II provides the

proof of Lemma 2.

Notation. We use x+ = x+(j) = x(j + 1) to denote the

push-forward operator, ∀j ∈ Z+, xd = xd(j) = x(j − 1)
to denote the one step delay operator, and xdd = xdd(j) =
x(j − 2) to denote the two steps delay operator.

II. PROBLEM FORMULATION

In this paper we analyze the model considered in [4] where

quality fairness is conjugated as ensuring the same rate-utility

value for all video streams. The dynamics of the i-th video

stream, i = 1, . . . , N , is described by the following set of

equations (conveniently reported from [4, equation (22)]):

ai(j)
+ = ai(j) + δai(j) (1a)

adi (j)
+ = ai(j) (1b)

Φi(j)
+ = Φi(j) + ∆Udd

i (j)− Udd
i (j) (1c)

Πb
i (j)

+ = Πb
i (j) + (Bi(j)−B0) (1d)

Red
i (j)+ = R0 − Keb

P +Keb
I

T
(Bi(j)−B0)− Keb

I

T
Πb

i (j) (1e)

Redd
i (j)+ = Red

i (j) (1f)

Udd
i (j)+ = f(adi (j), R

ed
i (j)) (1g)

B+
i (j) = Bi(j) + [Redd

i (j)−R0+ (1h)

+ (Kt
P +Kt

I)∆Udd
i (j)−Kt

IΦi(j)]T

Ūdd(j) = 1
N

N∑

k=1

Udd
k (j) (1i)

The discrete-time nonlinear state-space representation in

(1) considers N mobile users, indexed by the subscript

i, connected to the same base station (BS) and sharing

wireless resources provided by the BS to get streamed videos

delivered by N remote servers. Time is assumed to be slotted

with a period T . Each video delivery chain is assumed to

be controlled in a synchronous way, with video streams

consisting of group of pictures (GoP) of the same duration

T . Control is performed in a media-aware network element

(MANE). The rate-utility function of the j-th GoP of the

i-th stream is modeled by a nonlinear function Ui (j) =
f (ai (j) , R) parametrized by the vector ai (j) of the video

characteristics and depending on the video encoding rate R.

The evolution of ai (j) is described by (1a), with δai (j)
representing some uncontrolled perturbation modeling the

variations with time of the rate-utility characteristics. A total

transmission rate Rc is assumed to be shared by the users.

The encoding rate target is evaluated within the MANE

using an internal PI controller (controller Kint) aiming at

regulating the buffer level Bi of the i-th stream around

some reference buffer level B0, see (1d) and (1e). Keb
P and

Keb
I are the proportional and integral control parameters for

the encoding rates. R0 = Rc/N is the average rate, which

would be allocated in a rate-fair scenario. The draining rate

of the i-th buffer within the MANE is controlled so as to

minimize the discrepancy ∆Ui (j) of the utility Ui (j) of

the i-th program with respect to the average utility given by

(1i). For that purpose, an external PI controller (controller

Kext) with parameters Kt
P and Kt

I is involved: programs

with a utility less than average are drained faster, leading

to an increase of the encoding rate. A one-period forward

and backward delay between the MANE and the server is

considered to account for moderate queuing delays in the

network. Provided that T is of the order of the second, this

is a realistic upper bound. The delay operators account for

these delays in (1).

The problem addressed in this work concerns the selection

of the four PI controller gains to ensure the asymptotic

convergence of the utilities Ui(j) in (1g) to a common value

Ū , namely:

lim
j→+∞

Ui(j) = Ū , ∀i = 1, . . . , N. (2)

In Theorem 1, condition (2) is shown to hold if and only

if the spectral properties of suitably defined matrices are

ensured. This will allow for the optimal gains selection

proposed in Section I.

III. CONSENSUS ANALYSIS FOR THE LINEARIZED

DYNAMICS

A. Two PI control loops

System (1) can be rearranged in order to highlight the

different contributions of two PI controllers. The first one

essentially rejecting the constant bias B0, and the second

one rejecting the constant bias R0 and inducing consensus

of the utilities of the video streams. The first PI controller

(denoted by Kint in Figure 1) corresponds to an internal

loop and is characterized by (1d) and (1e), rewritten as:

Πb+
i = Πb

i +∆Bi (3a)

κ1 =
kint
I

T
Πb

i +
kint
P

T
∆Bi, (3b)

where Πb
i is the controller state, ∆Bi = Bi − B0 is the

controller input and κ1 = −∆Re
i = −(Re

i − R0) is the

controller output. The integral and proportional gains kintI

and kintP are defined as:

kintI = Keb
I , kintP = Keb

P +Keb
I . (4)

The second PI controller (denoted by Kext in Figure 1) is

characterized by (1c) and (1h), rewritten as:

Φs+
i = Φs

i +
∆Udd

i

σ
(5a)

κ2 = kextI Φs
i +

kextP

σ
∆Udd

i (5b)

∆Udd
i = 1

N

∑N

k=1 U
dd
k − Udd

i (5c)

where σ > 0 is a scalar normalizing constant, Φs
i =

Φi

σ
is the

controller state vector, ∆Udd
i is the controller input, and κ2

is the controller output. The integral and proportional gains

kextI and kextP are defined as:

kextI = σKt
I , kextP = σ(Kt

P +Kt
I), (6)



Kext P Kint z−2 fai

Ūdd ∆Udd
i κ2 ∆Bi ∆Rdd

i Udd
i

R0

ΣintΣext

Σ0

Fig. 1. Block Diagram of the controlled system

With this notation, (1e), (1f) and (1h) become:

∆Red+
i = ∆Re

i = −κ1 (7a)

∆Redd+
i = ∆Red

i (7b)

∆B+
i = ∆Bi + T (∆Redd

i − κ2). (7c)

Based on (3), (7) and as represented in Figure 1, controller

Kint performs a delayed negative feedback action over the

plant through the delayed output ∆Rdd
i .

B. The system seen as a consensus feedback

Let Σext = (Aext, Bext, Cext, Dext) denote the state-

space representation for controller Kext (i.e., the system with

input variable ∆Udd
i and output variable κ2), and Σint =

(Aint, Bint, Cint, Dint) denote the state-space representation

for the feedback loop that includes the controller Kint

(i.e., the system with input variable κ2 and output variable

∆Redd
i ). Then, using (3) and (7) for Σint and (5) for Σext,

one may represent the dynamics of the i-th video stream

using the states xint and xext defined as:

xint =
[

∆Bi

T
Πi

T
∆Red

i ∆Redd
i

]⊤
, xext = Φi (8)

With this selection, the state-space matrices of the subsys-

tems are given by:
(

Aext Bext

Cext Dext

)

=

(

1 1
σ

kextI
kext
P

σ

)

(9)

(
Aint Bint

Cint Dint

)

=









1 0 0 1 −1
1 1 0 0 0

−kintP −kintI 0 0 0
0 0 1 0 0
0 0 0 1 0









.

(10)

According to Figure 1, one can then represent the inner

dynamics of each video stream, represented by Σ0 in Figure

1 as the cascaded interconnection of Σext and Σint, estab-

lishing the linear relation from ∆Udd
i to ∆Rdd

i +R0 = Rdd
i ,

whose state-space representation Σ0 = (A0, B0, C0, D0) is

such that the state matrix A0 is lower-triangular. Actually,

given the state vector x =
[
x⊤
ext x⊤

int

]⊤
, the input variable

∆Udd
i and the output variable ∆Rdd

i we have:

(
A0 B0

C0 D0

)

=





Aext 0 Bext

BintCext Aint BintDext

0 Cint 0



 .

(11)

Due to its lower block triangular structure the eigenvalues of

A0 are the union of the eigenvalues of Aint and Aext. Then

the overall system dynamics is influenced by the separate

actions of the two subsystems Σint and Σext. In particular

Σint performs an internal stabilizing action of each stream

dynamics, and Σext performs the external synchronization

among the streams over the network.

C. Main consensus theorem

The coupling among the different video streams arises

from the action of the average utility Ūdd in (1i), acting

as an input to each video stream dynamics, where the utility

Udd
i of each stream is a nonlinear function of the state ai in

(1a) and (1b). In particular, it is easily shown that (1g) leads

to:

Udd
i = f(addi , Redd

i ) = f(addi ,∆Redd
i +R0), (12)

so that Udd
i can be seen as a nonlinear time-varying output

of system Σ0 in (11). In this paper we make the following

strong assumption, so that a linear time-invariant analysis of

the consensus algorithm can be performed.

Assumption 1: For each i = 1, . . . , N , the input δai in

(1a) is zero, so that ai is constant for each i. Moreover there

exist scalars hi, i = 1, . . . , N and a scalar Kf > 0 such that:

Udd
i = f(addi , Redd

i ) = hi +KfR
edd
i (13)

= hi +KfR0 +Kf∆Redd
i , ∀i = 1, . . . , N.

Based on Assumption 1 and on the presence of the integral

action of controller Kext, we may perform a coordinate

change to compensate for the action of the constant distur-

bance hi+KfR0, so that the overall system can be written as

an output feedback network interconnection of N identical

linear systems:

x+
i = A0xi +B0∆Udd

i

Udd
i = KfC0xi

∀i = 1, . . . , N (14)

In particular, using the last equation in (5), each input

∆Udd
i can be expressed, for each i = 1, . . . , N , as:

∆Udd
i = Ūdd −Udd

i =
1

N

∑

j 6=i

Udd
j −

(

1− 1

N

)

Udd
i . (15)

Define now the vectors Udd =
[
Udd
1 . . . Udd

N

]⊤
and

∆Udd =
[
∆Udd

1 . . . ∆Udd
N

]⊤
. Then (15), for i =

1, . . . , N , can be rewritten in the compact form:

∆Udd = −






1− 1

N
− 1

N
... ... − 1

N

− 1

N
1− 1

N
... ... − 1

N

...
...

. . .
...

− 1

N
− 1

N
... 1− 1

N




Udd = −LUdd, (16)



where L is the N × N Laplacian matrix associated with

the network. The Laplacian matrix resumes the information

exchanged by the subsystems. Notice that the graph related

to the network described by matrix L defined in (16) is

fully connected, i.e., every vertex has an edge to every other

vertex [9]. Combining (14) and (15), we obtain the following

compact form for the overall system:

x+ = (IN ⊗A0)x+ (IN ⊗B0)(−Ly) (17a)

y = Udd = Kf (IN ⊗ C0)x, (17b)

where y is the output representing the N utilities and

x =
[
x⊤
1 . . . x⊤

N

]⊤
is the overall state of the interconnected

systems. Then the following theorem can be stated.

Theorem 1: Under Assumption 1, the following state-

ments are equivalent:

(i) For any initial conditions, all utilities Ui, i = 1, . . . , N
of model (3), (5), (7), (13) converge to the same value,

i.e., condition (2) is satisfied.

(ii) Given any solution to (17), there exists Ū ∈ R such

that limj→+∞ yi(j) = Ū , ∀i = 1, . . . , N .

(iii) The following consensus set is uniformly globally

exponentially stable for dynamics (17):

A :=
{
x : xi − xj = 0, ∀i, j ∈ {1, . . . , N}

}
(18)

and matrix Aint is Schur-Cohn.

(iv) Matrix Aint and matrix Af = A0 −Kf

(
N

N−1

)

B0C0

are both Schur-Cohn.

IV. OPTIMAL TUNING OF THE PI CONTROLLERS

Item (iv) in Theorem 1 provides some useful theoretical

results in order to select suboptimal controller gains, in the

sense of maximizing a performance parameter, for example,

the convergence rate. In particular, the selection of the

optimal values may consist of two steps. First we design

the inner controller Kint providing the explicit expression

of the stability region for Aint as function of kintI and kintP ,

independently of any physical parameter. Once we fixed the

inner loop control gains, the selection of the outer loop

controller gains kextP and kextI is carried out with a similar

strategy to ensure that matrix Af in item (iv) of Theorem 1

is Schur-Cohn.

Let us first consider matrix Aint, which involves the

gains of controller Kint. We want to find the constraints on

the gains kintI and kintP under which the controller ensures

that Aint be Schur-Cohn. The following lemma is proven

applying the well-known Jury criterion and performing some

lengthy simplifications.

Lemma 1: Matrix Aint in (9) is Schur-Cohn if and only

if the following conditions hold:

kintI > 0

kintP +
1−

√
5

2
≤ kintI < kintP

(kintI −kintP − 1)2(kintI −kintP )−(kintP + 2)(2kintI −kintP ) > 0.

At the left of Figure 2 we show different level sets of the

spectral radius ρ(Aint) = maxi {|λi(Aint)|} as a function

of parameters kintI and kintP . The bold line represents the

stability limits, namely the set where ρ(Aint) = 1. Inspecting

the level sets and performing a numerical optimization one

obtains the optimal selection shown in Table I, that is used

in the simulations of Section V.

Let us now consider matrix Af = A0 −Kf
N−1
N

B0C0 at

item (iv) of Theorem 1, which also depends on the outer

PI controller gains kextI and kextP . From (11), conveniently

choosing σ := Kf
N−1
N

, we obtain:

Af =









1 0 0 0 −1
−kextI 1 0 0 kextP + 1

0 1 1 0 0
0 −kintP −kintI 0 0
0 0 0 1 0









. (20)

Therefore, after fixing the optimized values of the internal

PI loop as shown in Table I, the suboptimal parameters kextI

and kextP are computed by a numerical procedure that min-

imize the spectral radius of Af in (20). The corresponding

values are reported in Table I. At the right of Figure 2 we

show different level sets of the spectral radius ρ(Af ) :=
maxi {|λi(Af )|}. The bold line represents the stability limit.

Remark 1: The original system gains Kt
I , Kt

P in (1) are

obtained from kextI and kextP using (6) and the selection σ =
Kf

N−1
N

so that the actual gains depend on the scalar Kf

and the number of streams N .

V. SIMULATION RESULTS

To verify the performance of the control parameter design

technique presented in Section IV, 6 video streams 1 of

different types have been encoded during 60 s with x.264

[28] in 4CIF (704 × 576) format at various bit rates. The

programs are Interview (Prog 1), Sport (Prog 2), Big Buck

Bunny (Prog 3), Nature Documentary (Prog 4), Video Clip

1 http://www.youtube.com/watch?v=l2Y5nIbvHLs, =G63TOHluqno,
=YE7VzlLtp-4, =NNGDj9IeAuI, =rYEDA3JcQqw, =SYFFVxcRDbQ.

kextP

ke
xt I

0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

kintP

kin
t

I

0 0.2 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

Fig. 2. Gains selection: the external line corresponds to the stability limit
ρ = 1 and the minimum value of ρ is ρint

min
= 0.7964 and ρext

min
= 0.9399,

using the parameters in Table I.

kint

P
kint

I
kext
P

kext
I

0.2 0.0145 0.6590 0.1765
TABLE I

OPTIMAL SELECTION OF THE PI CONTROLLER GAINS.



(Prog 5), and an extract of Spiderman (Prog 6). The frame

rate is F = 30 frames/s. GoPs of 10 frames are considered,

thus the GoP duration is T = 0.33 s. The considered

utility is the Peak Signal-to-Noise Ratio (PSNR). To tune

the controllers, the rate-utility characteristics of each GoP is

estimated as described in [3], [4]. The control is assumed

performed within the MANE, closely located to the BS to

which the clients are connected. A Matlab simulation of the

behavior of the servers, the network, the MANE and the

clients is considered. The forward and backward propagation

and queuing delays between the MANE and the servers is

taken as constant and equal to T . The packets delivered by

the MANE to the BS and to the clients are assumed to be

well received thanks to retransmission at the MAC layer,

which is not modeled here.

During the control of the streaming system, the rate-utility

characteristics are not available at the MANE. Only the

utility of the encoded packets it receives are used. They

may be tagged, e.g., at the RTP layer of the protocol stack.

The MANE adjusts the transmission rate of each stream and

provides an encoding rate target to the individual servers,

which are then responsible of meeting this target by video

encoding, transcoding, or bit-rate switching.

To tune the control parameters, the parameter Kf intro-

duced in (13) has to be evaluated. For that purpose, the

time and ensemble average of the linearized rate-PSNR

characteristics for the four first streams have been evalu-

ated assuming that the same constant encoding rate Re ∈
{250, 500, 1000, 1500}kb/s has been used. The resulting

values of Kf are Kf (250) = 0.02 dB/kb/s Kf (500) =
0.01 dB/kb/s, Kf (1000) = 0.005 dB/kb/s, and Kf (1500) =
0.0033 dB/kb/s. The product Kf (R

e)Re is almost con-

stant for the considered experiments. A good robustness

to variations of the characteristics of the video streams is

obtained by taking Kf = 0.02 dB/kb/s. We have chosen

B0 = 1200 kb to tolerate significant variations of the

buffering delay. With a channel rate Rc = 4000 kb/s and

considering N = 4 clients, the controller parameters are

Keb
I = 0.0145 and Keb

P = 0.1855 for the encoding rate

control, whereas Kt
I = 0.1765/σ and Kt

P = 0.4825/σ with

σ = KfN/(N − 1) = 0.0267.

Five simulation results are presented in what follows. The

four video streams on which Kf has been evaluated are

considered first. Figure 3(a) shows the evolution with time

of the PSNR of the streams. The fairness between streams

is largely improved compared to a transmission rate fair

(TRF) solution illustrated in Figure 3(b). To quantify the

improvement, the average absolute value of the difference

of the utility (PSNR) of each stream and the average utility

(PSNR) is evaluated as follows:

∆U =
1

MN

M∑

j=1

N∑

k=1

∣
∣Uk (j)− U (j)

∣
∣ (21)

For the proposed tuning, ∆U = 2.64 dB, while for the

TRF scheme, one gets ∆U = 4.47 dB. The results in [3]

for the same scenario, were obtained with Keb
I = 0.002,

Keb
P = 0.15, Kt

I = 0.05, and Kt
P = 100 and are represented

in Figure 3(c). One gets in this case ∆U = 2.96 dB,

which is larger than the results obtained in this paper. In

a second scenario, the four last streams are controlled with

the same control parameters to illustrate the robustness of

the approach to variations of the rate-utility characteristics.

Figure 4 illustrates again the evolution of the PSNR with

time of the TRF scheme (∆U = 3.98dB) and the scheme of

this paper (∆U = 3.53 dB). Due to jumps in the rate-utility

characteristics of Prog. 5 (related to scene changes), reaching

a very good fairness between streams is more difficult than

in the previous case. Nevertheless, the control parameters

designed for the first four programs still provide a satisfying

behavior for the last four programs.

VI. PROOF OF THE MAIN RESULT

A. A few technical Lemmas

In this Section we introduce a few technical lemmas

establishing suitable properties of quadratic functions with

respect to the following output consensus set:

Ay :=
{
y : yi − yj = 0, ∀i, j ∈ {1, . . . , N}

}
(22)

and the following consensus set:

A :=
{
x : xi − xj = 0, ∀i, j ∈ {1, . . . , N}

}
(23)

Let also recall that given a set X , |x|X = inf
y∈X

|x− y| . By

using convexity property we can prove the following lemma.

Let 1N = [1 . . . 1]
⊤ ∈ RN .

Lemma 2: For any pair of positive integers n,N , given

set A in (23), we have for all x ∈ RNn:

|x|2A =
N∑

k=1

|x̄− xk|2 , with x̄ :=
1

N

N∑

k=1

xk =
1

N
(1⊤

N⊗In)x,

(24)

where xk ∈ Rn and x̄ ∈ Rn is the (vector) average of the

(vector) components of x ∈ RNn.

Based on Lemma 2, we can now prove the following result.

Lemma 3: Consider any unitary matrix T ∈ RN×N

whose first column is given by 1√
N
1N and the diagonal

matrix ∆ = IN − e1e
⊤
1 , where e1 = [1 0 . . . 0]

⊤ ∈ RN

is the first element of the Euclidean basis. Then there exist

scalars c1, c̄1, c2, c̄2 > 0 such that for any y ∈ RN , the
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Fig. 4. PSNR of Progs 3 to 6, transmission-rate fair streaming (left) and
proposed tuning of the control parameters for the utility-fair scheme (right).
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(a) PSNR of Progs 1 to 4, proposed tuning of the
control parameters for the utility-fair scheme.

0 10 20 30 40 50 60
25

30

35

40

45

50

55

60

Time (s)

P
S

N
R

(d
B

)

PSNR 1

PSNR 2

PSNR 3

PSNR 4

(b) PSNR of Progs 1 to 4, transmission rate fair
streaming.
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(c) PSNR of Progs 1 to 4, control parameters taken
from [3].

Fig. 3. PSNR of Progs 1 to 4, comparison between different control schemes.

following inequality holds:

c̄1 |y|2Ay
= c1

N∑

k=2

(y1 − yk)
2 ≤ y⊤T∆T⊤y (25a)

c̄2 |y|2Ay
= c2

N∑

k=2

(y1 − yk)
2 ≥ y⊤T∆T⊤y (25b)

Moreover, for any n ∈ N and any x ∈ RNn, where xk ∈ Rn,

∀k = 1, . . . , N , we have:

c̄1 |x|2A =

N∑

k=2

|x1 − xk|2 ≤ x⊤(T∆T⊤ ⊗ In)x (26a)

c̄2 |x|2A = c2

N∑

k=2

|x1 − xk|2 ≥ x⊤(T∆T⊤ ⊗ In)x(26b)

Proof: Since matrix ∆ has a zero in the upper left entry

and ones in the remaining diagonal entries, we can write:

T∆T⊤ = T̄ T̄⊤ (27)

where T̄ ∈ RN×(N−1), composed by the last N−1 columns

of T , satisfies T̄⊤
1N = 0 and has N − 1 independent

columns. Therefore, Im T̄ ⊂ (1N )⊥. As a consequence

Im






1 1 ... 1
−1 0 ... 0
0 −1 ... 0

...
...

. . .
...

0 0 ... −1




 ⊂ Im T̄ , and there exists Σ invertible

such that ΣT̄⊤y = ỹ :=

[
y1−y2

...
y1−yN

]

∈ RN−1, where ỹ clearly

satisfies
N∑

k=2

(y1−yk)
2 = |ỹ|2. With reference to relation (27)

consider now:

T̄ T̄⊤ = T̄Σ⊤Σ−⊤Σ−1ΣT̄⊤ = T̄Σ⊤MΣT̄⊤,

where M = Σ−⊤Σ−1 is clearly positive definite. Then

choosing c1 = λmin(M) and c2 = λmax(M), we may use:

y⊤T∆T⊤y = y⊤T̄ T̄⊤y = ỹ⊤Mỹ,

to obtain the inner inequalities in (25). Consider now the

quadratic form:

x⊤(T∆T⊤ ⊗ In)x =






x1

...

xN






⊤

(T̄ T̄⊤ ⊗ In)






x1

...

xN






=




(ΣT̄⊤ ⊗ In)






x1

...

xN











⊤

(M ⊗ In)




(ΣT̄⊤ ⊗ In)






x1

...

xN











=










In −In 0 ... 0
In 0 −In ... 0

...
...

...
. . . 0

In 0 0 ... −In










x1

...

xN











⊤

(M ⊗ In)










In −In 0 ... 0
In 0 −In ... 0

...
...

...
. . . 0

In 0 0 ... −In










x1

...

xN









 = x̃⊤(M ⊗ In)x̃,

where x̃ = [x1 − x2 . . . x1 − xN ]
⊤

. Then noticing that

λmin(M ⊗ In) = λmin(M) = c1 and λmax(M ⊗ In) =
λmax(M) = c2 we obtain the inner inequalities in (23). To

complete the proof we need to show the outer inequalities

in (22), (23). To this end, it is sufficient to show that there

exist positive scalars k1 and k2 such that for any pair n,N
and any x ∈ RNn, we have:

k1 |x̃|2 ≤
N∑

k=1

|x̄− xk|2 ≤ k2 |x̃| , (28)

and then the result follows from Lemma 2. To show (28) we

first observe that
N∑

k=1

|x̄− xk|2 = |x̄⊗ 1n − x|2 and then

the straightforward relation:

x̃ =





In −In 0 ... 0
In 0 −In ... 0

...
...

...
. . . 0

In 0 0 ... −In





︸ ︷︷ ︸

T1

(x̄⊗ 1n − x) (29)

implies |x̃|2 = x̃⊤x̃ = (x̄⊗ 1n − x)⊤T⊤
1 T1(x̄⊗ 1n − x) ≤

k−1
1 |x̄⊗ 1n − x| , where k−1

1 is the maximum singular value



of T⊤
1 T1. Similarly we have:

1

N

[
−In −In . . . −In

]
x̃ =

=
1

N

(

−(N − 1)x1 +

N∑

k=2

xk + x1 − x1

)

=
1

N

(

−Nx1 +

N∑

k=1

xk

)

= x̄− x1

(30)

which implies:

1

N

[
(N − 1)In −In . . . −In

]
x̃ =

= x̄− x1 +
N

N
(x1 − x2) = x̄− x2

(31)

and, using similar reasonings:

(x̄⊗ 1n − x) =





−In −In −In ... −In
(N−1)In −In −In ... −In

...
...

...
. . .

...
−In −In −In ... (N−1)In





︸ ︷︷ ︸

T2

x̃, (32)

which implies |x̄⊗ 1n − x|2 = (x̄⊗1n−x)⊤(x̄⊗1n−x) =
x̃⊤T⊤

2 T2x̃ ≤ k2 |x̃|2, where k2 is the maximum singular

value of T⊤
2 T2.

B. Proof of Theorem 1

Before proving Theorem 1, we introduce a general result

on consensus of identical linear systems that combines

the stability results in [9] with output feedback coupling

analyzed in [20].

Implication (i) =⇒ (ii) is also reported in [29, Theorem

1] for the convergence proof.

Consider N identical dynamical systems, governed by:

δxi = Axi +Bui

yi = Cxi
i = 1, . . . , N (33)

where δx = ẋ for continuous-time and δx = x+ for discrete-

time. In (33), xi ∈ Rn, ui ∈ R , yi ∈ R. Consider the

interconnection:

u = −Ly, (34)

where u = [u1 . . . uN ]
⊤ ∈ RN , y = [y1 . . . yN ]

⊤ ∈ RN

and L = L⊤ ∈ RN×N is a symmetric Laplacian matrix.

Also denote the eigenvalues of L as 0 = λ0 ≤ λ1 ≤ · · · ≤
λN−1, where it is emphasized (see [9]) that L always has an

eigenvalue at zero, that corresponds to the eigenvector 1N .

Theorem 2: The following statements are equivalent:

(i) Matrices

Ak := A−λkBC, k = 1, . . . , N − 1 are Schur-Cohn.

(35)

(ii) There exists a strict quadratic Lyapunov function V (x)
satisfying:

c̄1 |x|2A ≤ V (x) ≤ c̄2 |x|2A , (36a)

V̇ (x)\∆V (x) ≤ −c̄3 |x|2A , (36b)

for suitable positive constants c̄1, c̄2 and c̄3, where |x|A
denotes the distance of x from the set A.

(iii) The closed attractor:

A := {(x1, . . . , xN ) : xi − xj = 0, ∀i, j = 1, . . . , N}
(37)

is uniformly globally exponentially stable for the

closed loop (33), (34).

(iv) The closed loop (33), (34) is such that the sub-states

xi uniformly globally exponentially synchronize to the

unique solution to the following initial value problem:

δx◦ = Ax◦, x◦(0) =
1

N

N∑

k=1

xk(0) (38)

Proof: We first show a preliminary transformation, then

we prove the theorem in three steps: (i) =⇒ (ii), (ii) =⇒
(iii), (iii) =⇒ (iv), and (iv) =⇒ (i).

Preliminary transformation. Let us define the extended state

vector x =
[
x⊤
1 . . . x⊤

N

]⊤
and rewrite interconnection (33),

(34) in the following compact form:

δx = (IN ⊗A)x+ (IN ⊗B)u (39)

y = (IN ⊗ C)x (40)

u = −(L⊗ C)x = −(IN ⊗ C)(L⊗ In)x, (41)

where IN ⊗ A ∈ RNn×Nn, IN ⊗ B ∈ RNn×N , IN ⊗
C ∈ RN×Nn and L ⊗ In ∈ RNn×Nn. Since matrix L is

symmetric, there exists a unitary matrix T ∈ RN×N (namely

a matrix satisfying T⊤T = IN that diagonalizes L). In

particular, let us pick T such that:

Λ = T⊤LT =








0 0 . . . 0
0 λ1 . . . 0
...

. . .
...

0 0 . . . λN−1







. (42)

Since the upper-left entry of Λ is zero, we may select T
such that its first column corresponds to the eigenvector

t0 = 1√
N
1N associated to the zero eigenvalue λ0 = 0 of

L. Furthermore, it is easily checked that T ⊗ In transforms

L⊗ In into Λ⊗ In. Indeed, using the associative property of

the Kronecker product we get (T ⊗In)
⊤(L⊗In)(T ⊗In) =

(T⊤LT ⊗ In) = Λ⊗ In. Let us now introduce the similarity

transformation x̄ = (T⊤⊗ In)x. Then dynamics (39) reads:

δx = (T⊗In)
−1(IN⊗A)(T⊗In)x̄+ (T⊗In)

−1(IN⊗B)u
y = (IN ⊗ C)(T ⊗ In)x̄
u = −(IN ⊗ C)(L⊗ In)(T ⊗ In)x̄.

(43)

Substituting in (43) the control law (third equation) into

the first equation and using the associative property of the

Kronecker product we obtain:

δx̄ = Āx̄, (44)

where the state matrix A can be computed as:

Ā = (T−1T⊗A)−
−(T⊗In)

−1(IN⊗B)(IN⊗C)(L⊗In)(T⊗In)
= (IN ⊗A)− (T−1LT ⊗BC)
= (IN ⊗A)− (Λ⊗BC)
= (IN ⊗A)− (IN ⊗BC)(Λ⊗ In),

(45)



which evidently has the following block diagonal structure:

Ā =








A 0 . . . 0
0 A− λ1BC . . . 0
...

. . .
...

0 0 . . . A− λN−1BC








= diag{A,A1, . . . , AN−1}, (46)

where we use the definitions in (35).

Proof of (i) =⇒ (ii) By assumption (35), we have that there

exist matrices Pk, k = 1, . . . , N − 1 such that:

A⊤
k Pk + PkAk = −In, k = 1, . . . , N − 1 , t ∈ R (47a)

A⊤
k PkAk − Pk = −In, k = 1, . . . , N − 1 , t ∈ Z (47b)

Construct the block diagonal matrix P̄ =
diag{0, P1, . . . , PN−1} and define the Lyapunov function

candidate:

V (x) = x⊤(T ⊗ In)
︸ ︷︷ ︸

x̄⊤

P̄ (T⊤ ⊗ In)
︸ ︷︷ ︸

x̄

=
N−1∑

k=1

x̄⊤
k Pkx̄k. (48)

Then, from equations (44), (46) and (47) it follows that:

V̇ (x) =

N−1∑

k=1

x̄⊤
k (PkAk +A⊤

k Pk)x̄k = −
N−1∑

k=1

x̄⊤
k x̄k,

∆V (x) =

N−1∑

k=1

x̄⊤
k (A

⊤
k PkAk − Pk)x̄k = −

N−1∑

k=1

x̄⊤
k x̄k,

(49)

To prove (36), we use Lemma 2 after noticing that matrix T
introduced in the preliminary step of the proof satisfies the

assumption of the lemma. Then we also observe that, using

matrix ∆ = diag{0, 1, . . . , 1} defined in Lemma 3, we have:
N−1∑

k=1

x̄2
k = x̄⊤(∆⊗ In)x̄

= ((T ⊗ In)x)
⊤
(∆⊗ In)(T ⊗ In)x

= x⊤(T⊤∆T ⊗ In)x

(50)

Therefore, using (50), positive definiteness of Pk, k =
1, . . . , N − 1, definition (48) and Lemma 1, we obtain:

V (x) ≤ max
h∈{1,...,N−1}

λmax(Ph)

︸ ︷︷ ︸

p̄

N−1∑

k=1

|xk|2

= p̄x⊤(T⊤∆T ⊗ In)x ≤ c2p̄ |x|2A

V (x) ≥ min
h∈{1,...,N−1}

λmin(Ph)

︸ ︷︷ ︸

p

N−1∑

k=1

|xk|2

= px⊤(T⊤∆T ⊗ In)x ≥ c1p |x|2A ,

(51)

thus proving the first equation in (47) with c̄1 = c1p and

c̄2 = c2p. Finally, using (49), (50) and Lemma 1 we get:

V̇ (x)/∆V (x) ≤ −x⊤(T⊤∆T ⊗ In)x ≤ −c1 |x|A , (52)

which coincides with the second equation in (36) with c̄3 =
c1.

Proof of (ii) =⇒ (iii) Based on (36), UGES of A in

(37) follows from standard Lyapunov results (see, e.g., the

discrete- and continuous-time special cases of the hybrid

results in [25, Theorem1]).

Proof of (iii) =⇒ (iv) Consider the dynamics of the state

x◦(t) :=
1
N

N∑

k=1

xk(t) and note that from (33):

δx◦(t) =
1

N

N∑

k=1

δxk(t) = A

N∑

k=1

xk(t) +B

N∑

k=1

uk(t)

= Ax◦(t) +B 1
⊤
NL
︸︷︷︸

=0

y = Ax◦(t), (53)

where 1
⊤
NL = 0 due to well known properties of Laplacian

matrices. Then x◦ evolves autonomously according to (38)

and corresponds to the average of states xk. Since from (ii)

=⇒ (iii) we know that states xk exponentially synchronize

to some consensus, then they must synchronize to their

average value that is x◦.

Proof of (iv) =⇒ (i) We prove this step by contradiction.

Assume that one of matrices Ak in (35) is not Schur-Cohn,

and assume without loss of generality that it is AN−1.

Consider the coordinate system in (44) with (46). Then, from

the block diagonal structure of Ā, since AN−1 is not Schur-

Cohn, there exists a vector ω∗ ∈ Rn (an eigenvector of one

of the non-converging natural modes) such that the solution

to (44) from x̄∗(0) =
[
0⊤ . . . 0⊤ ω∗⊤ ]⊤

corresponds

to x̄∗(t) =
[
0⊤ . . . 0⊤ x̄⊤

N (t)
]⊤

, where x̄N (t) does

not converge to zero. As a consequence, the function in (48)

along this solution corresponds to:

V (x∗(t)) = V ((T ⊗ In)x̄
∗(t)) = x̄⊤

N (t)PN x̄N (t),

which, from linearity, remains bounded away from zero.

Then, using the first inequality in (51) we have that |x∗(t)|A
is bounded away from zero, namely solution x∗(t) does

not converge to the consensus set. In other words, the

components of x∗(t) do not asymptotically synchronize,

which contradicts item (iv).

Based on Theorem 2, the proof of Theorem 1 is given in the

following.

Proof of (i) ⇔ (ii) This equivalence follows from the fact

that, due to relations (14)–(16), and from the definitions in

(9)–(11), model (17) coincides with the closed loop (3), (5),

(7), (13).

Proof of (iii) ⇔ (iv) Applying the equivalence between items

(i) and (iii) of Theorem 2 when focusing on system (17), item

(iii) of Theorem 1 is equivalent to having that all eigenvalues

λk of matrix L in (16), except for that one related to the

eigenvector 1N , are such that A0 − λkKfB0C0 is Schur-

Cohn. Since Laplacian matrix L has all such eigenvalues

coincident and equal to N
N−1 , the result trivially follows.

Proof of (iv) ⇒ (i) Similar to the previous step, this implica-

tion follows from item (iv) of Theorem 2 after noticing that

system x+
◦ = Ax◦ corresponds to system Σ0, namely A =

A0, where A0 is given in (11). Since Aint is Schur-Cohn

by assumption, then due to its block triangular structure,

matrix A0 has a single eigenvalue at zero and all solutions

to (38) converge to a constant, thereby proving item (i) of



Theorem 1.

Proof of (i) ⇒ (iv) We prove this by contradiction. Assume

that item (iv) does not hold. Then either Af is not Schur-

Cohn, which implies from Theorem 2 that consensus is not

achieved for some initial conditions (thereby proving that

(i) does not hold), or Af is Schur-Cohn and Aint is not

Schur-Cohn. In this case, Theorem 2 applies because Af is

Schur-Cohn and all solutions exponentially synchronize to a

solution to (38) with A = A0 as in (11). Then two cases

may occur:

a) Aint has at least one eigenvalue with magnitude larger

than 1 or at least one eigenvalue on the unit circle with mul-

tiplicity larger than 1: in this case some solutions synchronize

to a diverging evolution, thus item (i) does not hold;

b) Aint has at least one eigenvalue with magnitude 1 on the

unit disk. If that eigenvalue is at 1, then due to the triangular

structure, matrix A0 has two eigenvalues in 1 (the other one

coming from Aext) and again some solutions synchronize

to a diverging evolution. If that eigenvalue is anywhere else

in the unit circle, then it generates a revolving non-constant

mode and some solutions synchronize to a non-convergent

oscillatory evolution.

In both cases a) and b), item (i) does not hold and the

proof is completed.

VII. CONCLUSION

In this paper we propose a control strategy for delivering

media contents to users sharing a limited resource, ensuring

quality fairness among network clients. This problem is

stated in terms of consensus among identical LTI systems

coupled through static output feedback. The controllers

synthesis is based on a general result that provides novel

analytical tools which prove the uniform global exponential

synchronization among the systems outputs. Experimental

results illustrate the effectiveness of the proposed control

techniques. Future work may include relaxing Assumption 1

to account for the nonlinear nature of function f in (12).

Furthermore, an optimization technique based on linear ma-

trix inequalities may be developed to systematically tune the

controllers gains.
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APPENDIX I

PROOF OF LEMMA 1

The characteristic polynomial of the state matrix Aint is

given by:

λAint
(z) = z4 − 2z3 + z2 + kintP z + kintI − kintP . (54)

To handle this expression we define new coefficients α and

β as follows:

α = kintP , β = kintI − kintP ,

and polynomial (54) becomes:

λAint
(z) = z4 − 2z3 + z2 + αz + β. (55)

Jury’s stability criterion provides necessary and sufficient

conditions on the coefficients of the polynomial (55), in order

to guarantee the asymptotic stability of Σint. Applying Jury’s

criterion, we deduce that (55) is Schur-Cohn if and only if

the parameters α and β satisfy the following constraints:

α+ β > 0 (56a)

β − α+ 4 > 0 (56b)

1− |β| > 0 (56c)

1− β2 − |α+ 2β| > 0 (56d)

f(α, β) > |g(α, β)| (56e)

where the functions f(α, β) and g(α, β) are defined as

follows:

f(α, β) = (β2 − 1)2 − (α+ 2β)2 (57)

g(α, β) = (β2 − 1)(β − 1) + (α+ 2β)(αβ + 2)(58)

Furthermore, constraints (19) can be expressed in function

of α and β:

α+ β > 0 (59a)

1−
√
5

2
≤ β < 0 (59b)

β(β − 1)2 − (α+ 2β)(α+ 2) > 0 (59c)

Proving Lemma 1 is equivalent to prove that constraints

(56) and (59) lead to the same solutions set.

Let S denote the set of points (α, β) satisfying (56), and

S∗ denote the set of points (α, β) satisfying (59). We want

to prove that S ⊆ S∗ (the inclusion S∗ ⊆ S is trivial).

From constraint (56d) we get:

α < −β2 − 2β + 1 ≤ min
β

{
−β2 − 2β + 1

}
= 2 (60a)

α > β2 − 2β − 1 ≥ max
β

{
β2 − 2β − 1

}
= −2 (60b)

Thus, conditions (60) and (56) imply:

S ⊆ S1 := {(α, β) : |β| < 1, |α| < 2, α+ β > 0}
Moreover, it is trivial to prove the pairs (α, β) ∈ S1 satisfy

(56b). Let consider now the function g(α, β) defined in (58):

∀ (α, β) ∈ S1, we get the following lower bound:

g(α, β) = (β2 − 1)(β − 1) +

>0
︷ ︸︸ ︷

(α+ β)

>0
︷ ︸︸ ︷

(αβ + 2)+β(αβ + 2)

> (β2 − 1)(β − 1) + β(αβ + 2)

= −β2 + β3 − β + 1 + αβ2 + 2β

> −β2 + β3 + β + 1− β3

= −β2 + β + 1,

and we get:

1−
√
5

2 ≤ β ≤ 1+
√
5

2 =⇒ g(α, β) > 0 (61)

As a consequence g(α, β) is positive in the set:

S+ :=

{

(α, β) :
1−

√
5

2
≤ β < 1, |α| < 2, α+ β > 0

}

.

Let consider now the set S− := S1 \ S+:

S− =

{

(α, β) : −1 < β <
1−

√
5

2
, |α| < 2, α+ β > 0

}

(62)



We want to prove that S * S−, since inequality (56e) doesn’t

hold in S−, i.e., f(α, β) < |g(α, β)|, ∀(α, β) ∈ S−.

Two cases may occur:

a) If g(α, β) ≥ 0, then:

f(α, β)− g(α, β) < β4 − 2β2 − β =

= β(β + 1)

(

β − 1 +
√
5

2

)(

β − 1−
√
5

2

)

,

so f(α, β)− |g(α, β)| = f(α, β)− g(α, β) < 0 in S−.

b) If g(α, β) < 0, then |g(α, β)| = −g(α, β) > g(α, β) and

from the previous point we get:

f(α, β) < g(α, β) < −g(α, β) = |g(α, β)| ,
so the statement is verified.

Moreover, considering (56e) and (61) we can conclude that

f(α, β) > 0 in S+. The function f(α, β) can be rewritten

as follows:

f(α, β) = −(α− f1(β))(α− f2(β))

where f1(β) = β2 − 2β − 1 and f2(β) = −β2 − 2β + 1. It

can be easily verified that f1(β) < f2(β) ∀β : |β| < 1, and

the following holds:

f(α, β) > 0 ⇔ α < f1(β) ∨ α > f2(β). (63)

Noticing that f(α, β)− g(α, β) > 0 holds ∀(α, β) ∈ S+, it

follows:

β (β + 1)
︸ ︷︷ ︸

>0

(f1(β)− α)
︸ ︷︷ ︸

<0

> 0 =⇒ β < 0.

We want now prove that, if f(α, β) > 0, (56d) is verified

∀(α, β) : |β| < 1. In fact:

f(α, β) = (β2 − 1)2 − (α+ 2β)2 > 0

=⇒
∣
∣β2 − 1

∣
∣ > |α+ 2β|

=⇒ 1− β2 > |α+ 2β|
Finally, condition (59c) can be obtained from (56e) ,(56c)

and (58) as follows:

f(α, β)− g(α, β) > 0

m
(β + 1)

[
β(β − 1)2 − (α+ 2β)(α+ 2)

]
> 0

m
β(β − 1)2 − (α+ 2β)(α+ 2) > 0

We can conclude that:

S ⊆{(α, β) : 1−
√
5

2
≤ β < 0,

β(β − 1)2 − (α+ 2β)(α+ 2) > 0, α+ β > 0} = S∗.

which concludes the proof.

APPENDIX II

PROOF OF LEMMA 2

The following result is based on [24, Theorem 1.10].

Lemma 4: Given a closed, convex set A ⊂ Rν and any

vector x ∈ Rν , there exists a unique point y ∈ A satisfying:

|x− y| = |x|A := min
a∈A

|x− a| (64)

Moreover, y ∈ A satisfies (64) if and only if x ∈ NA(y),
where:

NA(y) =
{
n ∈ Rν : 〈n− y, y − a〉 ≥ 0 ∀a ∈ A

}
(65)

is the normal cone to A at y, and y is the orthogonal

projection of x onto A (see [18]).

Proof: We only prove the equivalence among (64) and

(65) because the existence and uniqueness of y is already

proven in [19, Theorem 12.3].

Proof of (65) ⇒ (64) If x ∈ NA(y) then, ∀a ∈ A we have:

|x− a|2 = |x− y + y − a|2

= |x− y|2 + |y − a|2 + 2〈x− y, y − a〉
≥ |x− y|2 .

Proof of (64)⇒ (65) For all a ∈ A and for any η ∈ (0, 1]

we have form convexity that ηa + (1 − η)y ∈ A, therefore

from (64):

|x− y|2 ≤ |x− (ηa+ (1− η)y)|2

= |x− y − η(a− y)|2

= |x− y|2 + 2η〈x− y, y − a〉+ η2 |y − a|2 ,
which, dividing by η, implies:

2〈x− y, y − a〉+ η |y − a|2 ≥ 0.

Taking the limit as η → 0, the statement is proven.

Using Lemma 4 we can prove Lemma 2. In fact, let us select

y = 1N ⊗ x̄ ∈ RnN , so that |x− y|2 =
N∑

k=1

|xk − x̄|2. Then,

according to Lemma 4, the proof is completed if x ∈ NA(y).
To prove this fact, first note that, since A is a linear subspace,

for any pair of vectors y, a ∈ A, we have b := y − a ∈ A,

so that it is enough to show:

〈x− y, b〉 ≥ 0, ∀b ∈ A. (66)

Relation (66) can be established by first noticing that b ∈ A
implies that there exists b̄ ∈ Rn such that b = 1N ⊗ b̄, and

then computing:

〈x− y, b〉 = 〈x− 1N ⊗ x̄,1N ⊗ b̄〉
= 〈1N ⊗ b̄, x− 1N ⊗ x̄〉

= (1N ⊗ b̄)⊤
(

x− 1N ⊗ 1

N
(1⊤

N ⊗ In)x

)

=
1

N
(1⊤

N ⊗ b̄⊤)
(
NINn − 1N ⊗ 1

⊤
N ⊗ In

)
x

=
1

N
(1⊤

N ⊗ b̄⊤)
([
NIN − 1N ⊗ 1

⊤
N

]
⊗ In

)
x

=
1

N




1

⊤
N

[
NIN − 1N ⊗ 1

⊤
N

]

︸ ︷︷ ︸

=0

⊗b̄⊤




x = 0

which completes the proof.
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