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I. INTRODUCTION

Multimedia contents delivered to mobile clients represent a growing part of the internet traffic [START_REF]Cisco visual networking index: Global mobile data traffic forecast update[END_REF]. Even if the development of 4G networks increases the available wireless resources, high-quality video contents are increasingly demanding in terms of transmission rates. When several users share some communication link to get streamed video contents, simple bit-rate or bandwidth fair allocation strategies are usually inappropriate. Such strategies are agnostic of the rate-quality characteristics of the delivered contents. Rather static video contents such as news may be efficiently delivered with a moderate bit rate, that would be insufficient to enjoy an action motion picture of decent quality. This has motivated the recent development of quality-fair video delivery techniques, such as [START_REF] Changuel | Joint encoder and buffer control for statistical multiplexing of multimedia contents[END_REF], [START_REF] Cho | Utility max-min flow control using sloperestricted utility functions[END_REF], [START_REF] Cicalo | Cross-layer algorithms for distortion-fair scalable video delivery over OFDMA wireless systems[END_REF], [START_REF] Li | Content-aware distortion-fair video streaming in congested networks[END_REF].

For example, [START_REF] Cho | Utility max-min flow control using sloperestricted utility functions[END_REF] considers an utility max-min fair resource allocation, which tries to maximize the worst utility. Nevertheless, it does not consider the temporal variability of the rate-utility characteristics of the contents, or the delays introduced by the network and the buffers of the delivery system. In [START_REF] Li | Content-aware distortion-fair video streaming in congested networks[END_REF], a content-aware distortion-fair video delivery scheme is proposed assuming that the characteristics of video frames are known in advance, which restricts its usage to the streaming of stored videos. In [START_REF] Cicalo | Cross-layer algorithms for distortion-fair scalable video delivery over OFDMA wireless systems[END_REF], a Lagrangian optimization framework is considered to maximize the sum of the achievable rates while minimizing the distortion difference among streams. This requires to gather all rate-utility characteristics of the streams at the control unit. The user experience is accurately modeled in [START_REF] Chen | Rate adaptation and admission control for video transmission with subjective quality constraints[END_REF] using the empirical cumulative distribution function of the predicted video quality. This paper also considers admission control and uses constrained optimization techniques, but again, rate-utility characteristics of the videos are required.

Feedback control techniques have been considered in [START_REF] Changuel | Control of multiple remote servers for quality-fair delivery of multimedia contents[END_REF], [START_REF] Changuel | Control of distributed servers for quality-fair delivery of multiple video streams[END_REF] to reach a quality fairness among users, while controlling the level of the buffers in the network or the buffering delay. However, the tuning of the parameters is nontrivial and has been performed heuristically in these works. The main goal of this paper is to systematically select those gains based on a linear consensus approach. Consensus and synchronization problems are extensively studied in the literature for identical multi-agent systems, see, e.g., [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF] [8], [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF], [START_REF] Wang | Consensus of multi-agent linear dynamic systems[END_REF]. In consensus problems, the emphasis is on communication constraints, where the individual systems are modeled as simple integrators, and the collective evolution is determined by the exchange of information modeled by some communication graph. It has been shown in [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF], [START_REF] Moreau | Stability of multiagent systems with time-dependent communication links[END_REF] that mild assumptions on graph connectivity ensure to uniformly exponentially reach consensus, see also [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] and [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. Compared to consensus problems, in the synchronization literature the focus is primarily in the individual dynamics. As in the consensus problem the objective is to synchronize the system to a common trajectory by exchanging relative information [START_REF] Hale | Diffusive coupling, dissipation, and synchronization[END_REF], [START_REF] Slotine | A study of synchronization and group cooperation using partial contraction theory[END_REF], [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF]. Recently, some efforts have been made to understand consensus and synchronization problems in which both the individual dynamics as well as communication constraints play an important role [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF], [START_REF] Nair | Stable synchronization of mechanical system networks[END_REF], [START_REF] Sepulchre | Stabilization of planar collective motion: All-to-all communication[END_REF], [START_REF] Xia | Synchronization conditions for diffusively coupled linear systems[END_REF].

The aim of this paper is to formulate the quality-fair video delivery problem as a distributed consensus problem. Using linearized rate-utility characteristics of the video contents, it is possible to derive necessary and sufficient conditions for the coupled system to converge to a constant consensus state. Optimal control gains may then be chosen to maximize, e.g., the convergence rate. Simulation results show that the control gains are appropriately designed, providing better performance in terms of quality fairness than the reference scheme [START_REF] Changuel | Control of multiple remote servers for quality-fair delivery of multimedia contents[END_REF], [START_REF] Changuel | Control of distributed servers for quality-fair delivery of multiple video streams[END_REF], where a heuristic technique is used for the tuning. Moreover, the dependency in the characteristics of the video contents and in the number of users in the expression of the optimal gains is evidenced.

To prove our results, we derive a fairly general result on continuous-and discrete-time consensus seeking for identical linear systems (given in Theorem 2). As the main contribution in the present work, Theorem 1 gives necessary and sufficient conditions for the uniform global exponential synchronization between the agents. Section II describes the system under consideration. Section III casts the problem as a linear consensus problem and gives the main result. In Section IV, a way to select suboptimal controller gains is proposed and the effectiveness of this selection is illustrated on experimental tests in Section V. Detailed proofs of these results are posponed in Section VI, whereas Section VII concludes the paper. Appendix I contains a detailed derivation of the results in Lemma 1, while Appendix II provides the proof of Lemma 2.

Notation. We use x + = x + (j) = x(j + 1) to denote the push-forward operator, ∀j ∈ Z + , x d = x d (j) = x(j -1) to denote the one step delay operator, and x dd = x dd (j) = x(j -2) to denote the two steps delay operator.

II. PROBLEM FORMULATION

In this paper we analyze the model considered in [START_REF] Changuel | Control of distributed servers for quality-fair delivery of multiple video streams[END_REF] where quality fairness is conjugated as ensuring the same rate-utility value for all video streams. The dynamics of the i-th video stream, i = 1, . . . , N , is described by the following set of equations (conveniently reported from [4, equation (22)]):

a i (j) + = a i (j) + δa i (j) (1a) a d i (j) + = a i (j) (1b) Φ i (j) + = Φ i (j) + ∆U dd i (j) -U dd i (j) (1c) Π b i (j) + = Π b i (j) + (B i (j) -B 0 ) (1d) R ed i (j) + = R 0 - K eb P +K eb I T (B i (j) -B 0 ) - K eb I T Π b i (j) (1e) R edd i (j) + = R ed i (j) (1f) U dd i (j) + = f (a d i (j), R ed i (j)) (1g) B + i (j) = B i (j) + [R edd i (j) -R 0 + (1h) + (K t P + K t I )∆U dd i (j) -K t I Φ i (j)]T Ū dd (j) = 1 N N k=1 U dd k (j) (1i) 
The discrete-time nonlinear state-space representation in (1) considers N mobile users, indexed by the subscript i, connected to the same base station (BS) and sharing wireless resources provided by the BS to get streamed videos delivered by N remote servers. Time is assumed to be slotted with a period T . Each video delivery chain is assumed to be controlled in a synchronous way, with video streams consisting of group of pictures (GoP) of the same duration T . Control is performed in a media-aware network element (MANE). The rate-utility function of the j-th GoP of the i-th stream is modeled by a nonlinear function U i (j) = f (a i (j) , R) parametrized by the vector a i (j) of the video characteristics and depending on the video encoding rate R. The evolution of a i (j) is described by (1a), with δa i (j) representing some uncontrolled perturbation modeling the variations with time of the rate-utility characteristics. A total transmission rate R c is assumed to be shared by the users. The encoding rate target is evaluated within the MANE using an internal PI controller (controller K int ) aiming at regulating the buffer level B i of the i-th stream around some reference buffer level B 0 , see (1d) and (1e). K eb P and K eb I are the proportional and integral control parameters for the encoding rates. R 0 = R c /N is the average rate, which would be allocated in a rate-fair scenario. The draining rate of the i-th buffer within the MANE is controlled so as to minimize the discrepancy ∆U i (j) of the utility U i (j) of the i-th program with respect to the average utility given by (1i). For that purpose, an external PI controller (controller K ext ) with parameters K t P and K t I is involved: programs with a utility less than average are drained faster, leading to an increase of the encoding rate. A one-period forward and backward delay between the MANE and the server is considered to account for moderate queuing delays in the network. Provided that T is of the order of the second, this is a realistic upper bound. The delay operators account for these delays in [START_REF]Cisco visual networking index: Global mobile data traffic forecast update[END_REF].

The problem addressed in this work concerns the selection of the four PI controller gains to ensure the asymptotic convergence of the utilities U i (j) in (1g) to a common value Ū , namely:

lim j→+∞ U i (j) = Ū , ∀i = 1, . . . , N. (2) 
In Theorem 1, condition ( 2) is shown to hold if and only if the spectral properties of suitably defined matrices are ensured. This will allow for the optimal gains selection proposed in Section I.

III. CONSENSUS ANALYSIS FOR THE LINEARIZED DYNAMICS

A. Two PI control loops

System (1) can be rearranged in order to highlight the different contributions of two PI controllers. The first one essentially rejecting the constant bias B 0 , and the second one rejecting the constant bias R 0 and inducing consensus of the utilities of the video streams. The first PI controller (denoted by K int in Figure 1) corresponds to an internal loop and is characterized by (1d) and (1e), rewritten as:

Π b+ i = Π b i + ∆B i (3a) κ 1 = k int I T Π b i + k int P T ∆B i , (3b) 
where Π b i is the controller state, ∆B i = B i -B 0 is the controller input and κ 1 = -∆R e i = -(R e i -R 0 ) is the controller output. The integral and proportional gains k int I and k int P are defined as:

k int I = K eb I , k int P = K eb P + K eb I . (4) 
The second PI controller (denoted by K ext in Figure 1) is characterized by (1c) and (1h), rewritten as:

Φ s+ i = Φ s i + ∆U dd i σ (5a) κ 2 = k ext I Φ s i + k ext P σ ∆U dd i ( 5b 
)
∆U dd i = 1 N N k=1 U dd k -U dd i (5c)
where σ > 0 is a scalar normalizing constant, Φ s i = Φi σ is the controller state vector, ∆U dd i is the controller input, and κ 2 is the controller output. The integral and proportional gains k ext I and k ext P are defined as: With this notation, (1e), (1f) and (1h) become:

k ext I = σK t I , k ext P = σ(K t P + K t I ), (6) 
K ext P K int z -2 f ai Ū dd ∆U dd i κ 2 ∆B i ∆R dd i U dd i R 0 Σ int Σ ext Σ 0
∆R ed+ i = ∆R e i = -κ 1 (7a) ∆R edd+ i = ∆R ed i (7b) ∆B + i = ∆B i + T (∆R edd i -κ 2 ). (7c) 
Based on (3), [START_REF] Cicalo | Cross-layer algorithms for distortion-fair scalable video delivery over OFDMA wireless systems[END_REF] and as represented in Figure 1, controller K int performs a delayed negative feedback action over the plant through the delayed output ∆R dd i .

B. The system seen as a consensus feedback

Let Σ ext = (A ext , B ext , C ext , D ext ) denote the statespace representation for controller K ext (i.e., the system with input variable ∆U dd i and output variable κ 2 ), and Σ int = (A int , B int , C int , D int ) denote the state-space representation for the feedback loop that includes the controller K int (i.e., the system with input variable κ 2 and output variable ∆R edd i ). Then, using ( 3) and ( 7) for Σ int and (5) for Σ ext , one may represent the dynamics of the i-th video stream using the states x int and x ext defined as:

x int = ∆Bi T Πi T ∆R ed i ∆R edd i ⊤ , x ext = Φ i (8)
With this selection, the state-space matrices of the subsystems are given by:

A ext B ext C ext D ext = 1 1 σ k ext I k ext P σ (9) 
A int B int C int D int =       1 0 0 1 -1 1 1 0 0 0 -k int P -k int I 0 0 0 0 0 1 0 0 0 0 0 1 0       . ( 10 
) According to Figure 1, one can then represent the inner dynamics of each video stream, represented by Σ 0 in Figure 1 as the cascaded interconnection of Σ ext and Σ int , establishing the linear relation from

∆U dd i to ∆R dd i + R 0 = R dd i , whose state-space representation Σ 0 = (A 0 , B 0 , C 0 , D 0 ) is such that the state matrix A 0 is lower-triangular. Actually, given the state vector x = x ⊤ ext x ⊤ int ⊤ , the input variable ∆U dd i
and the output variable ∆R dd i we have:

A 0 B 0 C 0 D 0 =   A ext 0 B ext B int C ext A int B int D ext 0 C int 0   .
(11) Due to its lower block triangular structure the eigenvalues of A 0 are the union of the eigenvalues of A int and A ext . Then the overall system dynamics is influenced by the separate actions of the two subsystems Σ int and Σ ext . In particular Σ int performs an internal stabilizing action of each stream dynamics, and Σ ext performs the external synchronization among the streams over the network.

C. Main consensus theorem

The coupling among the different video streams arises from the action of the average utility Ū dd in (1i), acting as an input to each video stream dynamics, where the utility U dd i of each stream is a nonlinear function of the state a i in (1a) and (1b). In particular, it is easily shown that (1g) leads to:

U dd i = f (a dd i , R edd i ) = f (a dd i , ∆R edd i + R 0 ), (12) 
so that U dd i can be seen as a nonlinear time-varying output of system Σ 0 in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. In this paper we make the following strong assumption, so that a linear time-invariant analysis of the consensus algorithm can be performed.

Assumption 1: For each i = 1, . . . , N , the input δa i in (1a) is zero, so that a i is constant for each i. Moreover there exist scalars h i , i = 1, . . . , N and a scalar K f > 0 such that:

U dd i = f (a dd i , R edd i ) = h i + K f R edd i (13) = h i + K f R 0 + K f ∆R edd i , ∀i = 1, . . . , N.
Based on Assumption 1 and on the presence of the integral action of controller K ext , we may perform a coordinate change to compensate for the action of the constant disturbance h i +K f R 0 , so that the overall system can be written as an output feedback network interconnection of N identical linear systems:

x

+ i = A 0 x i + B 0 ∆U dd i U dd i = K f C 0 x i ∀i = 1, . . . , N (14) 
In particular, using the last equation in ( 5), each input ∆U dd i can be expressed, for each i = 1, . . . , N , as:

∆U dd i = Ū dd -U dd i = 1 N j =i U dd j -1 - 1 N U dd i . ( 15 
)
Define now the vectors

U dd = U dd 1 . . . U dd N ⊤ and ∆U dd = ∆U dd 1 . . . ∆U dd N ⊤ .
Then [START_REF] Nair | Stable synchronization of mechanical system networks[END_REF], for i = 1, . . . , N , can be rewritten in the compact form:

∆U dd = -    1-1 N -1 N ... ... -1 N -1 N 1-1 N ... ... -1 N . . . . . . . . . . . . -1 N -1 N ... 1-1 N    U dd = -LU dd , ( 16 
)
where L is the N × N Laplacian matrix associated with the network. The Laplacian matrix resumes the information exchanged by the subsystems. Notice that the graph related to the network described by matrix L defined in ( 16) is fully connected, i.e., every vertex has an edge to every other vertex [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF]. Combining ( 14) and ( 15), we obtain the following compact form for the overall system:

x + = (I N ⊗ A 0 )x + (I N ⊗ B 0 )(-Ly) (17a) y = U dd = K f (I N ⊗ C 0 )x, ( 17b 
)
where y is the output representing the N utilities and

x = x ⊤ 1 . . . x ⊤ N ⊤
is the overall state of the interconnected systems. Then the following theorem can be stated. Theorem 1: Under Assumption 1, the following statements are equivalent:

(i) For any initial conditions, all utilities U i , i = 1, . . . , N of model ( 3), ( 5), ( 7), ( 13) converge to the same value, i.e., condition (2) is satisfied. (ii) Given any solution to [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF], there exists Ū ∈ R such that lim j→+∞ y i (j) = Ū , ∀i = 1, . . . , N . (iii) The following consensus set is uniformly globally exponentially stable for dynamics [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF]:

A := x : x i -x j = 0, ∀i, j ∈ {1, . . . , N } (18) 
and matrix A int is Schur-Cohn. (iv) Matrix A int and matrix

A f = A 0 -K f N N -1 B 0 C 0 are both Schur-Cohn.
IV. OPTIMAL TUNING OF THE PI CONTROLLERS Item (iv) in Theorem 1 provides some useful theoretical results in order to select suboptimal controller gains, in the sense of maximizing a performance parameter, for example, the convergence rate. In particular, the selection of the optimal values may consist of two steps. First we design the inner controller K int providing the explicit expression of the stability region for A int as function of k int I and k int P , independently of any physical parameter. Once we fixed the inner loop control gains, the selection of the outer loop controller gains k ext P and k ext I is carried out with a similar strategy to ensure that matrix A f in item (iv) of Theorem 1 is Schur-Cohn.

Let us first consider matrix A int , which involves the gains of controller K int . We want to find the constraints on the gains k int I and k int P under which the controller ensures that A int be Schur-Cohn. The following lemma is proven applying the well-known Jury criterion and performing some lengthy simplifications.

Lemma 1: Matrix A int in ( 9) is Schur-Cohn if and only if the following conditions hold:

k int I > 0 k int P + 1 - √ 5 2 ≤ k int I < k int P (k int I -k int P -1) 2 (k int I -k int P )-(k int P + 2)(2k int I -k int P ) > 0.
At the left of Figure 2 we show different level sets of the spectral radius ρ(A int ) = max i {|λ i (A int )|} as a function of parameters k int I and k int P . The bold line represents the stability limits, namely the set where ρ(A int ) = 1. Inspecting the level sets and performing a numerical optimization one obtains the optimal selection shown in Table I, that is used in the simulations of Section V. 

Let us now consider matrix A

f = A 0 -K f N -1 N B 0 C 0 at item (iv) of
A f =       1 0 0 0 -1 -k ext I 1 0 0 k ext P + 1 0 1 1 0 0 0 -k int P -k int I 0 0 0 0 0 1 0       . ( 20 
)
Therefore, after fixing the optimized values of the internal PI loop as shown in Table I, the suboptimal parameters k ext I and k ext P are computed by a numerical procedure that minimize the spectral radius of A f in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF]. The corresponding values are reported in Table I. At the right of Figure 2 we show different level sets of the spectral radius ρ(A f ) := max i {|λ i (A f )|}. The bold line represents the stability limit.

Remark 1: The original system gains K t I , K t P in (1) are obtained from k ext I and k ext P using ( 6) and the selection σ = K f N -1 N so that the actual gains depend on the scalar K f and the number of streams N .

V. SIMULATION RESULTS

To verify the performance of the control parameter design technique presented in Section IV, 6 video streams 1 of different types have been encoded during 60 s with x.264 [START_REF]x264 Home Page. Videolan organization[END_REF] in 4CIF (704 × 576) format at various bit rates. The programs are Interview (Prog 1), Sport (Prog 2), Big Buck Bunny (Prog 3), Nature Documentary (Prog 4), Video Clip 1 http://www.youtube.com/watch?v=l2Y5nIbvHLs, =G63TOHluqno, =YE7VzlLtp-4, =NNGDj9IeAuI, =rYEDA3JcQqw, =SYFFVxcRDbQ. (Prog 5), and an extract of Spiderman (Prog 6). The frame rate is F = 30 frames/s. GoPs of 10 frames are considered, thus the GoP duration is T = 0.33 s. The considered utility is the Peak Signal-to-Noise Ratio (PSNR). To tune the controllers, the rate-utility characteristics of each GoP is estimated as described in [START_REF] Changuel | Control of multiple remote servers for quality-fair delivery of multimedia contents[END_REF], [START_REF] Changuel | Control of distributed servers for quality-fair delivery of multiple video streams[END_REF]. The control is assumed performed within the MANE, closely located to the BS to which the clients are connected. A Matlab simulation of the behavior of the servers, the network, the MANE and the clients is considered. The forward and backward propagation and queuing delays between the MANE and the servers is taken as constant and equal to T . The packets delivered by the MANE to the BS and to the clients are assumed to be well received thanks to retransmission at the MAC layer, which is not modeled here.

During the control of the streaming system, the rate-utility characteristics are not available at the MANE. Only the utility of the encoded packets it receives are used. They may be tagged, e.g., at the RTP layer of the protocol stack. The MANE adjusts the transmission rate of each stream and provides an encoding rate target to the individual servers, which are then responsible of meeting this target by video encoding, transcoding, or bit-rate switching.

To tune the control parameters, the parameter K f introduced in [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF] has to be evaluated. For that purpose, the time and ensemble average of the linearized rate-PSNR characteristics for the four first streams have been evaluated assuming that the same constant encoding rate R e ∈ {250, 500, 1000, 1500}kb/s has been used. The resulting values of K f are K f (250) = 0.02 dB/kb/s K f (500) = 0.01 dB/kb/s, K f (1000) = 0.005 dB/kb/s, and K f (1500) = 0.0033 dB/kb/s. The product K f (R e ) R e is almost constant for the considered experiments. A good robustness to variations of the characteristics of the video streams is obtained by taking K f = 0.02 dB/kb/s. We have chosen B 0 = 1200 kb to tolerate significant variations of the buffering delay. With a channel rate R c = 4000 kb/s and considering N = 4 clients, the controller parameters are K eb I = 0.0145 and K eb P = 0.1855 for the encoding rate control, whereas K t I = 0.1765/σ and K t P = 0.4825/σ with σ = K f N/(N -1) = 0.0267.

Five simulation results are presented in what follows. The four video streams on which K f has been evaluated are considered first. Figure 3(a) shows the evolution with time of the PSNR of the streams. The fairness between streams is largely improved compared to a transmission rate fair (TRF) solution illustrated in Figure 3(b). To quantify the improvement, the average absolute value of the difference of the utility (PSNR) of each stream and the average utility (PSNR) is evaluated as follows:

∆U = 1 M N M j=1 N k=1 U k (j) -U (j) (21) 
For the proposed tuning, ∆U = 2.64 dB, while for the TRF scheme, one gets ∆U = 4.47 dB. The results in [START_REF] Changuel | Control of multiple remote servers for quality-fair delivery of multimedia contents[END_REF] for the same scenario, were obtained with K eb I = 0.002, K eb P = 0.15, K t I = 0.05, and K t P = 100 and are represented in Figure 3(c). One gets in this case ∆U = 2.96 dB, which is larger than the results obtained in this paper. In a second scenario, the four last streams are controlled with the same control parameters to illustrate the robustness of the approach to variations of the rate-utility characteristics. Figure 4 illustrates again the evolution of the PSNR with time of the TRF scheme (∆U = 3.98dB) and the scheme of this paper (∆U = 3.53 dB). Due to jumps in the rate-utility characteristics of Prog. 5 (related to scene changes), reaching a very good fairness between streams is more difficult than in the previous case. Nevertheless, the control parameters designed for the first four programs still provide a satisfying behavior for the last four programs.

VI. PROOF OF THE MAIN RESULT

A. A few technical Lemmas

In this Section we introduce a few technical lemmas establishing suitable properties of quadratic functions with respect to the following output consensus set:

A y := y : y iy j = 0, ∀i, j ∈ {1, . . . , N }

and the following consensus set:

A := x : x i -x j = 0, ∀i, j ∈ {1, . . . , N } (23) 
Let also recall that given a set X , |x| X = inf y∈X |x -y| . By using convexity property we can prove the following lemma.

Let

1 N = [1 . . . 1] ⊤ ∈ R N .
Lemma 2: For any pair of positive integers n, N , given set A in [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF], we have for all x ∈ R N n :

|x| 2 A = N k=1 |x -x k | 2 , with x := 1 N N k=1 x k = 1 N (1 ⊤ N ⊗I n )x, (24) 
where x k ∈ R n and x ∈ R n is the (vector) average of the (vector) components of x ∈ R N n . Based on Lemma 2, we can now prove the following result. following inequality holds:

c1 |y| 2 Ay = c 1 N k=2 (y 1 -y k ) 2 ≤ y ⊤ T ∆T ⊤ y (25a) c2 |y| 2 Ay = c 2 N k=2 (y 1 -y k ) 2 ≥ y ⊤ T ∆T ⊤ y (25b)
Moreover, for any n ∈ N and any x ∈ R N n , where x k ∈ R n , ∀k = 1, . . . , N , we have:

c1 |x| 2 A = N k=2 |x 1 -x k | 2 ≤ x ⊤ (T ∆T ⊤ ⊗ I n )x (26a) c2 |x| 2 A = c 2 N k=2 |x 1 -x k | 2 ≥ x ⊤ (T ∆T ⊤ ⊗ I n )x(26b)
Proof: Since matrix ∆ has a zero in the upper left entry and ones in the remaining diagonal entries, we can write:

T ∆T ⊤ = T T ⊤ ( 27 
)
where . . .

T ∈ R N ×(N -
y1-y N ∈ R N -1 , where ỹ clearly satisfies N k=2 (y 1 -y k ) 2 = |ỹ| 2 .
With reference to relation [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF] consider now:

T T ⊤ = T Σ ⊤ Σ -⊤ Σ -1 Σ T ⊤ = T Σ ⊤ M Σ T ⊤ ,
where M = Σ -⊤ Σ -1 is clearly positive definite. Then choosing c 1 = λ min (M ) and c 2 = λ max (M ), we may use:

y ⊤ T ∆T ⊤ y = y ⊤ T T ⊤ y = ỹ⊤ M ỹ,
to obtain the inner inequalities in [START_REF] Teel | Lyapunov-based sufficient conditions for exponential stability in hybrid systems[END_REF]. Consider now the quadratic form: 

x ⊤ (T ∆T ⊤ ⊗ I n )x =    x 1 . . . x N    ⊤ ( T T ⊤ ⊗ I n )    x 1 . . . x N    =   (Σ T ⊤ ⊗ I n )    x 1 . . . x N       ⊤ (M ⊗ I n )   (Σ T ⊤ ⊗ I n )    x 1 . . .
x N       = x⊤ (M ⊗ I n )x, where x = [x 1 -x 2 . . . x 1 -x N ] ⊤ . Then noticing that λ min (M ⊗ I n ) = λ min (M ) = c 1 and λ max (M ⊗ I n ) = λ max (M ) = c 2
we obtain the inner inequalities in [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF]. To complete the proof we need to show the outer inequalities in [START_REF] Slotine | A study of synchronization and group cooperation using partial contraction theory[END_REF], [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF]. To this end, it is sufficient to show that there exist positive scalars k 1 and k 2 such that for any pair n, N and any x ∈ R N n , we have:

k 1 |x| 2 ≤ N k=1 |x -x k | 2 ≤ k 2 |x| , (28) 
and then the result follows from Lemma 2. To show [START_REF]x264 Home Page. Videolan organization[END_REF] we first observe that 

N k=1 |x -x k | 2 = |x ⊗ 1 n -x|
(x ⊗ 1 n -x) (29) 
implies

|x| 2 = x⊤ x = (x ⊗ 1 n -x) ⊤ T ⊤ 1 T 1 (x ⊗ 1 n -x) ≤ k -1 1 |x ⊗ 1 n -x| , where k -1 1 is the maximum singular value of T ⊤ 1 T 1 . Similarly we have: 1 N -I n -I n . . . -I n x = = 1 N -(N -1)x 1 + N k=2 x k + x 1 -x 1 = 1 N -N x 1 + N k=1 x k = x -x 1 (30) 
which implies:

1 N (N -1)I n -I n . . . -I n x = = x -x 1 + N N (x 1 -x 2 ) = x -x 2 (31) 
and, using similar reasonings: x, (32)

(x ⊗ 1 n -x) =   -In -In -In ... -In (N -
which implies |x ⊗ 1 n -x| 2 = (x⊗1 n -x) ⊤ (x⊗1 n -x) = x⊤ T ⊤ 2 T 2 x ≤ k 2 |x| 2 ,
where k 2 is the maximum singular

value of T ⊤ 2 T 2 .

B. Proof of Theorem 1

Before proving Theorem 1, we introduce a general result on consensus of identical linear systems that combines the stability results in [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF] with output feedback coupling analyzed in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF].

Implication (i) =⇒ (ii) is also reported in [29, Theorem 1] for the convergence proof.

Consider N identical dynamical systems, governed by:

δx i = Ax i + Bu i y i = Cx i i = 1, . . . , N (33) 
where δx = ẋ for continuous-time and δx = x + for discretetime. In (33),

x i ∈ R n , u i ∈ R , y i ∈ R. Consider the interconnection: u = -Ly, (34) 
where

u = [u 1 . . . u N ] ⊤ ∈ R N , y = [y 1 . . . y N ] ⊤ ∈ R N and L = L ⊤ ∈ R N ×N is a symmetric Laplacian matrix. Also denote the eigenvalues of L as 0 = λ 0 ≤ λ 1 ≤ • • • ≤ λ N -1
, where it is emphasized (see [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF]) that L always has an eigenvalue at zero, that corresponds to the eigenvector 1 N . Theorem 2: The following statements are equivalent:

(i) Matrices A k := A -λ k BC, k = 1, . . . , N -1 are Schur-Cohn. ( 35 
) (ii) There exists a strict quadratic Lyapunov function V (x) satisfying: c1 |x| 2 A ≤ V (x) ≤ c2 |x| 2 A , (36a) 
V (x)\∆V (x) ≤ -c 3 |x| 2 A , (36b) 
for suitable positive constants c1 , c2 and c3 , where |x| A denotes the distance of x from the set A.

(iii) The closed attractor: A := {(x 1 , . . . , x N ) : x ix j = 0, ∀i, j = 1, . . . , N } (37) is uniformly globally exponentially stable for the closed loop (33), (34). (iv) The closed loop (33), (34) is such that the sub-states

x i uniformly globally exponentially synchronize to the unique solution to the following initial value problem:

δx • = Ax • , x • (0) = 1 N N k=1 x k (0) (38) 
Proof: We first show a preliminary transformation, then we prove the theorem in three steps: (i) =⇒ (ii), (ii) =⇒ (iii), (iii) =⇒ (iv), and (iv) =⇒ (i).

Preliminary transformation. Let us define the extended state vector x = x ⊤ 1 . . . x ⊤ N ⊤ and rewrite interconnection (33), (34) in the following compact form:

δx = (I N ⊗ A)x + (I N ⊗ B)u (39) y = (I N ⊗ C)x (40) u = -(L ⊗ C)x = -(I N ⊗ C)(L ⊗ I n )x, (41) 
where

I N ⊗ A ∈ R N n×N n , I N ⊗ B ∈ R N n×N , I N ⊗ C ∈ R N ×N n and L ⊗ I n ∈ R N n×N n .
Since matrix L is symmetric, there exists a unitary matrix T ∈ R N ×N (namely a matrix satisfying T ⊤ T = I N that diagonalizes L). In particular, let us pick T such that:

Λ = T ⊤ LT =      0 0 . . . 0 0 λ 1 . . . 0 . . . . . . . . . 0 0 . . . λ N -1      . ( 42 
)
Since the upper-left entry of Λ is zero, we may select T such that its first column corresponds to the eigenvector t 0 = 1 √ N 1 N associated to the zero eigenvalue λ 0 = 0 of L. Furthermore, it is easily checked that T ⊗ I n transforms L ⊗ I n into Λ ⊗ I n . Indeed, using the associative property of the Kronecker product we get

(T ⊗ I n ) ⊤ (L ⊗ I n )(T ⊗ I n ) = (T ⊤ LT ⊗ I n ) = Λ ⊗ I n . Let us now introduce the similarity transformation x = (T ⊤ ⊗ I n )x. Then dynamics (39) reads: δx = (T ⊗I n ) -1 (I N ⊗A)(T ⊗I n )x + (T ⊗I n ) -1 (I N ⊗B)u y = (I N ⊗ C)(T ⊗ I n )x u = -(I N ⊗ C)(L ⊗ I n )(T ⊗ I n )x.
(43) Substituting in (43) the control law (third equation) into the first equation and using the associative property of the Kronecker product we obtain:

δ x = Āx, (44) 
where the state matrix A can be computed as:

Ā = (T -1 T ⊗A)- -(T ⊗I n ) -1 (I N ⊗B)(I N ⊗C)(L⊗I n )(T ⊗I n ) = (I N ⊗ A) -(T -1 LT ⊗ BC) = (I N ⊗ A) -(Λ ⊗ BC) = (I N ⊗ A) -(I N ⊗ BC)(Λ ⊗ I n ), (45) 
which evidently has the following block diagonal structure:

Ā =      A 0 . . . 0 0 A -λ 1 BC . . . 0 . . . . . . . . . 0 0 . . . A -λ N -1 BC      = diag{A, A 1 , . . . , A N -1 }, (46) 
where we use the definitions in (35).

Proof of (i) =⇒ (ii) By assumption (35), we have that there exist matrices P k , k = 1, . . . , N -1 such that:

A ⊤ k P k + P k A k = -I n , k = 1, . . . , N -1 , t ∈ R (47a) A ⊤ k P k A k -P k = -I n , k = 1, . . . , N -1 , t ∈ Z (47b)
Construct the block diagonal matrix P = diag{0, P 1 , . . . , P N -1 } and define the Lyapunov function candidate:

V (x) = x ⊤ (T ⊗ I n ) x⊤ P (T ⊤ ⊗ I n ) x = N -1 k=1 x⊤ k P k xk . ( 48 
)
Then, from equations ( 44), ( 46) and (47) it follows that:

V (x) = N -1 k=1 x⊤ k (P k A k + A ⊤ k P k )x k = - N -1 k=1 x⊤ k xk , ∆V (x) = N -1 k=1 x⊤ k (A ⊤ k P k A k -P k )x k = - N -1 k=1 x⊤ k xk , (49) 
To prove (36), we use Lemma 2 after noticing that matrix T introduced in the preliminary step of the proof satisfies the assumption of the lemma. Then we also observe that, using matrix ∆ = diag{0, 1, . . . , 1} defined in Lemma 3, we have:

N -1 k=1 x2 k = x⊤ (∆ ⊗ I n )x = ((T ⊗ I n )x) ⊤ (∆ ⊗ I n )(T ⊗ I n )x = x ⊤ (T ⊤ ∆T ⊗ I n )x (50) 
Therefore, using (50), positive definiteness of P k , k = 1, . . . , N -1, definition (48) and Lemma 1, we obtain:

V (x) ≤ max h∈{1,...,N -1} λ max (P h ) p N -1 k=1 |x k | 2 = px ⊤ (T ⊤ ∆T ⊗ I n )x ≤ c 2 p |x| 2 A V (x) ≥ min h∈{1,...,N -1} λ min (P h ) p N -1 k=1 |x k | 2 = px ⊤ (T ⊤ ∆T ⊗ I n )x ≥ c 1 p |x| 2 A , (51) 
thus proving the first equation in (47) with c1 = c 1 p and c2 = c 2 p. Finally, using (49), (50) and Lemma 1 we get:

V (x)/∆V (x) ≤ -x ⊤ (T ⊤ ∆T ⊗ I n )x ≤ -c 1 |x| A , (52) 
which coincides with the second equation in (36) with c3 = c 1 .

Proof of (ii) =⇒ (iii) Based on (36), UGES of A in (37) follows from standard Lyapunov results (see, e.g., the discrete-and continuous-time special cases of the hybrid results in [START_REF] Teel | Lyapunov-based sufficient conditions for exponential stability in hybrid systems[END_REF]Theorem1]).

Proof of (iii) =⇒ (iv) Consider the dynamics of the state

x • (t) := 1 N N k=1
x k (t) and note that from (33):

δx • (t) = 1 N N k=1 δx k (t) = A N k=1 x k (t) + B N k=1 u k (t) = Ax • (t) + B 1 ⊤ N L =0 y = Ax • (t), (53) 
where 1 ⊤ N L = 0 due to well known properties of Laplacian matrices. Then x • evolves autonomously according to (38) and corresponds to the average of states x k . Since from (ii) =⇒ (iii) we know that states x k exponentially synchronize to some consensus, then they must synchronize to their average value that is x • . Proof of (iv) =⇒ (i) We prove this step by contradiction. Assume that one of matrices A k in (35) is not Schur-Cohn, and assume without loss of generality that it is A N -1 . Consider the coordinate system in (44) with (46). Then, from the block diagonal structure of Ā, since A N -1 is not Schur-Cohn, there exists a vector ω * ∈ R n (an eigenvector of one of the non-converging natural modes) such that the solution to (44) from x * (0) = 0 ⊤ . . .

0 ⊤ ω * ⊤ ⊤ corresponds to x * (t) = 0 ⊤ . . . 0 ⊤ x⊤ N (t)
⊤ , where xN (t) does not converge to zero. As a consequence, the function in (48) along this solution corresponds to: V (x * (t)) = V ((T ⊗ I n )x * (t)) = x⊤ N (t)P N xN (t), which, from linearity, remains bounded away from zero. Then, using the first inequality in (51) we have that |x * (t)| A is bounded away from zero, namely solution x * (t) does not converge to the consensus set. In other words, the components of x * (t) do not asymptotically synchronize, which contradicts item (iv). Based on Theorem 2, the proof of Theorem 1 is given in the following.

Proof of (i) ⇔ (ii) This equivalence follows from the fact that, due to relations ( 14)-( 16), and from the definitions in ( 9)- [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], model [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF] coincides with the closed loop (3), ( 5), ( 7), [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF]. Proof of (iii) ⇔ (iv) Applying the equivalence between items (i) and (iii) of Theorem 2 when focusing on system [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF], item (iii) of Theorem 1 is equivalent to having that all eigenvalues λ k of matrix L in [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], except for that one related to the eigenvector 1 N , are such that A 0λ k K f B 0 C 0 is Schur-Cohn. Since Laplacian matrix L has all such eigenvalues coincident and equal to N N -1 , the result trivially follows. Proof of (iv) ⇒ (i) Similar to the previous step, this implication follows from item (iv) of Theorem 2 after noticing that system x + • = Ax • corresponds to system Σ 0 , namely A = A 0 , where A 0 is given in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. Since A int is Schur-Cohn by assumption, then due to its block triangular structure, matrix A 0 has a single eigenvalue at zero and all solutions to (38) converge to a constant, thereby proving item (i) of Theorem 1. Proof of (i) ⇒ (iv) We prove this by contradiction. Assume that item (iv) does not hold. Then either A f is not Schur-Cohn, which implies from Theorem 2 that consensus is not achieved for some initial conditions (thereby proving that (i) does not hold), or A f is Schur-Cohn and A int is not Schur-Cohn. In this case, Theorem 2 applies because A f is Schur-Cohn and all solutions exponentially synchronize to a solution to (38) with A = A 0 as in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. Then two cases may occur: a) A int has at least one eigenvalue with magnitude larger than 1 or at least one eigenvalue on the unit circle with multiplicity larger than 1: in this case some solutions synchronize to a diverging evolution, thus item (i) does not hold; b) A int has at least one eigenvalue with magnitude 1 on the unit disk. If that eigenvalue is at 1, then due to the triangular structure, matrix A 0 has two eigenvalues in 1 (the other one coming from A ext ) and again some solutions synchronize to a diverging evolution. If that eigenvalue is anywhere else in the unit circle, then it generates a revolving non-constant mode and some solutions synchronize to a non-convergent oscillatory evolution.

In both cases a) and b), item (i) does not hold and the proof is completed.

VII. CONCLUSION

In this paper we propose a control strategy for delivering media contents to users sharing a limited resource, ensuring quality fairness among network clients. This problem is stated in terms of consensus among identical LTI systems coupled through static output feedback. The controllers synthesis is based on a general result that provides novel analytical tools which prove the uniform global exponential synchronization among the systems outputs. Experimental results illustrate the effectiveness of the proposed control techniques. Future work may include relaxing Assumption 1 to account for the nonlinear nature of function f in [START_REF] Li | Content-aware distortion-fair video streaming in congested networks[END_REF]. Furthermore, an optimization technique based on linear matrix inequalities may be developed to systematically tune the controllers gains.

β -β 2 -2β + 1 = 2 (60a) α > β 2 -2β -1 ≥ max β β 2 -2β -1 = -2 (60b)
Thus, conditions (60) and (56) imply:

S ⊆ S 1 := {(α, β) : |β| < 1, |α| < 2, α + β > 0}
Moreover, it is trivial to prove the pairs (α, β) ∈ S 1 satisfy (56b). Let consider now the function g(α, β) defined in (58): ∀ (α, β) ∈ S 1 , we get the following lower bound:

g(α, β) = (β 2 -1)(β -1) + >0 (α + β) >0 (αβ + 2) +β(αβ + 2) > (β 2 -1)(β -1) + β(αβ + 2) = -β 2 + β 3 -β + 1 + αβ 2 + 2β > -β 2 + β 3 + β + 1 -β 3 = -β 2 + β + 1,
and we get: 

1- √ 5 2 ≤ β ≤ 1+
f (α, β) > 0 ⇔ α < f 1 (β) ∨ α > f 2 (β). (63) 
Noticing that f (α, β)g(α, β) > 0 holds ∀(α, β) ∈ S + , it follows:

β (β + 1) >0 (f 1 (β) -α) <0 > 0 =⇒ β < 0.
We want now prove that, if f (α, β) > 0, (56d) is verified ∀(α, β) : |β| < 1. In fact:

f (α, β) = (β 2 -1) 2 -(α + 2β) 2 > 0 =⇒ β 2 -1 > |α + 2β| =⇒ 1 -β 2 > |α + 2β|
Finally, condition (59c) can be obtained from (56e) ,(56c) and (58) as follows:

f (α, β)g(α, β) > 0 is the normal cone to A at y, and y is the orthogonal projection of x onto A (see [START_REF] Rockafellar | Variational Analysis[END_REF]).

Proof: We only prove the equivalence among (64) and (65) because the existence and uniqueness of y is already proven in [START_REF] Rudin | Functional Analysis. Mathematics series[END_REF]Theorem 12.3]. Proof of (65) ⇒ (64) If x ∈ N A (y) then, ∀a ∈ A we have: which, dividing by η, implies: 2 xy, ya + η |y -a| 2 ≥ 0.

Taking the limit as η → 0, the statement is proven.

Using Lemma 4 we can prove Lemma 2. In fact, let us select

y = 1 N ⊗ x ∈ R nN , so that |x -y| 2 = N k=1 |x k -x| 2 .
Then, according to Lemma 4, the proof is completed if x ∈ N A (y).

To prove this fact, first note that, since A is a linear subspace, for any pair of vectors y, a ∈ A, we have b := ya ∈ A, so that it is enough to show:

xy, b ≥ 0, ∀b ∈ A.

(66)

Relation (66) can be established by first noticing that b ∈ A implies that there exists b ∈ R n such that b = 1 N ⊗ b, and then computing:

x -y, b = x -1 N ⊗ x, 1 N ⊗ b = 1 N ⊗ b, x -1 N ⊗ x = (1 N ⊗ b) ⊤ x -1 N ⊗ 1 N (1 ⊤ N ⊗ I n )x = 1 N (1 ⊤ N ⊗ b⊤ ) N I N n -1 N ⊗ 1 ⊤ N ⊗ I n x = 1 N (1 ⊤ N ⊗ b⊤ ) N I N -1 N ⊗ 1 ⊤ N ⊗ I n x = 1 N   1 ⊤ N N I N -1 N ⊗ 1 ⊤ N =0 ⊗ b⊤    x = 0
which completes the proof.

Fig. 1 .

 1 Fig. 1. Block Diagram of the controlled system

1 N
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 3114 Fig.[START_REF] Changuel | Control of distributed servers for quality-fair delivery of multiple video streams[END_REF]. PSNR of Progs 3 to 6, transmission-rate fair streaming (left) and proposed tuning of the control parameters for the utility-fair scheme (right).

  PSNR of Progs 1 to 4, proposed tuning of the control parameters for the utility-fair scheme.

  PSNR of Progs 1 to 4, control parameters taken from[START_REF] Changuel | Control of multiple remote servers for quality-fair delivery of multimedia contents[END_REF].
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 1 , composed by the last N -1 columns of T , satisfies T ⊤ 1 N = 0 and has N -1 independent columns. Therefore, Im T ⊂ (1 N ) ⊥ . Im T , and there exists Σ invertible such that Σ T ⊤ y = ỹ := y1-y2
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 12 g(α, β) is positive in the set:S + := (α, β) |α| < 2, α + β > 0 .Let consider now the set S -:= S 1 \ S + :S -= (α, β) : -1 < β < 1 -√ 5 |α| < 2, α + β > 0 (62)We want to prove that S S -, since inequality (56e) doesn't hold in S -, i.e., f (α, β) < |g(α, β)|, ∀(α, β) ∈ S -. Two cases may occur:a) If g(α, β) ≥ 0, then: f (α, β)g(α, β) < β 4 -2β 2β = = β(β + 1) βso f (α, β) -|g(α, β)| = f (α, β)g(α, β) < 0 in S -.b) If g(α, β) < 0, then |g(α, β)| = -g(α, β) > g(α, β) and from the previous point we get:f (α, β) < g(α, β) < -g(α, β) = |g(α, β)| ,so the statement is verified. Moreover, considering (56e) and (61) we can conclude that f (α, β) > 0 in S + . The function f (α, β) can be rewritten as follows:f (α, β) = -(αf 1 (β))(αf 2 (β))wheref 1 (β) = β 2 -2β -1 and f 2 (β) = -β 2 -2β + 1.It can be easily verified that f 1 (β) < f 2 (β) ∀β : |β| < 1, and the following holds:

(β + 1 )- 1 ) 2 -

 112 β(β -1) 2 -(α + 2β)(α + 2) > 0 β(β -1) 2 -(α + 2β)(α + 2) > 0We can conclude that:(α + 2β)(α + 2) > 0, α + β > 0} = S * .which concludes the proof.APPENDIX II PROOF OF LEMMA 2The following result is based on[24, Theorem 1.10]. Lemma 4: Given a closed, convex set A ⊂ R ν and any vector x ∈ R ν , there exists a unique point y ∈ A satisfying: |x -y| = |x| A := min a∈A |x -a| (64) Moreover, y ∈ A satisfies (64) if and only if x ∈ N A (y), where: N A (y) = n ∈ R ν : ny, ya ≥ 0 ∀a ∈ A (65)

|x -a| 2 = 2 =≥ |x -y| 2 . 2 = 2 =

 22222 |xy + y -a| |x -y| 2 + |y -a| 2 + 2 xy, yaProof of (64)⇒ (65) For all a ∈ A and for any η ∈ (0, 1]we have form convexity that ηa + (1η)y ∈ A, therefore from (64):|x -y| 2 ≤ |x -(ηa + (1η)y)| |xyη(ay)| |x -y| 2 + 2η xy, ya + η 2 |y -a| 2 ,
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APPENDIX I PROOF OF LEMMA 1

The characteristic polynomial of the state matrix A int is given by:

(54) To handle this expression we define new coefficients α and β as follows:

α = k int P , β = k int Ik int P , and polynomial (54) becomes:

Jury's stability criterion provides necessary and sufficient conditions on the coefficients of the polynomial (55), in order to guarantee the asymptotic stability of Σ int . Applying Jury's criterion, we deduce that (55) is Schur-Cohn if and only if the parameters α and β satisfy the following constraints:

where the functions f (α, β) and g(α, β) are defined as follows:

Furthermore, constraints [START_REF] Rudin | Functional Analysis. Mathematics series[END_REF] can be expressed in function of α and β:

α

Proving Lemma 1 is equivalent to prove that constraints (56) and (59) lead to the same solutions set.

Let S denote the set of points (α, β) satisfying (56), and S * denote the set of points (α, β) satisfying (59). We want to prove that S ⊆ S * (the inclusion S * ⊆ S is trivial). From constraint (56d) we get: α < -β 2 -2β + 1 ≤ min