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Systematic molecular and cytogenetic
screening of 100 patients with marfanoid
syndromes and intellectual disability

Callier P, Aral B, Hanna N, Lambert S, Dindy H, Ragon C, Payet M,
Collod-Beroud G, Carmignac V, Delrue MA, Goizet C, Philip N, Busa T,
Dulac Y, Missotte I, Sznajer Y, Toutain A, Francannet C, Megarbane A,
Julia S, Edouard T, Sarda P, Amiel J, Lyonnet S, Cormier-Daire V, Gilbert
B, Jacquette A, Heron D, Collignon P, Lacombe D, Morice-Picard F, Jouk
PS, Cusin V, Willems M, Sarrazin E, Amarof K, Coubes C, Addor MC,
Journel H, Colin E, Khau Van Kien P, Baumann C, Leheup B,
Martin-Coignard D, Doco-Fenzy M, Goldenberg A, Plessis G, Thevenon J,
Pasquier L, Odent S, Vabres P, Huet F, Marle N, Mosca-Boidron AL,
Mugneret F, Gauthier S, Binquet C, Thauvin-Robinet C, Jondeau G,
Boileau C, Faivre L.

The association of marfanoid habitus (MH) and intellectual disability (ID)
has been reported in the literature, with overlapping presentations and
genetic heterogeneity. A hundred patients (71 males and 29 females) with
a MH and ID were recruited. Custom-designed 244K array-CGH
(Agilent®; Agilent Technologies Inc., Santa Clara, CA) and MEDI2,
ZDHHCY, UPF3B, FBNI, TGFBRI and TGFBR2 sequencing analyses
were performed. Eighty patients could be classified as isolated MH and
ID: 12 chromosomal imbalances, | FBNI mutation and 1 possibly
pathogenic MEDI2 mutation were found (17%). Twenty patients could be
classified as ID with other extra-skeletal features of the Marfan syndrome
(MFS) spectrum: 4 pathogenic FBNI mutations and 4 chromosomal
imbalances were found (2 patients with both FBNI mutation and
chromosomal rearrangement) (29%). These results suggest either that there
are more loci with genes yet to be discovered or that MH can also be a
relatively non-specific feature of patients with ID. The search for aortic
complications is mandatory even if MH is associated with ID since FBNI
mutations or rearrangements were found in some patients. The excess of
males is in favour of the involvement of other X-linked genes. Although it
was impossible to make a diagnosis in 80% of patients, these results will
improve genetic counselling in families.
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Marfan syndrome (MFS) is a multisystem genetic
disease that can affect the cardiovascular, skeletal,
ophthalmic, and integumentary systems and the dura
mater. The diagnosis is based on an international
classification (1-3). The severity of the condition lies
in the risk of dilation and subsequent dissection of the
ascending aorta. The FBNI gene is the major gene
in patients with MFS, and variable expression of the
disease has been largely identified within and between
families (4, 5). Patients with atypical presentations not
fulfilling the criteria involving only one organ system
exist but are rare (6). Patients with MFS do not usually
present with intellectual disability (ID) (7). Patients
with MFS can also display mutations in the TGFBRI
and TGFBR2 genes (8).

The term marfanoid habitus (MH) is used to describe
patients with skeletal signs suggestive of MFS but
who do not meet the international criteria (5, 7). The
association of a MH and ID has been reported in
the literature in syndromes with overlapping features.
ID is defined, according to the American Associa-
tion of Intellectual and Developmental Disabilities as
significant limitations both in intellectual functioning
(referring to general mental capacity such as learn-
ing, reasoning, and problem solving) and in adaptative
behaviour (comprising conceptual, social and practi-
cal skills), and originates before the age of 18. Its
incidence is 1.26/100 (9). The Lujan-Fryns syndrome
(LJS) was first described in male patients with a fam-
ily history suggesting an X-linked mode of inheri-
tance (10, 11). The term LJS is now recognized to
describe patients with MH (long, hyperlax fingers and
toes, tall stature, dolichostenomelia), facial dysmor-
phism (prominent forehead contrasting with a long,
narrow face, maxillary hypoplasia, small mandible, long
nose with a high narrow nasal root); mild to moderate
ID with behavioural abnormalities, that could include
emotional instability, shyness, or even psychotic dis-
turbances, generalized hypotonia, nasal speech, normal
development of sexual features (12, 13). This syn-
drome has also been reported occasionally in females
(14, 15). Thoracic aortic aneurysm (TAA) is usually
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absent, but has been reported in two families, includ-
ing one patient who required aortic surgery (16, 17). In
2007, the systematic screening of 737 genes annotated
in the Vertebrate Genome Annotation database on the
human chromosome X in 250 families with syndromic
or non-syndromic X-linked ID led to the identification
of hemizygous mutations in the MEDI2, ZDHHCY,
and UPF3B genes in a very small number of familial
cases (18-20). The MEDI2 gene (MIM 300188, also
called HOPA or TRAP230), located in Xql3, encodes
for a subunit of the macromolecular complex known
as Mediator, which is required for thyroid hormone-
dependent activation and repression of transcription by
RNA polymerase II (21). Med12-deficient zebra fish
embryos show defects in the brain and neural crest
and do not survive beyond 1 week after fertilization
(22). MEDI2 mutation have been found in only one
large family with LJS, which was the index family
reported by Lujan, and carrier females displayed no bias
in chromosome X inactivation (11, 19). Mutations in the
ZDHHC9 gene (MIM 300646, zinc finger, and DHHC-
type containing 9), located in Xq26.1, have been found
in three families with LJS (18). It encodes a palmi-
toyl transferase, highly expressed in the brain, which
catalyzes the post-translational modification of rat sar-
coma viral oncogene homolog (RAS). The mechanism
by which loss of function mutations of ZDHHC9 lead to
ID is unclear, but it may be through alteration of the rel-
ative proportion of the RAS proteins within the different
compartments of nerve cells (23). Finally, mutations of
the UPF3B gene (MIM 200298), located on Xq24, have
been found in two families with LJS (20). The UPF3B
protein is an important component of the nonsense-
mediated mRNA decay surveillance machinery (24) and
the mechanism by which loss of function mutations
of UPF3B lead to ID is also unknown. Mutations of
these three genes have also been found in patients with
Opitz—Kaveggia (FG) syndrome (18, 20, 25) and in
non-syndromic ID for UPF3B (20). These results have
not been replicated to date in LJS.

ID and MH ~can also be found in
Shprintzen—Goldberg syndrome (SGS) associated with



craniosynostosis (26, 27) and rare de novo mutations
have been described in the FBNI or TGFBR2 genes.
These results are still a subject of debate in the litera-
ture (28-30). ID is only reported very occasionally in
Loeys-Dietz syndrome (LDS), secondary to mutations
in the TGFBRI and TGFBR2 genes (31). Finally,
chromosomal imbalances have also been reported in
sporadic observations, including one 15q21.1q21.3
deletion involving the FBNI gene (32) and two cases
of terminal deletion of chromosome 5p (33, 34).

Therefore, the genetic aetiology of the association
of a MH and ID represents a true challenge for
individual diagnosis, follow-up and genetic counselling,
particularly for sporadic presentations. Besides the
clinical overlap between these different entities, the
implication of each gene and its clinical spectrum in
such a phenotype is unknown and little is known
about the risk of aortic involvement. The aim of this
research project was to conduct a clinical, cytogenetic
and molecular study of a large cohort of 100 probands
presenting with a skeletal marfanoid phenotype and ID,
in order to provide answers to these questions, and help
in the management of these patients.

Materials and methods
Patients

This study was prospectively designed. Patients were
included by a clinical geneticist over an 18 months
period. Inclusion criteria were the presence of ID
and certain skeletal features of the Marfan spectrum,
including at least two of the following clinical signs:
height greater than the 97th centile in the absence of tall
stature in parents, long, thin habitus, long, thin fingers,
pectus abnormalities, and dolichostenomelia. A cardiac
ultrasound and anterior eye chamber examination were
required for all patients. The presence of heart and
eye manifestations of the Marfan spectrum was not an
exclusion criterion. Neuropsychological examination
in order to evaluate non-subjectively the degree of ID
could be performed in 15% of the patients only. In
the other cases, ID was graduated according to the
geneticist experience. Patients with a family history of
MEFS without ID were excluded from the study because
the segregation was in favour of a different cause for
MH and ID, and homocystinuria also needed to be
ruled out. Inclusion was validated also after standard
karyotype and FMRI gene study (Fragile-X) did not
show any anomaly, although patients with apparently
balanced chromosomal rearrangements were not
excluded. Patients with the MH and ID were mainly
recruited through the network of reference centres for
rare diseases in France. Informed consent was obtained
for all patients and the study was approved by the local
ethics committee.

A detailed clinical evaluation was performed for
every patient during a specialized consultation, and
a detailed clinical file specifically designed for this
project was completed by the referring geneticist,
describing the family history, clinical features of

MES and information regarding developmental data.
Patients were divided into two groups, depending
on the absence (group 1) or presence (group 2) of
associated features characteristic of MFS (TAA, mitral
valve prolapse or ectopia lentis). The median systemic
score was calculated in the total cohort and among
groups, according to the 2010 new Ghent criteria for
the diagnosis of MFS and related disorders. A systemic
score above 7 indicated systemic involvement (3).

Molecular and cytogenetic analyses

For etiological purposes, all patients were screened
for mutations of the ZDHHC9, UPF3B, MEDI2,
TGFBRI, TGFBR2, and FBNI genes and for chro-
mosomal micro-rearrangements using 244 K custom
microarray. Female patients were also screened for X-
inactivation bias.

Direct sequencing of ZDHHC9, UPF3B, MED12, FBN1,
TGFBR1 and TGFBRZ2 genes

Genomic DNA was extracted from blood samples of
the patients and parents when available. Exons and
exon—intron boundaries sequencing analyses of the
MEDI2, ZDHHC9, UPF3B, FBNI, TGFBRI and
TGFBR2 genes were performed according to previ-
ously reported methods (8, 18, 20, 35, 36). Corre-
sponding reference of the genomic DNA sequences
were downloaded using Ensembl Genome Browser,
www.ensembl.org. Sequence analyses were searched
for between consensus and reference sequences using
SEQScAPE® software v2.5 package (Applied Biosys-
tems, Foster City, CA). Mutation nomenclature num-
bering was based on the current Ensembl transcript
(http://www.hgvs.org). The pathogenic nature of a
mutation was determined according to a database
search, bioinformatic predictions and segregation of
the mutation in the family. The Universal Mutation
Database (UMD) was used for FBNI (37) and TGFBR2
(38) requests. When a mutation was suspected to lead
to the creation of a splice site, additional mRNA stud-
ies were performed. All patients were screened for
MEDI2,ZDHHC9, UPF3B, FBNI and TGFBR2 gene
mutations. Only patients with TAA were screened for
TGFBRI mutations.

X-inactivation assay in female patients

This assay was performed as previously reported (39)
with some slight modifications, notably the use of
fluorescent primers and the detection mode. A control
was used in the analyses. X-inactivation assay in female
patients was considered as biased when it was superior
or equal to 85%, or even 95%.

Array-CGH experiments

A custom-designed array was designed with approx-
imately 240,000 oligonucleotides manufactured by
Diagnogene™ (Division Imaxio, Biopole Saint-
Beauzire, France). This array contains oligonucleotides



selected from the Agilent online library (earray;
https://earray.chem.agilent.com/earray) and has been
further empirically optimized. In addition, we increased
probe density within seven selected genes (12,307,
Table S1). The entire genome was covered with
an average resolution of 20kb (NCBI, hg 18). The
procedures of array-CGH were performed according
to the Agilent instructions with minor modifica-
tions (40). Slides were scanned using the Agilent
G2565 Microarray scanner and images quantified
using AGILENT FEATURE EXTRACTION (v9.0) and a
graphical overview was obtained using GENOMIC
WORKBENCH software (v5.0). Mapping data were
analysed on the human genome sequence using
Ensembl (www.ensembl.org; hgl8). Copy Number
Variations were assessed in the Database of Genomic
Variants (http://projects.tcag.ca/variation/). When a
chromosomal imbalance was detected, quantitative
polymerase chain reaction (qPCR) or fluorescence in
situ hybridization (FISH) studies with probes derived
from bacterial artificial chromosomes were performed
in order to confirm the chromosomal imbalances, as
well as the family segregation. When a chromosomal
imbalance was suspected to be pathogenic, the gene
content was determined in order to find candidate genes
for the phenotype, with a particular interest for genes
expressed in the central nervous system and connective
tissues (http://www.ensembl.org/biomart/). We also
checked if a known ‘microdeletion/microduplication
syndrome’ was described through the decipher database
(http://sanger.ac.uk) and the available literature, and
if additional patients with a similar phenotype had
already been reported/gathered.

Results
Patients

Among the 100 patients with marfanoid phenotype and
ID, 71 were males and 29 females (sex ratio: 2.45),
originating from 98 families. They were aged from 2
to 45 years with a mean of 19.1 £ 8.6 years. Fifty
percent of patients were adults. A family history of
ID was found in 23/98 families, including 48% in a
first-degree relative (91% in a sibling and 9% in a
parent), 17% in a second-degree relative (including
50% compatible with an X-linked inheritance) and
35% in other degrees (including 12% compatible with
an X-linked inheritance). MH was associated with
ID in only four familial cases. Two patients had
apparently balanced de novo reciprocal translocations:
t(12;19)(q13.3;p12), and t(2;22)(q33;q11.2).

Detailed description of the overall cohort is given
in Table 1. A minority was screened for dural ectasia
and protrusio acetabulae. Other miscellaneous features
included nasal speech (n =18), abnormal genitalia
(n=15), ptosis (n=35), vertebral instability (n =4),
deafness (n = 3), hypertrophic cardiomyopathy (n =2),
pneumothorax (n=1), atrial septal defect (n=1),
aneurysm of the interventricular septum (n =1), cleft
lip (n=1), absent uvula (n =1), optic nerve atrophy

(n=1), horseshoe kidney (n =1) and supernumerary
mammary (n =1).

General clinical, molecular and cytogenetic charac-
teristics of patients belonging to group 1 and 2 are
presented in Table 1. Clinical details of patients with
a molecular or cytogenetic abnormality are presented
in Tables 2—4. The systemic score for patients with a
positive cytogenetic or molecular result was not signif-
icantly different from patients with normal results (7.6
+32vs 6.6 £29).

Molecular and cytogenetics results

FBN1 sequencing analysis

Five pathogenic FBNI mutations were found, one
splicing and four missense mutations (Table 2). Their
pathogenicity was verified according to the UMD-
predictor tool (41) and except the ¢.2534G> A mutation
(p-Cys845Tyr), they had already been reported at least
once in the literature. Interestingly, the c.4270C>G
(p-Prol424Ala) mutation was found in two unrelated
patients with no aortic manifestation at 18 and 36 years.
The segregation of the mutation could not be verified in
either family. The mutation had already been reported
in six other instances in the UMD-FBNI database (8,
42-46), and no ID was noticed when clinical data
were available. The pathogenic nature of the FBNI
c.8176C>T (p.Arg2726Trp) mutation in exon 64 was
demonstrated by in vitro studies (47) and reported
in a few instances in patients with isolated skeletal
features and even incomplete penetrance (48). Within
the UMD-FBNI database, we found 11 families with
this mutation, and aortic dilatation was reported in two
patients (37, 49). The mutation was also found in the
father and sister of the proband. When re-examined,
they displayed some very mild skeletal features of
the Marfan spectrum, including dolichostenomelia,
arachnodactyly, high arched palate, dental crowding and
myopia in the father, as well as dolichostenomelia, mild
scoliosis, significant striae and high arched palate in the
sister. The presence of ID in the proband was finally
explained by the co-occurrence of a FBNI mutation
and a 17q21.31 microdeletion.

Four variants were considered as polymorphic or
probably non-pathogenic, according to UMD-FBNI
predictor and segregation analyses (Table S2). Of note,
although considered a polymorphism in this study,
the c.6700G>A (p.Val2234Met) variant was considered
pathogenic in various publications (45, 50). Additional
investigations were necessary to draw conclusions
regarding the pathogenicity of the synonymous variant
¢.5097 C>T (p.Tyr1699Tyr), based on the prediction of
a potential exonic splicing enhancers (ESE) disruption
by the Human Splicing Finder tool (51). This hypothesis
was ruled out as mRNA studies on fibroblasts were not
in favour of abnormal splicing. The median systemic
score of patients with FBNI mutations or deletions was
above 7, whereas the median systemic score of patients
without FBNI mutations or deletions was below 7, but
the results were not significantly different (8.1 £ 4.1 vs
6.7 £ 2.9).



Table 1. Description of the population and results obtained in the total cohort, and depending on the classification of patients

Group 1 Isolated MH

Group 2 MH, ID and
another MFS

Overall series

and IDn =80 feature®n =20 n=100
Clinical characteristics
Sex ratio (n = 100) 2.8 1.5 2.4
Mean age + SD (n=100) 184 +78 21.8 £ 111 19.1 + 8.6
Cardiovascular
TAA (n=94) 0/74 (0%) 10/20 (50%) 11/94 (10%)

Mitral valve prolapse (n =94)

Other valvular abnormalities (n = 94)

Eye

Ectopia lentis (n =92)

Myopia (n =92)

Other eye abnormality (strabismus, astigmatism,
hypermetropia, and nystagmus) (n = 79)

Skeleton

Long and thin habitus (n =99)

Arachnodactyly (n =98)

Dolichostenomelia (n = 96)

Scoliosis (n =99)

Pectus abnormalities (n = 100)

Joint laxity (n =99)

Flat feet (n =98)

Limitation of extension of the elbow (n =97)

Camptodactyly (n=91)

Others

Striae (0 =98)

Translucent skin (n =88)

Mediian systemic score

According to 2010 Ghent criteria + SD (n = 100)

Cerebral and cognitive

Degree of ID (n=95)°

e Mild ID

e Moderate ID

e Severe ID

Behavioural abnormalities (including anxiety,
hyperactivity, psychotic troubles, and ASD)
(n=98)

Epilepsy (n =95)

Abnormal MRI (n = 45)°

Molecular and cytogenetic results (n =100)

Submicroscopic chromosome rearrangements
FBN1

TGFBR1, TGFBR2

MED12

UPF3B, ZDHHC9

X-inactivation bias in females

e >85% skewing

e >95% skewing

Total

0/74 (0%)
6/74 (8%)

0/73 (0%)
20/73 (27%)
46/62 (74%)

76/80 (95%)
61/79 (77%)
51/78 (65%)
44/80 (55%)
38/80 (48%)
39/80 (49%)
35/79 (44%)
16/78 (20%)
10/74 (13%)

13/79 (16%)
2/70 (3%)

6.6 £29

13/76 (17%)
43/76 (56%)
20/76 (26%)
56/79 (71%)

28/77 (36%)
10/40 (25%)

11/80 (14%)9

2/80 (2%)°
0/80 (0%)
1/80 (1%)
0/80 (0%)

28/80 (35%)

1/80 (1.2%)°

14/80 (18%)

11/20 (55%)
12/20 (60%)

2/19 (10%)
3/19 (16%)
8/17 (47%)

16/19 (84%)
13/19 (68%)
14/18 (78%)
12/19 (63%)
15/20 (75%)
8/19 (42%)
8/19 (42%)
1/19 (5%)
3/17 (18%)

5/19 (26%)
2/18 (11%)

7.3 £3.1

4/19 (21%)
13/19 (68%)
2/19 (10%)
13/19 (68%)

5/18 (28%)
3/6 (50%)

5/20 (25%)°
3/20 (15%)°
0/20 (0%)
0/20 (0.0%)
0/20 (0%)

0/20 (0%)
0/20 (0%)
6/20 (30%)°

12/94 (12%)
19/94 (19%)

2/92 (2%)
23/92 (25%)
54/79 (68%)

92/99 (93%)
74/98 (75%)
65/96 (68%)
56/99 (56%)
53/100 (53%)
47/99 (47%)
43/98 (44%)
17/97 (17%)
13/91 (14%)
18/98 (18%)
4/88 (4%)

6.8+ 3.0

17/95 (18%)
56/95 (59%)
22/95 (23%)
69/98 (70%)

33/95 (35%)
13/45 (29%)

16/100 (16%)
5/100 (5%)
0/100 (0%)
1/100 (1%)
0/100 (0%)
28/100 (28%)
1/100 (1%)
20/100 (20%)

ASD, autism spectrum disorder; ID, intellectual deficiency; MFS, Marfan syndrome; MH, marfanoid habitus; MRI, magnetic resonance
imaging; TAA, thoracic aortic aneurysm.

8ncluding TAA, ectopialentis, sinuous aorta and/or mitral valve prolapse.

bTwenty-three percent of patients had neuropsychological evaluation.

CIncluding absent corpus callosum, thin corpus callosum, corpus callosum dysgenesis, vermis hypoplasia, Arnold Chiari malformation,
pituitary stalk interruption syndrome, asymmetric ventricles, cortical atrophy, hydrocephaly, arachnoidian cyst, enlarged Virchow
Robin spaces, and enlarged citerna major.

d0ne patient had both a FBN7 mutation and a chromosomal rearrangement.

®Patient P20 not carrying any cytogenetic nor molecular abnormality.
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Table 3. Possibly pathogenic MED12 mutation obtained from direct sequencing in the cohort of interest

|dentifier Nomenclature Segregation Clinical features

68 €.3884G>A Inherited from his e Male, 18 years, mild phenotype in her mother (skeletal
(p.Arg1295His)* mother with mild ID, features, mitral valve prolapse)
exon 28 and not found in the o Skeletal features: 187 cm, long and thin habitus,

two asymptomatic
brothers

pectus excavatum, joint laxity, malar hypoplasia,
down slanting palpebral fissures, teeth malposition

e Other MFS features : none

o Mild ID

o Other features: small and low-set ears, nasal speech,
bilateral ptosis

ID, intellectual disability; MFS, Marfan syndrome.
*Not reported in EVS (http://evs.gs.washington.edu/EVS)/).

TGFBR1 and TGFBRZ2 sequencing analysis

Neither pathogenic mutations nor known variants
were found in the TGFBRI gene. One missense and
three synonymous variants were found in the coding
sequence of the TGFBR2 gene. For three of them, their
presence in an asymptomatic parent combined with
database predictions were in favour of a polymorphism
(Table S2). The c.1039C>T (p.Leu347Leu) variant was
found to be de novo. On the basis of the prediction
of a potential ESE disruption by the Human Splicing
Finder tool (51), mRNA studies on lymphocytes were
performed but the results were not in favour of
abnormal splicing.

MED12, UPF3B, and ZDHHC9 sequencing analysis

One possibly pathogenic MEDI2 mutation was found
(c.3884G>A, p.Argl295His) in patient 68 (Table 3).
The use of different databases gave opposite results,
databases against the pathogenicity, taking into account
the fact that a histidine is present at this position in
another gene of the MED family. However, this amino
acid is highly conserved across species (Fig. S1), and
was not found in 200 male controls tested in the labora-
tory, or in the 1000 Genomes Project Consortium or in
the EVS database (http://evs.gs.washington.edu/EVS/).
Segregation in the family showed that the variant was
inherited from the mother, who had a milder phenotype,
which could be compatible with an X-linked inher-
itance, and was absent in the two healthy brothers.
Additional functional studies should be performed in
order to arrive at a definitive conclusion.

Table S2 summarizes the likely non-pathogenic
variants found in this cohort. The ¢.3692-22A>C
MEDI?2 variant was predicted to break the potential
branch point (tccctAt, -22 position in the intron)
according to the in silico splice site analysis program
Human Splicing Finder (HSF) (51), but this hypothesis
could not be confirmed by normal mRNA studies.

X-Inactivation studies

An X-inactivation bias >85% was found in seven
females of group 1 (7/20, 35%), but absent in both other
groups. When considering X-inactivation bias >95%,
only one female was concerned.

Targeted array-CGH

Among the 100 patients, 84 displayed normal results,
with no copy number variants (CNVs) or only the
presence of benign CNVs. For 16 patients, genomic
imbalances were detected ranging from 500 kb to
11.6 Mb, (i) ten deletions, including one deletion
15g21.1921.3 encompassing the FBNI gene; (ii) five
duplications; and (iii) one patient with an unbalanced
translocation (Table 4). The overviews of copy number
changes of all patients along the whole genome are
shown in Fig. 1. Two patients had both chromosomal
rearrangements and a pathogenic FBNI/ mutation. Five
patients had a known microdeletional syndrome (3929,
15q13.2q13.3 and 17q12 microdeletions, 15q11.2 and
16p11.2 microduplications).

Discussion

The systematic screening of genes that may be involved
in MH and ID in this study provides useful information
regarding the work-up necessary in such patients.
From a study of 100 patients, we showed that: (i)
submicroscopic rearrangements are the most prevalent
abnormalities, (ii) the presence of ID should not
rule out the possibility of an FBNI mutation; (iii)
the association of two pathogenic abnormalities was
possible, which means that extreme caution must
be exercised when considering relating the overall
phenotype to a given anomaly, unless additional data
become available in the literature; (iv) the X-linked
MEDI2, ZDHHC9 and UPF3B genes are not major
genes for MH and ID, although a skewed sex ratio in
favour of males was found.

Submicroscopic rearrangements were identified in
16/100 patients. This percentage is in the range of
the overall detection rate of genomic imbalances by
array-CGH in patients with ID and/or developmental
delay (52). Retrospectively, the use of targeted custom
oligonucleotide array-CGH did not permit the identi-
fication of intragenic rearrangement in the genes of
interest. The chromosomal imbalances identified were
all different, strengthening the hypothesis that high
genetic heterogeneity exists in this phenotype. For each
abnormality, we tried to determine if there was evi-
dence that the rearrangement might explain the MH, and
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arachnodactyly, pectuscarinatum, scoliosis necessitating surgery (60°), flat

feet, typical dysmorphism and high arched palate.
o Other features of MFS: mitral valve prolapse with mitral insufficiency, mild

myopia
e Severe ID, anxious and coleric, epilepsy, incontinence, normal cerebral MR

o Skeletal features: 160 cm, long and thin habitus, dolichostenomelia,
o Other features: delayed puberty that required hormonal treatment

Clinical features
e Female, 14 years, brother with mild school difficulties

Inheritance
De novo

Size of
rearrangement (Mb)

Sequences
co-ordinates (hg18)

9.69
45866359-55560424

change
location

Chromosomal
156021.1921.3

Copy number

Loss

ID, intellectual disability; MFS, Marfan syndrome; MRI, magnetic resonance imaging; TAA, thoracic aortic aneurysm.

aKnown decipher syndrome.
bClinical description of this patient has been described previously (65).

®This patient also carries a pathogenic FBN7 mutation.

Table 4. Continued

|dentifier
36

if the results could provide some information regard-
ing the genes responsible for MH. In our series, the
presence of a marfanoid phenotype was recurrent in
4/16 rearrangements, including the 3q29 microdele-
tion (53, 54), the 5p15.31p15.2 microdeletion (33, 34),
the 15921.1921.3 microdeletion (55) and the 16p11.2
microduplication (56) (Table 4). Except for the FBNI
gene located in the 15g21.1q21.3 microdeletion, none
of the other rearrangements comprised a good candi-
date gene for the MH. The recurrent de novo 3q29
microdeletion had a commonly deleted region of 1.6
Mb, most likely secondary to non-allelic homologous
recombination. Besides mild/moderate ID and a long,
narrow face, chest-wall deformity has been described
in 3/15 patients, long, tapering fingers in 3/15 patients,
and ligamentous hyperlaxity in 1/15 patient (53, 54).
Of note, our patient had a more generalized MH and
pneumothorax, which can be part of the MFS spec-
trum. Some patients with the Spter microdeletion and
with various marfanoid features in adolescence have
already been described (33, 34). Unfortunately, pre-
vious patients were not studied using high resolution
techniques. It was therefore not possible to determine
the smallest region of overlap. Finally, it is highly prob-
able that the phenotype found in the patient with chro-
mosome 16p11.2 duplication could be fully explained
by the cytogenetic abnormality as it has been recently
shown that it was the countertype of patients presenting
with chromosome 16p11.2 microdeletion with obesity
and a wide range of behavioural abnormalities (57).

Conversely, we have data to conclude that the rear-
rangements in five patients were certainly respon-
sible for ID but cannot explain the MH. Four of
them are well-known frequent genomic rearrange-
ments, comprising the 15q11.2 microduplication includ-
ing UBE3A/SNRPN (58), the 15q13.3 microdeletion
including CHRNA7 (59), the 17q12 microdeletion (60)
and finally the 17q21.31 microdeletion including MAPT
(61), and manifestations of MFS have never been
described in large series. The best argument against
the causality of the 17q21.31 microdeletion in MH is
that we identified in the same patient a concomitant
pathogenic FBNI mutation. Similar conclusions can be
drawn for the patient with an unbalanced translocation
responsible for a 2q37.3 duplication and a 4q35.1q35.2
deletion, since the patient also carried a pathogenic
FBNI mutation. These observations especially empha-
size the importance of a systematic screening approach
for accurate genetic counselling and clinical follow-up.
Unfortunately, no conclusion can be drawn for the other
rearrangements.

The second take home message from this study is that
the presence of ID should not rule out the diagnosis
of MFS with its aortic risk, in a patient with MH.
Indeed, 6% of our patients had a FBNI mutation
or a rearrangement involving FBNI, i.e. 35% of the
abnormalities found in the study. This conclusion is
of importance as approximately a third of the patients
were not screened by echocardiography prior to the
study. When an FBNI mutation was found, we have
data showing that ID could be attributable to a different



TGFBR2

FBNZ

N - R - -

—

3

18

-
Lo
k-
'

TGFBRT [ ]

-q
w
o
i
(=]
b
—
-l
L]

Fig. 1. Whole genome of the 16 abnormalities detected by custom array-CGH and map of targeted genes. DNA copy number losses and gains are
highlighted in red and green, respectively, at the left and right, respectively, along the chromosome location.

Patient with marfanoid habitus and ID

Array-CGH
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No TAA
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No diagnosis
Echocardiography / 1 year ~Echocardiography / 1 year ~No aortic survey
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N

FBNI screening
(+/- TGFBR1/2%)

X- hnked inheritance Sporadic case

MEDI12, ZDHHC?9, UPF3B screening
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l b

Appropriate counselling

No diagnosis
Aortic follow-up / 5 years

Fig. 2. Flow chart for the diagnosis of patients with MH and ID. TAA, thoracic aortic aneurysm. *The list of genes to be tested will lengthen as

new syndromic TAA genes are identified.

cause, since two of the patients also had a chromosomal
micro-rearrangement that explained the ID. Also, a
large study of patients with MFS did not reveal an
increased risk of ID (7). Given the very high allelic
heterogeneity of the FBNI gene, it was surprising to
find the same mutation (c.4270C>G, p.Prol424Ala)
in two unrelated patients of the study. However, six
additional patients with the same mutation and with
no ID were reported in the UMD-FBNI database. The

majority of FBNI mutations/rearrangements was found
in patients with TAA, ectopia lentis and/or mitral valve
prolapse (four out of five were from group 2), but only
skeletal manifestations were diagnosed at 22 years of
age (patient 97, Table 2), confirming the high clinical
variability of patients with FBNI mutations, who can
present with isolated skeletal features (47).

By combining all these data it was possible to create a
flow chart (Fig. 2) with the following recommendation:



echocardiography and eye examination should be
systematically performed in patients with MH and ID.
If TAA or ectopia lentis is found, FBNI screening is
warranted for genetic counselling and follow-up. The
systemic score in patients with an FBN/ mutation did
not appear to be significantly different from that in other
patients of the cohort. If the echocardiography and eye
examination are normal, they should be performed at
least every 5 years, to take into account the features
that evolve with time.

The third answer from this study is that the three
X-linked genes found in association with LFS are not
major genes in this clinical population, at least in spo-
radic patients. Indeed, only one probably pathogenic
MEDI2 mutation (c.3884G>A, p.Argl295His) was
identified in our cohort of 100 patients. However, very
few familial cases were included, and we therefore
cannot draw any conclusions about the frequency of
MEDI2 involvement in cases with X-linked inheri-
tance. Nevertheless, the role of other X-linked genes
appears probable because there was an obvious skewed
sex ratio in favour of males in our cohort of patients.

Finally, no molecular or cytogenetic abnormalities
were found in 80% of the patients (82% in group 1 and
70% in group 2). Chromosomal micro-rearrangements
found in this study could point to new candidate regions
to be studied to identify new genes responsible for
the phenotype. Further studies with next-generation
sequencing technology such as the exome approach
using a trio strategy will hopefully help in the diagnosis
of such patients. In particular, a distinct entity which
associates TAA and intellectual deficiency may exist
because no FBNI mutation was found in the majority
of the patients. Besides to the hypothesis that more
loci with genes are yet to be discovered, an alternative
explanation would be that MH is a relatively non-
specific feature of patient with ID. Future studies on
the subject would be useful to know if a diagnostician
should give importance or not on the marfanoid findings
in association to ID, given that it can be a common
genetic problem in the population.

In conclusion, this collaborative work suggests a
practical diagnostic pathway resulting in a better
clinical differentiation, and providing a basis for
more effective management and appropriate genetic
counselling for families with MH and ID.
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