
HAL Id: hal-01067938
https://hal.science/hal-01067938v1

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Recursive Restricted Total Least-squares Algorithm
Stephan Rhode, Konstantin Usevich, Ivan Markovsky, Frank Gauterin

To cite this version:
Stephan Rhode, Konstantin Usevich, Ivan Markovsky, Frank Gauterin. A Recursive Restricted To-
tal Least-squares Algorithm. IEEE Transactions on Signal Processing, 2014, 62 (21), pp.5652-5662.
�10.1109/TSP.2014.2350959�. �hal-01067938�

https://hal.science/hal-01067938v1
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, VO. X, DECEMBER XXXX 1

A Recursive Restricted
Total Least-squares Algorithm

Stephan Rhode*, Konstantin Usevich, Ivan Markovsky, and Frank Gauterin

Abstract—We show that the generalized total least squares
(GTLS) problem with a singular noise covariance matrix is
equivalent to the restricted total least squares (RTLS) problem
and propose a recursive method for its numerical solution.
The method is based on the generalized inverse iteration. The
estimation error covariance matrix and the estimated augmented
correction are also characterized and computed recursively.
The algorithm is cheap to compute and is suitable for online
implementation. Simulation results in least squares (LS), data
least squares (DLS), total least squares (TLS), and RTLS noise
scenarios show fast convergence of the parameter estimates to
their optimal values obtained by corresponding batch algorithms.

Index Terms—total least squares (TLS), generalized total least
squares (GTLS), restricted total least squares (RTLS), recursive
estimation, subspace tracking, system identification.

I. INTRODUCTION

MANY problems in mathematics and engineering lead to
an approximate solution of an overdetermined system

AX ≈ B of m linear equations with n < m unknowns. In
general, A ∈ Rm×n is a matrix of measured inputs, X ∈ Rn×d
is a parameter matrix, and B ∈ Rm×d is a matrix that contains
the measured outputs. It is convenient to concatenate A and B
in the augmented data matrix Z =

[
A B

]
∈ Rm×q, where

q = n+ d. The elements of Z contain all measurements.
The stochastic model, corresponding to this problem, is the

errors-in-variables (EIV) model [1], [2]:

A = A+ Ã, B = B + B̃, AX = B, (1)

where A ∈ Rm×n and B ∈ Rm×d are the true input matrix
and true output matrix, respectively, and X ∈ Rn×d is the true
parameter vector. In (1), the vectorized perturbation matrix
vec
([
Ã B̃

])
is a random, normally distributed vector, with

zero mean and covariance σ2P̃ , where P̃ ∈ Rqm×qm is known
but the scaling factor σ2 is unknown. We use the term noise
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covariance matrix for P̃ (although the actual noise covariance
matrix is σ2P̃ ).

In the following sections, the multi-input single-output case
with d := 1 is considered. Hence, X becomes an n × 1
parameter vector and B reduces to an m×1 vector. In the case
P̃ = Iqm, the maximum-likelihood estimator for X is given
by the solution of the total least-squares (TLS) problem [3]

X̂ = arg min
X,Â,B̂

∥∥∥[A B
]
−
[
Â B̂

]∥∥∥
F

subject to ÂX = B̂.

(2)

(Here ‖·‖F is the Frobenius norm.) The covariance of the
estimation error X − X̂ can also be computed from the
data, see [4, Section 8.5]. The assumption P̃ = I , however,
implies that all elements of the data matrix are measured with
equal precision and the errors are uncorrelated, which is often
unrealistic in practice.

For nonsingular P̃ , the maximum-likelihood estimator for
X is the solution of the weighted total least-squares (WTLS)
problem

min
X,Â,B̂

∥∥∥[A B
]
−
[
Â B̂

]∥∥∥
P̃−1

subject to ÂX = B̂,

(3)

where ‖ · ‖W is the weighted matrix norm

‖∆Z‖W :=

√
vec(∆Z)

>
Wvec(∆Z),

defined for a weight matrix W ∈ Rqm×qm. Although problem
(3) differs from (2) only by replacing the Frobenius norm ‖·‖F
by the weighted matrix norm, (3) does not have an analytic
solution, in general, while problem (2) does.

For a general positive semi-definite covariance matrix P̃ ,
model (1) is a special case of semi-linear model in [5, Ch.
17]. Hence, the maximum likelihood estimator for X in (1) is
given by the solution of

min
X,∆A,∆B

∥∥[∆A ∆B
]∥∥
P̃ †

subject to (A+ ∆A)X = (B + ∆B) ,

vec(
[
∆A ∆B

]
) ∈ image(P̃ ),

(4)

where P̃ † denotes the pseudoinverse of P̃ . Due to the linear
constraint, problem (4) is a structured total least-squares (STLS)
problem [6, Ch. 4]. Similar to (3), the STLS problem is non-
convex and has no analytic solution [7].

1070–9908/$00.00 © 20XX IEEE
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TABLE I
SUMMARY OF TLS PROBLEMS.

problem (acronym) definition analytic solution
total least squares (TLS) (2) yes

weighted total least squares (WTLS) (3) no
structured total least squares (STLS) — no

generalized total least squares (GTLS) (3) + (5) yes
restricted total least squares (RTLS) (6) yes

In this paper, we consider a special case of the STLS
problem (4) with P̃ of the form

P̃ = Pr ⊗ Pl, (5)

where the right noise covariance matrix (Pr) and the left noise
covariance matrix (Pl) are positive semi-definite matrices of
dimension Pr ∈ Rq×q and Pl ∈ Rm×m, respectively, and ⊗ is
the Kronecker product. In this case, i.e., with noise covariance
matrix (5), the maximum likelihood estimation problem (4) is
called a generalized total least-squares (GTLS) problem.

In the special case of Pr = Iq and Pl = Im, the
GTLS problem reduces to the TLS problem (2). The case
of nonsingular noise covariance matrices Pr and Pl also admits
an analytic solution, see Section II. In Section III-A, we show
that, in general for singular covariance matrices Pr and Pl, the
GTLS problem is equivalent to the restricted total least-squares
(RTLS) problem [8]

min
X,E

‖E‖F subject to
(A+ ∆A)X = (B + ∆B)[
∆A ∆B

]
= DEF>,

(6)

where E ∈ Rrm×rn is an arbitrary matrix, and D ∈ Rm×rm
and F ∈ Rq×rn are full column rank matrices such that

Pl = DD> and Pr = FF>.

The RTLS problem can be solved off-line by the restricted
singular value decomposition (RSVD) [9]. Our main contribu-
tion is the development of iterative and recursive methods for
solution of RTLS in Section III-B and Section IV. The method
is based on the generalized inverse iteration and uses a result
from [10] that relates the RTLS problem to the minimization
of a Rayleigh quotient. A similar approach for solution of
nonsingular generalized singular value decomposition (GSVD)
problems is used in [11]–[15], while [16], [17] use singular
value decomposition update algorithms with data weighting to
solve nonsingular GSVD problems recursively. In addition, we
show how the uncertainty bounds of the parameter estimates
and the estimated augmented correction can be computed
as a byproduct of the recursive algorithm. This result is a
generalization of formula (8.47) in [4, p. 242] ((7) in Section
II-A of this paper). Our derivation provides an interpretation
of the asymptotic covariance matrix from the point of view
of the Cramér-Rao lower bound for the Markov estimator [5,
§17.3].

In [18] the more general WTLS problem is solved with an
iterative procedure based on a Newton-Gauss approach, and
a solution for the computation of the uncertainty bounds is
presented. However, an online implementation for this approach
seems challenging.

Outline of the paper

In Section II, we review some relevant results from the
literature: computation of the TLS estimate and its covariance as
well as the solution of RTLS with nonsingular noise covariance
matrix by reduction to TLS. The new results are reported
in Section III. In Section III-A, we show the equivalence of
the GTLS with singular right covariance matrix to the RTLS
problem. Then, in Section III-B, based on a lemma from
[10] we propose a recursive method for solving the RTLS
problem. The method is detailed in Section IV where the
computational algorithm is outlined. In Section V, simulation
results illustrating the performance of the proposed algorithm
are shown. Finally, conclusions are given in Section VI.

II. REVIEW OF EXISTING RESULTS

A. Computation of the TLS estimate and its covariance

Consider the singular value decomposition (svd(·)) of Z

Z = USV >,

where V ∈ Rq×q and S = diag(S1,1, . . . , Sq,q).

Then the solution X̂ of (2) and the corresponding optimal
augmented correction ∆Z :=

[
∆A ∆B

]
is obtained from

the smallest right singular vector (v := V :,q), where V :,q means
last column of the matrix of eigenvectors (V ):

X̂ = −v1:n

vq
, ∆Z = Z

(
vv>

)
.

In [4, p. 242], the following approximation of covariance matrix
cov(X̂) of the TLS estimate X̂ was proposed:

cov
(
X̂
)
≈
(

1 +
∥∥∥X̂∥∥∥2

2

)
σ̂2
(
A>A−mσ̂2I

)−1
,

where σ̂2 := S2
q,q/m, (7)

B. RTLS with nonsingular noise covariance matrix

In the case of positive definite Pr and Pl, the solution of
the RTLS problem can be obtained from the solution of the
TLS problem by data scaling and this is then called GTLS [19,
Alg. 1]. Consider the Cholesky factor of Pr (Cr), the Cholesky
factor of Pl (Cl) and their inverses:

Cr = chol(Pr), Cl = chol(Pl),

Wr = Cr
−1, Wl = Cl

−1.

Then the solution of the GTLS problem can be obtained from
the solution of the TLS problem for the scaled matrix

Z ′ = Wl

[
A B

]
Wr = WlZWr

X̂ ′ = total least-squares solution for Z ′

X̂ =
Wr11X̂

′ −Wr12

Wr22

. (9)

The augmented correction can be obtained as

∆Z = ∆Z ′Cr = Z ′
(
v′v′>

)
Cr,
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where v′ is the smallest right singular vector of Z ′ correspond-
ing to the smallest singular value and

Wr = Cr
−1 :=

[ n 1

n Wr11 Wr12

1 0 Wr22

]
is the partition of Wr. Also, from (9), it is easy to derive the
parameter covariance matrix:

cov(X̂) = cov

(
Wr
>
11X̂

′

Wr22

)
=
Wr
>
11cov(X̂ ′)Wr11

Wr
2
22

, (10)

where an estimate of cov(X̂ ′) can be obtained from (7).

III. NEW RESULTS

A. Restricted Total Least Squares
For the special case of the noise covariance matrix (5),

problem (4) can be simplified as follows. In this instance, the
constraint in (4)

vec(
[
∆A ∆B

]
) ∈ image(P̃ )

is equivalent to [
∆A ∆B

]
= DEF>.

Moreover, the following lemma holds true.
Lemma 1: For the noise covariance matrix of the form (5),

the problem (4) is equivalent to the RTLS problem (6).
Proof: Indeed for ∆Z = DEF>,

‖∆Z‖2
P̃ †

= vec(∆Z)
> (
FF> ⊗DD>

)†
vec(∆Z)

= vec(E)
>

vec(E) = ‖E‖2F,
which completes the proof.
The solution of (6) is given by RSVD [9]. Moreover, for
Pl = Im, several special cases of RTLS are well known: least
squares (LS) where A is noise-free, i.e.,

diag(Pr) = σ2
[
0 · · · 0 1

]>
,

and data least squares (DLS) [20] where B is noise-free, i.e.,

diag(Pr) = σ2
[
1 · · · 1 0

]>
.

Mixed LS-TLS problems can also be solved as special cases
of RTLS problem. Another special case, considered in [21],
is when the data is partitioned into columns that are exactly
known, and for which the covariance matrix is known up to
a scalar value. However, the rigid partitioning of data in [21]
seems complicated for developing a general online algorithm.

In what follows, we use a reformulation of the problem (6)
as a minimization of the generalized Rayleigh quotient (rq(·)).

Lemma 2 ( [10, Lemma 2.2]): Let Pl be nonsingular. Then
the problem (6) is equivalent to

min
X

rq(X), where rq(X) :=
Xext

>Z>Pl
−1ZXext

Xext
>PrXext

,

and Xext :=

[
X
−1

]
. (11)

We will use a modification of generalized inverse iteration for
(11) in order to develop a recursive restricted total least-squares
algorithm.

B. RTLS Solved by Generalized Inverse Iteration

The generalized inverse iteration

‖vt‖2 = 1, vt−1 =
[
0 0 · · · 0

]>
while ‖vt−1 − vt‖2 > threshold

vt−1 = vt (12a)

vt =
(
Z>PlZ

)−1
(Prvt) (12b)

vt = vt/‖vt‖2 (12c)
end

X̂ = −v1:n;t/vq;t (12d)

is an iterative procedure that yields the smallest right singular
vector, and is strongly related to the generalized Rayleigh
quotient iteration [22, p. 465]. Upon convergence, the smallest
right singular vector is used in the RTLS solution (12d).

C. Computation of the augmented correction in Generalized
Inverse Iteration

Proposition 1: For nonsingular, Pl the augmented correction
for the problem (6) is

∆Z = Z(vv>)
Pr

v>Prv
. (13)

Proof: Let X̂ be the solution of (11) and define X̂ext as
in (11). From (6), the ∆Z is equal to ∆Z = DE∗F>, where
E∗ is the solution of

min
E

‖E‖F

subject to (Z +DEF>)X̂ext = 0,

which can be rewritten as

min
E

‖E‖F

subject to E(F>X̂ext) = D−1ZX̂ext.

Then, the optimal E∗ is given by

E∗ = D−1ZX̂ext
(F>X̂ext)

>

‖F>X̂ext‖22
= D−1Z

X̂extX̂ext
>F

X̂ext
>PrX̂ext

,

and hence

∆Z = ZX̂extX̂ext
> Pr

X̂ext
>PrX̂ext

.

Since X̂ext = αv and α 6= 0, the proposition is proved.

D. Hessian of the generalized Rayleigh quotient at the mini-
mum point

In this section, we will derive the Hessian of the generalized
Rayleigh quotient (H(·)) at its minimum point, which will be
helpful for constructing an approximation of the parameter
covariance matrix.

Lemma 3: The Hessian of the generalized Rayleigh quotient
at the minimum point X̂ is equal to

H(X̂) = 2
A>Pl

−1A− rq(X̂)Pr1:n,1:n

X̂ext
>PrX̂ext
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Proof: We introduce a notation for denominator of the
generalized Rayleigh quotient (rqd(·)), i.e.

rqd(X̂) := Xext
>PrXext.

By straightforward differentiation,

∇rq(X) =
2

rqd(X)

(
−rq(X)Pr:,1:nX +A>Pl

−1ZXext

)
.

Then the Hessian Hf (X̂) is expressed as

H(X) =− 2
∇>rq(X)Pr:,1:nX +X>Pr1:n,:∇rq(X)

rqd(X)

+ 2
A>Pl

−1A− rq(X)Pr1:n,1:n

rqd(X)
.

Since X̂ is a stationary point of rq(·), we have that ∇rq(X̂) =
0 and the lemma is proved.

E. Cramer-Rao lower bound and its approximation in Gener-
alized Inverse Iteration

The model (1) is a special case of semi-linear model of [5,
Ch. 17]. Therefore, the Cramer-Rao lower bound (CRB(·)) for
X̂ can be derived from the Hessian of the Markov estimator
cost function, which is 1

2σ2 rq(X). Then, the Cramer-Rao lower
bound is given by [5, §17.3]

CRB(X) =

(
1

2σ2
H(X,Z)

)−1

. (14)

The Markov estimator is in many cases asymptotically efficient
[5] (however, it is not proven that it is asymptotically efficient
in the case of RTLS); we use an approximation of CRB(X)
as an approximation of the covariance matrix of the parameter.

Since the true parameter vector (X) and the true augmented
data matrix (Z) are not known, similarly to [5] we replace X
with X , Z with Z, and σ2 with its approximation σ̂2.

The resulting expression is given by

cov(X̂)

≈ σ̂2
(
X̂ext

>PrX̂ext

)(
A>Pl

−1A−mσ̂2Pr1:n,1:n

)−1

= σ̂2

(
1 +

∥∥∥X̂∥∥∥2

2

)(
v>Prv

)
(
A>Pl

−1A−mσ̂2Pr1:n,1:n

)−1
(15a)

σ̂2 :=
rq(X̂)

m
. (15b)

In the case Pl = I and Pr = I , the expression (15) coincides
with (10). Thus, we have obtained an interpretation of (10) as
an approximation of Cramer-Rao lower bound, obtained by
taking the inverse of the Hessian of the generalized Rayleigh
quotient at the minimum point of the generalized Rayleigh
quotient. Note that in the original reference [4, p. 242], neither
the connection to Cramer-Rao lower bound (CRB(·)) or H(·)
was mentioned, nor any other interpretation was provided.

F. Exponential forgetting and covariance matrix

In recursive algorithms, it is customary to use exponential
scaling of the data. For a forgetting factor (λ), 0 < λ ≤ 1, the
following left scaling matrix is constructed:

diag(Wl) :=
[√

λ
m−1

· · ·
√
λ

2 √
λ

1 √
λ

0
]>

. (16)

Now consider the GTLS problem with Pl
−1 = Wl

>Wl, and
Pr ∈ Rq×q. In this case, since Pl is nonsingular, so that
generalized inverse iteration (GII) can be used to compute
estimated parameter vector and (13) can be used to compute
augmented correction.

However, if the data is generated according to the model

Z = Z + Z̃,

where Z̃ ∼ N(0, σ2Pr), Z̃ are i.i.d., the left scaling matrix
defined in (16) is not consistent with the noise model. Thus the
formula (15) is no longer valid for computing the parameter
covariance matrix. In order to address this problem, we first
consider the case of the least squares estimator with exponential
forgetting.

Lemma 4: Let Pr be a diagonal matrix such that diag(Pr) =
[0, . . . , 0, 1]>, and Wl is given by (16). Then

cov(X̂) = σ2(A>Pl
−1A)−1(A>Pl

−2A)(A>Pl
−1A)−1.

(17)
Proof: This is a special case of the weighted least squares

estimator, and (17) follows from [23, (2.16)].
Remark 1: If Wl was consistent with the noise model (i.e. if

vec(B̃) ∼ N(0, σ2Pr ⊗ Pl)), then the covariance of X̂ would
be equal to σ2(A>Pl

−1A)−1, which is a special case of (15).
Based on Lemma 4 and Remark 1, we propose the following
adjustment of (15) to the case of exponential forgetting:

cov(X̂) ≈ σ̂2
(
X̂ext

>PrX̂ext

)
(
R1:n,1:n −m1σ̂

2Pr1:n,1:n

)−1(
Q1:n,1:n −m2σ̂

2Pr1:n,1:n

)(
R1:n,1:n −m1σ̂

2Pr1:n,1:n

)−1
(18)

σ̂2 :=
rq(X̂)

m1
, m1 :=

m−1∑
j=0

λj , m2 :=

m−1∑
j=0

λ2j .

where
R := Z>Pr

−1Z, Q := Z>Pr
−2Z, (19)

and therefore

R1:n,1:n = A>Pr
−1A, Q1:n,1:n := A>Pr

−2A.

For λ = 1, m = m1 = m2. For λ < 1, they are

m1 =
1− λm

1− λ
, m2 =

1− λ2m

1− λ2
.

The number m1 is an equivalent window length (the multiplier
for the noise variance). For m → ∞, m1 converges to 1

1−λ
(or to ∞ if λ = 1). In recursive algorithms, it is common to
replace m1 with min

(
m, 1

1−λ

)
, however it may be a rough

approximation for small m. m2 is the equivalent window length
for doubly scaled data covariance matrix (Q).
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IV. RECURSIVE RESTRICTED TOTAL LEAST SQUARES

The recursive restricted TLS (recursive RTLS) algorithm
described in this section is designed to solve the RTLS problem
online. At each step of the recursion (for each t), a new row-
vector Zt ∈ R1×q is supplied. The algorithm computes an
estimate X̂t for the RTLS problem with the augmented data
matrix Z1:t :=

[
Z>1 · · · Z>t

]>
.

In order to allow the algorithm to follow time-varying
parameters, an forgetting factor is used such that the left scaling
matrix (Wl) is defined as in (16). The right noise covariance
matrix is also allowed to be time-varying and is represented
by Prt ∈ Rq×q .

The algorithm does not store the whole matrix Z1:t. Instead,
it has access to the previous estimate X̂t−1 and to the inverse
of the data covariance matrix P t−1, where P j = R−1

j and Rj
is the data covariance matrix defined in (19). For computation
of the covariance of X̂ , the algorithm has access to Rt−1 and
Qt−1 (data covariance matrix and doubly scaled data covariance
matrix defined in (19)). In addition to X̂t, the algorithm
computes the updated matrix P t, the parameter covariance
matrix and the last row ∆Zt ∈ R1×q of the augmented
correction. The algorithm computes updated matrices Rt and
Qt, and also the estimated variance.

The recursion starts from the time instant t = q + 1, where
the algorithm is initialized using the batch solution of RTLS.
However, other typical initializations are possible, such as
X̂t−1 =

[
0 · · · 0

]>
, P t−1 = 100I , Rt−1 = P−1

t−1 and
Qt−1 = Rt−1, see the minimal working example of recursive
RTLS in the supplementary material of this article.

input : Zt, P t−1, X̂t−1, Prt, λ, t, Rt−1, Qt−1

Lt =
(
P t−1Z

>
t

)(
λ+ ZtP t−1Z

>
t

)−1
(20a)

P t = (I − LtZt)P t−1
1

λ
(20b)

v′t−1 =
[
X̂>t−1 −1

]>
(20c)

v′t = P t
(
Prtv

′
t−1

)
(20d)

X̂t = −v′1:n;t/v
′
q;t (20e)

vt =
[
X̂>t ,−1

]>(
1 + X̂>t X̂t

)− 1
2

(20f)

∆Zt = Zt
(
vtv
>
t

) Prt

v>t Prtvt
(20g)

Rt = λRt−1 + Z>t Zt, Qt = λ2Qt−1 + Z>t Zt,
(20h)

m1 =
1− λt

1− λ
, m2 =

1− λ2t

1− λ2
, (20i)

σ̂2
t =

1

m1

v>t P
−1
t vt

v>t Prtvt
(20j)

cov(X̂t) =

(
1 +

∥∥∥X̂t

∥∥∥2

2

)
σ̂2
t

(
v>t Prtvt

)
(20k)(

R1:n,1:n;t −m1σ̂
2
tPr1:n,1:n;t

)−1(
Q1:n,1:n;t −m2σ̂

2
tPr1:n,1:n;t

)(
R1:n,1:n;t −m1σ̂

2
tPr1:n,1:n;t

)−1

output : X̂t, P t, cov(X̂t),∆Zt, Rt, Qt, σ̂
2
t

TABLE II
OVERVIEW OF SIMULATION EXPERIMENTS

№ optimal estimator diag(Pr) function

1 RTLS Section II-B
[
0.1 0.2 0.4 1

]>
fcn gtls

2 TLS Section II-B
[
0.3 0.3 0.3 0.3

]>
fcn gtls

3 LS [26, 279–281]
[
0 0 0 1

]>
fcn wls

4 DLS [20]
[
0.3 0.3 0.3 0

]>
fcn dls

The recursive RTLS algorithm in (20a)–(20k) consists of three
parts. First, the inverse of the data covariance matrix P t−1

is recursively updated with the matrix inversion lemma in
(20a)–(20b), [24, p. 364]. Second, in (20c)–(20d), a one-step
generalized inverse iteration is performed (a modification of
(12a)–(12c) with the previous estimate X̂t−1 used to build the
smallest right singular vector v′t−1). The generalized inverse
iteration is completed by computing X̂ with the non-normalized
smallest right singular vector v′t in (20e).

Using one-step generalized inverse iteration ((20c)–(20d))
instead of running the whole GII recursion was initially
proposed in [14]. Although it saves memory because there
is no need to track the time-varying smallest right singular
vector separately, the algorithm loses optimality compared with
the batch procedure in (12a)–(12c). Notably, this fact is often
not emphasized in literature about similar algorithms.

The steps (20a)–(20e) of the recursive RTLS algorithm were
already introduced in [25]. The final part (20f)–(20k) of the
algorithm extends the algorithm of [25] to the computation of
the augmented correction in (20g), and the parameter covariance
matrix in (20k). These computations are performed using (13)
and (18).

The recursive RTLS algorithm in (20a)–(20k) has a compu-
tational complexity of O(q3) due to matrix inversion in (20k).
However, the computational complexity may be reduced to
O(q2) using the matrix inversion lemma also for (20k). This
would require additional input and output parameters.

The GTLS estimator of Section II-B is of much higher
computational complexity. The involved singular value de-
composition of the m by q matrix Z requires O(mq2 + q3)
multiplications, see [22, p. 254] for different complex svd
implementations. In addition to this, the computational com-
plexity of GTLS is unbounded because m grows for each t to
∞, which is typical for batch estimators.

V. SIMULATION RESULTS

A. Simulation data and performance index

The proposed recursive RTLS algorithm was extensively
compared with appropriate batch estimators in four different
right noise covariance matrix scenarios. Tab. II links the used
optimal batch estimator, the diagonal elements of Pr (the noise
variance) and the name of the Matlab® function from the
supplementary material of this article for each Pr scenario.
We used the GTLS estimator of Section II-B for Pr scenario
№1 and №2. The LS estimator was used from [26, pp. 279–
281] in Pr scenario №3 and the DLS estimator from [20] in
Pr scenario №4. For more details, we refer the reader to the
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Fig. 1. True inputs (A) and true output (B) modeled as sine waves, [25].

provided Matlab® implementation that contains all required
steps (simulation data, estimator implementation, result figures)
to rerun the experiments.

Analogically to [25] Fig. 1 showsA andB that were generated
with

t = [1, 2, 3, . . . ,m]>, m = 1000 s,

A:,1 = sin(2π t 0.006) sin(2π t 0.006/3.3),

A:,2 = sin(2π t 0.012) sin(2π t 0.012/3.3),

A:,3 = sin(2π t 0.014) sin(2π t 0.014/3.3),

X =


[
1 2 3

]>
1 s ≤ t < 600 s[

2 2 3
]>

600 s < t ≤ 1000 s
,

B = A�X,

where A:,1, A:,2 and A:,3 are the first, second and third columns
ofA respectively, and � is the element-wise product, also known
as Hadamard product. The step change in X1 at t = 600 s
was used to check the recursive RTLS algorithm tracking
performance for time-varying systems.

For each Pr scenario of Tab. II, 500 independent experiments
were conducted with additive zero mean white Gaussian noise,
with covariance σ2Pr , where σ2 = 1. Such a choice of σ2 leads
to signal-to-noise ratio (SNR) of 6.84, 8.26, 9.36, and 9.45 dB
respectively for each noise scenario. Therefore we consider the
case of poor SNR. Note that the SNR is computed as 20dB ·
log10

rms(vec(Z))

rms(vec(Z̃))
. Thus, the presented SNR for Pr scenario№3

and №4 are artificially increased, since we do not remove the
exactly known columns of the augmented data matrix from the
calculation.

The forgetting factor was set to λ = 0.997 for all estimators.
While λ is directly involved in the recursive RTLS algorithm
(20a)–(20k), the optimal batch estimators were applied for each
t with row-wise scaled data WlZ, where Wl was adjusted as
shown in (16). The recursive RTLS algorithm was initialized
with the corresponding batch estimator from Tab. II at t = 4 s.

Similarly to [11], [14], the performance index squared error
vector norm (E) was computed for each estimator, right noise
covariance matrix scenario and experiment, and averaged with
the arithmetic mean (µ(·)) to compute the expectation of E over
500 independent experiments

Et =
∥∥∥X̂t −Xt

∥∥∥2

2
.
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Fig. 2. Estimated parameter vector (X̂) of one experiment for right noise
covariance matrix (Pr) scenario №1 of Tab. II. The true parameters (X) are
shown by .
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Fig. 3. Estimated parameter covariance (cov(X̂)) of one experiment for right
noise covariance matrix (Pr) scenario №1 of Tab. II.

B. Nonsingular right noise covariance matrix scenario №1

Fig. 2 shows the parameter vector estimates of Pr scenario
№1 for the optimal GTLS estimator and the recursive RTLS
algorithm. For t ≥ 200 s recursive RTLS follows GTLS quite
accurately, despite the fact that recursive RTLS is suboptimal
(only one step of GII is performed). In addition recursive
RTLS, algorithm shows smoother results than the optimal GTLS
estimator, which can be explained by the fact that the solution
is updated recursively. This implicit regularization of recursive
RTLS can be beneficial in practical applications where a smooth
solution is desirable. Similar observations hold for the diagonal
elements of the estimated parameter covariance in Fig. 3.

Fig. 4, shows the squared error vector norm averaged over 500
experiments in dB. Between 150 s to 200 s we can observe large
deviations between recursive RTLS and GTLS which decay for
t ≥ 200 s, which indicates that the initialization of recursive
RTLS is finished after approximately 200 s. Moreover, after the
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)

EGTLS ErecursiveRTLS

Fig. 4. Squared error vector norm averaged over 500 independent noise
realizations for right noise covariance matrix (Pr) scenario №1 of Tab. II.
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Fig. 5. Estimated parameter vector (X̂) of one experiment for right noise
covariance matrix (Pr) scenario №3 of Tab. II. The true parameters (X) are
shown by .
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Fig. 6. Estimated parameter covariance (cov(X̂)) of one experiment for right
noise covariance matrix (Pr) scenario №3 of Tab. II.

initialization (t ≥ 200 s) the difference between the optimal
GTLS estimator and the proposed recursive RTLS algorithm
is negligible. The step change in X1 at t = 600 s can be
clearly seen as drastic increase in E . However, the latter decrease
of E shows the adaptability properties of the recursive RTLS
algorithm with forgetting factor.

C. Nonsingular right noise covariance matrix scenario №2

As discussed in Section II-B, TLS is included in GTLS as a
special case. Hence, the performance of recursive RTLS com-
pared with the optimal TLS estimator does not differ significantly
from the statements made in Section V-B, and we omit the
results for this Pr scenario. However, these results can be easily
observed by using the mentioned Matlab® implementation.
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Fig. 7. Squared error vector norm averaged over 500 independent noise
realizations for right noise covariance matrix (Pr) scenario №3 of Tab. II.
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Fig. 8. Estimated parameter vector (X̂) of one experiment for right noise
covariance matrix (Pr) scenario №4 of Tab. II. The true parameters (X) are
shown by .
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Fig. 9. Input correction (∆A) of one experiment for right noise covariance
matrix (Pr) scenario №4 of Tab. II.

D. Singular right noise covariance matrix scenario №3

Let us compare the results of recursive RTLS with the optimal
LS estimator for Pr scenario №3. Fig. 5 shows the improved
accuracy of recursive RTLS in the parameter vector estimates
for this scenario compared to the results in Fig. 2. There is prac-
tically no initialization of recursive RTLS observable in Fig. 5.
The performance of recursive RTLS with regards to the estimated
parameter covariance in Fig. 6 is also improved compared with
Fig. 3. Fig. 7 shows E averaged over 500 experiments where
recursive RTLS performs with high accuracy compared to the
optimal LS estimator.

E. Singular right noise covariance matrix scenario №4

Fig. 8 shows the parameter vector estimates of Pr scenario
№4 for the optimal DLS estimator and the recursive RTLS
algorithm. The accuracy of recursive RTLS for this Pr scenario
seems appropriate for the most practical applications. Also,
the implicit regularization of recursive RTLS is satisfactory
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Fig. 10. Squared error vector norm averaged over 500 independent noise
realizations for right noise covariance matrix (Pr) scenario №4 of Tab. II.
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Fig. 11. Squared error vector norm averaged over 500 independent noise
realizations for right noise covariance matrix (Pr) scenario №4 of Tab. II.
Contrary to all previous results, the true inputs (A) were built from white
Gaussian noise with zero mean and unit variance.

observable in Fig. 8. We do not yet have an implementation for
the estimated parameter covariance of DLS, therefore the input
correction (∆A) is shown in Fig. 9 for 150 s to 200 s. Recursive
RTLS shows similar results as the optimal DLS solution also
in terms of the input correction. The initialization between
150 s to 200 s, as well as the implicit regularization of recursive
RTLS (250 s to 400 s) is satisfactory, observable by the averaged
squared error vector norm in Fig. 10.

Finally, Fig. 11 gives the averaged squared error vector norm
where the sine waves of Fig. 1 were substituted with white
Gaussian noise with zero mean and unit variance for A. The
SNR is approximately 13 dB in this case. Compared with Fig. 10
the squared error vector norm is drastically reduced and there is
no initialization or deviation between recursive RTLS and DLS
observable. A possible explanation is that A built from white
Gaussian noise gives better system excitation than A built from
sine waves in Fig. 1.

For the purpose of brevity, only an excerpt of the simulation
results was provided, and we encourage the reader to rerun the
experiments with the provided Matlab® implementation.

F. Sample covariance and Cramer-Rao lower bound

Finally, we compare the estimated covariance matrix (18) with
sample covariance matrix and the Cramer-Rao lower bound. We
consider the Pr scenario №3, but use the time-invariant case
X =

[
1 2 3

]>
(without the step in the parameters). In this

case, from (14) the CRB(·) can be computed as

CRB(X)t = σ2(Xext
>PrXext)(A

>
1:t,:A1:t,:)

−1
,

which corresponds to the covariance matrix of estimated pa-
rameter vector (X̂) for the batch estimator without exponential

10−2

10−1

c
o
v
(X̂

)

σ̂2(X̂1)(18)

σ̂2(X̂1)sample

CRB1
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Fig. 12. Estimated parameter covariance (cov(X̂)) for right noise covariance
matrix (Pr) scenario №3 of Tab. II. Note that the step change in X1 is omitted
here for a better comparison with the Cramer-Rao lower bound. Hence, X is
time-invariant (X =

[
1 2 3

]>). Black lines show the recursive RTLS
result from (18) of one experiment, red lines the sample covariance obtained
from 500 independent recursive RTLS parameter estimates and blue lines the
Cramer-Rao lower bound.

forgetting.
In Fig. 12, we compare the diagonal elements of the theoretical

parameter covariance matrix of (18) for one experiment with
the diagonal elements of the sample covariance matrix of 500
independent parameter estimates for recursive RTLS, and the
diagonal elements of the the CRB(X)t. It can be seen that the
sample covariance matches the estimated covariance quite well,
thus the approximation (18) of the covariance matrix is quite
accurate. (This was also verified for other noise scenarios.)

Compared to CRB(·), we see that covariance of the parameter
is bounded from below, whereas the CRB(·) converges to
zero. Due to the exponential forgetting, only a part of data
(corresponding to the equivalent window length) is used, and
thus the recursive RTLS is not consistent with t→∞. This is
a typical feature of the recursive estimators that consistency is
sacrificed for the ability to adapt to changes in the parameters.

VI. CONCLUSION

Starting with a short review of known errors-in-variables
(EIV) estimators of the total least squares (TLS) type we have
shown that generalized total least squares (GTLS) is equivalent
to the restricted total least-squares (RTLS) problem with singular
noise covariance matrix (P̃ ). The proposed recursive restricted
total least-squares (recursive RTLS) algorithm is based upon the
generalized inverse iteration (GII), and provides the estimated
parameter vector (X̂), along with a solution for the estimated
parameter covariance matrix and the estimated augmented cor-
rection. Compared with the corresponding optimal batch estima-
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tors, the suboptimal recursive RTLS algorithm has significantly
lower computational complexity (O(q3) that can be reduced to
O(q2) multiplications per iteration against O(q3 +mq2), with
m→∞). Moreover, numerous simulation experiments suggest
that the recursive RTLS algorithm provides good estimates of
the parameters, which are smoother than the batch estimates. We
also proposed a formula for covariance of the parameters, which
was shown to be accurate by the simulation experiments. Finally,
due to forgetting factor, the algorithm is able to follow time-
varying parameters. As it is common for recursive estimators,
this is achieved at a price of reduced efficiency of the estimate
compared to Cramer-Rao lower bound. The recursive RTLS
algorithm and all presented results are available as a ready to
run Matlab® implementation in the supplementary material.
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