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Abstract: As software architecture evolution has become an integral part of the automated software engineering lifecycle, 
reuse, modularization and composition of evolution rules becomes more important. This paper aims to generalize the 
architecture evolution model by defining evolution rules and propagation strategies on graphs describing software 
architectures. We aim to define a user-definable means to manage software architecture evolution model.  
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1. Introduction 
Architecture evolution plays a central role in software 
development and has become an integral part of the 
automated software engineering lifecycle. In order to keep 
this automated lifecycle maintainable, evolution rules will 
have to be reusable, modular and composable [4] [6]. 

It is natural that we can represent a software architecture 
by a graph of nodes. However, due to genericity reasons, we 
can reduce the problem of evolution of architecture in a 
graph evolution problem where evolution rules and 
propagation strategies can be applied easily on the graph [7]. 

In this work we are essentially interested in the evolution 
of a graph of elements as long as software architecture can 
be described by graphs. We consider a graph as a semantic 
graph composed of nodes and edges. Where nodes represent 
architectural elements (component, connector, and 
configuration) and edges represent the semantic relations 
among these elements like inheritance, composition, and 
association relations, which themselves (nodes and edges) 
can be described as graph of elements and so on [3].  

Change management in software architectures can take 
several forms: 

• Architecture modification: changing the architecture 
without bothering about its consistency. 

• Architecture evolution: changing the architecture while 
keeping it consistent so the evolution concerns the changes 
without trace (changes within the architecture). 

• Architecture versioning: building and managing different 
versions of an architecture and providing access to these 
versions; so the evolution concerns the versioning of the 
architecture (change with trace) [1]. 

The main motivation factor is to maintain in a uniform 
way the consistency of the evolution of a graph of elements 
by permitting the changes of its structure and its versioning 
while respecting its semantic. 

In our context a graph is defined by a set of nodes with a 
set of edges among them, where each node or an edge can be 
primitive or composite. Composite nodes or edges are 
defined by other graphs. So, we deal with an hierarchical 
graph where each node or edge can be described by means 
of another graph and so on. 

Evolution is described by the changes of the structure of 
the graph describing the architecture or by its versioning 
process. To summarise these definitions we introduce the 
following equations: 

Evolution = {propagation strategy} + {evolution rules}  (1) 

Evolution without trace (changes within the architecture)  (2) 

Evolution with trace (versioning the architecture)  (3) 

The idea that we want to introduce through this work lies 
in developing an approach to evolve systems with a backup 
track (versioning) [2]. So we want that our approach will be 
as generic as possible with the aim of applying it to all 
modelling levels (M3, M2, M1, and M0) defined by OMG. 
As consequence the mechanical operations developed to this 
purpose can be applied at all modelling levels. This goal is 
possible because the approach is focused around the graph 
concept which is generic too. 

The remainder of the paper is organized as follows. 
Some motivations of our work are summarized in section 2. 
The necessary basic concepts required in this work are 
outlined in section 3. Section 4 introduces the proposed 
approach to deal with architecture evolution. Section 5 
proposes the evolution mechanisms used in our approach. A 
short case study is presented in section 6. Finally section 7 
concludes and provides some future work. 

2. Motivations 
The main motivation is to maintain in a uniform way the 
consistency of the evolution of a graph by permitting the 
changes of its structure and its versioning in respect of its 
semantic. This consistency is achieved via a perturbation 
model: starting from a graph which is initially consistent, an 
element of this graph evolves (node, semantic relation, 
attribute …) and the task of the system is to find back a new 
consistent graph. 

Many applications require the use of graphs and their 
evolution. So we have defined some objectives to be reached 
for our graph element evolution model: 

• An abstraction level of the evolution must be provided in 
order to allow evolutions process to be reusable and more 
generic. 



• Evolution must be managed outside the entities concerned 
by the evolutions; indeed merging the evolution behaviour 
and the methods which describe the behaviour specific to 
each element runs against the behaviour abstraction of 
evolution model. 

• The evolution model must be open to the addition of new 
external methods of evolution. 

• The evolution model must be able to take into account the 
semantics of various types of relation of a graph element 
and not impose fixed evolution police. 

• The management of the evolution must be easy and 
flexible. 

• The evolution model must be capable to take advantage of 
the features of object-oriented paradigm such as 
abstraction, polymorphism, and encapsulation. More 
precisely, the principle of reusability must be widely 
exploited. To begin with, an evolution can concern several 
distinct sets of classes. Moreover, a new evolution can be 
defined by combining evolutions which have already been 
defined using inheritance or/and composition relations [8].  

3. Basic concepts 
The concept of graph element, which is the support of our 
modeling, is a semantic graph composed of nodes 
“architectural elements” and edges “semantic relations” like 
inheritance, composition or association relations. These 
semantic relations specify the quality of existing interactions 
between nodes or graphs. In our model each kind of class 
(graph, node or relation) is reified and then owns its 
structure and its behavior and in this case its evolution. 

In order to express this evolution, the designer is able to 
attach evolution capabilities directly to his applications 
entities concerned by the evolution; of course he can also, by 
default, keep the evolution police provided by the system. 
Indeed, i our model, the evolution of an element is based on 
two components: evolution rules and propagation strategies. 
A propagation strategy groups together the set of evolution 
rules which define the operations of creation, destruction, 
modification, derivation, versioning applicable to a given 
element (graph, node or relation). 

A propagation strategy, if it exists is therefore associated 
with each element graph, node or relation; it can be reused 
or redefined in the corresponding sub-element hierarchies. 
An evolution rule defines declaratively the actions that must 
be triggered on the elements concerned by the evolution. 
The evolution rules are defined as active rules and re reified 
so they can be hierarchical; they are based on the formalism 
of ECA rules (Event/Condition/Action) and are hierarchical 
via the inheritance mechanism. For example, the version 
creation or the version destruction rules of a node via an 
Action part of its evolution rule will trigger the evolution 
rules of the corresponding afferent and efferent relations 
associated with the processed node. For the relations these 

rules can be propagated in four directions and according to 
two modes [7]. 

The propagation direction of a relation evolution rule can 
be Forward, Backward, Bidirectional, or None. Forward, 
for example, means that the propagation takes place from the 
source of the relation to its destination. The propagation 
mode can be Restricted or Extended. If it is Restricted, the 
operation propagates from the extremity on which it is 
triggered to the relation element. If it is Extended, the 
operation propagates from the extremity on which it is 
triggered to both the relation element and the other extremity 
of the relation. The use of propagation strategies containing 
evolution rules allows a more flexibility because rules can 
be defined and carried out according to the context and 
needs of an information system. 

4. Our approach to architecture evolution  
The basis for our approach to architecture evolution 

centers on the concept of a graph evolution. Basically, our 
graph element evolution model is based on the key concepts 
of modeled graph element, evolution manager, propagation 
strategies and evolution rules as illustrated by the metamodel 
depicted in Figure 1.  

In modeled graph element we use nodes to represent the 
architectural elements and edges to represent the semantic 
relations among these architectural elements. We rely on an 
object oriented modelling concepts (class diagram) to 
describe the metamodel of our approach. 

The concept of architectural element represents any 
reified entity of the architecture to evolve. With each 
architectural element are associated some evolution 
strategies. A strategy consists of a set of evolution rules of 
an architectural element. An evolution rule describes the 
application of an evolution operation on an architectural 
element. A rule is triggered if the corresponding event 
occurs under predefined conditions. A rule can trigger other 
rules, if necessary, to spread the impact of the operation it 
describes. Thus, an action of a rule may correspond to an 
event. Furthermore, rules have a name which is unique 
in the namespace its grammar and can have a number 
of super-rules. 

Rules can be abstract, which means that they are only 
applied in combination with non abstract sub-rules. Finally, 
rules have an execution mode, which can be either manual, 
automatic single, or automatic recursive. Manual rules have 
to be explicitly invoked. Automatic single rules are matched 
once, and then applied once by the automatic matching 
framework. Automatic recursive rules are matched and 
applied by the automatic matching framework until there are 
no matches. 

It is only possible to define super-rule relation between 
rules of the same kind: manual, automatic, or recursively 
automatic. 
 



 
Figure 1. Evolution metamodel for software architecture. 

 

5. Evolution mechanism 
The operating mechanism describes the execution 
process of the evolution model. It is defined by means 
of four steps. 

5.1. Interception of the event 

An event can be intercepted in two different ways: 

a- After a user request, indeed, the user selects both the 
element (graph, node, relation) concerned by the 
evolution and the rule to apply on it (deletion, 
modification, versioning ...etc.). The evolution 
manager intercepts the message representing the user 
choice.  

b- after the execution of an evolution rule (action part), 
Indeed, the execution of an action of an evolution rule 
can involve the call of another, and so on, until the 
propagation is over. So, the evolution manager is 
responsible of the interception of any new event. 

5.2. Research of the propagation strategy 

The evolution manager having received a request of an 
evolution of an element, then looks for the 
corresponding propagation strategy (if it exists) and 
then applies this strategy to the element and triggers the 
corresponding evolution rules. 
 
 

5.3. Execution of the evolution rules 

Rules are identified by the event type to execute (for 
example for a node evolution the corresponding event 
is: delete-node, create-node-version, delete-attribute-
node …) and are applied after the condition are 
checked. Actions of these rules cans be a program code 
or eventually a list of events to be executed on other 
elements. 

5.4. Propagation 

The triggering of evolution rules in the execution of 
their action part. This execution raise new events that 
will be executed in the same way, and recursively 
propagate other evolution rules.  

In order to avoid cycles in the execution of rules, 
the evolution manager stores the names of elements 
that have been treated during a given propagation. This 
prevents messages concerning the same element from 
being taken into account more than once. 

6. Case study 
The example of the Figure 2 illustrates a proposed 
graph Gr0 to be evolved. 

EvolutionManagerMetaElement

Node Graphe Relation PropagationStrategy

EvolutionRule

Event

Condition

Action

NodeEvolRule GraphEvolRule RelationEvolRule

ChangeEvol
VersionningEvol

Identification Definition Derivation



 
Figure 2. Gr0 elements before evolution. 

We propose the following evolution scenario:  the 
user selects the C2 element and decides first to delete it 
and then create a version of the C1 and C3 elements. 
The results of this evolution scenario (illustrated by 
Figure 3) depend on the different evolutions rules 
described below by the designer. 

 
Figure 3. GR0 elements after evolution. 

 
The different elements acting in this evolution 

scenario are: 

 

Gr0 : Graph 

Nodes :  C1, C2, C3 

Relations : RC1, H2 

 
 

C1 : Node C2 : Node C3 : Node 

Aff. relation : - 
Eff. relation: RC1 
Structure: ….. 
Behavior: ….. 

Aff. relation : RC1 
Eff. relation: H2 
Structure: …… 
Behavior: …… 

Aff. relation : H2 
Eff. relation: - 
Structure: …… 
Behavior: …… 

 
 

RC1 : Relation H2 : Relation 
Type : Composition 
Source: C1 
Target : C2 
Exclusive : true 
Dependent : false 
Predominent : false 
Card : 1 
Reverse_card :1 

Type : Inheritence 
Source: C2 
Target : C3 
Exclusive : true 
Dependent : false 
Predominent : false 
Card : 1 
Reverse_card :1 

 
 

Propagation Strategy S1 : Graph S2 : Node S3 : 
Relation 

TheDefaultStrategyForElement 

HasAsCreationRules 

HasAsDescructionRules 

HasAsModificationRules 

GR0 

R9 

 

R3,R5 

C1,C2,C3 

R7 

R2 

R6 

RC1, H2 

R1, R8 

R4 

The different rules defined to deal with the 
evolution process of a graph are: 

R1: Relation evolution rule R2: Node evolution rule 
Event: 
     addRelation(R,N1,N2,G) 
Condition: 
      Belong (N1, G) 
      Belong (N2, G) 
Actions:  
 InstantiateRelation(R,N1,N2,G) 

Event: 
     deleteNode(N) 
Condition: 
      Not (Shared (N)) 
      G � Graph(N) 
Actions:  
      modifyGraph(G, N, ()) 
      executeDeleteNode(N) 

 
 

R3: Graph evolution rule 

Event:        modifyGraph(G,N,()) 
Condition:  Belong(N,G); R1 �  N.afferent;    R2 �  N.efferent 
Actions:       deleteRelation(R1) 
                       modifNode(R1.source, efferent, R1) 
                       deleteRelation(R2) 
                       modifNode(R2.destination, afferent, R2) 
                       G.Relations � G.Relations – {R1, R2} 
                       addRelation(R.name, R1.source, R2.destination, G) 
                       G.Node � G.Node – {N} 
                       G.Relations � G.relations + R 
 
 

R4: Relation evolution rule R5: Graph evolution rule 
Direction : forward 
Mode:    extented 
Event:    deleteRelation(R) 
Condition:  G � Graph (R) 
Actions:  
      modifyGraph(G,R,()) 
      executeDeleteRelation(R) 

Event:  modifyGraph(G,R,()) 
Condition:   Belong (R, G) 
      N1 � R.source 
      N2 � R.destination 
Actions:  
      modifyNode(N1, efferent, R) 
      modifyNode(N2, afferent, R) 

 
 

R6: Node evolution rule R7: Node evolution rule 
Event: 
     modifyNode (N, type, R) 
Condition: 
      (Belong (R, N.afferent)) or 
      (Belong (R, N.efferent)) 
Actions: Case type of  
Afferent:N.afferent�N.afferent-R 
Efferent: N.efferent�N.efferent-R 

Event: 
     createVersionNode(N) 
Condition: 
      Versionable (N) 
Actions:  
   V(N) � executeCreateVersion(N) 
   G � Graph(N) 
   createVersionGraph( G , N ) 

 
 

R8: Relation evolution rule R9: Graph evolution rule 
Direction:  forward 
Mode:    extended  
Event: 
CreateVersionRelation(R,N,N1) 
Condition:  Exists(V(N)) 
Actions:  
V(R) � derive (R) 
V(N1)�createVersionNode(N1) 
V(R).source � V(N) 
V(R).destination � V(N1) 

Event: 
CreateVersionGraph(G , N) 
Condition:   
Belong(N,G) 
Let R(N,N1) and 
R.relationOperationRule.mode= 
extended 
Actions:  
 createVersionRelation(R,N,N1) 
 V(G) � executeCreateVersion(G) 
 

 

6.1. Actions triggered 

The deletion of the C2 element consists not only in 
deleting it, but also in propagation (using the 
propagation strategy) the deletion of the other elements 
which depend on it, like the composition relation RC1 
and the inheritance relation H2.  

C2 C3 

RC1 H2 

VC1 VC3 

VRC1 

dl dl 

VGr0 

dl 

RC1 

C1 

C1 C2 C3 

RC1 H2 

Gr0 



The propagation of this modification is managed by 
the propagation strategy “S2” and more precisely by its 
destruction rule R2. Indeed, the evolution manager 
applies the strategy S2 which consist in bringing back 
its operation rule R2 dealing with the deletion of a 
node and then triggers it. 

The description of the rule R2 consists, before 
deleting the node C2, to verify the conditions of this 
deletion (the afferent and efferent relations of the node 
C2 must be exclusive), and then in executing the 
actions “modifyGraph(G,N,())” and 
“executeDeleteNode(N)”. So, the evolution manager 
incepts the next event consisting in: 
“modifyGraph(G,N,())”. This event is send to the graph 
entity GR0 to which we have associated the strategy S1 
which owns two modification rules R3 and R5. In this 
case, the rule R3 is selected by the evolution manager. 
The other operations follow these steps: 

� Strategy S1, rule R3 on graph GR0  

o Strategy S3, rule R4 on relation RC1 

• Strategy S1, rule R5 on graph GR0 

� Strategy S2, rule R6 on node C1 

� Strategy S2, rule R6 on node C2 

o Strategy S2, rule R6 on node C1   // if needed 

o Strategy S3, rule R4 on relation H2  

• Strategy S1, rule R5 on graph GR0  

• Strategy S2, rule R6 on node C2 // if needed 

• Strategy S2, rule R6 on node C3  

o Strategy S2, rule R6 on node C3 // if needed 

o Strategy S3, rule R1 on relation CR1 

Concerning the creation of the version of the C1 
node, the following rules are triggered: 

� Strategy S2, rule R7 on node C1  

o Strategy S1, rule R9 on graph GR0 

• Strategy S3, rule R8 on relation RC1 

o Strategy S1, rule R9 on graph GR0    

By default, the new creating elements (VRC1, VC1, 
VC3 and VGR0) are associated to a predefined 
strategies and rules of elements types which they 
depend on. However, the designer is free to redefine or 
to specialize them for a targeted application. 

7. Conclusion 
The proposed evolution model respects most of the 
objectives we determined before the design process. In 
addition to the mechanisms which are inherent in the 
representation of the evolution (propagation strategies 
and evolution rules) by objects of the first class, the 
specialization of the evolution and application graph 
classes may be dealt with independently. The principal 
originality of our model lies in the fact that different 
semantics of graph element evolution can be taken into 
account. 

 

Moreover, it differs from the existing models in two 
points: 1- It proposes a uniform way to manage both 
changes and versioning in a same objects base. 2-It 
permits extensibility and the reusability of the different 
rules and strategies of a graph of elements evolution. 
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