
HAL Id: hal-01067936
https://hal.science/hal-01067936v1

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Metamodeling Approach for Software Architecture
Evolution

Amirat Abdelkrim, Mourad Chabane Oussalah

To cite this version:
Amirat Abdelkrim, Mourad Chabane Oussalah. A Metamodeling Approach for Software Architec-
ture Evolution. Proceeding of The 13th International Arab Conference on Information Technology
(ACIT’2012), Dec 2012, Jordan. �hal-01067936�

https://hal.science/hal-01067936v1
https://hal.archives-ouvertes.fr

A Metamodeling Approach for Software Architecture Evolution
Abdelkrim Amirat1 and Mourad Oussalah2

1University Mohamed Cherif Messaadia, Souk-Ahras, Algeria
2LINA Laboratory, University of Nantes, France2

{abdelkrim.amirat ; mourad.oussalah}@univ-nantes.fr

Abstract: As software architecture evolution has become an integral part of the automated software engineering lifecycle,
reuse, modularization and composition of evolution rules becomes more important. This paper aims to generalize the
architecture evolution model by defining evolution rules and propagation strategies on graphs describing software
architectures. We aim to define a user-definable means to manage software architecture evolution model.

Keywords: Architecture evolution, Component evolution, Evolution rules, Propagation strategies, Graph, Semantic relations.

1. Introduction
Architecture evolution plays a central role in software
development and has become an integral part of the
automated software engineering lifecycle. In order to keep
this automated lifecycle maintainable, evolution rules will
have to be reusable, modular and composable [4] [6].

It is natural that we can represent a software architecture
by a graph of nodes. However, due to genericity reasons, we
can reduce the problem of evolution of architecture in a
graph evolution problem where evolution rules and
propagation strategies can be applied easily on the graph [7].

In this work we are essentially interested in the evolution
of a graph of elements as long as software architecture can
be described by graphs. We consider a graph as a semantic
graph composed of nodes and edges. Where nodes represent
architectural elements (component, connector, and
configuration) and edges represent the semantic relations
among these elements like inheritance, composition, and
association relations, which themselves (nodes and edges)
can be described as graph of elements and so on [3].

Change management in software architectures can take
several forms:

• Architecture modification: changing the architecture
without bothering about its consistency.

• Architecture evolution: changing the architecture while
keeping it consistent so the evolution concerns the changes
without trace (changes within the architecture).

• Architecture versioning: building and managing different
versions of an architecture and providing access to these
versions; so the evolution concerns the versioning of the
architecture (change with trace) [1].

The main motivation factor is to maintain in a uniform
way the consistency of the evolution of a graph of elements
by permitting the changes of its structure and its versioning
while respecting its semantic.

In our context a graph is defined by a set of nodes with a
set of edges among them, where each node or an edge can be
primitive or composite. Composite nodes or edges are
defined by other graphs. So, we deal with an hierarchical
graph where each node or edge can be described by means
of another graph and so on.

Evolution is described by the changes of the structure of
the graph describing the architecture or by its versioning
process. To summarise these definitions we introduce the
following equations:

Evolution = {propagation strategy} + {evolution rules} (1)

Evolution without trace (changes within the architecture) (2)

Evolution with trace (versioning the architecture) (3)

The idea that we want to introduce through this work lies
in developing an approach to evolve systems with a backup
track (versioning) [2]. So we want that our approach will be
as generic as possible with the aim of applying it to all
modelling levels (M3, M2, M1, and M0) defined by OMG.
As consequence the mechanical operations developed to this
purpose can be applied at all modelling levels. This goal is
possible because the approach is focused around the graph
concept which is generic too.

The remainder of the paper is organized as follows.
Some motivations of our work are summarized in section 2.
The necessary basic concepts required in this work are
outlined in section 3. Section 4 introduces the proposed
approach to deal with architecture evolution. Section 5
proposes the evolution mechanisms used in our approach. A
short case study is presented in section 6. Finally section 7
concludes and provides some future work.

2. Motivations
The main motivation is to maintain in a uniform way the
consistency of the evolution of a graph by permitting the
changes of its structure and its versioning in respect of its
semantic. This consistency is achieved via a perturbation
model: starting from a graph which is initially consistent, an
element of this graph evolves (node, semantic relation,
attribute …) and the task of the system is to find back a new
consistent graph.

Many applications require the use of graphs and their
evolution. So we have defined some objectives to be reached
for our graph element evolution model:

• An abstraction level of the evolution must be provided in
order to allow evolutions process to be reusable and more
generic.

• Evolution must be managed outside the entities concerned
by the evolutions; indeed merging the evolution behaviour
and the methods which describe the behaviour specific to
each element runs against the behaviour abstraction of
evolution model.

• The evolution model must be open to the addition of new
external methods of evolution.

• The evolution model must be able to take into account the
semantics of various types of relation of a graph element
and not impose fixed evolution police.

• The management of the evolution must be easy and
flexible.

• The evolution model must be capable to take advantage of
the features of object-oriented paradigm such as
abstraction, polymorphism, and encapsulation. More
precisely, the principle of reusability must be widely
exploited. To begin with, an evolution can concern several
distinct sets of classes. Moreover, a new evolution can be
defined by combining evolutions which have already been
defined using inheritance or/and composition relations [8].

3. Basic concepts
The concept of graph element, which is the support of our
modeling, is a semantic graph composed of nodes
“architectural elements” and edges “semantic relations” like
inheritance, composition or association relations. These
semantic relations specify the quality of existing interactions
between nodes or graphs. In our model each kind of class
(graph, node or relation) is reified and then owns its
structure and its behavior and in this case its evolution.

In order to express this evolution, the designer is able to
attach evolution capabilities directly to his applications
entities concerned by the evolution; of course he can also, by
default, keep the evolution police provided by the system.
Indeed, i our model, the evolution of an element is based on
two components: evolution rules and propagation strategies.
A propagation strategy groups together the set of evolution
rules which define the operations of creation, destruction,
modification, derivation, versioning applicable to a given
element (graph, node or relation).

A propagation strategy, if it exists is therefore associated
with each element graph, node or relation; it can be reused
or redefined in the corresponding sub-element hierarchies.
An evolution rule defines declaratively the actions that must
be triggered on the elements concerned by the evolution.
The evolution rules are defined as active rules and re reified
so they can be hierarchical; they are based on the formalism
of ECA rules (Event/Condition/Action) and are hierarchical
via the inheritance mechanism. For example, the version
creation or the version destruction rules of a node via an
Action part of its evolution rule will trigger the evolution
rules of the corresponding afferent and efferent relations
associated with the processed node. For the relations these

rules can be propagated in four directions and according to
two modes [7].

The propagation direction of a relation evolution rule can
be Forward, Backward, Bidirectional, or None. Forward,
for example, means that the propagation takes place from the
source of the relation to its destination. The propagation
mode can be Restricted or Extended. If it is Restricted, the
operation propagates from the extremity on which it is
triggered to the relation element. If it is Extended, the
operation propagates from the extremity on which it is
triggered to both the relation element and the other extremity
of the relation. The use of propagation strategies containing
evolution rules allows a more flexibility because rules can
be defined and carried out according to the context and
needs of an information system.

4. Our approach to architecture evolution
The basis for our approach to architecture evolution

centers on the concept of a graph evolution. Basically, our
graph element evolution model is based on the key concepts
of modeled graph element, evolution manager, propagation
strategies and evolution rules as illustrated by the metamodel
depicted in Figure 1.

In modeled graph element we use nodes to represent the
architectural elements and edges to represent the semantic
relations among these architectural elements. We rely on an
object oriented modelling concepts (class diagram) to
describe the metamodel of our approach.

The concept of architectural element represents any
reified entity of the architecture to evolve. With each
architectural element are associated some evolution
strategies. A strategy consists of a set of evolution rules of
an architectural element. An evolution rule describes the
application of an evolution operation on an architectural
element. A rule is triggered if the corresponding event
occurs under predefined conditions. A rule can trigger other
rules, if necessary, to spread the impact of the operation it
describes. Thus, an action of a rule may correspond to an
event. Furthermore, rules have a name which is unique
in the namespace its grammar and can have a number
of super-rules.

Rules can be abstract, which means that they are only
applied in combination with non abstract sub-rules. Finally,
rules have an execution mode, which can be either manual,
automatic single, or automatic recursive. Manual rules have
to be explicitly invoked. Automatic single rules are matched
once, and then applied once by the automatic matching
framework. Automatic recursive rules are matched and
applied by the automatic matching framework until there are
no matches.

It is only possible to define super-rule relation between
rules of the same kind: manual, automatic, or recursively
automatic.

Figure 1. Evolution metamodel for software architecture.

5. Evolution mechanism
The operating mechanism describes the execution
process of the evolution model. It is defined by means
of four steps.

5.1. Interception of the event

An event can be intercepted in two different ways:

a- After a user request, indeed, the user selects both the
element (graph, node, relation) concerned by the
evolution and the rule to apply on it (deletion,
modification, versioning ...etc.). The evolution
manager intercepts the message representing the user
choice.

b- after the execution of an evolution rule (action part),
Indeed, the execution of an action of an evolution rule
can involve the call of another, and so on, until the
propagation is over. So, the evolution manager is
responsible of the interception of any new event.

5.2. Research of the propagation strategy

The evolution manager having received a request of an
evolution of an element, then looks for the
corresponding propagation strategy (if it exists) and
then applies this strategy to the element and triggers the
corresponding evolution rules.

5.3. Execution of the evolution rules

Rules are identified by the event type to execute (for
example for a node evolution the corresponding event
is: delete-node, create-node-version, delete-attribute-
node …) and are applied after the condition are
checked. Actions of these rules cans be a program code
or eventually a list of events to be executed on other
elements.

5.4. Propagation

The triggering of evolution rules in the execution of
their action part. This execution raise new events that
will be executed in the same way, and recursively
propagate other evolution rules.

In order to avoid cycles in the execution of rules,
the evolution manager stores the names of elements
that have been treated during a given propagation. This
prevents messages concerning the same element from
being taken into account more than once.

6. Case study
The example of the Figure 2 illustrates a proposed
graph Gr0 to be evolved.

EvolutionManagerMetaElement

Node Graphe Relation PropagationStrategy

EvolutionRule

Event

Condition

Action

NodeEvolRule GraphEvolRule RelationEvolRule

ChangeEvol
VersionningEvol

Identification Definition Derivation

Figure 2. Gr0 elements before evolution.

We propose the following evolution scenario: the
user selects the C2 element and decides first to delete it
and then create a version of the C1 and C3 elements.
The results of this evolution scenario (illustrated by
Figure 3) depend on the different evolutions rules
described below by the designer.

Figure 3. GR0 elements after evolution.

The different elements acting in this evolution

scenario are:

Gr0 : Graph

Nodes : C1, C2, C3

Relations : RC1, H2

C1 : Node C2 : Node C3 : Node

Aff. relation : -
Eff. relation: RC1
Structure: …..
Behavior: …..

Aff. relation : RC1
Eff. relation: H2
Structure: ……
Behavior: ……

Aff. relation : H2
Eff. relation: -
Structure: ……
Behavior: ……

RC1 : Relation H2 : Relation
Type : Composition
Source: C1
Target : C2
Exclusive : true
Dependent : false
Predominent : false
Card : 1
Reverse_card :1

Type : Inheritence
Source: C2
Target : C3
Exclusive : true
Dependent : false
Predominent : false
Card : 1
Reverse_card :1

Propagation Strategy S1 : Graph S2 : Node S3 :
Relation

TheDefaultStrategyForElement

HasAsCreationRules

HasAsDescructionRules

HasAsModificationRules

GR0

R9

R3,R5

C1,C2,C3

R7

R2

R6

RC1, H2

R1, R8

R4

The different rules defined to deal with the
evolution process of a graph are:

R1: Relation evolution rule R2: Node evolution rule
Event:
 addRelation(R,N1,N2,G)
Condition:
 Belong (N1, G)
 Belong (N2, G)
Actions:
 InstantiateRelation(R,N1,N2,G)

Event:
 deleteNode(N)
Condition:
 Not (Shared (N))
 G � Graph(N)
Actions:
 modifyGraph(G, N, ())
 executeDeleteNode(N)

R3: Graph evolution rule

Event: modifyGraph(G,N,())
Condition: Belong(N,G); R1 � N.afferent; R2 � N.efferent
Actions: deleteRelation(R1)
 modifNode(R1.source, efferent, R1)
 deleteRelation(R2)
 modifNode(R2.destination, afferent, R2)
 G.Relations � G.Relations – {R1, R2}
 addRelation(R.name, R1.source, R2.destination, G)
 G.Node � G.Node – {N}
 G.Relations � G.relations + R

R4: Relation evolution rule R5: Graph evolution rule
Direction : forward
Mode: extented
Event: deleteRelation(R)
Condition: G � Graph (R)
Actions:
 modifyGraph(G,R,())
 executeDeleteRelation(R)

Event: modifyGraph(G,R,())
Condition: Belong (R, G)
 N1 � R.source
 N2 � R.destination
Actions:
 modifyNode(N1, efferent, R)
 modifyNode(N2, afferent, R)

R6: Node evolution rule R7: Node evolution rule
Event:
 modifyNode (N, type, R)
Condition:
 (Belong (R, N.afferent)) or
 (Belong (R, N.efferent))
Actions: Case type of
Afferent:N.afferent�N.afferent-R
Efferent: N.efferent�N.efferent-R

Event:
 createVersionNode(N)
Condition:
 Versionable (N)
Actions:
 V(N) � executeCreateVersion(N)
 G � Graph(N)
 createVersionGraph(G , N)

R8: Relation evolution rule R9: Graph evolution rule
Direction: forward
Mode: extended
Event:
CreateVersionRelation(R,N,N1)
Condition: Exists(V(N))
Actions:
V(R) � derive (R)
V(N1)�createVersionNode(N1)
V(R).source � V(N)
V(R).destination � V(N1)

Event:
CreateVersionGraph(G , N)
Condition:
Belong(N,G)
Let R(N,N1) and
R.relationOperationRule.mode=
extended
Actions:
 createVersionRelation(R,N,N1)
 V(G) � executeCreateVersion(G)

6.1. Actions triggered

The deletion of the C2 element consists not only in
deleting it, but also in propagation (using the
propagation strategy) the deletion of the other elements
which depend on it, like the composition relation RC1
and the inheritance relation H2.

C2 C3

RC1 H2

VC1 VC3

VRC1

dl dl

VGr0

dl

RC1

C1

C1 C2 C3

RC1 H2

Gr0

The propagation of this modification is managed by
the propagation strategy “S2” and more precisely by its
destruction rule R2. Indeed, the evolution manager
applies the strategy S2 which consist in bringing back
its operation rule R2 dealing with the deletion of a
node and then triggers it.

The description of the rule R2 consists, before
deleting the node C2, to verify the conditions of this
deletion (the afferent and efferent relations of the node
C2 must be exclusive), and then in executing the
actions “modifyGraph(G,N,())” and
“executeDeleteNode(N)”. So, the evolution manager
incepts the next event consisting in:
“modifyGraph(G,N,())”. This event is send to the graph
entity GR0 to which we have associated the strategy S1
which owns two modification rules R3 and R5. In this
case, the rule R3 is selected by the evolution manager.
The other operations follow these steps:

� Strategy S1, rule R3 on graph GR0

o Strategy S3, rule R4 on relation RC1

• Strategy S1, rule R5 on graph GR0

� Strategy S2, rule R6 on node C1

� Strategy S2, rule R6 on node C2

o Strategy S2, rule R6 on node C1 // if needed

o Strategy S3, rule R4 on relation H2

• Strategy S1, rule R5 on graph GR0

• Strategy S2, rule R6 on node C2 // if needed

• Strategy S2, rule R6 on node C3

o Strategy S2, rule R6 on node C3 // if needed

o Strategy S3, rule R1 on relation CR1

Concerning the creation of the version of the C1
node, the following rules are triggered:

� Strategy S2, rule R7 on node C1

o Strategy S1, rule R9 on graph GR0

• Strategy S3, rule R8 on relation RC1

o Strategy S1, rule R9 on graph GR0

By default, the new creating elements (VRC1, VC1,
VC3 and VGR0) are associated to a predefined
strategies and rules of elements types which they
depend on. However, the designer is free to redefine or
to specialize them for a targeted application.

7. Conclusion
The proposed evolution model respects most of the
objectives we determined before the design process. In
addition to the mechanisms which are inherent in the
representation of the evolution (propagation strategies
and evolution rules) by objects of the first class, the
specialization of the evolution and application graph
classes may be dealt with independently. The principal
originality of our model lies in the fact that different
semantics of graph element evolution can be taken into
account.

Moreover, it differs from the existing models in two
points: 1- It proposes a uniform way to manage both
changes and versioning in a same objects base. 2-It
permits extensibility and the reusability of the different
rules and strategies of a graph of elements evolution.

References
[1] Oussalah M., “Changes and Versioning in

complex Objects”, International Workshop on
Principles of Software Evolution, IWPSE 2001,
Sep. 10-11, Vienna University of Technology,
Austria.

[2] Chaki S., Diaz-Pace A., Garlan D., Gurfinkel A.,
and Ozkaya I., “Towards engineered architecture
evolution”, in MiSE, ICSE Workshop on
Modeling in Software. Engineering, pp.1-6, 2009.

[3] Taylor R.N., Medvidovic N. and Dashofy E.,
“Software Architecture: Foundations, Theory,
and Practice”, Wiley-Blackwell, 2009.

[4] Barais O., Le Meur A., Duchien L., and Lawall J.,
“Software architecture evolution”, Software
Evolution, Springer, 2008.

[5] Amirat A. and Oussalah M., “First-class
connectors to support systematic construction of
hierarchical software architecture”, Journal of
Object Technology (JOT), pp. 107-130, 2009.

[6] Jazayeri M., “On architectural stability and
evolution”, Proceeding of Ada-Europe’02, 2002.

[7] Tamzalit D., Sadou N. and Oussalah M.,
“Evolution problem within component-based
software architecture”, in Proceeding of
International Conf. on Software Engineering and
Knowledge Engineering (SEKE'06), 2006.

[8] Amirat A., Menasria A., and Gasmallah N.,
“Evolution Framework for Software Architecture
using Graph Transformation Approach”, The 12th
International Arab Conference on Information
Technology (ACIT’2011), December 11-14,
Riyadh, Saudi Arabia, pp. 75-82, 2011.

