N

N

A Metamodeling Approach for Software Architecture
Evolution
Amirat Abdelkrim, Mourad Chabane Oussalah

» To cite this version:

Amirat Abdelkrim, Mourad Chabane Oussalah. A Metamodeling Approach for Software Architec-
ture Evolution. Proceeding of The 13th International Arab Conference on Information Technology
(ACIT’2012), Dec 2012, Jordan. hal-01067936

HAL Id: hal-01067936
https://hal.science/hal-01067936v1

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01067936v1
https://hal.archives-ouvertes.fr

A M etamodeling Approach for Software Architecture Evolution

Abdelkrim Amirat and Mourad Oussalah
'University Mohamed Cherif Messaadia, Souk-Ahragjefia
2LINA Laboratory, University of Nantes, Frarfce
{abdelkrim.amirat ; mourad.oussalah}@univ-nantes.fr

Abstract: As software architecture evolution has become aeginal part of the automated software engineeriifigci/cle,
reuse, modularization and composition of evolutioites becomes more important. This paper aims toegdize the
architecture evolution model by defining evolutiomles and propagation strategies on graphs desngbisoftware
architectures. We aim to define a user-definablamsdo manage software architecture evolution model

Keywords: Architecture evolution, Component evolution, Eviolutules, Propagation strategies, Graph, Semardiations.

1. Introduction Evolution is described by the changes of the stinecof
the graph describing the architecture or by itssiesing

Architecture evolution plays a central role in s@te process. To summarise these definitions we intredihe
development and has become an integral part of theollowing equations:

automated software engineering lifecycle. In orttekeep
this automated lifecycle maintainable, evolutiotesuwill Evolution = {propagation strategy} + {evolution rules} (1)
have to be reusable, modular and composable [4] [6]

It is natural that we can represent a softwareitacture
by a graph of nodes. However, due to genericitgaps, we
can reduce the problem of evolution of architectimrea
graph evolution problem where evolution rules and
propagation strategies can be applied easily ogridyeh [7].

In this work we are essentially interested in theletion
of a graph of elements as long as software architecan

be described by graphs. We consider a graph amange ~ Modelling levels (M3, M2, M1, and MO) defined by @M
graph composed of nodes and edges. Where nodeseepr As consequence the mechanical operations devetopibis

architectural elements (component, connector, andPUTPOSe can be applied at all modelling levelssTgoal is
configuration) and edges represent the semantations POSSible because the approach is focused aroungréip

among these elements like inheritance, compositrg ~ CONcept which is generic too.

association relations, which themselves (nodes edges) The remainder of the paper is organized as follows.

can be described as graph of elements and so on [3] Some motivations of our work are summarized inisac.

.) The necessary basic concepts required in this vewek
Change management in software architectures ca takyineq in section 3. Section 4 introduces theppsed

several forms: approach to deal with architecture evolution. Sectb

« Architecture modification changing the architecture Proposes the evolution mechanisms used in our appre
without bothering about its consistency. short case study is presented in section 6. Firsabtion 7

) _) _ ~ concludes and provides some future work.
« Architecture evolution changing the architecture while

keeping it consistent so the evolution concernchanges
without trace (changes within the architecture).

Evolution without trace (changes within the architecture) (2)

Evolution with trace (versioning the architecture) (3)

The idea that we want to introduce through thisknims
in developing an approach to evolve systems wittagkup
track (versioning) [2]. So we want that our appioadll be
as generic as possible with the aim of applyingoitall

2. Motivations

The main motivation is to maintain in a uniform wthe
consistency of the evolution of a graph by permittihe
changes of its structure and its versioning in eespf its
semantic. This consistency is achieved via a paation
model: starting from a graph which is initially cistent, an
The main motivation factor is to maintain in a onih element of this graph evolves (node, semantic iosiat
way the consistency of the evolution of a grapklefments attribute ...) and the task of the system is to fiadk a new
by permitting the changes of its structure andséssioning consistent graph.
while respecting its semantic. Many applications require the use of graphs andt the
In our context a graph is defined by a set of nodgisa €volution. So we have defined some objectives teeaehed

set of edges among them, where each node or arcadgee ~ for our graph element evolution model:

primitive or composite. Composite nodes or edges ar « An abstraction level of the evolution must be pded in
defined by other graphs. So, we deal with an hiiaal order to allow evolutions process to be reusabte raore
graph where each node or edge can be describecehgsm generic.

of another graph and so on.

« Architectureversioning building and managing different
versions of an architecture and providing accesthése
versions; so the evolution concerns the versiomihghe
architecture (change with trace) [1].

 Evolution must be managed outside the entities e
by the evolutions; indeed merging the evolutionayébur
and the methods which describe the behaviour spdoif
each element runs against the behaviour abstraction
evolution model.

The evolution model must be open to the additiomef
external methods of evolution.

The evolution model must be able to take into antde
semantics of various types of relation of a grajgment
and not impose fixed evolution police.

« The management of the evolution must be easy ancg

flexible.

The evolution model must be capable to take adgantd

rules can be propagated in four directions and raatg to
two modes [7].

The propagation direction of a relation evolutiatercan
be Forward, Backward Bidirectional or None Forward,
for example, means that the propagation takes ffaoethe
source of the relation to its destination. The pgation
mode can béRestrictedor Extended If it is Restricted the
operation propagates from the extremity on whichisit
triggered to the relation element. If it Bxtended the
operation propagates from the extremity on whichisit
triggered to both the relation element and therot&emity
f the relation. The use of propagation strateg@#aining
volution rules allows a more flexibility becausdes can
be defined and carried out according to the consaxd
needs of an information system.

the features of object-oriented paradigm such as
abstraction, polymorphism, and encapsulation. More4, Qur approach to architectur e evolution

precisely, the principle of reusability must be elid
exploited. To begin with, an evolution can conceeneral
distinct sets of classes. Moreover, a new evolutian be
defined by combining evolutions which have alreadgn
defined using inheritance or/and composition retzi[8].

3. Basic concepts

The concept of graph element, which is the suppbxur

The basis for our approach to architecture evatutio
centers on the concept of a graph evolution. BHgjoaur
graph element evolution model is based on the kegepts
of modeled graph element, evolution manager, prajay
strategies and evolution rules as illustrated legyntietamodel
depicted in Figure 1.

In modeled graph element we use nodes to représent
architectural elements and edges to representdimargic

modeling, is a semantic graph composed of nodegelations among these architectural elements. Weorean

“architectural elements” and edges “semantic refesdl like
inheritance, composition or association relatioifiese
semantic relations specify the quality of existingeractions
between nodes or graphs. In our model each kindasfs
(graph, node or relation) is reified and then owits
structure and its behavior and in this case it$utiom.

In order to express this evolution, the designexbie to
attach evolution capabilities directly to his apptions
entities concerned by the evolution; of coursedrealso, by
default, keep the evolution police provided by Hystem.
Indeed, i our model, the evolution of an elemeriiased on
two components: evolution rules and propagatioatetyies.
A propagation strategy groups together the setvofution
rules which define the operations of creation, mesion,
modification, derivation, versioning applicable & given
element (graph, node or relation).

A propagation strategy, if it exists is therefoss@ciated
with each element graph, node or relation; it carrdused
or redefined in the corresponding sub-element rgéies.
An evolution rule defines declaratively the actidhat must
be triggered on the elements concerned by the geplu
The evolution rules are defined as active rulesrancified
so they can be hierarchical; they are based ofothealism
of ECA rules EventConditionAction) and are hierarchical
via the inheritance mechanism. For example, theioer
creation or the version destruction rules of a ne@ean
Action part of its evolution rule will trigger the evoioh
rules of the corresponding afferent and efferetétions
associated with the processed node. For the retaticese

object oriented modelling concepts (class diagram)
describe the metamodel of our approach.

The concept of architectural element represents any
reified entity of the architecture to evolve. Witmach
architectural element are associated some evolution
strategies. A strategy consists of a set of evmiutules of
an architectural element. An evolution rule desesitihe
application of an evolution operation on an ardttiteal
element. A rule is triggered if the correspondingerd
occurs under predefined conditions. A rule cangergother
rules, if necessary, to spread the impact of therain it
describes. Thus, an action of a rule may corresgonan
event.Furthermore, rules have a name which is unique
in the namespace its grammar and can have a number
of super-rules.

Rules can be abstract, which means that they dge on
applied in combination with non abstract sub-rukesally,
rules have an execution mode, which can be eitlseTual,
automatic single, or automatic recursive. Manuésinave
to be explicitly invoked. Automatic single ruleseanatched
once, and then applied once by the automatic machi
framework. Automatic recursive rules are matched an
applied by the automatic matching framework uidre are
no matches.

It is only possible to define super-rule relatiogtveeen
rules of the same kind: manual, automatic, or rEealy
automatic.

MetaH ement

Bvol utionManager

Node Graphe Relation Pr opagationStr ategy
Bvent
BwolutionRule Condition
>
4& \ Action
NodeEvolRule Gr aphBEvol Rule RelationBEvolRule
G agEste Ver sionningBEvol
Identification Definition Derivation

Figure 1. Evolution metamodel for software arcHitee.

5. Evolution mechanism

The operating mechanism describes the execution
process of the evolution model. It is defined byame
of four steps.

5.1. Interception of the event
An event can be intercepted in two different ways:

a- After a user request, indeed, the user seledtsthe
element (graph, node, relation) concerned by the
evolution and the rule to apply on it (deletion,
modification, versioning ...etc.). The evolution
manager intercepts the message representing the use
choice.

b- after the execution of an evolution rule (actpart),
Indeed, the execution of an action of an evolutige

can involve the call of another, and so on, uri# t
propagation is over. So, the evolution manager is
responsible of the interception of any new event.

5.2. Resear ch of the propagation strategy

The evolution manager having received a requeahof
evolution of an element, then looks for the
corresponding propagation strategy (if it existed a
then applies this strategy to the element andérigthe
corresponding evolution rules.

5.3. Execution of the evolution rules

Rules are identified by the event type to exectae (
example for a node evolution the corresponding even
is: delete-node, create-node-version, delete-at&ib
node ...) and are applied after the condition are
checked. Actions of these rules cans be a progaate ¢
or eventually a list of events to be executed dreot
elements.

5.4. Propagation

The triggering of evolution rules in the executiain
their action part. This execution raise new evéhat
will be executed in the same way, and recursively
propagate other evolution rules.

In order to avoid cycles in the execution of rules,
the evolution manager stores the names of elements
that have been treated during a given propagafibis.
prevents messages concerning the same element from
being taken into account more than once.

6. Case study

The example of the Figure 2 illustrates a proposed
graph GrO0 to be evolved.

The different rules defined to deal with the

Gr .
0 evolution process of a graph are:

O—0—0

Figure 2. G elements before evolution.

R1: Relation evolution rule | R2: Node evolution rule

Event: Event:
addRelation(R,N1,N2,G) deleteNode(N)
Condition: Condition:

Belong (N1, G)

Belong (N2, G)
Actions:
InstantiateRelation(R,N1,N2,G

Not (Shared (N))

G < Graph(N)
Actions:

modifyGraph(G, N, ())

executeDeleteNode(N)

We propose the following evolution scenario: the
user selects the C2 element and decides firstlétedie
and then create a version of the C1 and C3 elements
The results of this evolution scenario (illustratey
Figure 3) depend on the different evolutions rules
described below by the designer.

R3: Graph evolution rule

Event: modifyGraph(G,N,())
VGr, RC1 Condition: Belong(N,G); R1& N.afferent; R N.efferent
Actions: deleteRelation(R1)
modifNode(R1.source, efférdil)
deleteRelation(R2)

modifNode(R2.destinatiorfeeént, R2)
G.Relatiors G.Relations — {R1, R2}
addRelation(R.name, R1.seuR2.destination, G)
G.Nod€é- G.Node — {N}

G.Relatiors G.relations + R

R4: Relation evolution rule
Direction : forward

R5: Graph evolution rule
Event: modifyGraph(G,R,())

Figure 3. GRO elements after evolution. Mode: extented Condition: Belong (R, G)
Event: deleteRelation(R) N1< R.source
. L . . Condition: G < Graph (R N2< R.destination
The different elements acting in this evolution Actions: ph (R) Actions:

modifyNode(N1, efferent, R
modifyNode(N2, afferent, R

scenario are: modifyGraph(G,R,())

executeDeleteRelation(R)

Gry: Graph ; ;
R6: Node evolution rule R7: Node evolution rule
Nodes: C1, C2,C3
o Event: Event:
Relations : RC1, H2 modifyNode (N, type, R) createVersionNode(N)
Condition: Condition:
(Belong (R, N.afferentpr Versionable (N)
(Belong (R, N.efferent)) Actions:
C1: Node C2: Node C3: Node Actions: Case typeof V(N) € executeCreateVersion(N)
—— —— —— Afferent:N.afferen€-N.afferent-R G € Graph(N)
Aff. relation : - Aff. relation : RC1 Aff. relation : H2 ;
*N. . - teV Graph(G, N
Eff. relation: RC1 Eff. relation: H2 Eff. relation: - Efferent: N.efferen€N.efferent-R createVersionGraph()
Structure: Structure: Structure:
Behavior: Behavior: Behavior:
R8: Relation evolution rule | R9: Graph evolution rule
Direction: forward Event:
RC1 : Relation H2 : Relation Mode: extended CreateVersionGraph(G , N)
— - Event: Condition:
T e t T . Inherit
S)éﬂfce: ngOSI on S)c/)ﬂ(rece:ncgn ence CreateVersionRelation(R,N,N1) Belong(N,G)
Target : C2 Target : C3 Condition: Exists(V(N)) Let R(N'Nl)and . |
Exclusive : true Exclusive : true Actions: _ S).(I(ee:?égcr;OperatlonRule.mode-
Dependent : false | Dependent : false V(R) € derive (R) Actions
Predominent : false | Predominent : false V(N1)<createVersionNode(N1) AcCtiOns.)
Card : 1 Card : 1 V(R).source& V(N) createVersionRelation(R,N,N1
Reverse_card :1 Reverse_card :1 V(R).destination& V(N1) V(G) € executeCreateVersion(G
Propagation Strategy S1: Graph |S2: Node [S3: 6.1. Actionstriggered
Relation . . .
The deletion of the C2 element consists not only in
TheDefauIt§trategyForE|ement GRO C1,C2,C3 | RC1,H2 de|eting it, but also in propagation (using the
HasAsCreationRules R9 R7 R1, R8 propagation strategy) the deletion of the othemelats
HasAsDescructionRules R2 R4 which depend on it, like the composition relatioB R
HasAsModificationRules R3,RS R6 and the inheritance relation H2.

The propagation of this modification is managed by
the propagation strategy “S2” and more preciseljtdy
destruction rule R2. Indeed, the evolution manager
applies the strategy S2 which consist in bringiagko
its operation rule R2 dealing with the deletion af
node and then triggers it.

The description of the rule R2 consists, before
deleting the node C2, to verify the conditions loit
deletion (the afferent and efferent relations &f ttode
C2 must be exclusive), and then in executing the
actions ‘modifyGraph(G,N,()) and
“executeDeleteNode(N) So, the evolution manager
incepts the next event consisting in:
“modifyGraph(G,N,()) This event is send to the graph
entity GRO to which we have associated the straglgy
which owns two modification rules R3 and R5. Insthi
case, the rule R3 is selected by the evolution gema
The other operations follow these steps:

v' Strategy S1, rule R3 on graph GRO
o Strategy S3, rule R4 on relation RC1

« Strategy S1, rule R5 on graph GRO

= Strategy S2, rule R6 on node C1

= Strategy S2, rule R6 on node C2
Strategy S2, rule R6 on node QLif needed
Strategy S3, rule R4 on relation H2
« Strategy S1, rule R5 on graph GRO
« Strategy S2, rule R6 on node C# needed
« Strategy S2, rule R6 on node C3
Strategy S2, rule R6 on node €& needed
Strategy S3, rule R1 on relation CR1

Concerning the creation of the version of the C1
node, the following rules are triggered:

v/ Strategy S2, rule R7 on node C1
o Strategy S1, rule R9 on graph GRO
« Strategy S3, rule R8 on relation RC1
o Strategy S1, rule R9 on graph GRO

By default, the new creating elements (VRC1, VC1,
VC3 and VGRO) are associated to a predefined
strategies and rules of elements types which they
depend on. However, the designer is free to reeefin
to specialize them for a targeted application.

7. Conclusion

The proposed evolution model respects most of the
objectives we determined before the design prodess.
addition to the mechanisms which are inherent & th
representation of the evolution (propagation styiate
and evolution rules) by objects of the first cladg
specialization of the evolution and application pdra
classes may be dealt with independently. The praici
originality of our model lies in the fact that difent
semantics of graph element evolution can be tafin i
account.

Moreover, it differs from the existing models inaw
points: 1- It proposes a uniform way to manage both
changes and versioning in a same objects base. 2-It
permits extensibility and the reusability of théfatient
rules and strategies of a graph of elements ewwiuti

References

[1] Oussalah M., “Changes and Versioning in
complex Objects”, International Workshop on
Principles of Software EvolutipnWPSE 2001,
Sep. 10-11, Vienna University of Technology,
Austria.

[2] Chaki S., Diaz-Pace A., Garlan D., Gurfinkel A.,
and Ozkaya I., “Towards engineered architecture
evolution”, in MISE, ICSE Workshop on
Modeling in Software. Engineeringp.1-6, 2009.

[3] Taylor R.N., Medvidovic N. and Dashofy E.,
“Software Architecture: Foundations, Theory,
and Practice’, Wiley-Blackwell, 2009.

[4] Barais O., Le Meur A., Duchien L., and Lawall J.,
“Software architecture evolution”, Software
Evolution Springer, 2008.

[5] Amirat A. and Oussalah M., “First-class
connectors to support systematic construction of
hierarchical software architectureJournal of
Object Technology (JOTpp. 107-130, 2009.

[6] Jazayeri M., “On architectural stability and
evolution”, Proceeding of Ada-Europe’02002.

[7] Tamzalit D., Sadou N. and Oussalah M.,
“Evolution problem within component-based
software architecture”, in Proceeding of
International Conf. on Software Engineering and
Knowledge Engineering (SEKE'Q&006.

[8] Amirat A., Menasria A., and Gasmallah N.,
“Evolution Framework for Software Architecture
using Graph Transformation Approacifhe 12th
International Arab Conference on Information
Technology (ACIT'2011) December 11-14,
Riyadh, Saudi Arabia, pp. 75-82, 2011.

