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The present paper investigates numerically and theoretically the axisymmetric vortex breakdown

occurring in a constricted pipe of infinite extension, i.e., the transition from a smooth columnar

state to a breakdown state exhibiting a recirculation bubble. Velocity distributions are prescribed at

the pipe inlet under the form of Batchelor vortices with uniform axial velocity and variable levels

of confinement. A numerical continuation technique is developed to follow the branches of

nonlinear steady solutions when varying the swirl parameter. In the most general case, vortex

breakdown occurs abruptly owing to a subcritical, global instability of the non-parallel, viscous

columnar solution, and results in the coexistence of multiple stable solutions over a finite range of

swirl. For highly confined vortices, a second scenario prevails, where the flow transitions smoothly

from the columnar to the breakdown state without any instability. The effect of a low-flow rate jet

positioned at the pipe wall is then characterized in the perspective of control. Its effectiveness is

evaluated in light of several practically meaningful criteria, namely, the ability of the control to

optimize either the stability domain or the topology of the columnar state and its ability to alleviate

hysteresis. For each criterion, an optimal jet position is determined from nonlinear simulations, the

results being in good agreement with that issuing from an asymptotic expansion of the Navier–

Stokes equations. Finally, we illustrate the importance of physically motivated control strategies by

demonstrating how the wall jet technique can be outdone by an appropriate manipulation of the

axial velocity profile prescribed at the pipe inlet. VC 2011 American Institute of Physics.

[doi:10.1063/1.3610380]

I. INTRODUCTION

Vortex breakdown is a widespread phenomenon that

affects a variety of flows involving vortices with axial flow,

ranging from leading-edge vortices over delta wings to flame

holders in combustion devices and atmospheric tornadoes. It

consists of an abrupt change in the flow topology when the

swirl number S, which compares the magnitude of the azi-

muthal and axial velocity components, exceeds a critical

value. The columnar solutions observed at low swirl (i.e.,

small rotational velocities) are characterized by large axial

velocities and negligible axial gradients, whereas the break-
down solutions prevailing at large swirl (i.e., large rotational

velocities) exhibit an internal stagnation point. The present

study focuses on open swirling jet flows (as opposed to con-

tainers with a rotating end wall), where vortex breakdown

raises a number of major concerns including hysteretic behav-

iour and unsteadiness. As an example, the maneuverability of

an aircraft is strongly impacted by the existence of multiple

stable solutions, whereas the onset of unsteadiness induces

structural vibrations responsible for accelerated fatigue.

As reported early from flow visualization studies, vortex

breakdown may come in various forms. The basic form is

axisymmetric, and the most documented state is that of a

steady bubble enclosing a finite region of recirculating fluid,1

although Billant et al.2 reported that the vortex may also take

the form of an open conical sheet in case the surrounding

medium is unbounded. Additional forms can be observed

when varying the flow configuration and parameter settings,

hence resulting in the existence of complex helical patterns

(single, double-helix) with well-defined rotational frequen-

cies.3 In return, the understanding of the sequence of events

leading to vortex breakdown remains limited despite exten-

sive theoretical, numerical, and experimental researches over

the last decades.2,4–8 This results in a poor effectiveness of

the techniques applied to flow control,9 hence motivating the

undertaking of further fundamental investigations.

The generally acknowledged idea is that vortex break-

down can be first investigated in terms of a steady axisym-

metric model. Secondary helical disturbances may then

grow, the mode selection and internal structure of the

breakdown pattern being then viewed as a consequence of

the stability properties of the axisymmetric breakdown solu-

tion itself.7 This has been confirmed by the recent numerical

simulations of Ruith et al.,10 who have shown that the early

stage of breakdown is axisymmetric. For large swirl numbers,

a finite time is needed before this flow pattern is altered by the

subsequent development of large-scale spiral waves of various

azimuthal wavenumbers, wrapped around and behind the axi-

symmetric bubble. Moreover, strong evidence has been pro-

vided that links the associated, synchronized, helical

oscillations to a transition from convective to local absolute

instability of wake-like model axisymmetric profiles.10–16

Many efforts have also been devoted to the description

of the initial axisymmetric breakdown state.17–21 Results

obtained from various confined and unconfined vortices
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show that only a single stable branch of solutions exists at

low Reynolds numbers. When the swirl increases, a smooth
vortex breakdown occurs, with a flow pattern changing grad-

ually from the columnar to the breakdown state. In contrast,

two distinct stable branches of solutions exist at higher

Reynolds numbers. The columnar solution remains stable up

to some threshold Sb above which only the disconnected

breakdown solution is observed. As the swirl is then

decreased, the breakdown state remains stable down to a sec-

ond threshold Sf � Sb below which only the columnar solu-

tion is retrieved. Vortex breakdown is then subcritical in the

sense of bifurcation theory (not to be confused with the

supercritical=subcritical terminology used for inertial waves

in parallel vortices with axial flow22) and characterized by

the existence of a hysteresis loop Sf � S � Sb where the co-

lumnar and breakdown states coexist.

The case of a swirling flow in a straight pipe has been

considered by Rusak and co-workers.23–25 These authors pro-

posed an inviscid mechanism relying on the upstream propa-

gation of disturbance waves in the pipe and on their

interaction with the inlet boundary, and further treated the

case of weak viscosity and weak variations in the pipe geom-

etry as perturbations from this “ideal” case.26–29 Such an

approach has provided relevant models consistent with previ-

ous and later experimental and numerical results, helping to

understand the occurrence of subcritical vortex breakdown

(see for instance the recent experiments by Mattner et al.30).

It has also yielded some renewal in the design of control strat-

egies. In particular, Gallaire et al.31 successfully quenched

the linear development of the Wang and Rusak instability in

a finite-length tube by designing a feedback control scheme

on a reduced-order system built from the least stable modes.

Still, such results rely on an ideal inviscid columnar state

obtained by neglecting the radial velocity of the steady state

and by extending to infinity the velocity profiles prevailing at

the pipe inlet. We rather consider here the non-parallel colum-

nar solution developing in a circular pipe equipped with a

throat. This geometry mimics a realistic experimental set-up

(i.e., a convergent annular intake section followed by a slowly

divergent test section) and has thus been the subject of several

numerical analyses.17–20,32 These, however, all rely on a strong

assumption of frictionless flow at the pipe wall, meant to ease

the numerical implementation when using a streamfunction–

vorticity–angular momentum formulation of the governing

equations. The present research differs in an important respect

as it takes into account the existence of a boundary layer, whose

main effect is to delay the onset of vortex breakdown.

Here, we characterize the transition to vortex breakdown

over wide ranges of swirl, at a moderate value of the Reyn-

olds number. This may constitute a limitation since many

practically related situations involve large scales and thus

large Reynolds numbers. Nevertheless, such an approach is

relevant in the perspective of control as it allows to rigorously

identify the dominant instability mechanisms, which in turn

enables to design physically motivated strategies, as will be

illustrated by comparing the effect of a low-flow rate jet at

the pipe wall issuing from both nonlinear simulations and

from asymptotic expansions carried out in the vicinity of the

bifurcation threshold. We follow here the line of thought of

Escudier7 and view the existence of helical breakdown pat-

terns as the manifestation of secondary instabilities sustained

by the axisymmetric breakdown solution. Credit is given to

this interpretation by systematical stability analyses showing

that all columnar solutions, prior to vortex breakdown, are sta-

ble to three-dimensional disturbances. In this geometry, axi-

symmetric vortex breakdown is, thereby, singled out as a

prerequisite to the existence of any other pattern.

The paper is organized as follows: the flow configuration

and numerical tools are presented in Secs. II and III. Typical

bifurcation diagrams of the nonlinear, uncontrolled solutions

are presented in Sec. IV, where we provide evidence that vor-

tex breakdown results from a fold of the non-parallel colum-

nar solution related to a subcritical, global instability. Section

V is devoted to the open-loop control of vortex breakdown by

means of an annular jet positioned at the pipe wall. Being

physically tractable, such a method is expected to yield

potentially many applications and to ease future contact with

experimental data. We assess the effect of varying the jet

location and flow rate and discuss the success of the control

in terms of its impact on the stability and topology of the co-

lumnar solution, but also on the ability of the flow to sustain

hysteresis. These nonlinear results are then compared to those

issuing from a weakly nonlinear asymptotic expansion of the

Navier–Stokes equations. Although rigorously valid for small

control velocities, the relevance of the asymptotic results will

be demonstrated to carry over qualitatively even at realistic

parameter settings. In Sec. VI, we focus on an alternative

control strategy relying on an appropriate modification of the

inlet velocity profile. Finally, the relevance and robustness of

the axisymmetric modelisation is discussed in Sec. VII,

where we characterize the stability of the various branches of

solutions to helical disturbances.

II. FLOW CONFIGURATION

In the following, we use standard cylindrical coordinates

r, h, and z with origin taken at the center of the pipe inlet. A

sketch of the geometry is presented in Fig. 1: the downstream

part of the pipe is an infinite-length, straight pipe of radius R,

whereas its upstream part of length L exhibits a contraction

followed by an expansion whose profile is defined as one pe-

riod of a cosine function. The wall geometry thus reads

r ¼ Rð1� kÞ þ kR cos
2pz

L

� �
; 8z � L;

r ¼ R; 8z > L;
(1)

where k is the contraction parameter. Physically, the diverg-

ing part of the pipe promotes vortex breakdown by creating

an adverse pressure gradient, whereas the contracting part in

turn prevents the breakdown region from interacting with the

computational inlet boundary.

Several numerical analyses17–20,32 have been devoted to

the characterization of vortex breakdown in similar geome-

tries. All existing results have been obtained under the

assumption of frictionless flow at the pipe wall, a somewhat

questionable hypothesis for the moderate Reynolds numbers

considered, albeit convenient for the streamfunction–vortic-

ity–angular momentum formulation of the Navier–Stokes
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equations solved in these references. We focus here on set-

tings investigated by Beran and Culick,18 Beran,19 and

Lopez,20 namely, L¼ 5R and k¼ 0.05, for which the maxi-

mum variation of the pipe radius is 10% at the contraction

throat. Our approach, however, differs in an important

respect as the prescribed no-slip boundary condition allows

the development of a boundary layer at the pipe wall, whose

main effect is to delay the transition to vortex breakdown, as

seen later in the paper.

Many of the works aiming at modeling vortex break-

down point out the choice of upstream boundary conditions

as a difficult problem. In the present case, the velocity is pre-

scribed at the pipe inlet under the form of a Batchelor vortex

with no boundary layer, admitting the dimensional radial, az-

imuthal, and axial components

uinðrÞ ¼ 0; vinðrÞ ¼ X0R2
v

1� e�ðr=RvÞ2

r
;

winðrÞ ¼ w1 þ ðw0 � w1Þe�ðr=RvÞ2 ; 8r � R: (2)

In the above expressions, w0 is the jet centreline axial veloc-

ity and w1 is the jet free-stream velocity that would be

reached in the limit r !1, i.e., in the absence of confining

wall. X0 is the centreline axial vorticity, the complete distri-

bution being a truncated gaussian whose standard deviation

Rv measures the size of the vortex core. Consequently, we

introduce the non-dimensional parameter h

h ¼ Rv

R
; (3)

measuring the confinement of the vortex, the two limit-cases

h¼O(1) and h ! 0 being associated, respectively, with a

highly confined vortex and to a vortex in a medium of infi-

nite radial extension. Such profiles can be obtained by means

of a honeycomb and have been fitted to several experimental

data.33 The present configuration may thus provide a realistic

model of the flow situation in a pipe as found in a typical ex-

perimental apparatus.

The fluid is viscous of dynamic viscosity l, incompres-

sible, and homogeneous of density q¼ 1. Its motion is

described by a state vector q¼ (u, p)T, with u¼ (u, v, w)T the

three-dimensional velocity field of radial, azimuthal, and

axial components u, v, and w, and p the pressure, solution of

the incompressible, axisymmetric Navier–Stokes equations.

For consistency with the study of Lopez,20 we use the half-

radius of the pipe as length scale. It is convenient to use w0

as velocity scale, but we normalize the azimuthal component

using the secondary velocity scale RvX0, which yields the

non-dimensional governing equations

@ruþ
u

r
þ @zw ¼ 0;

@u

@t
þ u@ruþ w@zu� S2 v2

r
þ @rpþ @rsrr þ @zsrz þ

srr � shh

r
¼ 0;

@v

@t
þ u@rvþ w@zvþ

uv

r
þ @rsrh þ @zshz þ

2srh

r
¼ 0;

@w

@t
þ u@rwþ w@zwþ @zpþ @rsrz þ @zszz þ

srz

r
¼ 0;

(4)

where sij denotes the components of the viscous stress tensor

s ¼ 1

Re
$uþ $uT
� �

: (5)

Finally, Re and S are the Reynolds and swirl numbers

defined by

Re ¼ qRw0

2l
; S ¼ RvX0

w0

: (6)

Unless specified otherwise, we consider here only the case of

a plug jet for which w0¼w1. Note that the retained normal-

ization choice has no physical effect but eases the numerical

implementation as the non-dimensional inlet boundary

condition

uinðrÞ ¼ 0; vinðrÞ ¼
1� e�ðr=2hÞ2

r=2h
;

winðrÞ ¼ 1; 8r � 2

(7)

is independent of the swirl.

FIG. 1. Three-dimensional sketch of the constricted pipe geometry along

with the Batchelor azimuthal velocity distribution defined by Eq. (2).
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III. PROBLEM FORMULATION

A. Numerical method

We use the FreeFemþþ software54 to generate a two-

dimensional triangulation of the azimuthal plane h¼ 0 with

the Delaunay–Voronoi algorithm. The computational do-

main is shown in Fig. 2. @Rw is the pipe wall, where we

impose the no-slip condition u¼ 0, which represents the key

difference with respect to the existing literature. @Rin is the

pipe inlet, where we impose the velocity u¼ uin. Finally,

@Ra is the revolution axis, at which the boundary conditions

are obtained from mass and momentum conservation as

r! 0, namely, u¼ 0, @rv¼ 0, and @rw¼ 0.

In order to apply appropriate outflow conditions, the

pipe is first truncated at a finite distance z¼L1. The so-

obtained computational pipe is then artificially extended

down to some distance z¼L1þ ls defining the position of

the computational outlet boundary @Rout. The domain in

between is a sponge region in which the azimuthal compo-

nent of the velocity is progressively damped to negligible

levels (grey shaded area in Fig. 2). In practice, this is

achieved by means of artificial dissipation, i.e., the Reynolds

number is smoothly decreased from its value defined in Eq.

(6) to the small value Res¼ 0.1 at the end of the domain. The

Reynolds number in all equations should therefore be

replaced by a computational Reynolds number fRe defined by

fReðzÞ ¼ Re if z � L1;fReðzÞ ¼ Reþ ðRes � ReÞfðz; L1Þ if z � L1;
(8)

the f function being defined by

fða; bÞ ¼ 1

2
þ 1

2
tanh 1 tan � p

2
þ p
ja� bj

ls

� �� �
; (9)

along with 1¼ 1.5. In addition, the numerical dissipation in

the sponge region is increased by a progressive grid stretch-

ing. Consequently, the fluid reaches the outlet boundary

under the form of a Poiseuille flow for which we use the sim-

ple free-outflow condition �pIþ Re�1
s s

� �
� n ¼ 0, with n the

outward-pointing vector normal to the domain.

The mesh refinement is controlled by the vertex den-

sities imposed on both external and internal boundaries. All

equations are numerically solved by a finite-element method

using the same mesh M1 built with L1¼ 50 and ls¼ 35,

hence resulting in 165 300 triangles, the accuracy of the

results with respect to the discretization being assessed in

Appendix A. A set of equations is first multiplied by r to

avoid the singularity on the r¼ 0 axis. The associated varia-

tional formulation is then derived and spatially discretized

onto a basis of Arnold-Brezzi-Fortin MINI-elements,35 with

3-node P1 elements for the pressure (i.e., piecewise linear

continuous finite elements with three degrees of freedom at

each triangle edge) and P1b elements for each velocity com-

ponent (same as the P1 elements but enriched with a cubic

bubble function at the barycenter of each triangle). The

sparse matrices resulting from the projection of these varia-

tional formulations onto the basis of finite elements are built

with the FreeFemþþ software.

B. Nonlinear steady states

From now on, all governing equations are written as for-

mal relations between differential operators. In particular,

Eq. (4) are recast into

B @q

@t
þMðq;Re; SÞ ¼ 0; (10)

where B is a constant-coefficient operator andM is the axi-

symmetric nonlinear evolution operator. All calculations are

hereafter performed keeping the Reynolds number constant,

meaning that steady solutions are equilibrium points in the

(q, S) space, hence satisfying

Mðq; SÞ ¼ 0: (11)

In the most general case, branches of solutions are parame-

terized in terms of the swirl number as q ¼ FðSÞ and are

computed by means of a classical Newton iterative technique

based on the successive iterations of a guess value �q.36 At

each step, the increment dq is solution of the linear problem

Að�q; SÞdq ¼ �Mð�q; SÞ; (12)

where A ¼ @M=@q is the axisymmetric linearized evolution

operator, the matrix inversion being performed using the

sparse direct LU solver implemented in the UMFPACK

library.37,38 This process is repeated until the L2 -norm of

the residual of the governing equations becomes smaller than

10�12.

This method fails in the vicinity of turning points,

where several branches coexist at the same swirl. In this

case, we use an algorithm similar to that of Beran and

Culick,18 based on a predictor-corrector technique.39 The

branches of solutions are parameterized in terms of a

pseudo-arclength l as ðq; SÞ ¼ FðlÞ, the swirl being now part

of the unknowns. At each step, the Newton iterations are

modified by the addition of a correction term in the direction

normal to the vector tangent to the branch of solutions, and

the increments dq and dS are sought as the solutions of the

modified problem

Að�q; SÞdqþ @M
@S
ð�q; SÞdS ¼ �Mð�q; SÞ;

T qð�q; SÞ � dqþ T Sð�q; SÞ � dS ¼ 0;

(13)

where T q and T S are the flow and swirl components of the

tangent vector, and � refers to the canonical hermitian scalar

product in C
n.

FIG. 2. Schematic of the computational domain: L stands for the length of

the contraction, whose geometry is defined by Eq. (1), and L1 stands for the

total length of the computational pipe. The inlet and external boundaries are

located at z¼ 0 and z¼L1þ ls, respectively, where ls is the size of the

sponge region used in the numerics, shown as the light grey shaded area.
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C. Linear stability analysis

The stability of the steady solutions is systematically an-

alyzed by means of eigenvalue calculations. To this end, we

have extended the solver presented in Ref. 34. in order to

take into account the existence of a non-zero steady azi-

muthal velocity. Axisymmetric disturbances are sought

under the form of normal modes of growth rate r and pulsa-

tion x according to

q0 ¼ q̂ðr; zÞeðrþixÞt þ c:c:; (14)

where q̂ ¼ ðû; p̂ÞT is the so-called global mode and c.c.

denotes the complex conjugate of the preceding expression.

Introducing qþ �q0 into the governing equations and retain-

ing only terms of order � yields a system of linear equations

governing the normal mode under the form of the general-

ized eigenvalue problem

ðrþ ixÞBq̂þAðq; SÞq̂ ¼ 0; (15)

to be solved with homogeneous boundary conditions linear-

ized from the Navier–Stokes conditions defined in Sec. III A.

To this end, we use the “Implicitly Restarted Arnoldi meth-

od” of the ARPACK library based upon a shift and invert

strategy.40 To normalize the global modes, we impose first

the phase of the radial velocity to be zero at r¼ 0.5 and

z¼ 5, i.e., ûð0:5; 5Þ is real positive. The eigenmode energy is

then normalized to unity in the computational domain.

D. Methodology

We use the minimum of the axial velocity wmin in order

to monitor the development of the solutions when varying

the swirl. The latter is defined as

wmin ¼ minfwjr � Rv; z � L1 g � wðrmin; zminÞ; (16)

meaning that we exclude the sponge region for physical rele-

vance, as well as the boundary layer region, since the axial

velocity drops to zero at the pipe wall. wmin can therefore be

viewed as the minimum velocity that would be estimated

from a fictitious parallel, inviscid vortex core obtained by

extending to infinity the inlet velocity profiles. The so-

obtained bifurcation diagrams evidence the existence of dis-

tinct branches of solutions corresponding to columnar states

(wmin> 0) and breakdown states (wmin< 0), as well as inter-

mediate states referred to as being decelerated.

In order to clarify the discussion, we use the following

terminology:

– Sb is the swirl at the first backward turning point, if any.

– Sf is the swirl at the first forward turning point, if any.

– S0 is the swirl for which the minimum velocity wmin first

comes to zero.

– Sd is the swirl above which the flow starts to decelerate

even though the solution may remain columnar up to a

larger value. For the present plug axial velocity profiles,

the latter can be defined as

Sd ¼ maxf Sjwmin ¼ 1 g: (17)

By construction, no deceleration occurs in the range S � Sd,

where the solution is said to be fully columnar. We also define

S1 (respectively S2) as the critical swirl above which no co-

lumnar solution exists (respectively the critical value below

which no breakdown solution exists). Since vortex breakdown

can occur either through a subcritical or a smooth transition,

these critical values are obtained straightforwardly as

subcritical vortex breakdown :
S1 ¼ Sb

S2 ¼ Sf

�
;

smooth vortex breakdown : S1 ¼ S2 ¼ S0:
(18)

IV. AXISYMMETRIC VORTEX BREAKDOWN OF THE
UNCONTROLLED FLOW

A. Nominal configuration

We consider the nominal configuration defined by

h¼ 1=2, i.e., the radius of the external pipe is twice that of

the vortex core. The bifurcation diagram obtained for

Re¼ 500 is presented in Fig. 3: 186 solutions have first been

computed using the method presented in Sec. III B, wmin

being extracted from each of these and the solid line being

plotted without further interpolation. This allows to identify

three branches of solutions connected via turning points at

the swirl numbers Sb¼ 1.893 and Sf¼ 1.822 (symbols la-

beled (2) and (4) in Fig. 3, respectively).

The first branch prevailing in the range S � Sb (upper

thick black line in Fig. 3) exhibits large, positive values of

wmin and smooth streamline patterns characteristic of the co-

lumnar state (see Fig. 4(a) for the swirl S¼ 1.75 labeled (1)

in Fig. 3). The solution remains fully columnar up to the

swirl Sd¼ 1.852 indicated by the triangle symbol. It then

starts to decelerate, the relative decrease in wmin being al-

ready 50% for S¼ Sb. Consistently, the flow pattern shown

in Fig. 4(b) points out the existence of significant axial ve-

locity gradients along with a low-velocity region down-

stream of the contraction outlet, as an indicator of the initial

onset of vortex breakdown.

FIG. 3. Bifurcation diagram illustrating the onset of vortex breakdown as

the swirl is increased. The minimum axial velocity wmin is plotted as a func-

tion of the swirl—Re¼ 500.
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The results of the stability analysis are reported in Fig.

5(a), where we present the evolution of the axisymmetric

eigenvalues as the swirl varies. In practice, a spectrum has

been computed for each computational point along the bifurca-

tion curve, and only the growth rates of the least stable eigen-

values are reported ultimately. Although the columnar solution

remains stable, with all eigenvalues lying in the r � 0 half-

plane, there exists a branch of steady modes shown as the

circle symbols, whose growth rate continuously increases with

the swirl until it becomes marginally stable at S¼ Sb. The

backward turning point encountered in the bifurcation diagram

therefore coincides with the destabilization of this global mode

of eigenvector q̂ that will be from now on denoted the break-

down mode. Figure 5(f) shows the spatial structure of the axial

velocity ŵ at threshold, which is dominated by large magni-

tudes downstream of the contraction, i.e., precisely in the low-

velocity region visible in Fig. 4(b).

A second branch exists in the range Sf< S< Sb (fine

grey line in Fig. 3) for which wmin gradually decreases until

it becomes zero for the swirl S0¼ 1.866 labeled (3) in Fig. 4.

At this point, the flow is on the verge of recirculating, as

illustrated by the distorted streamlines shown in Fig. 4(c).

The eigenvalues shown in Fig. 5(b) indicate that these decel-

erated states are unstable to the breakdown mode, meaning

that they are never observed in practice. The growth rate of

the breakdown mode reaches a maximum for S¼ 1.857, i.e.,

close to the value S0 at which the recirculating bubble sets

in, consistently with the intuition that a small but finite

amount of disturbances is required for breakdown to occur.

The growth rate then continuously decreases until the break-

down mode becomes marginally stable again for S¼ Sf, i.e.,

at the forward turning point.

The third branch prevailing in the range S � Sf (lower

thick black line in Fig. 3) exhibits negative values of wmin

characterizing the breakdown state, and the streamline pat-

terns now reveal the existence of a fully developed bubble

downstream of the contraction. Note that only a single bub-

ble is found in the vicinity of the threshold value Sf, as illus-

trated in Fig. 4(d), but that a series of subsequent bubbles

develop at larger swirls (see Fig. 4(e) for the value S¼ 1.904

labeled (5) in Fig. 3). The eigenvalues in Fig. 5(c) indicate

that this solution is stable to axisymmetric disturbances. The

growth rate of the dominant mode first keeps decreasing,

whereas a series of weakly stable branches set in, whose

growth rates tend to oscillate as the swirl increases. Even

though they remain stable, these modes may be responsible

for the generation of the secondary bubbles through their

nonlinear interaction with the breakdown mode as their spa-

tial structures consist in positive and negative velocity per-

turbations alternating downstream of the contraction in finite

number (not shown here for conciseness). Note also that the

breakdown solution is only slightly stable for S� Sb.

Depending on the sensitivity of this specific eigenvalue to a

modification of the geometrical and flow settings, it may

thus happen that a secondary instability sets in at this stage.

These results are fully consistent with a subcritical vor-

tex breakdown occurring at S1¼ Sb, the range of hysteresis

DS¼ S1–S2 being indicated by the light grey shaded area in

Fig. 3. They also demonstrate that its onset can be inter-

preted as the consequence of a fold of the non-parallel co-

lumnar solution related to the global instability of the

breakdown mode. Note that the critical value can be com-

pared to that previously reported for the same Reynolds

number and same confinement parameter, but for frictionless

FIG. 4. (Color) (a)–(e) Spatial distribution of axial velocity and characteristic streamline patterns for the steady solutions corresponding to the swirl numbers la-

beled from (1) to (5) in Fig. 3—Re¼ 500. (f) Spatial distribution of axial velocity for the breakdown global mode at threshold of instability—S¼ 1.893, Re¼ 500.
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flow at the pipe wall, namely, S1� 1.480.18–20 One sees that

the presence of the boundary layer significantly postpones

the onset of vortex breakdown as the critical swirl is

increased by approximately 20%. A possible explanation is

that the boundary layer artificially reduces the pipe section

perceived by the vortex and therefore increases its confine-

ment, a point discussed in Sec. IV B.

B. Effect of confinement

In order to assess the robustness of the subcritical sce-

nario, similar calculations have been carried out by varying

the confinement parameter in the range 1=5 � h � 1=1.2. In

practice, we have mimicked the flow situation relevant to an

experimental apparatus by varying the size of the vortex and

keeping the pipe geometry constant although this choice

makes the numerics more demanding at small confinement

parameters. We have also rescaled the Reynolds number

defined from Eq. (6) in order to keep constant its counterpart

based on the vortex core radius Rv, which ensures that the

viscous phenomena at work at the scale of the vortex core

are comparable from one simulation to the other. The effect

of confinement on the azimuthal velocity distribution

imposed in the inlet section is illustrated in Fig. 6, the profile

associated with a gaussian vorticity distribution being

retrieved in the limit h! 0.

The results are qualitatively similar to those documented

for the nominal configuration. In particular, vortex break-

down is systematically subcritical, except in the most con-

fined case (h¼ 1=1.2) which yields a smooth transition. The

critical swirl S1¼ Sb(h) has been computed as a function of

the confinement parameter: results are shown in Fig. 7(a),

where each open circle marks a computational data point

issuing from the derivation of a complete bifurcation dia-

gram identical to that shown in Fig. 3. We find that the criti-

cal swirl increases with h, i.e., a high level of confinement

delays the onset of vortex breakdown. On the one hand, these

results are consistent with the physical intuition that creating

a recirculating bubble is more intricate in a small-radius pipe

since the fluid willing to recirculate must oppose the pres-

ence of a solid wall. On the other hand, they support the

interpretation of the effect of viscous friction at the pipe wall

in terms of a modification of the vortex confinement.

The solid line in Fig. 7(a), which stands for the linear

regression line fitting the exact numerical values, evidences

the existence of a simple affine relation

S1 ¼ S11 þ Kh; (19)

with K� 1.439 and S11� 1.187. Note that the limit case h! 0

is not exactly that of a free-vortex. It has been indeed checked

with the numerics that the presence of the contraction induces

pressure gradients at the pipe wall, even in the least confined

case, whereas pressure should not vary at far distances in the

case of a free vortex. This means that the value 1.187 does not

represent the swirl at which breakdown would occur in the ab-

sence of confining wall, which can issue only from specific

computations carried out with appropriate far field conditions.41

Finally, we propose to rescale all results in terms of the

new swirl

~S ¼ 1

h
ðS� S11Þ; (20)

FIG. 5. Stability of the steady solutions presented in Fig. 3—Re¼ 500. (a)

Growth rate of the axisymmetric disturbances, computed as the swirl number

varies along the bifurcation curve of the columnar solution (S� Sb). The direc-

tion of variation of the swirl number is indicated by the black arrows. (b) Same

as (a) for the decelerated states (Sf< S< Sb). (c) Same as (b) for the breakdown

solution (S� Sf). The light grey shaded area indicates the domain for which the

growth rate of the breakdown mode is reported in Fig. 16.
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which can be viewed as a modified swirl built from the centre-

line axial vorticity and from the pipe radius R. These reference

scales are appropriate for the present configuration as they

allow to collapse remarkably all bifurcations thresholds close

to the intrinsic value ~S1 ¼ K, as illustrated in Fig. 7(b).

V. CONTROL BY A JET AT THE PIPE WALL

For clarity, all quantities of interest pertaining to the

uncontrolled flow are from now denoted by an ini superscript.

In the perspective of control, we focus on the only nominal

configuration (i.e., the confinement parameter is set to

h¼ 1=2) and investigate how vortex breakdown can be

affected by a small jet of gaussian velocity localized at the

pipe wall. The jet is set at an axial position zj measuring the

distance from the jet center to the pipe inlet (Fig. 8) and defin-

ing the so-called injection section. We consider only the case

of an injection normal to the wall (this choice being justified

in the following) and define the jet velocity accordingly as

uc ¼ u?c n; (21)

the control velocity being imposed in the numerics through

the boundary condition u¼ uc along @Rw. The width of the

jet is 5% of the pipe radius, as measured by the standard

deviation of the gaussian distribution, and the profile is nor-

malized so as to prescribe the relative amplitude with respect

to the total flow rate injected within the pipe, i.e.,

g ¼
ð
@Rw

u?c rdl

,ð
@Rin

w rdr; (22)

with dl the length element along @Rw.

A. Effect of the jet position

We assess first the effect of varying the position of the

jet at a constant flow rate representing 3% of the inlet flow

rate, i.e., g¼ 3%. Thirty-two distinct positions have been

considered in the range 1 � zj � 25, the resolution between

two computational cases varying from Dzj¼ 0.1 (close to the

contraction outlet) to Dzj¼ 4 (far downstream). Owing to the

numerous detrimental consequences of vortex breakdown,

the success and effectiveness of a given control strategy can

be evaluated in light of several criteria or targets:

– ability of the control to restore the existence of the colum-

nar solution,

– ability to alleviate hysteresis,

FIG. 6. Distributions of azimuthal ve-

locity imposed at the pipe inlet for vari-

ous confinement parameters. The light

and dark shaded areas correspond to the

pipe and vortex sections, respectively.

(a) h¼ 1=5 (least confined case). (b)

h¼ 1=2 (nominal case). (c) h¼ 1=1.2

(most confined case).

FIG. 7. (Color) Effect of confinement on the onset of vortex breakdown. (a) Critical swirl S1 computed for eight different confinement parameters in the range

1=5 � h � 1=1.3. The circle symbols and solid line stand respectively for the computational data points and for the results issuing from a linear regression fit.

(b) Bifurcation diagrams computed for the same values of h, rescaled in terms of the swirl ~S defined by Eq. (20). The vertical dotted line marks the value
~S ¼ K ¼ 1:439.
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– ability to optimize the topology of the columnar solution,

the practical relevance of each criterion being discussed in

the incoming sections.

1. Restoring the existence of the columnar solution

A first control target can be to extend the domain of exis-

tence of the columnar solution. The effect of the control can be

quantified in terms of the critical swirl S1 at which vortex break-

down occurs. The latter is expected to reach a maximum S1,opt

for a jet position zj,opt referred to as being optimal, such that

S1;opt ¼ max
zj

S1f g � S1 zj;opt

� �
(23)

and whose value is to be determined. To this end, we carry

out nonlinear steady state computations and build a bifurca-

tion diagram for each value of zj. We identify then vortex

breakdown as being subcritical or smooth and determine

eventually the value of S1. The controlled columnar states

have been checked to be stable to both steady and unsteady

axisymmetric disturbances. In contrast, the stability of the

breakdown states has been assessed by restricting to steady

disturbances only, as the possible growth of disturbances re-

sponsible for the subsequent onset of unsteadiness lies out of

the scope of the study. Results are synthesized in Figs. 9(a)

and 9(b), where we present the diagrams obtained for repre-

sentative positions inside and outside the contraction

(zj � 10 and zj � 10, respectively). Stable (respectively

unstable) branches of solutions are shown as the thick col-

oured lines (respectively the fine grey lines), the branches of

solutions pertaining to the uncontrolled configuration being

reported for comparison as the leftmost black lines.

The results obtained when displacing the jet downstream

from the pipe inlet can be summarized as follows:

� For zj � 8.2, vortex breakdown remains subcritical and the

critical swirl S1¼ Sb(zj) increases with zj (rightmost open

circle symbols in Fig. 9(a)), meaning that the control gains

effectiveness.

� For 8.3 � zj � 9, vortex breakdown is smooth and the crit-

ical value S1¼ S0(zj) increases rapidly with zj (filled circle

symbols), meaning that the control keeps being more and

more effective. Another interesting result is the existence

of a backward turning point Sb(zj) in the wmin � 0 half-

plane at which the breakdown solution ultimately becomes

unstable to axisymmetric disturbances.

FIG. 8. Three-dimensional sketch of the pipe equipped with an annular jet

within the contraction.

FIG. 9. (Color) Bifurcation diagrams obtained by varying the position of a control jet along the pipe wall, the distance from the pipe inlet being indicated by

the superimposed labels—g¼ 3%, Re¼ 500. (a) Jet inside the contraction (zj � 10). (b) Jet outside the contraction (zj � 10). Stable (respectively unstable)

branches of solutions are shown as the thick coloured lines (respectively the fine grey lines). The branches of solutions pertaining to the uncontrolled flow are

reported for comparison as the leftmost black lines. For each jet position, the critical values S1 and S2 are indicated by either a pair of open circles (subcritical

vortex breakdown) or a single filled circle (smooth vortex breakdown). Finally, the triangles indicate the swirl Sd above which the fully columnar solution

ceases to exist. In order to ease the reading, the evolution of the critical swirl with the jet position is enhanced by the thick black arrows. The vertical line in (a)

marks the value S¼ 2.06, for which the steady solutions obtained at zj¼ 8.6 and zj¼ 9 (coloured symbols) are shown in Fig. 13.
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� For 9.5 � zj � 12, the subcritical breakdown scenario is

recovered (open circle symbols in Fig. 9) as the backward

turning point previously identified has now migrated into

the wmin � 0 half-plane. Note the complex structure of the

bifurcation curve as the columnar state successively decel-

erates, accelerates, decelerates more abruptly and ulti-

mately breaks down at a critical swirl S1¼ Sb(zj). The

latter value decreases slowly as zj increases, meaning that

the control becomes less effective.

� For zj � 13, vortex breakdown remains subcritical, but the

bifurcation curves are now reminiscent of that of the

uncontrolled configuration, i.e., the flow does not acceler-

ate anymore. The critical swirl keeps decreasing until the

effect of the jet becomes negligible for zj& 20.

The effect of the control is best illustrated in Fig. 10,

where we report the evolution of the critical swirl as a func-

tion of the jet position. Here, each symbol indicates a com-

putational data point whereas the solid curve is the

connecting line obtained by spline interpolation. Confirma-

tion comes that the effect of the jet remains limited if located

too close from the pipe inlet or too far downstream. In con-

trast, a high effectiveness is achieved by positioning the jet

in the vicinity of the contraction outlet. The maximum value

S1,opt¼ 2.08 is reached for the optimal position zj,opt� 9,

which represents an increase by 10% with respect to the

value achieved when no control is applied.

At this stage, it remains very intricate to establish the

exact mechanism by which the wall normal jet acts. We have

mentioned in Sec. IV that our results support the interpreta-

tion of vortex breakdown in terms of a linear, global instabil-

ity. From this point of view, the jet constitutes a forcing term

affecting the stability of the columnar solution. Recent studies

have considered the effect of open-loop control on flows

dominated by instability modes beating at well-defined fre-

quencies. The results can be synthesized as follows: if steady,

the control mainly acts at the base flow level, namely, it modi-

fies the base flow on which disturbances develop,44–47 which

impacts in return the linear stability problem. If harmonic, the

control mainly acts at the perturbation level, the idea being to

quench the instability by enforcing resonance.48,49 Such inter-

pretations are rigorously valid in the limit of small control

amplitudes. For larger amplitudes, the linear development of

disturbances is similarly affected, but this effect is either

enhanced45 or limited47 by nonlinearities. Nevertheless, in the

flow studied herein, both the columnar solution and the break-

down mode are steady and axisymmetric. In consequence, it

is impossible to discriminate whether the jet acts at the level

of either one or the other or at both levels simultaneously.

Moreover, getting a clear picture of the mechanism at

work from an examination of the nonlinear steady states is

uneasy. On the one hand, the jet increases the mean flow rate

injected within the pipe, but this effect is in a way trivial

since it corresponds to a simple rescaling of the swirl, hence

contrasting with the significantly distorted bifurcation dia-

grams displayed in Fig. 9. On the other hand, the controlled

and uncontrolled columnar solutions cannot be compared

one with the other, for there exist precisely no uncontrolled

solution at swirls for which the effect of the control is

significant.

In the following, we propose to focus on the axial posi-

tion zmin defined from Eq. (16) as a mean to monitor the evo-

lution of the low-velocity region ultimately degenerating into

the primary recirculating bubble. Results pertaining to the

uncontrolled flow are shown in Fig. 11(a). The thick line

reproduces the bifurcation curve shown in Fig. 3, the presen-

tation being restricted to the only columnar branch in order

to ease the discussion. Note that zmin is uniquely defined only

in the range S> Sd,ini, where Sd,ini is the swirl above which

the uncontrolled flow starts to decelerate, defined in Sec. III

D, here indicated by the triangle symbol. One sees that the

low-velocity region develops initially far downstream

(zmin� 16). When the swirl increases, it grows in space and

propagates upstream until it finally breaks down slightly

downstream the contraction outlet (zmin& 12=square symbol)

when subjected to the adverse pressure gradient. A similar

scenario is thus likely to prevail if the jet is positioned suffi-

ciently far upstream of the contraction outlet. In this case,

the jet only acts through the increase in the total flow rate,

hence explaining that the bifurcation diagrams undergo a

simple shift with no distortion in Fig. 9(a). If the jet is posi-

tioned sufficiently far downstream, then the low-velocity

region starts developing upstream from the injection section,

so that no effect should be expected, as observed in Fig. 9(b).

The jet may thus affect vortex breakdown in a non-trivial

way only if the injection section departs moderately from the

contraction outlet. Confirmation comes from Fig. 11(b) where

we report the evolution of the position zmin computed for a jet

position zj¼ 11. The bifurcation curve of the columnar solu-

tion is reported from Fig. 9(b) as the thick light blue curve.

The jet is seen to yield a significant effect when the low-ve-

locity regions is located at a small but finite distance down-

stream of the injection section, namely, when it moves

upstream from zmin� 14.9 to zmin� 12.6 (grey shaded area

whose lower and upper bounds are indicated by the leftmost

square symbols). In this case, the jet is able to confine the

FIG. 10. Critical swirl S1 computed as a function of the jet position zj. The

position for which S1 is maximum defines the so-called optimal jet position

zj,opt for a control aiming at restoring the existence of the columnar solu-

tion—g¼ 3%, Re¼ 500.
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low-velocity region and to prevent its further development,

which results in the observed acceleration. This confinement

ceases in the downstream vicinity of the injection section. In

return, the flow decelerates again and breakdown ultimately

occurs immediately after the low-velocity region has crossed

the injection section (rightmost square symbol in Fig. 11(b)).

Nevertheless, such a scenario is not generic, as can be

inferred from the variety of bifurcation curves documented in

Fig. 9. In practice, vortex downstream is altered in a very

subtle way that depends on the strength of the deceleration

achieved by the time the low-velocity region enters the region

of influence of the jet. If the deceleration is already too severe

(i.e., if the value of wmin is small positive), the confinement

effect may be too weak for the flow to accelerate. In this

case, the jet only slows down the upstream propagation of the

low-velocity region until vortex breakdown finally occurs,

which may explain the occurrence of smooth transitions.

2. Alleviating hysteresis

An alternative target of the control can be to minimize

the range of swirl sustaining hysteresis, without paying atten-

tion to the individual domains of existence of the columnar

and breakdown states. To this end, we simply extract the

value of the critical swirls S1 and S2 from the various circle

symbols reported in the bifurcation diagrams and define the

optimal jet position as

DSopt ¼ min
zj

S1 � S2f g � DS zj;opt

� �
: (24)

It can be concluded from Fig. 9 that there exist multiple opti-

mal positions since the width of the hysteresis loop is pre-

cisely zero in the range 8.3 � zj � 9 yielding a smooth

transition. This is further illustrated in Fig. 12, where we

report the upper and lower bounds of the hysteresis loop

computed as a function of the jet position. The circle sym-

bols stand for the computational data, whereas the light grey

shaded area obtained by spline interpolation of the connect-

ing lines represents the footprint of the domain in which the

flow sustains hysteresis.

3. Optimizing the topology of the columnar solution

An important result issuing from the exhaustive nonlin-

ear computations is that vortex breakdown occurs whatever

FIG. 12. Critical swirls S1 and S2 computed as a function of the jet position.

The position for which DS¼ S1–S2 is minimum defines the optimal jet posi-

tion for a control aiming at alleviating hysteresis. For both plots, the circle

symbols denote the actual computational data points, whereas the connect-

ing lines have been obtained by spline interpolation. The light grey shaded

area in between is the footprint of the domain in which the flow sustains

hysteresis—g¼ 3%, Re¼ 500.

FIG. 11. (Color) Evolution of zmin as a function of the swirl number, Re¼ 500. This specific position marks the center of the low-velocity region ultimately

degenerating into the primary recirculating bubble. (a) Uncontrolled flow: the bifurcation curve of the columnar solution is reported from Fig. 3 as the thick

black line and the position at which vortex breakdown occurs is indicated by the square symbol. (b) Controlled flow: the wall jet is located at zj¼ 11 and the

bifurcation curve of the columnar solution is reported from Fig. 9(b) as the thick light blue line. The grey shaded area indicates the range of positions zmin over

which the flow undergoes an acceleration, whose lower and upper bounds are marked by the leftmost square symbols. The position at which vortex breakdown

occurs is indicated by the rightmost square symbol—g¼ 3%.
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jet position is used. The relevance of a control concerned

with the only stability of the columnar solution is therefore

questionable in the perspective of applications where the jet

is to be operated at a prescribed swirl number. Depending on

the parameter settings, the columnar solution may indeed be

stable but still be on the verge of breakdown. For instance,

the topology of the columnar solution obtained for S¼ 2.06

and zj¼ 9 involves a series of subsequent low-velocity

regions and differs very little from that of the breakdown so-

lution prevailing at the same swirl for zj¼ 8.6 (Fig. 13).

Consequently, the control target can also be to maximize

the magnitude of axial velocity of the columnar solution: the

major difference with respect to the previous approaches lies in

the fact that the swirl is now viewed as a fixed parameter, our

aim being to determine the new optimal position defined by

max
zj

wminjS ¼ cstf g � wmin zj;opt; S
� �

: (25)

In order to discuss the effect of the control, it is relevant to

define first the swirl Sd,opt according to

Sd;opt ¼ max
zj

Sdf g � Sd zj;opt

� �
; (26)

which yields here Sd,opt¼ 1.973, as can be extracted from the

values of Sd reported in Fig. 9 as the various triangle

symbols. By construction, there exists at least one jet loca-

tion allowing to restore a fully columnar solution provided

the operating swirl lies in the range S< Sd,opt. As an exam-

ple, we present in Fig. 14(a) the value of wmin computed as a

function of the jet position for S¼ 1.94< Sd,opt, only the pos-

itive values being reported as the circle symbols. We find

that the jet restores a stable columnar solution if set in a

wide range 2 � zj � 14. This is not surprising since the

swirl is only slightly above the uncontrolled, critical value

S1,ini¼ 1.893. More interestingly, the control authority is

excellent since the jet restores a fully columnar solution if

set in the range 8 � zj,opt � 14. However, the low value

wmin¼ 0.18 obtained for zj¼ 2 warns that setting the jet to an

arbitrary position may still yield a solution on the verge of

breakdown. A second set of results obtained for

S¼ 1.99> Sd,opt is presented in Fig. 14(b). Although no fully

columnar solution can be obtained for this operating swirl, as

could have been inferred from the above discussion, we find

that the jet may still restore an almost fully columnar solu-

tion (wmin¼ 0.95) if set at the optimal position zj,opt¼ 13

indicated by the vertical dotted line. Nevertheless, the con-

trol authority has dropped dramatically: considering the

range identified as being optimal for S¼ 1.94 and reported as

the light grey shaded area, we find now that wmin¼ 0.41 for

FIG. 14. Magnitude of the minimum velocity wmin computed as a function of the jet position—g¼ 3%, Re¼ 500. The position for which wmin is maximum

defines the optimal jet position for a control aiming at optimizing the topology of the columnar solution at a prescribed swirl. (a) S¼ 1.94. (b) S¼ 1.99. The

grey shaded area is the footprint of the domain identified as being optimal in (a).

FIG. 13. (Color) Spatial distribution of axial velocity and characteristic streamline patterns for two representative solutions—S¼ 2.06, Re¼ 500. The position of

the jet is indicated by the coloured symbols at the pipe wall. (a) zj¼ 9: the flow is on the verge of vortex breakdown. (b) zj¼ 8.6: breakdown has already occurred.
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zj¼ 8 and wmin< 0 for zj¼ 14, a position for which no co-

lumnar solution can be recovered.

We have repeated this analysis by varying the operating

swirl, the obtained optimal jet position being synthesized in

Fig. 15. The computational data points are shown as the

circle symbols along with the achieved value of wmin

reported in the labels. The scattering of the data is due to the

finite resolution Dzj between two jet positions, so that we

also provide qualitative curves obtained by polynomial inter-

polation. An optimal jet position can be found for which the

level of axial velocity remains reasonably high provided

S � 2.05, a value above which wmin drops to very small posi-

tive values characterizing the initial stage of vortex break-

down. In any case, the operating swirl number cannot be

increased above S1,opt¼ 2.08 since the latter value precisely

defines the swirl over which no columnar solution exists,

whatever the jet position. If the jet is to be operated in this

range, the only option is then to increase the jet flow rate, a

point that will be addressed in Sec. V D.

B. Limit of small control velocities and asymptotic
expansion

The results presented in Sec. V A have been obtained by

undertaking exhaustive nonlinear calculations. In case the jet

position is not motivated beforehand from any physical con-

sideration, such an approach can be heuristic and particularly

time-consuming, for instance, the derivation of the complete

bifurcation diagrams has required the computation of about

3000 steady solutions.

As a mean to reduce the computational cost, we aim

now at obtaining estimations of the exact results by use of a

weakly nonlinear, asymptotic expansion. We consider first

the uncontrolled flow and recall that the subcritical vortex

breakdown identified in Sec. IV A coincides with the desta-

bilization of the breakdown global mode. Assuming that the

swirl varies in the vicinity of the critical value S1,ini, it is thus

possible to asymptotically expand the solution around the

marginally stable columnar state. Such an analysis aims at

deriving an equation for the amplitude of the breakdown

mode, denoted A. Two key points are worth being mentioned

here:

– First, one must define a non-trivial dominant balance

meant to set all effects at the same order. In the present

case, we assume that a departure in the swirl at order �2

forces disturbances of order � to grow over a time scale of

order 1=�.
– Second, the analysis requires to compute the adjoint of the

bifurcating mode, hereafter denoted q̂†. The latter is used at

order �2 to enforce a compatibility condition whose role is

to guarantee the existence of a solution to the expansion.42

We show in Appendix B that the amplitude a ¼ �A is

governed by an amplitude equation

da

dt
¼ a1a2 þ b1ðS1;ini � SÞ; (27)

characteristic of a saddle-node bifurcation, the variation of

the swirl acting here as an offset whose magnitude is propor-

tional to the departure from criticality. This contrasts with

the theory developed by Rusak and co-workers, which rather

leads to imperfect transcritical bifurcations,23–29 a point fur-

ther discussed in Appendix B.

We also show in the Appendix that the real coefficients

a1 and b1 are related, respectively, to the self-transport of the

breakdown mode and to the modification of the columnar so-

lution as the swirl departs from criticality. Finally, we pro-

vide analytical expressions for these coefficients under the

form of scalar products between the adjoint global mode and

forcing terms of suitable amplitudes, derived from the mar-

ginally stable columnar state and breakdown mode. We

obtain numerically

a1 ¼ 9:18	 10�3; b1 ¼ �1:62	 10�1: (28)

The branches of steady solutions prevailing in the vicinity of

the critical swirl are obtained from Eq. (27) as

a ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1ðS1;ini � SÞ

a1

s
: (29)

Since a1b1< 0, we retrieve that the bifurcation is subcritical,

i.e., there exist solutions only if S � S1,ini. Moreover, the lin-

ear growth rate of the breakdown mode can be recovered by

considering the stability of Eq. (29) to small-amplitude dis-

turbances, which yields

r ¼ 62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1b1ðS1;ini � SÞ

q
: (30)

Figure 16 compares the growth rates predicted by these as-

ymptotic relations, shown as the solid lines, to the direct sta-

bility calculations already presented in Fig. 5 and reported as

FIG. 15. (a) Optimal jet position zj,opt for a control meant to optimize the to-

pology of the columnar solution, computed as a function of the operating

swirl—g ¼ 3% Re¼ 500. The circle symbols stand for the computational

data points, whereas the solid lines have been obtained by polynomial inter-

polation. The grey shaded area corresponds to the range of positions within

which the control restores a fully columnar solution (wmin¼ 1). The unla-

beled horizontal dotted lines mark the values S¼ 1.94 and S¼ 1.99 for

which detailed results are presented in Fig. 14.
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the circle symbols. The agreement between both sets of

results is excellent close to threshold. The difference is not

even measurable for S � 1.89, hence validating the adjoint

computations and the retained dominant balance. Small dis-

crepancies exist for lower swirls, i.e., larger departure from

criticality, where higher-order nonlinearities set in.

We return now to the controlled flow and assume that

the growth of the flow disturbances is additionally forced at

order � by a control velocity of order �2. We show in Appen-

dix B that in return, the amplitude Equation (27) is modified

into

da

dt
¼ a1a2 þ b1ðS1;ini � SÞ þ c1: (31)

In Eq. (31), c1 is the receptivity to the jet velocity, i.e., the

real coefficient defined by

c1 ¼
ð
@Rw

p̂† þ 1

Re
ð$û† þ$û†T Þ � n
	 


� n
� �

u?c rdl

�
ð

R
q̂† � Bq̂ð Þ rdrdz; (32)

all quantities pertaining to the uncontrolled flow and being

evaluated at criticality, i.e., at S¼ S1,ini. One sees from

Eq. (32) that the c1 term stems from two distinct origins related

to mass and viscous effects. The product of the wall-normal

component of the velocity with the adjoint pressure taken at

the wall accounts for the effect of the mass flux, whereas the

contribution weighted by the inverse of the Reynolds number

is due to the modification of the viscous force at the wall when

the control velocity is applied. It has been argued in previous

studies,43 and indeed checked in the present case, that the vis-

cous term can be neglected compared to the effect of the mass

flux for sufficiently large Reynolds numbers. This implies that

the flow is receptive only to the wall-normal component of the

velocity, hence motivating the retained approach.

Note that the limit of small jet velocities is convenient

to unravel the effect of the jet, which is seen to modify the

bifurcation threshold by adding in a second offset term

whose magnitude is independent of the swirl. The columnar

solution (i.e., the solution at order �0) and the breakdown

mode (i.e., the solution at order �) are not affected directly

since the effect of the externally applied control velocity is

encompassed through the compatibility condition applied at

order �2. Nevertheless, the control directly adds on to the

second-order resonant terms since the breakdown mode is

steady and axisymmetric. On account of this resonance, the

system amplifies the forcing by a factor 1=�, thus forcing the

linear growth of the breakdown mode and its nonlinear satu-

ration amplitude at order �.

C. Comparison between asymptotic and nonlinear
results

We compare now the results issuing from the asymptotic

approach presented in Sec. V B and that issuing from the exact

nonlinear simulations carried out in Sec. V A. Note that we do

not consider the last approach aiming at optimizing the topol-

ogy of the columnar solution. Indeed, the criterion needed to

assess the control effectiveness is very selective as it requires

to determine the value of wmin. In practice, one can compute

the successive solutions arising at each order in � and recon-

struct an estimation of the nonlinear steady state from which

the value of the axial velocity wmin can be extracted. Neverthe-

less, the present expansions are truncated at a somewhat low

order, hence yielding limited accuracy. From a more prospec-

tive point of view, quantitative results can be obtained using

higher-order expansions, which, however, results in intricate

computations lying out of the scope of the present study.

1. Restoring the existence of the columnar solution

In this section, we apply the asymptotic technique to the

first control approach meant to restore the existence of the

columnar solution. We recall that in this case, the effect of

the control is quantified in terms of the critical swirl at which

breakdown sets in. The branches of steady solutions issuing

from Eq. (31) now read

a ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1ðS1;ini � SÞ þ c1

a1

s
; (33)

and the critical swirl S1� is obtained by setting a¼ 0 in Eq.

(33), which yields

S1� ¼ S1;ini þ
c1

b1

: (34)

The main advantage of the asymptotic approach therefore lies

in the fact that the effectiveness of the control in delaying vor-

tex breakdown can be estimated from Eq. (34) through the

computation of a limited number of scalar products, the knowl-

edge of the controlled solution itself being no more required.

The adjoint pressure can be viewed from Eqs. (32)–(34)

as a measure of the gradient of the critical swirl with respect

to the jet velocity. In the present case, it is found to be

FIG. 16. Linear growth rate of the breakdown mode developing in the

uncontrolled flow: comparison of the asymptotic values computed from Eq.

(30) (solid lines) with the exact values obtained from the direct stability

analysis and reported from Fig. 5 (circle symbols)—Re¼ 500.
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negative for all axial positions along the wall (upper part of

Fig. 17). Since b1� 0, blowing fluid into the pipe u?c � 0
� �

guarantees that the stability of the columnar solution is

restored beyond the threshold of global instability

S1� > S1;ini

� �
. Moreover, it can be inferred that S1� reaches a

maximum provided the jet is located at the position where

the magnitude of adjoint pressure is the largest, namely,

zj�;opt � 12 in the present case. This point is further illus-

trated in Fig. 18(a), where we have superimposed the asymp-

totic critical swirl S1� for comparison with the exact results

discussed in Sec. V A: we retrieve that the jet has a limited

effect if located too close from the inlet section or too far

downstream. The difference between both sets of results

remains limited, the only noticeable effect being the shift in

the optimal position, from zj,opt� 9 to zj�;opt � 12. This not

too surprising since the optimal value zj,opt is precisely

located in the range where the transition has been said to be

smooth, and not subcritical.

2. Alleviating hysteresis

We consider now the second control approach meant to

suppress hysteresis, for which the amplitude equation intro-

duced above cannot be used straightforwardly. Indeed, the

critical swirl S2,ini corresponds to the threshold of instability

of the breakdown solution. As a result, the asymptotic expan-

sion originally undertaken to approximate the behaviour of

the columnar solution in the vicinity of the critical swirl

S1,ini, herein referred to as the backward expansion, cannot

be expected to bear any relevance. Consequently, we carry

out a second expansion of the solution, the forward expan-
sion, based on the marginally stable breakdown solution,

whose aim is to derive a new equation for the amplitude of

the breakdown mode in the vicinity of the critical swirl S2,ini.

Although both expansions are almost identical, we insist that

the breakdown mode develops from the columnar solution in

the backward expansion and from the breakdown solution

in the forward expansion, which constitutes a major differ-

ence from a physical point of view.

We show in Appendix B that this yields a new ampli-

tude equation

da

dt
¼ a2a2 þ b2ðS2;ini � SÞ þ c2; (35)

with

a2 ¼ �7:26	 10�3; b2 ¼ �2:48	 10�1: (36)

Note that the value of the c parameter differs in the backward

and forward expansions since it depends not only on the con-

trol velocity but also from the adjoint pressure distribution,

the latter being now evaluated at the critical swirl S2,ini. Since

a2b2> 0, we retrieve that the bifurcation is supercritical

when no control is applied (c2¼ 0), i.e., there exist solutions

only if S � S2,ini. When the control is applied, the critical

swirl at the forward turning point can now be obtained as

S2� ¼ S2;ini þ
c2

b2

; (37)

and the hysteresis range reads

DS� ¼ S1� � S2� ¼ DSini þ
c1

b1

� c2

b2

: (38)

This asymptotic range is shown in Fig. 18(b) to reproduce

surprisingly well that issuing from the nonlinear steady-state

computations. Moreover, there exist two positions of inter-

est, namely, zj¼ 9 and zj¼ 9.5 for which the critical swirls

coalesce, i.e., DS� ¼ 0. In terms of nonlinear bifurcation dia-

grams, this precisely defines the turnover from a subcritical

to a smooth transition, such positions being in good agree-

ment with the exact ones, namely, zj¼ 8.3 and zj¼ 9.5.

Although agreement may be fortuitous, these results suggest

that the simultaneous use of both asymptotic expansions

allows to detect possible transitions to smooth vortex break-

down. Nevertheless, they remain unable to drive further

quantitative predictions in case a turnover does occur,

namely, relations (34)–(37) yield irrelevant values DS� < 0

for jets located within the range 9 � zj � 9.5, so that the

associated data points are not reported in Fig. 18(b). This is

FIG. 17. (Color) Spatial distribution of

adjoint pressure p̂† for the uncontrolled

flow. The distribution is also plotted as a

function of the streamwise position z
along the pipe wall (upper picture) and

of the radial position r in the inlet

section (leftmost picture)—S¼1.893,

Re¼ 500.
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not surprising since the expansions intrinsically rely on the

existence of bifurcation points, whereas the smooth transi-

tion arises without any loss of stability.

D. Effect of the jet flow rate

As an attempt to appraise the impact of nonlinearities on

the controllability of vortex breakdown, we investigate now

the effect of varying the flow rate of a jet located at zj¼ 12,

i.e., at the optimal position predicted by the adjoint-based as-

ymptotic analysis. A complete bifurcation diagram has been

derived for 5 values of g in the range g � 10%, from which

it turns out that vortex breakdown remains subcritical (not

shown here for conciseness). We find that the critical swirl

increases monotonically with the flow rate coefficient (circle

symbols in Fig. 19), meaning that the range of operability of

the jet can be improved by increasing the jet flow rate, as has

been mentioned in Sec. V A. The asymptotic value S1� shown

as the solid line exhibits excellent agreement for low flow

rates. For larger flow rates, the asymptotic approach increas-

ingly overestimates the critical swirl, meaning that the control

authority is limited by the nonlinearities. Still, the exact value

is predicted reasonably well up to g¼ 5%, the agreement

being only in order of magnitude afterwards. This provides

good evidence of the ability of the asymptotic approach to

draw qualitative conclusions even at practically meaningful

control settings. Note that the swirl Sd at which the solution

ceases to be fully-columnar, also presented as the triangle

symbols in Fig. 19, is found to increase similarly with the flow

rate coefficient, such results being of practical interest for a

control aiming at optimizing the topology of the columnar so-

lution. The grey shaded area in Fig. 19 has been obtained by a

spline interpolation of the connecting line and therefore repre-

sents the footprint of the domain in which the jet can be oper-

ated in the absence of any detrimental deceleration.

We propose now to define a quantitative measure of the

net effectiveness by introducing the ratio

v ¼ S1

S1;ini

� 1

� �
1

g
: (39)

For a wall jet allowing to delay vortex breakdown up to the

critical value S1, this v parameter compares the jet flow rate

(i.e., the cost of the control) to the flow rate that would have

to be added uniformly at the pipe inlet in order to reach the

same critical value,55 i.e., the control is effective only if it

yields values v> 1. The wall jet is found to be effective for

all flow rates, namely, we obtain v� 2.3 for g¼ 3%, mean-

ing that one would need to increase uniformly the inlet flow

rate by more than twice as much to reach the corresponding

FIG. 19. Effect of the flow rate on the critical swirl—Re¼ 500. The circle

symbols denote the values issuing from nonlinear computations using a wall

jet at the position zj¼ 12, whereas the solid line indicates the asymptotic

value computed from Eq. (34). The triangle symbols stand for the swirl Sd

delimiting the domain of existence of a fully columnar solution.

FIG. 18. (a) Asymptotic critical swirl S1e computed as a function of the jet position zj. The position for which S1e is maximum defines the optimal jet position for

a control aiming at restoring the existence of the columnar solution. (b) Asymptotic critical swirls S1e and S2e computed as a function of the jet position. The posi-

tion for which DSe ¼ S1e � S2e is minimum defines the optimal jet position for a control aiming at alleviating hysteresis. For both plots, the circle symbols denote

the data points issuing from the exact nonlinear steady state calculations already presented in Figs. 9, 10 and 12—g¼ 3%, Re¼ 500.
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critical value. For larger values of g, the effectiveness is lower

but still significant (v¼ 1.3 for g¼ 10%). This can be

explained by recalling that the effect of the control is then

limited by the flow nonlinearities, whereas the increase in the

inlet velocity acts through an affine rescaling of the swirl.

VI. CONTROL BY MODIFICATION OF THE INLET
VELOCITY PROFILE

As a mean to illustrate the importance of using physi-

cally motivated control strategies, we aim now at assessing

the effect of an alternative control strategy relying on a

manipulation of the axial velocity imposed at the pipe inlet.

Such an approach seems particularly convenient since it is

generally acknowledged that vortex breakdown is very sensi-

tive to the choice of the upstream flow conditions.50,51

The control is designed from receptivity arguments

only. Following the reasoning already held in Sec. V B, vor-

tex breakdown is thus expected to occur close to its asymp-

totic value defined from Eq. (34), at least for small control

velocities. Owing to the change in the control method, the c1

coefficient now reads

c1¼
ð
@Rin

p̂†þ 1

Re
ð$û†þ$û†T Þ �n
	 


�n
� �

u?c rdz

�
ð

R
q̂† � Bq̂ð Þ rdrdz: (40)

The adjoint pressure taken at the inlet can be seen from Fig.

17 to be negative for all radial positions, hence confirming

that the stability of the columnar solution can be restored

beyond the threshold of instability by blowing fluid into the

pipe. The control velocity is defined as u?c ¼ �kp̂†, where

k> 0 is a normalization coefficient chosen so as to prescribe

the relative variation in the total flow rate injected into the

pipe, which now reads

g ¼
ð
@Rin

u?c rdr

�ð
@Rin

w rdr: (41)

This distribution is simply meant for the control velocity to

be large in the vortex core, i.e., in the region where the mag-

nitude of adjoint pressure is maximum (Fig. 17) and small

otherwise.

In the following, results are discussed in terms of a

rescaled swirl S=(1þ g) built from the mean inlet velocity,

which allows to assess the net effect of the control without

taking into account the trivial increase of the mean flow rate.

The obtained bifurcation diagrams are shown in Fig. 20,

where we have restricted the presentation to the only colum-

nar branch in order to ease the discussion. We find that vortex

breakdown remains subcritical for moderate flow rates

g � 5% (open symbols), whereas it occurs through a smooth

transition at larger flow rates g � 7.5% (filled symbols).

Moreover, the large nonlinear effects at work in the latter

cases are seen to induce a significant distortion in the bifurca-

tion curves.

The critical swirl increases monotonically with the flow

rate coefficient (circle symbols in Fig. 21(a)), with a spectacu-

lar increase at large flow rate coefficients resulting from the

onset of a smooth transition. An increase in the control flow

rate therefore allows to improve the range of operability of

the jet, as has been found for the wall jet. Moreover, the

agreement with the asymptotic values shown as the solid line

is excellent, the difference between both sets of results being

barely visible as far as vortex breakdown remains subcritical.

Comparing these results to those of the wall jet documented

in Fig. 19, one sees that the value of S1 obtained by a modifi-

cation of the inlet velocity are significantly larger, hence sug-

gesting that this new strategy is more effective at equal value

of g, at least if the control is meant to restore the existence of

the columnar solution. This is consistent with the fact that the

FIG. 20. (Color) Bifurcation diagrams of the columnar solution obtained by means of an adjoint-based manipulation of the inlet velocity profile—Re¼ 500.

(a) Moderate flow rates g< 5%. The black lines reproduce the bifurcation curve of the uncontrolled configuration. (b) Large flow rates g> 7.5%. The circle

symbols indicate the critical swirl S1 at which vortex breakdown occurs (open symbols if subcritical, filled symbols if smooth), whereas the triangle symbols

indicate the swirl Sd above which the fully columnar solution ceases to exist. The dashed lines in (b) correspond to swirl numbers for which the columnar solu-

tion is stable to axisymmetric disturbances, but unstable to helical disturbances, as discussed in Sec. VII.
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level of adjoint pressure, i.e., the level of receptivity to the

control velocity, is significantly larger at the inlet than at the

pipe wall, as seen from Fig. 17. Similarly, we find that the

value of the swirl Sd at which the solution ceases to be fully-

columnar (triangle symbols in Fig. 21(b)) is significantly

larger than that obtained with the wall jet (Fig. 19), hence

suggesting that the present approach may also be more effec-

tive if the control is meant to optimize the topology of the

columnar solution. Finally, it is also more effective in terms

of the v coefficient: for instance, for g¼ 3%, we find v¼ 3.8,

meaning that the uniform increase in the inlet flow rate needed

to achieve the same critical swirl is almost four times as

much.

VII. DISCUSSION: AXISYMMETRIC MODEL VS.
NON-AXISYMMETRIC DYNAMICS

In concluding this study, it may be worth recalling that

all results presented so far have been obtained under the gen-

erally acknowledged assumption that vortex breakdown can

be characterized in terms of an axisymmetric model. The

present section briefly discusses the relevance of this approach

by focusing on the large-time, non-axisymmetric dynamics,

which can be straightforwardly interpreted from the existence

of unstable global modes. Discussing the short-time dynamics

also bears physical relevance, especially since vortex flows

are well-known to sustain convective instability over large

ranges of azimuthal wavenumbers, the latter being responsible

for the ability to exhibit large transient amplifications of an

initial condition. Nevertheless, this would require to carry out

three-dimensional, optimal perturbation analyses, which can-

not be handled by means of our numerical tools.

We have analyzed the stability of the various branches of

solutions to helical disturbances of azimuthal wavenumbers

1 � jmj � 3, the calculations being restricted without loss of

generality to eigenvalues in the x� 0 half-plane. When solv-

ing the corresponding eigenvalue problem (15), this requires to

replace the axisymmetric linearized evolution operator A by

its general form in which all h derivatives are replaced by

products by im, and to adapt the boundary condition at the rev-

olution axis from the mass and momentum conservation.34

Fig. 22 presents the growth rate of the leading eigenmodes

monitored as a function of the swirl for the uncontrolled co-

lumnar and breakdown solutions, respectively. One sees from

Fig. 22(a) that the columnar solution remains stable to any dis-

turbances up to the critical value S1,ini. In contrast, the break-

down solution is immediately unstable to a branch of m¼�1

modes at the critical swirl S2,ini, and we find an additional

branch of unstable m¼�2 modes for S> 1.885.

These results suggest that vortex breakdown as observed

from an experimental set-up may involve a steady axisym-

metric pattern persisting over a finite time before being

altered by the subsequent development of disturbances of

various azimuthal wavenumbers. This singularizes out axi-

symmetric vortex breakdown as being a prerequisite to the

existence of any other pattern, a conclusion reminiscent of

that proposed by Ruith et al.10 in the case of an unconfined

vortex. Interestingly enough, the wavenumber selection issu-

ing from our analysis is consistent with that documented by

these authors, which relies on the assumption that the self-

sustained oscillations are due to the wake-like axial velocity

profiles of the axisymmetric breakdown solution being abso-

lutely unstable. The same remark holds for the frequency

selection as we find typical frequencies of order

St¼x=2p� 0.2 for the m¼�1 mode and St� 0.4 for the

m¼�2 mode (not shown here for conciseness).

The stability of the various controlled columnar states

has been similarly analyzed for a restricted number of swirl

numbers, including the critical value S1. When control is

achieved by means of a wall jet, all solutions have been

FIG. 21. Effect of a control relying on an adjoint-based manipulation of the inlet velocity profile—Re¼ 500. (a) Critical swirl S1 computed as a function of

the control flow rate. Open symbols (respectively filled symbols) denote the value obtained from nonlinear simulations involving a subcritical transition to vor-

tex breakdown (respectively a smooth transition), whereas the solid line corresponds to the asymptotic values computed from Eq. (34). (b) Evolution of the

swirl Sd delimiting the domain of existence of a fully columnar solution.

084102-18 P. Meliga and F. Gallaire Phys. Fluids 23, 084102 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



found to be stable to helical disturbances up to the critical

swirl S1. When control is achieved through a modification of

the inlet profile, only for the two largest flow rate coefficients

(g � 7.5%) does a helical instability set prior to axisymmet-

ric vortex breakdown (the corresponding bifurcation curves

being then shown as dashed lines in Fig. 20), hence illustrat-

ing the generality of the present conclusions.

VIII. CONCLUSION

We have investigated numerically and theoretically the

bifurcation structure leading to axisymmetric vortex break-

down in a contracted pipe of infinite extension. A numerical

continuation method has been developed to compute

branches of steady axisymmetric solutions as a function of

the swirl number. Various flow patterns characteristic of the

columnar, decelerated, and breakdown states have been iden-

tified. We have shown that in the most general case, vortex

breakdown can be interpreted as the consequence of a fold of

the non-parallel columnar solution related to the subcritical

destabilization of a global eigenmode, hence explaining the

generally acknowledged hysteretic behaviour sustained by

this class of flows. When the vortex core is strongly confined

within the pipe, a smooth transition is, however, possible

without any loss of stability.

We have also addressed the question of flow control by

characterizing the effect of a localized jet positioned at the

pipe wall. A parametric study has been carried out in terms of

the jet position and flow rate. For each control setting, nonlin-

ear numerical simulations have been performed and have pro-

vided evidence that an optimal jet position can be found,

whose precise value depends on the control target. Three

cases have been considered: in the first one, the control simply

aims at maximizing the critical swirl at which vortex break-

down occurs, without paying attention to the flow topology;

in the second one, it aims at suppressing hysteresis; in the

third one, it aims at maximizing the axial velocity of the co-

lumnar solution for a prescribed operating swirl. All three

approaches singularize out the vicinity of the contraction out-

let as the pipe region where maximum effectiveness is

achieved. The nonlinear results have also been shown to com-

pare satisfactorily to those issuing from an asymptotic expan-

sion of the marginally stable solutions. This technique stands

as a promising tool for the design of future control laws, even

at realistic parameter settings. Indeed, it requires the only

computation of an adjoint global mode and allows to draw

qualitative predictions with no need to compute the controlled

solutions themselves. As an illustration, we have shown that

the effect of the wall jet can be outdone by an adjoint-based

modification of the axial velocity profile at the pipe inlet. In

return, fully columnar solutions can be retrieved over a

large range of swirl exceeding that above which the wall jet

succeeds in restoring its only stability. Nevertheless, several

issues remain to be addressed in the perspective of real flow

applications; in particular, further efforts should be devoted to

assess the ability of the control to alleviate the detrimental

effects of vortex breakdown from fully three-dimensional nu-

merical simulations.
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APPENDIX A: SENSITIVITY RESULTS TO MESH
SPACING

In order to assess convergence in the numerical results,

complete bifurcation diagrams have been computed for five

meshes M1 to M5 and three configurations:

– the nominal configuration,

– the wall-jet configuration for zj¼ 8.6 and g¼ 3%,

– the wall-jet configuration for zj¼ 11 and g¼ 3%.

The meshes exhibit various spatial extents and vertex den-

sities, as well as various settings in the sponge region, as

detailed in Table I.

FIG. 22. Stability of the uncontrolled axisymmetric solutions to helical disturbances of azimuthal wavenumbers—Re¼ 500. The growth rate of the leading

eigenmode is reported for each wavenumber in the range 1 � jmj � 3. (a) Columnar solution. (b) Breakdown solution.
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Results are presented in Fig. 23. For each configuration,

the bifurcation curve documented in the article body, per-

taining to mesh M1, is reported as the solid line. The data

issuing from the present sensitivity analysis, pertaining to

meshes M2–M5, are superimposed as the circle symbols. In

all three cases, the change in the discretization is seen to

have a very limited effect. Confirmation comes from Table

II, where we report numerical values of the critical swirl

extracted from these diagrams, namely, we report Sb and Sf

if the transition to vortex breakdown is subcritical and S0 if

the transition is smooth. A very good convergence is seen to

be achieved since all values remain identical down to the

second digit. In particular, it is worthwhile noting that the

results are insensitive to the use of sponge regions.

APPENDIX B: ASYMPTOTIC EXPANSION OF THE
NEARLY CRITICAL STATES

This appendix is devoted to the derivation of the ampli-

tude equations used in Sec. V B. We define here a generic

critical swirl S* that stands either for the primary value S1,ini

(backward expansion) or the secondary value S2,ini (forward

expansion). As mentioned in the article body, we define a

dominant balance meant to bring the linear growth of distur-

bances induced by a departure from threshold at the same

order as the nonlinear term resulting from the self-transport

of the perturbation. Namely, we assume that the swirl departs

from criticality at order �2 and introduce the order unity

quantity D such that

S ¼ S
 � �2D: (B1)

We also introduce multiple time scales with a fast time scale

t and a slow time scale T ¼ �t, so that the time-dependent

term in the governing equations is transformed according to

@

@t
! @

@t
þ � @

@T
: (B2)

1. Uncontrolled case

The solution is expanded into

q ¼ qð0Þ þ �qð1Þ þ �2qð2Þ þ � � � : (B3)

Substitution of the previous expansions into Eq. (10) yields a

series of equations at successive order of �. The equations at

order �0 are the steady, nonlinear Navier–Stokes equations

(11) written at the critical swirl

TABLE I. Properties of the meshes as a function of the parameters L1 and

ls, corresponding to the length of the computational pipe and to the size of

the sponge region. nt is the number of triangles and DoF is the number of

degrees of freedom for three-dimensional state vectors. Meshes M1 and M2

have the same vertex densities and differ by the size of the pipe. M1 and M3

have the same spatial extent, but M3 is built with larger vertex densities. M1

and M4 differ by the size of the sponge region. Finally, M1 and M5 are identi-

cal, but calculations on M5 rely on a different damping function in the

sponge region, defined by relation (9) along with 1¼ 3.

L1 ls nt DoF

M1 50 35 84 626 834 404

M2 60 35 94 244 929 234

M3 50 35 114 700 1 133 293

M4 50 45 94 244 929 234

M5 50 35 84 626 834 404

FIG. 23. (Color) Bifurcation diagrams obtained using the five meshes char-

acterized in Table I. Results pertaining to mesh M1 are replicated from Figs.

3 and 9 and correspond to the solid lines. Results pertaining to meshes

M2–M5 are superimposed as the circle symbols—Re¼ 500. (a) Nominal

configuration. (b) Wall-jet configuration—zj¼ 8.6, g¼ 3%. (c) Wall-jet

configuration—zj¼ 11, g¼ 3%.
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Mðqð0Þ; S
Þ ¼ 0; (B4)

and define q(0) as the marginally solution computed in Sec.

IV A (columnar solution for the backward expansion, break-

down solution for the forward expansion). The equations at

order � are the linearized Navier–Stokes equations

Aðqð0Þ; S
Þqð1Þ ¼ 0; (B5)

and specify that q(1) can be chosen as a superposition of

eigenmodes destabilizing the columnar solution. Conse-

quently, we set

qð1Þ ¼ AðTÞq̂
; (B6)

with the complex amplitude A being, at this stage, an

unknown function of the slow time T. The equations at order

�2 are the linearized Navier–Stokes equations applied to q(2),

forced by a steady, axisymmetric resonant forcing term F(2)

depending on the zeroth and first-order solutions

Aðqð0Þ; S
Þqð2Þ ¼ Fð2Þ; (B7)

with

Fð2Þ ¼ �
@A

@T

0

û

� �
� A2 0

$û � û

� �
� D

0
2S
v

2
ð0Þ

r
er

 !
:

(B8)

The first term in Eq. (B8) is a slow variation term arising

from the time-evolution of the unknown amplitude A. The

second term is nonlinear and is due to the transport of the

first-order solution by itself, whereas the last term is linear

and arises from variation of the swirl acting here on the base

flow solution.

At this stage, a compatibility condition must be applied

for the expansion procedure to be solved. We use a standard

Fredholm alternative,42 specifying that the resonant forcing

term must be orthogonal to the kernel of the adjoint linear-

ized Navier–Stokes operator, i.e.,ð
R

q̂† � Fð2Þ rdrdz ¼ 0: (B9)

In Eq. (B9), q̂† is the adjoint global mode solution of the

adjoint eigenvalue problem

A†ðqð0Þ; S
Þq̂† ¼ 0; (B10)

where A† is the adjoint of operator A obtained by integrating

by parts the disturbance equations.52

In practice, q̂† is obtained using the Arnoldi method al-

ready used for the stability analyses. Substituting Eq. (B8)

into Eq. (B9) yields the amplitude equation

dA

dT
¼ aA2 þ bD; (B11)

that can be recast in terms of the physical amplitude a ¼ �A
according to

da

dt
¼ aa2 þ bðS
 � SÞ: (B12)

In Eqs. (B11) and (B12), a and b are the real coefficients

defined by

a ¼ � 1

S

ð
R

û† � $û � ûð Þrdrdz;

b ¼ � 1

S

ð
R

û† �
2S
v

2
ð0Þ

r
er rdrdz ; (B13)

where we note

S ¼
ð

R
q̂† � ðBq̂Þrdrdz: (B14)

We have mentioned in the article body that Eq. (B11) char-

acterizes a saddle-node bifurcation, for which the variation

of the swirl acts here as an offset whose magnitude is propor-

tional to the departure from criticality. The latter differs

from the transcritical bifurcation model proposed by Rusak

and co-workers, for which the variation of the swirl acts by

adding in a term proportional both to the eigenmode ampli-

tude and to the departure from criticality. Using the present

balance, such a term comes at order �3 in the expansion, i.e.,

it can be neglected rigorously when applying the compatibil-

ity condition at order �2, but can be retrieved by truncating

the expansion at a higher order, which however falls out of

the scope of the paper.

For a similar term to come at order �2, a different bal-

ance is required, namely, the departure from criticality must

be chosen of order �. In return, the equations at order � are

the linearized Navier–Stokes equations, forced by the term

extracted from Eq. (B8) and characterizing the effect of

varying the swirl on the base flow solution

Aðqð0Þ; S
Þqð1Þ ¼ Fð1Þ ¼ �D
0

2S
v
2
ð0Þ

r er

 !
: (B15)

Applying the compatibility conditionð
R

q̂† � Fð1Þ rdrdz ¼ 0; (B16)

one is left with the trivial relation b¼ 0. Nevertheless, the

value of the b coefficient depends on the adjoint global

mode and on the base flow solution, but not on the balance

itself, and we recall that the values computed for the present

case are b1¼�1.62	 10�1 (backward expansion) and

TABLE II. Sensitivity of the critical swirl to the different meshes character-

ized in Table I—Re¼ 500.

Nominal Wall jet

zj¼ 8.6, g¼ 3%

Wall jet

zj¼ 11, g¼ 3%

Sb Sf S0 Sb Sf

M1 1.8934 1.8219 2.0257 2.0565 1.8813

M2 1.8939 1.8222 2.0256 2.0570 1.8819

M3 1.8956 1.8246 2.0243 2.0601 1.8848

M4 1.8940 1.8223 2.0259 2.0571 1.8819

M5 1.8934 1.8219 2.0257 2.0567 1.8816
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b2¼�2.48 	 10�1 (forward expansion). This inconsistence

indicates that such an expansion would admit no solution, in

contrast with the theory of Rusak and co-workers. It can be

explained by recalling that the asymptotic expansions docu-

mented by these authors rely on an inviscid, parallel columnar

solution, whereas the present one is viscous and non-parallel

in essence. Our expansion is thus to be viewed as a close-up

on the perturbed transcritical solution predicted by these

authors, for which a different scaling is required.

2. Controlled case

We assume now a control velocity of order �2 and intro-

duce the order unity quantity U?c such that

u?c ¼ �2U?c : (B17)

Owing to this balance, the control velocity directly adds on

to the resonant terms at order �2. In this case, relation (B9) is

not valid anymore, and the scalar product between the

adjoint global mode and the second-order forcing term readsð
R

q̂† � Fð2Þ rdrdz ¼
ð

R
q̂† � A
qð2Þ rdrdz

¼
ð

R
A†

q̂

† � qð2Þ rdrdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þBT: (B18)

In Eq. (B18), BT is a boundary term arising during the inte-

gration by parts, whose value is non-zero owing to the exis-

tence of the control velocity. The detailed calculation of the

boundary term can be found in Ref. 53. For a jet located at

the pipe wall, one ultimately finds thatð
R

q̂† � Fð2Þ rdrdz

¼ �
ð
@Rw

p̂† þ 1

Re
ð$û† þ $û†T Þ � n
	 


� n
� �

U?c rdl;

(B19)

thus yielding an amplitude equation

dA

dT
¼ aA2 þ bDþ C; (B20)

with

C¼ 1

S

ð
@Rw

p̂†þ 1

Re
ð$û†þ$û†T Þ �n
	 


�n
� �

U?c rdl: (B21)

A similar equation is obtained for a modification of the inlet

velocity profile, the only difference being that the boundary

term is computed by integration along the inlet section.

Equation (B20) is ultimately recast in terms of the physical

amplitude a ¼ �A according to

da

dt
¼ aa2 þ bðS
 � SÞ þ c; (B22)

with

c ¼ �2C ¼ 1

S

ð
@Rw

p̂† þ 1

Re
ð$û† þ $û†T Þ � n
	 


� n
� �

u?c rdl:

(B23)
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