Laurent Miclo 
  
An absorbing eigentime identity

Keywords: finite ergodic/absorbing Markov process, eigentime identity, invariant probability, quasi-invariant probability, first Dirichlet eigenvalue/eigenvector, algebraic spectrum primary: 60J27, secondary: 15A18, 60G44, 60J10

Consider a finite irreducible Markov process X. Sampling two points x and y independently according to the invariant measure, the eigentime identity states that the expected time for X to go from x to y is equal to the sum of the inverses of the non-zero eigenvalues of the (opposite of the) underlying generator. This short paper gives a simple proof of this equality and proposes a new extension to the finite absorbing irreducible Markov framework, in continuous and discrete times.

Introduction

Consider a finite reversible and irreducible Markov process: if two points from the state space are chosen independently according to the invariant probability, the expected time to go from one to the other is equal to the sum of the inverses of the non-zero eigenvalues of the (opposite of the) underlying generator. If it had not been known earlier, this property is due to Broder and Karlin (Theorem 15 of [START_REF] Broder | Bounds on the cover time[END_REF]), who rather worked in the discrete time framework, and was later called an eigentime identity by Aldous and Fill in their unpublished book [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]. Mao and his co-authors have extensively studied such identities and in particular have extended them to a lot of settings: transient and absorbing processes, non-reversible processes, jump processes on denumerable state spaces, diffusion processes, see [START_REF] Mao | The eigentime identity for continuous-time ergodic Markov chains[END_REF][START_REF] Mao | Eigentime identity for transient Markov chains[END_REF][START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF][START_REF] Cheng | Eigentime identity for one-dimensional diffusion processes[END_REF]. In this paper we are only interested in finite state spaces and we begin by presenting an alternative proof for ergodic Markov processes. Extending this approach to absorbing Markov processes (which are irreducible outside the absorbing point), we get a new absorbing eigentime identity, which converges to the ergodic one when the asymptotic rate of absorption goes to zero.

We begin by recalling the finite ergodic framework. Let L be an irreducible Markov generator on a finite state space S: it is represented by a matrix pLpx, yqq x,yPS whose off-diagonal entries are non-negative, whose diagonal entries are such that the row sums vanish and which is such that all the entries of exppLq are positive. An associated continuous-time Markov process X ≔ pX t q tě0 is a Markov process whose trajectories are S-valued and right-continuous and whose jump rates are given by the off-diagonal entries of L. Once the initial law of X 0 is given, the law of X is uniquely determined. If for some fixed x P S, X 0 " x, we will denote by P x and E x the probability and the expectation relative to X.

A probability distribution µ on S is said to be invariant for L, if taking X 0 distributed according to µ, then for any t ě 0, X t is equally distributed according to µ. The Perron-Frobenius theorem ensures the existence and the uniqueness of the invariant probability µ.

Let Λ be the multi-set of complex eigenvalues of ´L, repeated with their algebraic multiplicities. Thus the cardinality of Λ is N , the cardinality of S. We have that 0 P Λ and by irreducibility its algebraic multiplicity is 1, the associated eigenspace being the set of constant functions. We will denote Λ 0 " Λzt0u.

Finally define for any y P S,

τ y ≔ inftt ě 0 : X t " yu (1) 
the reaching time of y by X (by convention inf H " `8, but the irreducibility condition is equivalent to the fact that the event tτ y " `8u is negligible whatever the initial condition).

The following result is due to Aldous and Fill [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF] if L is furthermore assumed to be reversible (namely µpxqLpx, yq " µpyqLpy, xq for any x, y P S) and to Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF] in the general case. Theorem 1 For any x P S, we have

ÿ yPS E x rτ y s µpyq " ÿ λPΛ 0 1 λ
By integration with respect to µ, it implies the eigentime identity

ÿ x,yPS E x rτ y s µpxqµpyq " ÿ λPΛ 0 1 λ
As it was noticed by Cui and Mao in Remark 1.2 of [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF], it can be seen directly that the above r.h.s. is positive, because Λ 0 is stable by complex conjugation and all its element have positive real parts. In the reversible case, it is even more immediate, since all elements of Λ 0 are positive real numbers.

Our first goal is to give a simple functional proof of Theorem 1, which has the advantage to extend to the absorbing setting to give a new absorbing eigentime identity.

In the finite absorbing framework, we are given a strictly subMarkovian irreducible generator L on the finite set S. The only difference with the above setting is that the row sums are now non-positive and one of them is negative. It is customary to add to S a cemetery point 8 R S to get the extended state space S ≔ S \ t8u. The matrix L is extended to S by taking @ x, y P S, Lpx, yq ≔ $ & % Lpx, yq , if x, y P S ´řzPS Lpx, zq , if x P S and y " 8 0 , if x " 8

The matrix L is Markovian on S and we can associate to it a S-valued Markov process X ≔ pX t q tě0 as above. It is absorbing at 8, in the sense that when X reaches 8, it stays there forever afterward. By our assumptions, whatever the initial distribution on S, X a.s. reaches 8, namely the absorption time τ 8 (extending the notation (1)) is a.s. finite.

The Perron-Frobenius theorem can also be applied in this situation and it gives the following informations (see for instance the book [START_REF] Collet | Quasi-stationary distributions[END_REF] of Collet, Martínez and San Martín):

' The algebraic spectrum Λ of ´L contains a real element λ 0 which is strictly less than the real parts of the other elements of Λ. We denote Λ 0 ≔ Λztλ 0 u. ' There exists a unique probability ν, called the quasi-stationary distribution of L, such that if X 0 is distributed according to ν, then for any t ě 0, the restriction to S of law of X t is proportional to ν (next it follows more precisely that the law of X t is p1 ´expp´λ 0 tqqδ 8 `expp´λ 0 tqν). The probability ν is the unique normalized positive eigenmeasure associated to L.

' If ϕ is an eigenfunction associated to the eigenvalue ´λ0 of L, then ϕ has a fixed sign. In the sequel we assume that ϕ is positive and normalized so that νrϕs " 1. We denote µ the probability admitting ϕ as density with respect to ν.

Our main result is the following extension of the eigentime identity to the absorbing setting:

Theorem 2 We have ÿ x,yPS E x "ż τy,8 0 ϕpX s q exppλ 0 sq ds  νpxqµpyq " ÿ λPΛ 0 1 λ ´λ0
where for any y P S, τ y,8 ≔ inftt ě 0 : X t P ty, 8uu

The observation following the statement of Theorem 1 is equally valid here, since Λ 0 is stable by complex conjugation and the real parts of its elements are strictly larger than λ 0 .

Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF] have also proposed an extension of the eigentime identity to absorbing Markov processes, but it is of a different nature. It says that

ÿ λPΛ 1 λ " ÿ xPS 1 |Lpx, xq| P x rτ x " `8s
where for x P S, τ x is the first time X jumps to x from another position.

Remark 3 When the chain is indeed ergodic, we have λ 0 " 0, ϕ " 1 and ν " µ, so that Theorem 2, and the following Proposition 4 and Corollary 5, are all reduced to Theorem 1. In some sense, Theorem 2 could be called an intrinsic eigentime identity, different from that obtained by Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF]. It may also be informative to see how Theorem 1 is "strongly approximated" by Theorem 2. Consider the following academic example. Let L be an ergodic Markov generator as in Theorem 1. For ǫ ą 0, consider the subMarkovian generator L pǫq ≔ L ´ǫI, where I is the S ˆS-identity matrix. The invariant measure µ of L is also the quasi-stationary measure ν pǫq of L pǫq . The eigenfunction ϕ pǫq is exactly 1, so that the probability µ pǫq is also equal to µ. The algebraic spectrum Λ pǫq of ´Lpǫq is Λ ´ǫ, where Λ is the algebraic spectrum of ´L. In particular λ pǫq 0 " ǫ and thus ÿ

λPΛ pǫq 0 1 λ ´λpǫq 0 " ÿ λPΛ 0 1 λ
Furthermore, an absorbing Markov process X pǫq associated to L pǫq can be constructed from a Markov process X associated to L with the same initial condition via

@ t ě 0, X pǫq t ≔ " X t , if t ă T pǫq 8 , if t ě T pǫq
where T pǫq is a exponential random variable of parameter ǫ independent of X. It follows that for any ǫ ą 0 and x P S,

E x « exppλ 0 pτ y ^T pǫq qq ´1 λ 0 ff " E x rτ y s
Thus, for any fixed ǫ ą 0, the eigentime identity of Theorem 1 for L is "equivalent" to the eigentime identity of Theorem 2 for L pǫq . We come back to the general framework of finite irreducible absorbing Markov processes. The following result is an analogous property of the first part of Theorem 1. Proposition 4 For any x P S, we have

ϕpxq " ˜ÿ λPΛ 0 1 λ ´λ0 ¸´1 ÿ yPS E x "ż τy,8 0 ϕpX s q exppλ 0 sq ds  µpyq
Let us give some immediate consequences of Theorem 2 and Proposition 4 which make them more similar to Theorem 1. It is convenient to consider the amplitude of ϕ, introduced and studied in [START_REF] Diaconis | Estimates on the amplitude of the first Dirichlet eigenvector in discrete frameworks[END_REF]:

a ϕ ≔ max S ϕ min S ϕ ě max S ϕ (2) 
In particular it was seen in [START_REF] Diaconis | Estimates on the amplitude of the first Dirichlet eigenvector in discrete frameworks[END_REF] that under the reversibility assumption (there exists a probability measure η on S such that ηpxqLpx, yq is symmetrical with respect to the couple px, yq), we have

a ϕ ď ˜ˆ1 ´λ0 λ 1 0 ˙ź λPΛ 0 ˆ1 ´λ0 λ ˙¸´1
where

λ 1 0 ≔ min xPS : Lpx,8qą0
λ 0 pSztxuq and λ 0 pSztxuq is the Perron-Frobenius smallest eigenvalue of the restriction of ´L to Sztxu.

Corollary 5 For all x P S, we have

a ´2 ϕ ÿ λPΛ 0 1 λ ´λ0 ď ÿ yPS E x " exppλ 0 τ y,8 q ´1 λ 0  νpyq ď a 2 ϕ ÿ λPΛ 0 1 λ ´λ0
and in particular

ÿ yPS E x rτ y,8 s νpyq ď a 2 ϕ ÿ λPΛ 0 1 λ ´λ0
By integration of these bounds with respect to ν, one gets eigentime inequalities where the starting and ending points x and y play symmetrical roles.

Probably that under appropriate assumptions, the previous results can be extended to denumerable infinite state spaces. The extension to diffusion processes seems more challenging. But these frameworks are left for future investigations.

The plan of the paper is as follows: in next section we recover Theorem 1 with a simple functional proof. The situation of absorbing Markov processes is treated in Section 3. The last section extends the previous considerations to the setting of discrete time.

The ergodic case

The known results concerning the ergodic eigentime identity presented in Theorem 1 are recovered here via an elementary approach.

The underlying simple linear algebra principle is as follows:

Lemma 6 Let F be an Euclidean space of dimension N P N whose scalar product is denoted by x¨, ¨y. Consider F 0 a subspace of F and G an endomorphism of F 0 . If pe n q nP N is an orthonormal basis of F, consider for any n P N , g n the orthogonal projection of e n on F 0 . Then the trace of G is given by

trpGq " ÿ nP N xg n , Gg n y

Proof

This result is well-known if F 0 " F: then the diagonal of the matrix of G expressed in the basis pe n q nP N is pxe n , Ge n yq nP N . In the general case, consider the extension Ḡ of G on F which vanishes on the orthogonal complement of F 0 . It appears that trpGq " trp Ḡq

" ÿ nP N @ e n , Ḡe n D " ÿ nP N xg n , Gg n y
This result is applied with F ≔ L 2 pµq, endowed with its natural scalar product and with the orthonormal basis pδ y { a µpyqq yPS , where δ y is the function from F taking the value 1 at y and 0 elsewhere. For the subspace F 0 , consider

F 0 ≔ tf P F : µrf s " 0u (3) 
The orthogonal projection of the basis pδ y { a µpyqq yPS on F 0 is pg y q yPS , where

@ y P S, g y ≔ δ y a µpyq ´aµpyq (4) 
The invariance of µ is equivalent to the property that @ f P F, µrLrf ss " 0 namely the image of F by L is included into F 0 . By irreducibility, we know that the kernel of L is the set of constant functions, thus the restriction of ´L to F 0 is a bijective endomorphism, whose algebraic spectrum is Λ 0 . Consider G its inverse operator, which is an endomorphism of F 0 whose algebraic spectrum is " 1 λ : λ P Λ 0 * (write ´L|F 0 in a basis where the associated matrix is upper diagonal).

From the previous lemma, we get

ÿ yPS xg y , Grg y sy " ÿ λPΛ 0 1 λ
The following result enables to conclude to the ergodic eigentime identity.

Proposition 7 For any fixed y P S, we have xg y , Grg y sy " µpyq ÿ xPS E x rτ y s µpxq

Proof

For given y P S, consider the mapping f y P F defined by

@ x P S, f y pxq ≔ E x rτ y s (5) 
It is well-known that f y is characterized by the fact that " Lrf y s " ´1 on Sztyu f y pyq " 0 (6) Since Lrf y s belongs to F 0 , we get that Lrf y spyq " p1 ´µpyqq{µpyq and it appears that Lrf y s " g y a µpyq

In particular we deduce that Grg y s " ´aµpyq r f y [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] where r f y ≔ f y ´µrf y s P F 0 . From [START_REF] Diaconis | Estimates on the amplitude of the first Dirichlet eigenvector in discrete frameworks[END_REF] It remains to use [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] to conclude to the wanted identity.

To be self-contained, let us give a probabilistic proof of the characterization [START_REF] Diaconis | Estimates on the amplitude of the first Dirichlet eigenvector in discrete frameworks[END_REF]. The same approach will also be useful in the absorbing case. It consists in exchanging the roles of the known and unknown functions and f y and g y { a µpyq in the Poisson equation # Lrf y s "

gy ? µpyq f y pyq " 0 (8) 
Since L |F 0 is bijective, there is a unique function r f y P F 0 such that Lr r f y s " g y { a µpyq. Thus we know a priori there is a unique solution f y to [START_REF] Mao | The eigentime identity for continuous-time ergodic Markov chains[END_REF], it is given by f y " r f y ´r f y pyq.

Lemma 8

The unique solution f y of (8) is given by (5).

Proof

Recall that the law of a Markov process X associated to L is a solution to the following martingale problem: for any f P F, the process @ t ě 0, M t rf s ≔ f pX t q ´f pX 0 q ´ż t 0 Lrf spX s q ds is a martingale. In particular, the process pM t^τy rf sq tě0 is a bounded martingale, so we get for any fixed x P S and t ě 0, E x " f pX t^τy q ´f pX 0 q ´ż t^τy 0

Lrf spX s q ds  " 0 i.e. 

f

The absorbing case

It is seen here how the arguments of the previous section can be extended to the absorbing situation to prove Theorem 2 and Proposition 4

Again we apply Lemma 6 to the Euclidean space F ≔ L 2 pµq, where µ has density ϕ with respect to ν, the quasi-stationary distribution. We equally consider the basis pδ y { a µpyqq yPS and the subspace F 0 defined in [START_REF] Cheng | Eigentime identity for one-dimensional diffusion processes[END_REF]. Thus the family of functions pg y q yPS , introduced in (4), will play an important role.

The main difference with Section 2 is that the generator L is replaced by the operator r L acting on F by

@ f P F, r Lrf s ≔ 1 ϕ pL `λ0 qrϕf s
It is quite natural, since r L is an ergodic Markov generator whose convergence to equilibrium is strongly related to the absorption for L, as it was seen in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF]. Note that the invariant probability of r L is µ. Indeed, the quasi-invariance of ν is equivalent to the property that @ f P F, νrLrf ss " ´λ0 νrf s so that @ f P F, µr r Lrf ss " νrpL `λ0 qrϕf ss " 0

In particular the image of F by r L is included into F 0 . By the Perron-Frobenius theorem, the kernel of L `λ0 is of dimension 1 and generated by the positive function ϕ. It follows that the kernel of r L consists of the constant functions (as it should be for an ergodic Markovian generator) and thus the restriction of ´r L to F 0 is an bijective endomorphism of F 0 . Denote by G its inverse. Its algebraic spectrum is " 1 The next result is analogous to Lemma 8 in the identification of f y . It ends the proof of Theorem 2, since µpxq{ϕpxq " νpxq for all x P S.

λ ´λ0 : λ P Λ 0 * From Lemma
Lemma 9 For any fixed y P S, the mapping f y is given by @ x P S, f y pxq "

1 ϕpxq E x
"ż τy,8 0 ϕpX s q exppλ 0 sq ds



Proof

Let X be the absorbing process associated to L. The martingale problem solved by its law can be extended into a time-space version, sometimes called Dynkin's lemma: For any function f : R `ˆS Ñ R which is C 1 with respect to the first (time) variable, the process @ t ě 0, M t rhs ≔ hpt, X t q ´hp0, X 0 q ´ż t 0 pB s hps, ¨q `Lrhps, ¨qsqpX s q ds is a martingale (by convention, all the functions defined on S are extended to S by making them vanish at 8). In particular, the process pM t^τy,8 rhsq tě0 is a bounded martingale, so we get for any fixed x P S and t ě 0, E x " hpt ^τy,8 , X t^τy,8 q ´hp0, X 0 q ´ż t^τy,8 0 pB s hps, ¨q `Lrhps, ¨qsqpX s q ds  " 0 i.e. ' Due to the irreducibility of L, λ 0 pSztyuq ą λ 0 , which means that the underlying process goes out from Sztyu with a (strictly) better asymptotical rate than from S.

We are thus allowed to let t go to infinity in (11) to obtain the announced formula for f y .

The proof of Proposition 4 is similar to that of the first part of Theorem 1: considering the function f ≔ ř yPS f y µpyq, it appears that r Lrf s " 0, so that f must be constant. The eigentime identity asserts that µrf s " ř λPΛ 0 1{pλ ´λ0 q and we deduce that

@ x P S, f pxq " ÿ λPΛ 0 1 λ ´λ0
which can be rewritten under the form given in Proposition 4.

The discrete-time setting

All the previous considerations can be adapted to the setting of discrete time. After recalling it in the ergodic and absorbing cases, we state the corresponding results and present the slight modifications needed in the arguments.

In the ergodic case, we are given an irreducible Markov transition matrix P ≔ pP px, yqq x,yPS on the finite state space S. The associated Markov chains X ≔ pX n q nPZ `are those whose transition probabilities are dictated by P . For x P S, we denote E x the expectation relative to X when X 0 " x. For any y P S, τ y stands for the reaching time of y by X and is defined formally as in [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]. We denote by µ the invariant probability for P (i.e. satisfying µP " µ) and by Θ the algebraic spectrum of P . The multiplicity of 1 P Θ is 1 and let Θ 0 ≔ Θzt1u.

The following result is again due to Aldous and Fill [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF] for the reversible Markov chains and to Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF] in the general case.

which is the analogous property to (10). Furthermore the two points mentioned at the end of the proof of Lemma 9 are equally satisfied.

' For the first point, one has to take into account that τ y,8 is a geometric variable of parameter θ 0 pSztyuq (the Perron-Frobenius largest eigenvalue of the restriction of P to Sztyu) when X 0 is started from the quasi-stationary distribution (instead of a exponential variable of parameter λ 0 pSztyuq).

' For the second point, θ 0 pSztyuq ă θ 0 , it comes directly from the corresponding assertion for the associated subMarkovian generator L, it is indeed a result of functional nature.

Finally, there is an immediate equivalent of Corollary 5, where the amplitude a ϕ is defined as in [START_REF] Broder | Bounds on the cover time[END_REF]. By integration of these bounds with respect to ν, one gets discrete time eigentime inequalities where the starting and ending points x and y play symmetrical roles.
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Corollary 12 E

 12 For all x P S, we have x rτ y,8 s νpyq ď a 2

  pxq " E x

		" f pX t^τy q	0 ´ż t^τy	Lrf spX s q ds	
	Replace f by f y , to see that			
	f pxq " E x	"	f pX t^τy q `t ^τy	‰
	and letting t go to infinity it appears that		
		f pxq " E x rτ y s
	as announced.			
	It remains to show the first part of Theorem 1, namely that the function f ≔	ř	yPS f y µpyq is
	constant. It follows immediately by applying L:
	Lrf s " " "	ÿ yPS ÿ yPS ÿ	Lrf y s µpyq g y a µpyq µpyq

yPS δ y ´µpyq " 1 ´1 " 0

  Indeed, it is given by f y " ´pGrg y s ´Grg y spyqqq{ a µpyq, or equivalently Grg y s " ´aµpyqpf y μrf y sq. The proof of Proposition 7, where L is replaced by r L, shows that xg y , Grg y sy " ´µpyq A r Lrf y ´µrf y ss, f y ´µrf y s

	6, we deduce that			
	ÿ yPS	xg y , Grg y sy "	ÿ λPΛ 0	1 λ ´λ0
	It leads to consider, for any fixed y P S, the solution f y of the equation # r Lrf y s " gy ? µpyq f y pyq " 0	(9)
				E
		" ´µpyq " µpyq ÿ A f y , r Lrf y s E

xPS f y pxq µpxq

  P S is fixed as in the statement of the lemma. Taking into account that to apply the dominated convergence theorem. Namely we wish that E x rexppλ 0 τ y,8 qs ă `8. It is true as a consequence of two well-known facts (for a proof, see e.g. Lemma 6 and Lemma 8 of[START_REF] Diaconis | Estimates on the amplitude of the first Dirichlet eigenvector in discrete frameworks[END_REF]):' For any x P Sztyu, E x rexpplτ y,8 qs ă `8 if and only if l ă λ 0 pSztyuq, where λ 0 pSztyuq was defined just before Corollary 5.

	hp0, xq " E x @ s ě 0, @ z P Sztyu, " hpt ^τy,8 , X t^τy,8 q pB s hps, ¨q `Lrhps, ¨qsqpzq " ´exppλ 0 sqϕpzq ´ż t^τy,8 0 g y a µpyq so that for any x P S and t ě 0, we get ϕpxqf y pxq " E x " exppλ 0 pt ^τy,8 qqf y pX t^τy,8 q `ż t^τy,8 0 exppλ 0 sqϕpX s q ds By monotone convergence, we have lim tÑ`8 E x "ż t^τy,8 0 exppλ 0 sqϕpX s q ds  " E x "ż τy,8 0 exppλ 0 sqϕpX s q ds  To see that lim tÑ`8 E x " exppλ 0 pt ^τy,8 qqf y pX t^τy,8 q ‰ " E x " exppλ 0 τ y,8 qf y pX τy,8 q ‰ " 0 pB pL `λ0 qrϕf y s " ϕ we would like		(10) (11)

s hps, ¨q `Lrhps, ¨qsqpX s q ds  Consider the function f defined by @ s ě 0, z P S, hps, zq ≔ exppλ 0 tqϕpzqf y pzq where y
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Theorem 10 For any x P S, we have

By integration with respect to µ, it implies the eigentime identity ÿ x,yPS E x rτ y s µpxqµpyq "

In the absorbing situation, P is a strictly subMarkovian transition matrix on the finite S. As usual, it can be extended into a Markov transition matrix P by adding a cemetery point 8 to S. This enables to consider the associated Markov chains X ≔ pX n q nPZ `, with the corresponding notions, E x , τ x,8 , for x P S, etc. Let Θ be the algebraic spectrum of P . The Perron-Frobenius theory enables to see that in Θ there is a real element θ 0 which is (strictly) larger than the real parts of all the other eigenvalues. Furthermore, there exists a quasi-stationary probability ν characterized by νP " θ 0 ν, and let ϕ be the positive function satisfying P ϕ " θ 0 ϕ with νrϕs " 1. As before, denote Θ 0 " Θztθ 0 u and µ the probability admitting the density ϕ with respect to ν. With these notations, we can state an absorbing discrete-time eigentime identity:

and more precisely, for any x P S, ϕpxq "

Considering L ≔ P ´I (with I the S ˆS-identity matrix), which is an irreducible Markov (respectively strict subMarkov) generator in the ergodic (resp. absorbing) case, the functional arguments are exactly the same as in the continuous time. The differences appear with the probabilistic interpretations, namely in the proofs of Lemmas 8 and 9. But they are quite minor. In the ergodic case, for f P F, define the discrete-time martingale M rf s by

pP ´Iqrf spX m q and consider for fixed y P S, the martingale pM m^τy rf y sq mPZ `.

In the absorbing situation, one rather use the time-space martingales M rhs, where h is a mapping from Z `ˆS to R, defined by @ n P Z `, M n rhs ≔ h n pX n q ´h0 pX 0 q ´n´1 ÿ m"0 pP ´Iqrh m`1 spX m q `ph m`1 ´hm qpX m q More precisely one needs to stop them at τ y,8 , for fixed y P S, and relatively to the function

Its interest is that @ m P Z `, @ z P Sztyu, pP ´Iqrh m`1 spzq `ph m`1 ´hm qpzq " ´θ´m´1 0 ϕpzq