Gwenael Mercier 
email: gwenael.mercier@cmap.polytechnique.fr
  
Matteo Novaga 
email: novaga@dm.unipi.it
  
Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions

We show short time existence and uniqueness of C 1,1 solutions to the mean curvature flow with obstacles, when the obstacles are of class C 1,1 . If the initial interface is a periodic graph we show long time existence of the evolution and convergence to a minimal constrained hypersurface.

Introduction and main results

Mean curvature flow is a prototypical geometric evolution, arising in many models from Physics, Biology and Material Science, as well as in a variety of mathematical problems. For such a reason, this flow has been widely studied in the past years, starting from the pioneristic work of K. Brakke [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF] (we refer to [GH86, Hui84, EH89, ES91, CGG91] for a far from complete list of references).

In some models, one needs to include the presence of hard obstacles, which the evolving surface cannot penetrate (see for instance [START_REF] Charles M Elliott | Modelling cell motility and chemotaxis with evolving surface finite elements[END_REF] and references therein). This leads to a double obstacle problem for the mean curvature flow, which reads

v = H on M t ∩ U, (1) 
with constraint

M t ⊂ U for all t, (2) 
where v, H denote respectively the normal velocity and d times the mean curvature of the interface M t , and the open set U ⊂ R d+1 represents the obstacle. Notice that, due to the presence of obstacles, the evolving interface is in general only of class C 1,1 in the space variable, differently from the unconstrained case where it is analytic (see [START_REF] Ilmanen | Equilibrium solutions to generalized motion by mean curvature[END_REF]). While the regularity of parabolic obstacle problems is relatively well understood (see [START_REF] Shahgholian | Free boundary regularity close to initial state for parabolic obstacle problem[END_REF] and references therein), a satisfactory existence and uniqueness theory for solutions is still missing.

In [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] (see also [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF]) the authors approximate such an obstacle problem with an implicit variational scheme introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF]. As a byproduct, they prove global existence of weak (variational) solutions, and short time existence and uniqueness of regular solutions in the two-dimensional case. In [START_REF] Mercier | Mean curvature flow with obstacles: a viscosity approach[END_REF] the first author adapts to this setting the theory of viscosity solutions introduced in [CIL92, CGG91], and constructs globally defined continuous (viscosity) solutions.

Let us now state the main results of this paper.

Theorem 1. Let M 0 ⊂ U be an initial hypersurface, and assume that both M 0 and ∂U are uniformly of class C 1,1 , with dist(M 0 , ∂U ) > 0. Then there exists T > 0 and a unique solution M t to (1), (2) on [0, T ), such that M t is of class C 1,1 for all t ∈ [0, T ).

Notice that Theorem 1 extends a result in [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] to dimensions greater than two.

When the hypersurface M t can be written as the graph of a function u(•, t) : R d → R, equation (1) reads

u t = 1 + |∇u| 2 div ∇u 1 + |∇u| 2 . ( 3 
)
If the obstacles are also graphs, the constraint (2) can be written as

ψ -u ψ + , (4) 
where the functions ψ ± : R d → R denote the obstacles.

Theorem 2. Assume that ψ ± ∈ C 1,1 (R d ), and let u 0 ∈ C 1,1 (R d ) satisfy (4). Then there exists a unique (viscosity) solution u of (3), (4) on R d × [0, +∞), such that

∇u(•, t) L ∞ (R d ) ≤ max ∇u 0 L ∞ (R d ) , ∇ψ ± L ∞ (R d ) u t (•, t) L ∞ (R d ) ≤ 1 + |∇u 0 | 2 div ∇u 0 1 + |∇u 0 | 2 L ∞ (R d )
for all t > 0. Moreover u is also of class C 1,1 uniformly on [0, +∞).

We observe that Theorem 2 extends previous results by Ecker and Huisken [START_REF] Ecker | Mean curvature evolution of entire graphs[END_REF] in the unconstrained case (see also [START_REF] Cesaroni | Long-time behavior of the mean curvature flow with periodic forcing[END_REF]).

Theorem 3. Assume that u 0 and ψ ± are Q-periodic, with periodicity cell Q = [0, L] d , for some L > 0. Then the solution u(•, t) of (3), (4) is also Q-periodic. Moreover there exists a sequence t n → +∞ such that u(•, t n ) converges uniformly as n → +∞ to a stationary solution to (3), (4). Our strategy will be to approximate the obstacles with "soft obstacles" modeled by a sequence of uniformly bounded forcing terms. Differently from [START_REF] Almeida | Mean curvature flow with obstacles[END_REF], where the existence of regular solution is derived from variational estimates on the approximating scheme, we obtain estimates on the evolving interface, in the spirit of [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF][START_REF] Ecker | Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes[END_REF][START_REF] Cesaroni | Curve shortening flow in heterogeneous media[END_REF], which are uniform in the forcing terms.

2 Mean curvature flow with a forcing term

Evolution of geometric quantities

Let M be a complete orientable d-dimensional Riemannian manifold without boundary, let F (•, t) : M → R d+1 be a smooth family of immersions, and denote by M t the image F (M, t). Since M t is orientable, we can write M t = ∂E(t) where E(t) is a family of open subsets of R d+1 depending smoothly on t. We say that M t evolves by mean curvature with forcing term k if

d dt F (p, t) = -H(p, t) + k(F (p, t)) ν(p, t), (5) 
where k : R d+1 → R is a smooth forcing term, ν is the unit normal to M t pointing outside E(t), and H is (d times) the mean curvature of M t , with the convention that H is positive whenever E(t) is convex. We shall compute the evolution of some relevant geometric quantities under the law (5). We denote by ∇ S , ∆ S respectively the covariant derivative and the Laplace-Beltrami operator on M . As in [START_REF] Huisken | Flow by mean curvature of convex surfaces into spheres[END_REF], the metric on M t is denoted by g ij (t), it inverse is g ij (t), the scalar product (or any tensors contraction using the metric) on M t is denoted by • , • whereas the ambiant scalar product is (• , •), the volume element is µ t , and the second fondamental form is A. In particular we have A (∂ i , ∂ j ) = h ij , where we set for simplicity ∂ i = ∂ ∂x i , and H = h ii , using the Einstein notations (we implicitly sum every index which appears twice in an expression). We also denote by λ 1 , . . . , λ d the eigenvalues of A.

Notice that, in terms of the parametrization F , we have

g ij = (∂ i F , ∂ j F ) , h ij = -∂ 2 ij F , ν for all i, j ∈ {1, . . . , d}. (6) 
Proposition 1. The following equalities hold:

d dt g ij = -2(H + k)h ij (7) d dt ν = ∇ S (H + k) (8) d dt µ t = -H(H + k)µ t (9) d dt h ij = ∆ S h ij + ∇ S i ∇ S j k -2Hh il g lm h mj -kg ml h im h jl + |A| 2 h ij (10) d dt H = ∆ S (H + k) + (H + k)|A| 2 (11) d dt |A| 2 = ∆ S |A| 2 + 2kg ij g sl g mn h is h lm h nj + 2|A| 4 -2|∇ S A| 2 + 2 A , (∇ S ) 2 k .( 12 
)
Proof. The proof follows by direct computations as in [START_REF] Huisken | Flow by mean curvature of convex surfaces into spheres[END_REF][START_REF] Ecker | Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes[END_REF]. Recalling (6), we get

d dt g ij = d dt (∂ i F , ∂ j F ) = -(H + k) ((∂ i ν , ∂ j F ) + (∂ i F , ∂ j ν)) = -2(H + k)h ij d dt ν = d dt ν , ∂ i F g ij ∂ j F = -ν , d dt ∂ i F g ij ∂ j F = (ν , ∂ i ((H + k)ν)) g ij ∂ j F = ∂ i (H + k)g ij ∂ j F = ∇ S (H + k).
The evolution of the measure on M t

µ t = det[g]
is given by

d dt det[g] = d dt det[g] 2 det[g] = det[g] • Tr g ij d dt g ij 2 det[g] = -det[g] • (H + k)g ij h ji = -µ t H(H + k).
In order to prove (10) we compute (as usual, we denote the Christoffel symbols by

Γ k ij ) d dt h ij = - d dt ν , ∂ 2 ij F = -∇ S (H + k) , ∂ 2 ij F + ∂ 2 ij (H + k)ν , ν = -g kl ∂ k (H + k)∂ l F , Γ k ij ∂ k F -h ij ν +∂ 2 ij (H + k) + (H + k) ∂ j h im g ml ∂ l F , ν = ∂ 2 ij (H + k) -Γ k ij ∂ k (H + k) + (H + k)h im g ml Γ k lj ∂ k F -h lj ν , ν = ∇ S i ∇ S j (H + k) -(H + k)h il g lm h mj . (13) 
Using Codazzi's equations, one can show that

∆ S h ij = ∇ S i ∇ S j H + Hh il g lm h mj -|A| 2 h ij , (14) 
so that (10) follows from ( 14) and (13). From (10) we deduce

d dt H = d dt g ij h ij = 2(H + k)g is h sl g lj h ij + g ij ∇ S i ∇ S j (H + k) -(H + k)h il g lm h mj = ∆ S (H + k) + (H + k)|A| 2 ,
which gives (11). In addition, we get

d dt |A| 2 = d dt g ik g jl h ij h kl = 2 d dt g jl h ij h kl + 2g ik g jl d dt h ij h kl = 2 2(H + k)g js h st g tl g jl h ij h kl + 2g ik g jl ∆ S h ij + ∇ S i ∇ S j k -2Hh il g lm h mj -kg ml h im h jl + |A| 2 h ij h kl = 2kg js h st g tl g jl h ij h kl + 2g ik g jl ∆ S h ij h kl + 2|A| 4 + 2 A , (∇ S ) 2 k . ( 15 
)
On the other hand, one has

∆ S |A| 2 = 2 ∆ S A , A + 2|∇ S A| 2 = 2g pq g mn h pm ∆ S h qn + 2|∇ S A| 2 . ( 16 
)
so that (12) follows from ( 16) and (15).

The Monotonicity Formula

We extend Huisken's monotonicity formula [START_REF] Huisken | Asymptotic behavior for singularities of the mean curvature flow[END_REF] to the forced mean curvature flow (5) (see also [CNV11, Section 2.2]). Given a vector field ω : M t → R d+1 , we let

ω ⊥ = (ω , ν) ν, ω T = ω -ω ⊥ . Letting X 0 ∈ R d+1 and t 0 ∈ R, for (X, t) ∈ R d+1 × [t 0 , +∞) we define the kernel ρ(X, t) = 1 (4π(t 0 -t)) d/2 exp -|X 0 -X| 2 4(t 0 -t) .
A direct computation gives

dρ dt = -∆ S ρ + ρ (X 0 -X , (H + k)ν) t 0 -t - |(X 0 -X) ⊥ | 2 4(t 0 -t) 2 . ( 17 
)
Proposition 2 (Monotonicty Formula).

d dt Mt ρ = - Mt ρ H + k 2 + (X -X 0 , ν) 2(t 0 -t) 2 - k 2 4 .
Proof. Recalling (9), we compute

d dt Mt ρ = Mt d dt ρ -H(H + k)ρ = Mt ρ - |X -X 0 | 2 4(t 0 -t) 2 + d 2(t 0 -t) - (X -X 0 , ν) 2(t 0 -t) (H + k) -H(H + k) = - Mt ρ Hν + X -X 0 2(t 0 -t) + kν 2 2 - k 2 4 + Mt d 2(t 0 -t) ρ + Mt ρ (X -X 0 , ν) H 2(t 0 -t)
We use the first variation formula: for all vector field Y on M t , we have

Mt div Mt Y = Mt Hν , Y .
As a result, with Y = ρ(X-X 0 ) 2(t-t 0 ) , we get

d dt Mt ρ = - Mt ρ Hν + X -X 0 2(t 0 -t) + kν 2 2 - k 2 4 - |(X -X 0 ) T | 2 4(t 0 -t) 2 = - Mt ρ H + (X -X 0 , ν) 2(t 0 -t) + k 2 2 - k 2 4 .
In a similar way (see [START_REF] Ecker | Mean curvature evolution of entire graphs[END_REF]) one can prove that for all functions f (X, t) defined on M t , one has

∂ t Mt ρf = Mt df dt -∆ S f ρ - Mt f ρ H + (X -X 0 , ν) 2(t 0 -t) + k 2 2 - k 2 4 . (18) 
Indeed, using (17)

d dt Mt ρf = Mt f dρ dt + df dt ρ -H(H + k)f ρ = Mt f dρ dt -H(H + k)ρ + df dt ρ = Mt f -∆ S ρ + ρ (X 0 -X , (H + k)ν) t 0 -t - 1 4 |(X 0 -X) ⊥ | 2 (t 0 -t) 2 -H(H + k)ρ + df dt ρ = Mt -∆ S f ρ + ρ (X 0 -X , (H + k)ν) t 0 -t - 1 4 |(X 0 -X) ⊥ | 2 (t 0 -t) 2 -H(H + k)ρ + df dt ρ = Mt ρ d dt f -∆ S f -f ρ H + (X -X 0 , ν) 2(t 0 -t) + k 2 2 - k 2 4 .
Lemma 1. Let f be defined on M t and satisfy

d dt f -∆ S f a • ∇ S f on M t ( 19 
)
for some vector field a bounded on [0,

t 1 ]. Then, sup Mt, t∈[0,t 1 ] f sup M 0 f.
Proof. Denote by a 0 the bound on a, k := sup M 0 f and define

f l = max(f -l, 0). Assump- tion (19) implies d dt -∆ S f 2 l 2f l a • ∇ S f l -2|∇ S f l | 2
which, thanks to Young's inequality, gives

d dt -∆ S f 2 l 1 2 a 2 0 f 2 l .
Applying (18) to f 2 l , we get

d dt f 2 l ρ 1 2 (a 2 0 + k 2 ∞ ) f 2 l ρ. (20) 
Letting l = sup M 0 f , so that f l ≡ 0 on M 0 , from (20) and the Gronwall's Lemma we obtain that f l ≡ 0 on M t for all t ∈ (0, t 1 ], which gives thesis.

Proof of Theorem 1

We now prove short time existence for the mean curvature flow with obstacles (1), (2). Let M 0 = ∂E(0) ⊂ U , where we assume that U , E(0) are open sets with boundary uniformly of class C 1,1 , with dist(M 0 , ∂U ) > 0. In particular, M 0 satisfies a uniform exterior and interior ball condition, that is, there is R > 0 such that, for every x ∈ M 0 , one can find two open balls B + and B -of radius R which are tangent to M 0 at x and such that B + ⊂ E(0) c and B -⊂ E(0). Let also Ω -:= E(0) \ U , and

Ω + := E(0) c \ (M 0 ∪ U ). Notice that Ω ± are open sets with C 1,1 boundaries, with dist(Ω -, Ω + ) > 0. Let also k := 2N (χ Ω --χ Ω + )
where N is bigger than (d times) the mean curvature of ∂U.

We want to show that equation (5), with k as above, has a solution in an interval [0, T ). To this purpose, letting ρ ε be a standard mollifier supported in the ball of radius ε centered at 0, we introduce a smooth regularization

k ε = k * ρ ε of k. Notice that k ε ∞ = 2N , k ε (x) = 2N (resp. k ε (x) = -2N ) at every x ∈ Ω -(resp. x ∈ Ω -) such that dist(x, ∂U ) ≥ ε, and k ε (x) = 0 at every x ∈ U such that dist(x, ∂U ) ≥ ε.
Using standard arguments (see for instance [EH91b, Theorem 4.1] and [EH91a, Prop. 4.1]) one can show existence of a smooth solution M ε t of (5), with k replaced by k ε , on a maximal time interval [0, T ε ).

Let now

Ω ± ε := {x ∈ Ω ± : dist(x, U ) > ε}.
The following result follows directly from the definition of k ε .

Proposition 3. The hypersurfaces ∂Ω ± ε are respectively a super and a subsolution of (5), with k replaced with k ε . In particular, by the parabolic comparison principle M ε t cannot intersect ∂Ω ± ε .

We will show that we can find a time T > 0 such that for every ε, there exists a smooth solution of (5) (with k replaced with k ε ) on [0, T ).

The following result will be useful in the sequel. We omit the proof which is a simple ODE argument. Lemma 2. Let M 0 = ∂B R (x 0 ) be a ball of radius R ≤ 1 centered at x 0 . Then, the evolution M t by (5), with constant forcing term k = 2N , is given by

M t = B R(t) (x 0 ) with R(t) R 2 -(4N + 2d)t.
In particular, the solution exists at least on 0, R 2 4N +2d .

Proposition 4. There exists r > 0, a collection of balls B i = B r (x i ) of radius r, and a positive time T 0 such that M ε t ⊂ i B i for every t ∈ [0, min(T 0 , T ε )). In addition, we can choose the balls B i in such a way that, for every i, there exists ω i ∈ R d+1 such that ∂Ω ± ∩ B 4r (x i ) are graphs of some functions ψ ± i : R d → R ∪ {±∞} over ω ⊥ i . In particular, one has

(∇k ε , ω i ) |∇k ε |/2 on B 2r (x i ).
Most of these notations are summarized in Figure 1.

Proof. By assumption, for every x ∈ M 0 there exist interior and exterior balls

B ± x of fixed radius R ≤ 1. Let B ± x (t) be the evolution of B ± x by (5) with forcing term k = 2N . By comparison, for every t ∈ [0, T ε ), B + x (t) ⊂ Ω(t) c and B - x (t) ⊂ Ω(t). Recalling Lemma 2, there exists δ > 0 and T 0 > 0, independent of ε, such that M t ⊂ {d M 0 δ} =: C δ , for all t ∈ [0, min(T ε , T 0 )).
We eventually reduce δ, T 0 such that C δ can be covered with a collection of balls B i = B r (x i ), centered at x i ∈ M 0 and with a radius r such that, for every i, there exists a unit vector ω i ∈ R d+1 satisfying

ω i , ν + (x) 1 2 and ω i , ν -(y) 1 2 for every x ∈ ∂Ω + ∩ B 4r (x i ) and y ∈ ∂Ω -∩ B 4r (x i )
, where ν ± is the outer normal to Ω ± . As a result, ∂Ω ± ∩ B 4r (x i ) are graphs of some functions ψ ± i : R d → R ∪ {±∞} over ω ⊥ i (see Figure 1).

Notice also that k is a BV function and Dk is a Radon measure concentrated on ∂U such that

(Dk , ω i ) |Dk| 2 on B 4r (x i ).
Then, for every x ∈ B 2r (x i ) and ε sufficiently small (such that ρ ε (x) = 0 as soon as |x| 2r), we have

(∇k ε , ω i ) = ∇ R d+1 k(x -y)ρ ε (y)dy , ω i = R d+1 (Dk(x -y) , ω i ) ρ ε (y)dy R d+1 |Dk|(x -y) 2 ρ ε (y)dy |Dk| * ρ ε 2 |∇k ε | 2 .
In what follows, we will control the geometric quantities of M ε t inside each ball B i . As in [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF], we introduce a localization function φ i as follows: let η i (x, t) = |x-x i | 2 +(2d+Λ)t (Λ be a positive constant that will be fixed later) and, for R = 2r, φ i (x, t) = (R 2 -η i (x, t)) + . We denote by φ i the quantity φ i (x, t), where x = x(p, t) will be a generic point in M t . Notice that there exists

T 1 = r 2 2d+Λ such that for all t ∈ [0, min(T 1 , T ε )), M ε t ⊂ i {φ i > r 2 }. (21) 
As a result, we have the following Lemma 3. Let f be a smooth function defined on M ε t . Assume that there is a C > 0 such that φ i f C on M ε t ∀t min(T ε , T 1 ) and ∀i ∈ N.

Then,

f αC on M ε t ∀t min(T ε , T 1 ),
where α depends only on the C 1,1 norm of M 0 .

Lemma 4. Let v := (ν , ω) -1 . The quantity v 2 φ 2 satisfies d dt -∆ S v 2 φ 2 2 1 2 ∇ S (v 2 φ 2 ) , ∇ S φ 2 φ 2 +φ 2 v 3 ∇ S k ε , ω + v 2 φ(2k ε (x , ν) -Λ). (22) 
Proof. In this proof and the proofs further, we use normal coordinates: we assume that g ij )δ ij (Kronecker symbol) and that the Christoffel symbols Γ k ij vanish at the computation point.

We expand the derivatives

d dt -∆ S v 2 φ 2 2 = v 2 d dt -∆ S φ 2 2 + φ 2 d dt -∆ S v 2 2 -2 ∇ S φ 2 2 , ∇ S v 2 2 .
First term. We start computing

d dt -∆ S |x| 2 = -2k ε (x , ν) -2d.
Then,

d dt -∆ S φ 2 = 2φ(2k ε (x -x i , ν) -Λ) -2|∇ S |x| 2 | 2 .
Second term. We are interested in

1 2 d dt (ω , ν) 2 = (ω , ν) d dt ν , ω (23) 
= (ω , ν) ∇ S (H + k ε ) , ω . (24) 
So, 1 2

d dt (ω , ν) -2 = -(ω , ν) -3 ∇ S (H + k ε ) , ω . (25) 
On the other hand,

1 2 ∆ S ((ω , ν) -2 ) = (ω , ν) -1 ∆ S (ω , ν) -1 -∇ S (ω , ν) -1 , ∇ S (ω , ν) -1 . ( 26 
)
Let us note that

∂ ij ν = ∂ i h jl g lm ∂ m F = ∂ i (h jl )δ lm ∂ m F -h jl δ lm (-h im ν) = ∂ i (h jl )∂ l F -λ 2 i δ ij ν.
We then get

∆ S (ω , ν) -1 = ∂ ii (ω , ν) -1 = ∂ i -(ω , ∂ i ν) (ω , ν) -2 (27) = -(ω , ∂ ii ν) (ω , ν) -2 + 2 (ω , ∂ i ν) 2 (ω , ν) -3 (28) = -(ω , ν) -2 ∂ i h il ∂ l F -λ 2 i ν , ω + 2 (ω , ν) -3 (ω , λ i ∂ i F ) 2 . (29) = -(ω , ν) -2 (∂ l h ii ∂ l F , ω) + |A| 2 (ν , ω) -1 + 2 (ω , ν) -3 (ω , λ i ∂ i F ) 2 . ( 30 
)
We also have

∇ S (ω , ν) -1 , ∇ S (ω , ν) -1 = (ω , ν) -4 (ω , ∂ k ν) (ω , ∂ k ν) (31) = (ω , ν) -4 (ω , h ku g uv ∂ v F ) 2 = (ω , ν) -4 (ω , λ k ∂ k F ) 2 , (32) 
which leads to

d dt -∆ S v 2 2 = -v 3 ∇ S (H + k ε ) , ω + v 3 ∂ m (h ii ) (ω , ∂ m F ) -|A| 2 v 2 -2v 4 λ 2 k (ω , ∂ k F ) 2 -v 4 (ω , λ k ∂ k F ) 2
Third term. We notice, as in [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF] that

|∇ S φ 2 | 2 = 4φ 2 |∇ S (|x| 2 )| 2 and -∇ S (v 2 ) , ∇ S φ 2 = -3 v∇ S (v) , ∇ S φ 2 + 1 2 ∇ S (v 2 φ 2 ) , ∇ S φ 2 φ 2 -v 2 |∇ S φ 2 | 2 φ 2 .
Then, Young's inequality gives

2 v ∇ S v , ∇ S φ 2 2φ 2 |∇ S v 2 | 2 + 1 2φ 2 |∇ S φ 2 | 2 2φ 2 |∇ S v 2 | 2 + 2v 2 |∇ S |x| 2 | 2 . Hence, -∇ S (v 2 ) , ∇ S φ 2 -3φ 2 |∇ S v 2 | 2 -3v 2 |∇ S |x| 2 | 2 + 1 2 ∇ S (v 2 φ 2 ) , ∇ S φ 2 φ 2 -v 2 |∇ S φ 2 | 2 φ 2 .
Summing the three terms, we get

d dt -∆ S v 2 φ 2 2 1 2 ∇ S (v 2 φ 2 ) , ∇ S φ 2 φ 2 -φ 2 v 3 ∇ S k ε , ω + v 2 φ(2k ε (x , ν) -Λ).
For γ > 0, we let

ψ(v 2 ) := γv 2 1 -γv 2 .
Lemma 5. For ε r, we have

d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 φ 2 ψ(v 2 )(-γ|A| 4 -2k ε i λ 3 i -2 A , (∇ S ) 2 k ε ) -φ 2 |A| 2 v 3 ψ ′ (v 2 ) ∇ S k ε , ω -φ 2 |A| 2 i (λ i ω i ) 2 2v 4 + γv 6 (1 -γv 2 ) 3 . Proof. We denote V = φ 2 |A| 2 ψ(v 2 ) 2
and compute

d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 = |A| 2 ψ(v 2 ) d dt -∆ S 1 2 φ 2 + φ 2 ψ(v 2 ) d dt -∆ S 1 2 |A| 2 +φ 2 |A| 2 d dt -∆ S 1 2 ψ(v 2 ) -2 1/2∇ S |A| 2 , 1/2∇ S φ 2 -2 1/2∇ S |A| 2 , 1/2∇ S ψ(v 2 ) -2 1/2∇ S φ 2 , 1/2∇ S ψ(v 2 ) .
The two first terms have already been computed. Let us consider in the third one.

1 2 d dt ψ(v 2 ) = v dv dt ψ ′ (v 2 ) = -v 3 ψ ′ (v 2 ) ∇ S (H + k ε ) , ω , 1 2 ∆ S ψ(v 2 ) = 1 2 ∂ ii ψ(v 2 ) = ∂ i (v∂ i vψ ′ (v 2 )) = v∆ S vψ ′ (v 2 ) + 2v 2 |∇ S v| 2 ψ ′′ (v 2 ) + |∇ S v| 2 ψ ′ (v 2 ) = (3|∇ S v| 2 -v 3 (∂ l (h kk )w l ) + v 2 |A| 2 )ψ ′ (v 2 ) + 2|∇ S v| 2 ψ ′′ (v 2 ).
Hence

d dt -∆ S 1 2 ψ(v 2 ) = -v 3 ψ ′ (v 2 ) ∇ S k ε , ω -(3|∇ S v| 2 +v 2 |A| 2 )ψ ′ (v 2 )-2v 2 |∇ S v| 2 ψ ′′ (v 2 ).
As above, we want to conclude the proof using the weak maximum principle. So, we want to rewrite the last terms (which are gradient terms) using the gradient of V . Let us expand ∇ S V .

∇ S φ 2 |A| 2 ψ(v 2 ) 2 = φ 2 |A| 2 1 2 ∇ S ψ(v 2 ) + |A| 2 ψ(v 2 ) 1 2 ∇ S φ 2 + φ 2 ψ(v 2 ) 1 2 ∇ S |A| 2 .
So,

∇ S φ 2 |A| 2 ψ(v 2 ) 2 2 = φ 4 |A| 4 |∇ S ψ(v 2 )| 2 4 + |A| 4 ψ 2 (v 2 ) |∇ S φ 2 | 2 4 + φ 4 ψ 2 (v 2 ) |∇ S |A| 2 | 2 4 +φ 2 |A| 4 ψ(v 2 ) ∇ S ψ(v 2 ) , ∇ S φ 2 + φ 4 |A| 2 ψ(v 2 ) ∇ S ψ(v 2 ) , ∇ S |A| 2 +|A| 2 ψ 2 (v 2 )φ 2 ∇ S φ 2 , ∇ S |A| 2 .
As a matter of fact,

1 φ 2 |A| 2 ψ(v 2 ) ∇ S φ 2 |A| 2 ψ(v 2 ) 2 2 = φ 2 |A| 2 |∇ S ψ(v 2 )| 2 4ψ(v 2 ) + |A| 2 ψ(v 2 ) |∇ S φ 2 | 2 4φ 2 +φ 2 ψ(v 2 ) |∇ S |A| 2 | 2 4|A| 2 + 2|A| 2 ∇ S ψ(v 2 )/2 , ∇ S φ 2 /2 +2φ 2 ∇ S ψ(v 2 )/2 , ∇ S |A| 2 /2 + 2ψ(v 2 ) ∇ S φ 2 /2 , ∇ S |A| 2 /2 .
We use the last equality to rewrite

d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 = |A| 2 ψ(v 2 ) φ(2k ε (x , ν) -Λ) -|∇ S |x| 2 | 2 + φ 2 ψ(v 2 ) -∇ S A , ∇ S A + |A| 4 -2k ε g js h st g tl g jl h ij h kl -2 A , ∇ 2 k ε + φ 2 |A| 2 -v 3 ψ ′ (v 2 ) ∇ S k ε , ω -(3|∇ S v| 2 + v 2 |A| 2 )ψ ′ (v 2 ) -2v 2 |∇ S v| 2 ψ ′′ (v 2 ) - 1 φ 2 |A| 2 ψ(v 2 ) ∇ S φ 2 |A| 2 ψ(v 2 ) 2 2 + φ 2 |A| 2 |∇ S ψ(v 2 )| 2 4ψ(v 2 ) + |A| 2 ψ(v 2 ) |∇ S φ 2 | 2 4φ 2 + φ 2 ψ(v 2 ) |∇ S |A| 2 | 2 4|A| 2 .
(33) Let us precise some terms:

|∇ S φ 2 | 2 = 4φ 2 • | -2x T | 2 = 4φ 2 (4|x| 2 -4 (x , ν)), |∇ S ψ(v 2 )| 2 = ψ ′ (v 2 ) 2 |∇ S v 2 | 2 = 4ψ ′ (v 2 ) 2 v 6 k (λ k ω k ) 2 , |∇ S |A| 2 | 2 = 4 i (∂ i (h ll )λ l ) 2 , |∇ S A| 2 = i,k,l (∂ i (h km )) 2 .
In addition, we have the obvious estimate

|∇ S |A| 2 | 2 4|A| 2 |∇ S A| 2 . So, φ 2 |A| 2 |∇ S ψ(v 2 )| 2 4ψ(v 2 ) + |A| 2 ψ(v 2 ) |∇ S φ 2 | 2 4φ 2 + φ 2 ψ(v 2 ) |∇ S |A| 2 | 2 4|A| 2 φ 2 |A| 2 ψ ′ (v 2 ) 2 v 6 k (λ k ω k ) 2 ψ(v 2 ) + 4|A| 2 ψ(v 2 )(|x| 2 -(x , ν) 2 ) + φ 2 ψ(v 2 )|∇ S A| 2 .
We plug this inequality into (33) and obtain

d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 |A| 2 ψ(v 2 ) φ(2k ε (x , ν) -Λ) -|∇ S |x| 2 | 2 + φ 2 ψ(v 2 ) -∇ S A , ∇ S A + |A| 4 -2k ε g js h st g tl g jl h ij h kl -2 A , ∇ 2 k ε + φ 2 |A| 2 -v 3 ψ ′ (v 2 ) ∇ S k ε , ω -(3|∇ S v| 2 + v 2 |A| 2 )ψ ′ (v 2 ) -2v 2 |∇ S v| 2 ψ ′′ (v 2 ) - 1 φ 2 |A| 2 ψ(v 2 ) ∇ φ 2 |A| 2 ψ(v 2 ) 2 2 + φ 2 |A| 2 ψ ′ (v 2 ) 2 v 6 k (λ k ω k ) 2 ψ(v 2 ) + 4|A| 2 ψ(v 2 )(|x| 2 -(x , ν) 2 ) + φ 2 ψ(v 2 )|∇ S A| 2 .
Let us regroup some terms (noting that

|∇ S v| 2 = v 4 i (λ i ω i ) 2 ), we get d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 |A| 2 ψ(v 2 ) (φ(2k ε (x , ν) -Λ)) + φ 2 |A| 4 (ψ(v 2 ) -v 2 ψ ′ (v 2 )) -2φ 2 ψ(v 2 )k ε g js h st g tl g jl h ij h kl -2φ 2 ψ(v 2 ) A , ∇ 2 k ε -φ 2 |A| 2 v 3 ψ ′ (v 2 ) ∇ S k ε , ω - 1 φ 2 |A| 2 ψ(v 2 ) ∇ S φ 2 |A| 2 ψ(v 2 ) 2 2 + φ 2 |A| 2 i (λ i ω i ) 2 v 6 ψ ′ (v 2 ) 2 ψ(v 2 ) -3v 4 ψ ′ (v 2 ) -2v 6 ψ ′′ (v 2 ) .
Then, we note that

v 6 ψ ′ (v 2 ) 2 ψ(v 2 ) -3v 4 ψ ′ (v 2 ) -2v 6 ψ ′′ (v 2 ) = - 2v 4 + γv 6 (1 -γv 2 ) 3 0 and ψ(v 2 ) -v 2 ψ ′ (v 2 ) = -γψ 2 (v 2 ) 0. So, d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 φ 2 ψ(v 2 )(-γ|A| 4 -2k ε i λ 3 i -2 A , ∇ 2 k ε ) -φ 2 |A| 2 v 3 ψ ′ (v 2 ) ∇ S k ε , ω -φ 2 |A| 2 i (λ i ω i ) 2 2v 4 + γv 6 (1 -γv 2 ) 3 ,
what was expected.

We now show that M t can be locally written as a Lipschitz graph, with Lipschitz constant independent of ε.

Proposition 5. Let ε r. Then, for every t ∈ [0, min(T ε , T 1 )), M t ∩ B i can be written as a Lipschitz graph over ω ⊥ i , with Lipschitz constant independent of ε.

Proof. We want to show that the quantity (ν , ω i ) is bounded from below, or, equivalently, that v := (ν , ω i ) -1 is bounded from above on every ball B i . We want to estimate the quantity v 2 φ 2 (we drop the explicit dependence on the index i) using Lemma 4.

We choose Λ such that the last term in ( 22) is nonpositive (take for instance Λ = 2N R). We also have to control

v ∇ S k ε , ω = (ν , ω) -1 ((∇k ε , ω) -(∇k ε , ν) (ν , ω)) = (ν , ω) -1 (∇k ε , ω) -(∇k ε , ν) .
Proposition 4 provides immediately

(ν , ω) -1 (∇k ε , ω) -(∇k ε , ν) (ν , ω) -1 |∇k ε | 2 -|∇k ε |
which is nonnegative as soon as (ω , ν) 1 2 . From Lemma 4 and the weak maximum principle (see [START_REF] Protter | Maximum principles in differential equations[END_REF]), we obtain that v 2 φ 2 ∞ (t) max( v 2 φ 2 ∞ (0), 4R 2 ). Thanks to Lemma 3, this provides a uniform Lipschitz bound on the whole M t , for t T 1 .

Recalling Theorem 8.1 in [START_REF] Huisken | Flow by mean curvature of convex surfaces into spheres[END_REF], from Proposition 5 it follows that, if T ε < T 1 , the second fundamental form of M t blows up as t → T ε . Let us show that it does not happen. Proposition 6. For every ε r, there exists C ε > 0 such that

A L ∞ (Mt) C ε for all t ∈ [0, min(T ε , T 1 )).
Proof. As in [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF], we are interested in the evolution of the quantity

φ 2 |A| 2 ψ(v 2 ) 2 .
Notice that

|λ i | 3 = |λ i ||λ i | 2 1 2α λ 4 i + α 2 λ 2 i .
Choosing α such that 2N α γ 2 , one can write

-2k ε φ 2 ψ(v 2 ) i λ 3 i φ 2 ψ(v 2 ) γ 2 |A| 4 + N α|A| 2 .
In addition, as soon as

|A| 2 1, one has A , ∇ 2 k ε |A| 2 |∇ 2 k ε |.
One can also notice that as above, v ∇ S k ε , ω 0 as soon as v 2. On the other hand, if v 2, one has

v 3 ψ ′ (v 2 ) = ψ(v)v 1-γv 2 4ψ(v) for γ sufficiently small. So, anyway, if |A| 1, d dt -∆ S φ 2 |A| 2 ψ(v 2 ) 2 2N α φ 2 |A| 2 ψ(v 2 ) 2 +4|∇ 2 k ε | φ 2 |A| 2 ψ(v 2 ) 2 +8 φ 2 |A| 2 ψ(v 2 ) 2 |∇ S k ε |.
Finally, we apply the maximum principle to

à := exp -2N α + 4 ∇ 2 k ε ∞ + 8 ∇k ε ∞ t • φ 2 |A| 2 ψ(v 2 ) 2 which satisfies d dt -∆ S à 0. It provides ∀t min(T ε , T 1 ), à ∞ (t) à ∞ (0) which shows that φ 2 |A| 2 ψ(v 2 ) 2
does not blow up. Using Lemma 3 and choosing γ such that ψ(v 2 ) is bounded and remains far from zero, we know that |A| does not blow up for t T 1 .

Corollary 1. There exists T 1 , depending only on the dimension, k ∞ and the radius in the ball condition for M 0 , such that there exists a solution M ε t of the mean curvature flow with forcing term k ε on [0, T 1 ).

The surfaces M ε t are uniformly Lipschitz and every M ε t ∩B i can be written as the graph of some function u ε i (x, t). All the u ε i are Lipchitz (in space) with a constant which depends neither on i nor in ε. We want to show that they are also equicontinuous in time.

Proposition 7. The functions u ε i are Lipschitz continuous in x and 1/2-Hölder continuous in t on B i × [0, T 1 ), uniformly with respect to ε and i.

Proof. Let δ be fixed (we drop the index ε in what follows), and let t 0 ∈ [0, T 1 ). Let x 0 ∈ M t and i such that x 0 ∈ B i . Then, (ν(x 0 ) , ω i ) C and M t is the graph of a function u over ω ⊥ i . Then, let x 1 = x 0 + δω i . Thanks to the Lipschitz condition, there is a ball B 1/Cδ (x 1 ) that does not touch M t . Evolving by mean curvature with forcing term k ε , this ball vanishes in a positive time

T δ ω(δ) := δ 2
C 2 (2d+1) (note that T δ does not depend on ε). By comparison principle, for t ∈ [t 0 , t 0 + ω(δ)), M t does not go beyond x 1 . That is equivalent to say that u is 1/2-Hölder continuous in time, with a constant independent of ε.

We now pass to the limit as ε goes to zero. By Proposition 7, the family (u ε i ) is equi-Lipschitz in space and equi-continuous in time on B i ×[0, T 1 ). Therefore, by Arzelà-Ascoli's Theorem one can find a sequence ε n → 0 and continuous functions u i such that, for every i, u εn i -→ n→∞ u i locally uniformly on B i × [0, T 1 ).

Proposition 8. The functions u i are viscosity solutions of (3) on B i × [0, T 1 ), with obstacles U ∩ B i (see Appendix 5).

Proof. Thanks to Proposition 4, every x ∈ B i can be decomposed as x = x ′ + zω i with z = (x , ω i ). Then, there exists functions ψ ± i of class C 1,1 such that

U ∩ B i = {(x ′ , z) ∈ B i : ψ - i (x ′ ) z ψ + i (x ′ )}.
For simplicity we shall drop the explicit dependence on the index i. Since u ε (x, 0) = u 0 (x) for all ε, and u εn converges uniformly to u as n → +∞, it is clear that u(x, 0) = u 0 (x). Condition (45) immediately follows from Proposition 3. We now check that u is a subsolution of (3). Let (x 0 , t 0 ) ∈ R d × R and ϕ ∈ C 2 such that ψ -(x 0 , t 0 ) < u(x 0 , t 0 ) and

(u -ϕ)(x 0 , t 0 ) = max |(x,t)-(x 0 ,t 0 )| r (u -ϕ)(x, t).
One can change ϕ so that (x 0 , t 0 ) is a strict maximum point, and u(x 0 , t 0 ) = ϕ(x 0 , t 0 ). Let 2δ := u(x 0 , t 0 )ψ -(x 0 , t 0 ). Thanks to the definition of k ε , for all ε δ, we have k ε (x, ϕ(x, t)) 0 in a small neighborhood V of (x 0 , t 0 ). Hence, for ε sufficiently small u εϕ attains its maximum in V at (x ε , t ε ), with (x ε , t ε ) → (x 0 , t 0 ) as ε → 0. Since u ε is a classical solution of (35), it is also a viscosity solution, therefore

ϕ t -1 + |∇ϕ| 2 div ∇ϕ 1 + |∇ϕ| 2 1 + |∇ϕ| 2 k ε (x, ϕ) 0 at(x ε , t ε ).
Letting ε → 0 we obtain that u is a subsolution of (3). A similar argument shows that u is also a supersolution of (3), and this concludes the proof.

Conclusion of the proof of Theorem 1.

The result in [PS07, Theorem 4.1] (see also Section A.4) applies, showing that the functions u i are of class C 1,1 . As the uniform convergence u εn i implies the Hausdorff convergence of M εn t to a limit M t such that M t ∩ B i = graph(u i (t)), we built a C 1,1 evolution to the mean curvature motion with obstacles on the time interval [0, T 1 ). Thanks to [ACN12, Theorem 4.8 and Corollary 4.9] this evolution is also unique. This concludes the proof of Theorem 1.

Proof of Theorem 2

Let ψ ± ε be smooth functions such that ψ ± ε → ψ ± as ε → 0, uniformly in C 1,1 (R d ), and let N > 0 be such that

N ≥ 1 + |ψ ± ε | 2 div   ψ ± ε 1 + |ψ ± ε | 2   L ∞ (R d )
for all ε > 0.

We proceed as in Section 3 and we approximate (3), (4) with the forced mean curvature equation

u t = 1 + |∇u| 2 div ∇u 1 + |∇u| 2 + k ε (x, u) , (35) 
where

k ε (x, u) = 2N χ ψ - ε (x) -u ε -χ u -ψ + ε (x) ε ,
and χ is a smooth increasing function such that χ(s) ≡ 0 for all s ∈ (-∞, 0], and χ(s) ≡ 1 for all s ∈ [1, ∞). In particular ∂ u k ε (x, u) ≤ 0 for all (x, u).

Notice that k ε → g as ε → 0, with

k(x, u) =    2N if u < ψ -(x) -2N if u > ψ + (x) 0 elsewhere . Notice also that ∂k ε ∂x k (x, u) + ∂k ε ∂u (x, u) ∂ψ - ε ∂x k = 0 if u < ψ + ε ∂k ε ∂x k (x, u) + ∂k ε ∂u (x, u) ∂ψ + ε ∂x k = 0 if u > ψ - ε . (36) 
We denote by u ε the solution of the approximate problem (35), which exists and is smooth for short times.

Proposition 9. The solution u ε is defined for t ∈ [0, +∞), and satisfies the estimates

u ε (•, t) W 1,∞ (R d ) ≤ C for all t ∈ [0, +∞) (37) 
u ε (•, t) W 2,∞ (R d ) ≤ C(T ) for all t ∈ [0, T ]. (38) 
Proof. Estimate (37) follows from Proposition 5, choosing B i = R d+1 , ω i = e d+1 and φ ≡ 1. Estimate (38) follows from (37) and Proposition 6.

In what follows, we use intrinsic derivatives on the graph M t := {(x, u ε (x, t))}, which will be denoted as above by an exponent S. The metric on M t is

g ij = δ ij + ∂ i u ε ∂ j u with inverse g ij = δ ij - ∂ i u ε ∂ j u ε 1 + |∇u ε | 2 .
The tangential gradient of a function f defined on M t is given by

(∇ S f ) i = g ij ∂ j f = ∂ i f - ∂ i u ε ∂ j u ε 1 + |∇u ε | 2 ∂ j f , so that ∇ S f , ∇u ε = (∇f , ∇u ε ) - |∇u ε | 2 1 + |∇u ε | 2 (∇f , ∇u ε ) = 1 1 + |∇u ε | 2 (∇f , ∇u ε ) , (39) 
and

|∇ S f | 2 =   f i -(u ε ) i j (u ε ) j f j 1 + |∇u ε | 2   2 = |∇f | 2 + (u ε ) 2 i (∇u ε , ∇f ) 1 + |∇u ε | 2 2 -2 (u ε ) i (u ε ) j f i f j 1 + |∇u ε | 2 = |∇f | 2 + |∇u ε | 2 1 + |∇u ε | 2 (∇u ε , ∇f ) 2 1 + |∇u ε | 2 -2 (∇u ε , ∇f ) 2 1 + |∇u ε | 2 = |∇f | 2 - (∇u ε , ∇f ) 2 1 + |∇u ε | 2 - (∇u ε , ∇f ) 2 (1 + |∇u ε | 2 ) 2 . (40) 
In addition, the Laplace-Beltrami operator applied to f is

∆ S f = g ij f ij = ∆f - ∂ i u ε ∂ j u ε 1 + |∇u ε | 2 f ij = ∆f - ∇u ε ∇ 2 f , ∇u ε 1 + |∇u ε | 2 .
Proposition 10. The quantity (u ε ) 2 t ∞ (t) is nonincreasing in time. In particular,

(u ε ) t (•, t) L ∞ (R d ) ≤ 1 + |∇u 0 | 2 div ∇u 0 1 + |∇u 0 | 2 L ∞ (R d )
.

Proof. We compute d dt

(u ε ) 2 t 2 = (u ε ) t 1 + |∇u ε | 2 div ∇u ε 1 + |∇u ε | 2 + k ε (x, u ε t .
Expanding this expression, we get d dt

(u ε ) 2 t 2 = (u ε ) t ∇(u ε ) t • ∇u ε 1 + |∇u ε | 2 div ∇u ε 1 + |∇u ε | 2 + k ε + 1 + |∇u ε | 2 div (∇u ε ) t 1 + |∇u ε | 2 - ((∇u ε ) t • ∇u ε )∇u ε (1 + |∇u ε | 2 ) 3/2 + (u ε ) t ∂ u k ε .
Let us compute more explicitly the three terms of the expression above.

(u ε ) t (∇u ε ) t • ∇u ε 1 + |∇u ε | 2 div ∇u ε 1 + |∇u ε | 2 + k ε = ∇( (uε) 2 t 2 ) • ∇u ε 1 + |∇u ε | 2 ∆u 1 + |∇u ε | 2 - (u ε ) i (∇u ε , (∇u ε ) i ) (1 + |∇u ε | 2 ) 3/2 + k ε = ∇( (u ε ) 2 t 2 ) • ∇u ε ∆u ε 1 + |∇u ε | 2 - ∇u ε • ∇( |∇uε| 2 2 ) (1 + |∇u ε | 2 ) 2 + k ε , (u ε ) t div ∇(u ε ) t 1 + |∇u ε | 2 = (u ε ) t ∂ i (u ε ) ti 1 + |∇u ε | 2 = (u ε ) t (u ε ) tii 1 + |∇u ε | 2 - 1 (1 + |∇u ε | 2 ) 3/2 (u ε ) t (u ε ) ti ∇u ε • (∇u ε ) i = (u ε ) t ∆(u ε ) t 1 + ∇u 2 ε - 1 (1 + |∇u ε | 2 ) 3/2 (u ε ) t (u ε ) ti ∂ i ( |∇u ε | 2 2 ) = (u ε ) t ∆(u ε ) t 1 + ∇u 2 ε - 1 (1 + |∇u ε | 2 ) 3/2 ∇ (u ε ) 2 t 2 • ∇ |∇u ε | 2 2 ,
and

(u ε ) t div ((∇u ε ) t • ∇u ε )∇u ε (1 + |∇u ε | 2 ) 3/2 = ∆u ε (∇u ε , (u ε ) t ∇(u ε ) t ) (1 + |∇u ε | 2 ) 3/2 + (u ε ) t (u ε ) tij (u ε ) j (u ε ) i (1 + |∇u ε | 2 ) 3/2 + ((u ε ) i ∇(u ε ) i , (u ε ) t ∇(u ε ) t ) (1 + |∇u ε | 2 ) 3/2 -3(u ε ) i ((u ε ) t ∇(u ε ) t , ∇u ε ) (∇(u ε ) i , ∇u ε ) (1 + |∇u ε | 2 ) 5/2 = ∆u ε ∇u ε , ∇( (uε) 2 t 2 ) (1 + |∇u ε | 2 ) 3/2 + (u ε ) t (u ε ) tij (u ε ) j (u ε ) i (1 + |∇u ε | 2 ) 3/2 + ∇( |∇uε| 2 2 ) , ∇( (uε) 2 t 2 ) (1 + |∇u ε | 2 ) 3/2 -3 ∇( (uε) 2 t 2 ) , ∇u ε ∇( |∇uε| 2 2 ) , ∇u ε (1 + |∇u ε | 2 ) 5/2 .
Notice that

∆ S (u ε ) 2 t 2 = ∆ (u ε ) 2 t 2 - ∇u ε , ∇ 2 (uε) 2 t 2 ∇u ε 1 + |∇u ε | 2 = (u ε ) t ∆(u ε ) t + |(∇u ε ) t | 2 - (u ε ) i (u ε ) j (u ε ) t (u ε ) tij + (u ε ) i (u ε ) j (u ε ) ti (u ε ) tj 1 + |∇u ε | 2 .
We then get d dt

(u ε ) 2 t 2 = ∇( (uε) 2 t 2 ) , ∇u ε 1 + |∇u ε | 2 k ε + ∆ S (u ε ) 2 t 2 -2 ∇ (uε) 2 t 2 , ∇ |∇uε| 2 2 1 + |∇u ε | 2 + 2 ∇( (uε) 2 t 2 ) , ∇u ε ∇( |∇uε| 2 2 ) , ∇u ε (1 + |∇u ε | 2 ) 2 + (∇u ε , (∇u ε ) t ) 2 1 + |∇u ε | 2 -|(∇u ε ) t | 2 + (u ε ) 2 t ∂ u k ε .
Note that the last term is nonpositive by definition of k ε .

In order to apply Lemma 1, we have to show the inequality

- (∇u ε , (∇u ε ) t ) 2 1 + |∇u ε | 2 + |(∇u ε ) t | 2 0.
It is enough to note that, since the solution exists for all times and it is smooth, the term ∇( |∇uε| 2 2 ) is bounded on each [0, T ] (the bound depends on T and ε but is enough to apply the lemma). In addition, every factor containing ∇((u ε ) 2 t /2) also contains ∇u ε , hence the assumptions of Lemma 1 are satisfied for every T > 0, and this concludes the proof.

From Propositions 9 and 10, we deduce the following result.

Proposition 11. If u 0 is C-Lipschitz in space for some C > 0, and has bounded mean curvature, then the solution u ε of the approximate problem (35) is C-Lipschitz in space and Lipschitz in time with constant

1 + |∇u 0 | 2 div ∇u 0 1 + |∇u 0 | 2 L ∞ (R d )
.

Moreover, the following inequalities hold

ψ - ε (x) -ε ≤ u ε (x, t) ≤ ψ + ε (x) + ε. (41) 
Proof. The Lipschitz bounds of the solution are clear (it is Proposition 9 and 10).

In order to prove the second assertion, let us notice that by (34) and the definition of k ε , we have

k ε (x, ψ - ε -ε) = 2N 1 + |ψ - ε | 2 div   ψ - ε 1 + |ψ - ε | 2   L ∞ (R d )
, so that ψ - εε is a subsolution of (35). By the parabolic comparison principle (as in Proposition 3), we deduce that ψ - εε u ε . The same arguments shows the other inequality in (41).

Conclusion of the proof of Theorem 2. Since the solutions u ε are equi-Lipschitz in space and time, they converge uniformly, as ε → 0, to a limit function u which is also Lipschitz continuous on R d × [0, +∞). Equation (41) yields ψ -u ψ + , and Proposition 8 gives that u is a viscosity solution of (43).

Concerning the regularity of u, we proved that (u ε ) t and ∇u ε are bounded on [0, T ], for any T in the approximate problem. This gives a bound on the mean curvature of the approximate solution. This bound does not depend on ε and remains true for the viscosity solution. As a result, the exact solution has bounded mean curvature and bounded gradient, which shows that ∆u is L ∞ and, by elliptic regularity theory, u is also in W 2,p for any p > 1, and so C 1,α for every α < 1 (see [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF] for details).

By Theorem 4 below, we can also directly apply to the solution u a regularity result by Petrosyan and Shahgholian in [START_REF] Shahgholian | Free boundary regularity close to initial state for parabolic obstacle problem[END_REF][START_REF] Petrosyan | Parabolic obstacle problems applied to finance[END_REF]. It follows that u is in fact of class C 1,1 , and this concludes the proof of Theorem 2.

Proof of Theorem 3

We compute the evolution of the area of the graph of u:

d dt Q 1 + |∇u| 2 = Q (∇u t , ∇u) 1 + |∇u| 2 = - Q u t div ∇u 1 + |∇u| 2 . ( 42 
)
Notice that, for almost every t > 0, u t (t, x) = 0 almost everywhere on the contact set. Indeed, for almost every t, u t exists for almost every x ∈ Q. If u(x, t) = ψ ± (x), then uψ ± reaches an extremum in (x, t), which gives, u t (x, t) = 0. In particular, from (42) we get

d dt Q 1 + |∇u| 2 = - Q u t u t 1 + |∇u| 2 .
Integrating this equality in time, we obtain

Q 1 + |∇u| 2 T 0 = T 0 Q - u 2 t 1 + |∇u| 2 . which shows that T 0 Q u 2 t is uniformly bounded in T . As a result u t ∈ L 2 (R + , Q) so u is in H 1 (Q, B R ). Since u t L 2 (Q) is L 2 (R + ), there exists a sequence t n → ∞ such that u t L 2 (Q) (t n ) -→ n→∞ 0.
In addition, u(t n ) is equi Lipschitz and converges uniformly on compact sets to some u ∞ which therefore satisfies in the viscosity sense

1 + |∇u| 2 div ∇u √ 1 + ∇u 2 = 0
with obstacles ψ ± (see Appendix 5).

Remark. By [ISZ98]

, u min is analytic out of the (closed) contact set {u min = ψ ± }.

A Viscosity solutions with obstacles

A.1 Definition of viscosity solution

Given an open subset B of R d , let u 0 , ψ + and ψ -be three Lipschitz functions B → R such that ψ -(x, 0) u 0 (x) ψ + (x, 0).

We are interested in the viscosity solutions of the equation

u t = 1 + |∇u| 2 div ∇u 1 + |∇u| 2 , u(x, 0) = u 0 (x), (43) 
with the constraint

ψ -(x) u(x, t) ψ + (x). (44) 
Indeed, notice that if u(x, t) = ψ -(x), then, for all x, y, t, s,

u(x, t) -v(y, s) = ψ -(x) -v(y, s) ψ -(y) + L(|x -y|) -v(y, s) L(|x -y|) since v ψ -. Hence, if u(x, t) = ψ -(x)
, with K ′ > L, we must have w -Ψ 0, so the supremum of w -Ψ is attained in the complementary of {u = ψ -}. One can show similarly that the supremum is reached in the complementary of {v = ψ + }. Hence Proposition 2.3 of [GGIS91] holds.

From Proposition 2.4 to Lemma 2.7 of [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF], every result holds without changes.

Concerning the proof of Theorem 2.1 of [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF], the first assumption is

α = lim sup θ→0 {w(t, x, y), | |x -y| θ} > 0.
Then, Proposition 2.4 gives constants δ 0 and γ 0 such that for all δ δ 0 , γ γ 0 and ε > 0, there holds Φ(x, ŷ, t) := sup Thanks to Proposition 2.5, |x -ŷ| -→ ε→0 0. So, with ε sufficiently small (one can reduce the quantity ε 0 given by Proposition 2.6), Φ has its maximum out of {u = ψ -} (and similarly out of {v = ψ + }), which enables the application of Lemma 2.7 and gives a contradiction as in [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF].

A.3 Existence

In this subsection, we prove the following result: Proposition 13. There exists a continuous viscosity solution to (43).

We follow [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] to build a solution by means of the Perron's method. Let us state an obvious but useful proposition and a key lemma for applying Perron's method. Proposition 14. Let u be a subsolution of the mean curvature motion for graphs (without obstacles) which satisfies u u + . Then, u ob := u∨u -is a subsolution of (43) with obtacles (the same happends for v supersolution and v ob = v ∧ u + ).

In the sequel, we shall denote by u * (resp. u * ) the upper (resp. lower) semicontinuous envelope of a function u. Lemma 6. Let F be a family of subsolutions of (43). We define U (x, t) = sup{u(x, t) | u ∈ F}.

Then, U * is a subsolution of (43).

The proof of the proposition and the lemma can be found in [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Lemma 4.2 (with obvious changes due to the parabolic situation and obstacles). with equality at (ŷ, ŝ) which gives φ t + F (Dφ(x, t), D 2 φ(x, t)) 0.

Since the derivatives of φ and ϕ are the same, we deduce We now present a general regularity result by Shahgholian [Sha08] which applies to viscosity solutions for parabolic equations with obstacles. satisfies all the assumptions of [Sha08], 1.3. Indeed, the uniform ellipticity is provided by the Lipschitz bound obtained in previous subsection. Moreover, the viscosity solution u of (43) satisfies ( 49) and (50) on every cylinder Q + r (x 0 ) := {|xx 0 | r, t ∈ [t 0 , t 0 + r)} such that r is choosen sufficiently small in order to have either Q + r (x 0 ) ∩ {u = ψ + } = ∅ or Q + r (x 0 ) ∩ {u = ψ -} = ∅. In the second alternative, change every sign in the equations.

Applying Theorem 4 we get a C 1,1 bound for u on every compact subset of Q + r (x 0 ). To show that u is C 1,1 in the whole space, just cover R d × R + with such Q + r (x i ).
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Definition 1 (see [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Mercier | Mean curvature flow with obstacles: a viscosity approach[END_REF]). We say that a function u : B ×[0, T ) → R is a viscosity subsolution of (43) if u satisfies the following conditions:

• u is upper semicontinuous;

• u(x, 0) u 0 (x);

• for any (x 0 , t 0 ) ∈ R d × R + and ϕ ∈ C 2 such that uϕ has a maximum at (x 0 , t 0 ) and u(x 0 , t 0 ) > ψ -(x 0 ),

Similarly, u is a viscosity supersolution of (43) if:

• u is lower semicontinuous;

• u(x, 0) u 0 (x);

• (45) holds;

• for any (x 0 , t 0 ) ∈ R d × R + and ϕ ∈ C 2 such that uϕ has a minimum at (x 0 , t 0 ) and u(x 0 , t 0 ) < ψ + (x 0 ),

We say that u is a viscosity solution of (43) if it is both a super and a subsolution.

A.2 Comparison principle

In order to prove uniqueness of continous viscositysolutions of (43), we shall prove a comparison principle between solutions following [GGIS91, Theorem 4] (see also [START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF]).

Proposition 12. If u is a viscosity subsolution of (43) on [0, T ), v is a viscosity supersolution, if ψ ± are Lipschitz in space and if u(x, 0) v(x, 0), then u(x, t) v(x, t) for all

Proof. We will check that the proof of [GGIS91, Theorem 2.1] can be extended to the obstacle case. Notice first that the assumptions (A.1) -(A.3) of [GGIS91, Theorem 2.1] are satisfied also in our case. Indeed, (A.1) comes directly from the Lipschitz bound on ψ ± and the constraint ψ -u, v ψ + whereas (A.2) and (A.3) result from the assumed time zero comparison. Let us show that [GGIS91, Proposition 2.3] also holds. Indeed, up to Equation (2.9) nothing chenges. To continue the proof, using the same notation of [GGIS91, Proposition 2.3], we have to check that if sup

then the supremum is reached in the complementary of the contact set {u = ψ -} ∪ {v = ψ + }.

Construction of barriers

In the sequel, to claim that the initial condition is taken by the viscosity solution, we need to build barriers to sandwich the solution. More precisely, we want to build a subsolution w -such that (w -) * (x, 0) = u 0 (x) and a supersolution w + such that (w + ) * (x, 0) = u 0 (x). To show this claim, let us begin by a simple fact. Let

for some (a, b) ∈ R d × R and α i 0 such that g(x) u 0 (x). Note in particular that

Then, it is easy to show (using Proposition 14) that the function

is a subsolution of (43). Indeed, the curvature of g a α,b is smaller than 2 α i and its gradient is bounded by 2 (so 1 + |∇g| 2 3).

Thanks to Lemma 6, the function

is a subsolution of (43) (with obstacles). It remains to show that (w -) * (x, 0) = u 0 (x). To see this, notice that since u 0 is Lipschitz and u 0 ψ -, u 0 (x) = w -(x, 0), yielding u 0 (x) (w -) * (x, 0). But for all t 0, v(x, t) u 0 (x) so w -(x, t) u 0 (x). By continuity of u 0 , (w -) * (x, t) u 0 (x), which shows that (w -) * (x, 0) = u 0 (x), and w -is a low barrier for solutions of (43).

We build w + in the same way.

Perron's method We use the classical Perron's method to build a solution of (43) on [0, T ) for every t > 0. Let us define W (x, t) = sup{u(x), | u is a subsolution of (43) on [0, T )}.

Since ψ -is a subsolution, this set in non empty and W is well defined. Every subsolution is less that ψ + , so is W . Thanks to Lemma 6, W * is a subsolution of (43) regardless the initial conditions. Applying the comparison principle (Proposition 12) to every subsolution u and w + gives ∀x, t, W (x, t) w + (x, t).

Considering the upper-semi-continuous envelopes, we get ∀x, t, W * (x, t) (w + ) * (x, t) which immediately yields to W * (x, 0) = u 0 (x).

Then, W * is a subsolution (with initial conditions), hence W * = W which shows the upper semi-continuity of W . We want to prove that W is actually a solution of (43). In this order, let us prove the following Lemma 7. Let u be a subsolution of (43). If u * fails to be a supersolution (regardless initial conditions) at some point (x, t) then there exists a subsolution u κ (regardless initial conditions) satisfying u κ u and sup u κu > 0 and such that u(x, t) = u κ (x, t) for |x -x|, |t -t| κ.

Proof. Let us assume that u * fails to be a supersolution at (0, 1). Then there exists (a, p, X) ∈ J 2,-u * (0, 1) with a + F (p, X) + k(0) 1 + p 2 < 0.

Let us then define

Thanks to the continuity of F and k, u δ,γ is a classical subsolution on B r (0, 1) With δ = γ r 2 +r 8 , we get u(x, t) > u δ,γ (x, t) for small r and |x|, |t -1| ∈ [ r 2 , r]. Reducing again r, we can assume that u δ,γ < ψ + on B r . Thanks to Lemma 6,

is a subsolution of (43) (with no initial conditions).

Finally, this lemma combined with the definition of W proves that W is in fact a solution of (43) (the initial conditions were already checked).

A.4 Regularity

Proposition 15. The unique solution u of (43) is Lipschitz in space, with the same constant as u 0 , ψ ± .

Proof. We will prove that u z (x, t) = u(x + z, t) -L|z| is in fact a subsolution of (43). The Lipschitz bound is then straightforward (using the comparison principle).

To begin, we notice that u(x + z, t) -L(|z|) u + (x, t) and u(x + z, 0) -L|z| u 0 (x + z) -L|z| u 0 (x).

Assume now that ϕ is any smooth function which is greater than u z with equality at (x, t). Then, either, u z (x, t) = ψ -(x, t) and nothing has to be done, or u z (x, t) > ψ -(x, t). In the second alternative, one can write As u is a subsolution at (x + z, t) and u(x + z, t) ϕ(x, t) + L|z| with equality at (x + z, t), one can write with y = x + z, s = t, u(y, t) ϕ(yz, s) + L|z| := φ(y, s),