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Abstract— In this paper the problem of discovering a Petri net 

(PN) from sampled events sequences representing the execution of 

industrial or business processes is addressed. A method for building 

a 1-bounded PN from a single event sequence S composed of 

numerous execution traces is presented; it is based on determining 

causal and concurrency relations between tasks. A technique for 

computing the t-invariants of the PN from S is proposed; the 

obtained invariants allow determining the structure of a PN that 

executes S. The algorithms derived from the method have been 

implemented and tested on numerous examples of diverse 

complexity. 

Keywords— Model discovery; Petri Nets; t-invariants 

I.  INTRODUCTION 

The synthesis of formal models from external observation 

of systems behaviour is an interesting and challenging 

approach for reverse engineering purposes in discrete event 

systems. Although the problem is relatively recent, it deserves 

the attention of several research groups in the fields of discrete 

event systems (DES) and workflow management systems 

(WMS). 

Pioneer works on the matter, named language learning 

techniques, appear in computer sciences. The aim was to build 

fine representations (finite automata, grammars) of languages 

from samples of accepted words [1, 2]. 

In the field of DES, where the problem is named 

identification, several approaches have been proposed for 

building models representing the observed behaviour of 

automated processes. The incremental approach proposed in 

[3, 4] allows building safe interpreted Petri net (PN) models 

from a continuous stream of system’s outputs. In [5], a method 

based on the statement and solution of an integer linear 

programming problem is proposed; it allows building PN from 

a set of sequences of events. Extensions of this method are 

proposed in [6, 7]. In [8] a method for deriving finite automata 

from sequences of inputs and outputs is presented; it is applied 

to fault detection of manufacturing processes. An extension to 

this method that allows obtaining distributed system models is 

presented in [9]. In [10] Input-output identification of 

automated manufacturing process is addressed; an interpreted 

PN is obtained from a set of sequences of input-output vectors 

collected from the controller during the system cyclic 

operation. The method is extended for dealing with a long 

single observation of input-output vectors [11]. More 

complete reviews on DES identification can be found in [12] 

and [13].  

In WMS the analogous problem is named workflow 

mining; the system observation is given as a set of sequences 

from a finite alphabet of tasks, representing execution logs of 

business processes. A first proposal is reported in [14], in 

which a finite automaton, called conformal graph is obtained. 

In [15] it is proposed a probabilistic approach to find the 

concurrent and direct relations between tasks. The input of the 

method is a sequence of events that represent the activities that 

have occurred in a workflow management system; the 

obtained model is graph similar to a PN. In [16] a mining 

method called algorithm alpha is presented. In this method a 

workflow tasks log composed by several traces is recorded 

sequentially and processed yielding a subclass of PN called 

workflow net. Numerous publications present extensions of 

this algorithm namely [17, 18, and 19]. In particular in this last 

work a strong hypothesis is held: the workflow engine 

provides, for every task in the log, the next tasks to be 

executed even if they are not consecutive; this means that all 

the causal relationships are a priori known. More related 

works can be found in [20]. 
In the present paper a new method for building a safe Petri 

net (PN) from a single sequence of tasks S, composed by 
numerous processes execution traces, is proposed. It follows 
the approach presented in [10] and proposes new results 
allowing addressing more complex behaviours such as implicit 
dependencies between tasks that are not observed 
consecutively. The method is based on determining, from S, 
causal and concurrency relations between tasks and the 
computing of the t-invariants of the PN to discover. The 
obtained invariants allow, first, determining the initial 
structure of a PN, and later, adjusting the model when the 
computed t-invariants do not coincide with those of the initial 
model. The paper is organized as follows. In Section 2, the 
basic notions on PN are recalled. Section 3 states the 
addressed problem. In Section 4, basic relations, computed 
form the tasks sequence, are introduced. Section 5 presents a 
technique for determining the t-invariants. In Section 6, the 
PN synthesis method is described. Section 7 outlines 
implementation and tests. 

II. BACKGROUND 

This section presents the basic concepts and notations of 

ordinary PN used in this paper.  



Definition 1. An ordinary Petri Net structure G is a 

bipartite digraph represented by the 4-tuple G = (P, T, I, O) 

where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite 

sets of vertices named places and transitions respectively; 

I(O) : P × T  {0,1} is a function representing the arcs going 

from places to transitions (from transitions to places). 

The incidence matrix of G is C = C+  C, where 

C = [cij
]; cij

 = I(pi, tj); and C+ = [cij
+]; cij

+ = O(pi, tj) are the 

pre-incidence and post-incidence matrices respectively.   

A marking function M : P Z+ represents the number of 

tokens residing inside each place; it is usually expressed as an 

|P|-entry vector. Z+ is the set of nonnegative integers. 

 Definition 2. A Petri Net system or Petri Net (PN) is the 

pair N = (G,M0), where G is a PN structure and M0 is an initial 

marking. 

In a PN system, a transition tj is enabled at marking Mk if 

pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired 

reaching a new marking Mk+1, which can be computed as 

Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation is 

called the PN state equation. The reachability set of a PN is 

the set of all possible reachable markings from M0 firing only 

enabled transitions; this set is denoted by R(G,M0).  

Definition 3. A t-invariant Yi of a PN is an integer solution 

to the equation CYi=0 such that Yi0 and Yi0. The support of 
Yi denoted as <Yi> is the set of transitions whose 
corresponding entries in Yi are strictly positive. Y is minimal if 
its support is not included in the support of other t-invariant. A 
t-component G(Yi) is a subnet of PN induced by a <Yi>: 

G(Yi)=(Pi, Ti, Ii, Oi), where Pi =<Yi><Yi>, Ti =<Yi>, Ii= 

PiTiI, and Oi=PiTiO; where  () is the set formed by 

the input (output) nodes to (from) nodes in . 

III. PROBLEM STATEMENT AND PROPOSED APPROACH  

A. Model discovery 

First, we formulate the problem of model discovering in a 

general way; afterwards this technique is placed in the 

contexts of automated manufacturing processes and workflow 

management systems. 

Definition 4. Given a finite alphabet of events or tasks 

T={t1, t2,…, tn} and a set of finite sequences Si=t1t2…tj  T*, 

we define the PN discovery problem as the synthesis of a 1-

bounded PN structure using only transitions in T and the 

discovery of an initial marking, which allows firing every Si. 

The number of places of the PN is not known a priori. 

In the context of automated manufacturing systems, Si 
represents the observation of relevant input-output events 
sampled from the controller during a long execution period of 
time, for example a complete production process performing 
repetitive jobs [10].  

In the context of workflow mining, the observed behaviour 

is a log composed by traces σi  T*, which are sampled from 

the beginning to the end of execution traces (cases). In the 

current problem formulation a S can be formed by the 

concatenation of tasks traces S = σ1σ2...σr regardless the order 

of σi in S. The knowledge of cases delimiting, i.e., the 

beginning and ending of traces, is no longer required. 
Assumptions. In both contexts it is assumed that processes 

are well behaved, i.e. there are no faults, deadlocks, or 
overflows during the observation period. This is a realistic 
assumption since the processes whose models have to be 
discovered are supposed to be in operation, although the 
model is currently unknown or ill known. Thus we can 

consider that the event stream ST* is generated by a 
deadlock-free 1-bounded PN to be discovered. 

B. Overview of the method 

The proposed method synthesises an ordinary PN structure 

and finds an initial marking from which S can be fired. It 

focuses on the computation of the causal and concurrent 

relations between the tasks in the sequence S. This is achieved 

by determining the t-invariants (that are supposed to exist 

since most systems exhibit repetitive behaviour), which also 

are used to find causal implicit relations between events that 

are not observed consecutively.  

In a first stage several binary relations between transitions 

are determined from S; based on these relations the t-

invariants are computed. Afterwards, causal and concurrent 

relations are determined, and together with the discovered t-

invariants, the structure of a PN model is built. Finally, again 

the t-invariants are used for reducing the possible exceeding 

language by determining causality between events not 

observed consecutively. The method is presented for dealing 

with a single sequence S since the extension to deal with 

several Si is straightforward.  

IV. BASIC CONCEPTS AND RELATIONS 

First we introduce several relations derived directly from 
S. Some of the following definitions have been taken and 
adapted from [10]. 

Definition 5. The relationship between transitions that are 

observed consecutively in S is expressed in the relation Seq  
T×T which is defined as Seq={(tj ,tj+1) |1 ≤ j < |S|}; ta Seq tb 
will be frequently denoted as ta < tb. The relation between 
transitions that never occur consecutively in S is T×T\Seq; 
pairs in this relation are denoted as ta >< tb. 

Definition 6. Every couple of consecutive transitions (ta,tb) 

 Seq can be classed into one of the following situations: i) 

Causal relationship. The occurrence of ta enables tb, denoted 

as [ta, tb]. In a PN structure, this implies that there must be at 

least one place from ta to tb.  ii) Concurrent relationship. If 

both ta and tb are simultaneously enabled, and ta occurs first, 

its firing does not disable tb. In a PN structure this implies that 

it is impossible the existence of a place from ta to tb. In this 

case, ta and tb are said to be concurrent, denoted as ta||tb.  

Now a relation that establishes a key property named 

repetitive dependency is introduced. 

Definition 7. A transition tj is repetitively dependent of tk, 
denoted as tj≺tk iff tk is always observed between two 
apparitions of tj in S. If tj has been observed at least twice in S, 



then tj≺tj. The set of transitions from which tj is repetitively 
dependent is given by the function Rd(tj): T → 2T; then Rd(tj)= 

{tk | tj≺t k}. If tj was observed only once in S, then Rd(tj) = . 

Property 1. The transitions in a Rd(tj) are included in the 
support of at least one t-invariant. 

Proof. Rd(tj) is the set of transitions that must invariantly 
occur to fire tj repeatedly. Thus the proof follows directly from 

Definition 7 and the concept of t-invariant. Any tkRd(tj) may 

belong also to other t-components. □ 

Example 1. Consider the set of tasks T={t1, t2, t3, t4, t5, t6, 
t7} and the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 
t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 
t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 
t1 t2 t3 t4 t1. From S it is obtained Seq={(t1, t2), (t2, t3), (t3, t4), 
(t4, t1), (t4, t5), (t5, t6), (t6, t7), (t7, t4), (t2, t4), (t4, t3), (t3, t1), (t3, 
t5)}. Furthermore, one may observe that t1≺t2, t1≺t3, t1≺t4, thus 
Rd(t1)={t1, t2, t3, t4}. The rest of the Rd sets are Rd(t2)={t1, t2, 
t3, t4}, Rd(t3) = {t1,  t2,  t3}, Rd(t4) = {t4}, Rd(t5) = {t4, t5, t6, t7},  
Rd(t6) = {t4,  t5,  t6, t7}, Rd(t7) = {t4,  t5,  t6,  t7}. 

Definition 8. Two transitions ta, tb are called transitions in 
a two-length cycle (Tc) relation if S contains the subsequences 
tatbta or tbtatb. The set of transition pairs fulfilling this feature is 
denoted by Tc. When the subsequence tata appears in S, ta is in 
the relation named self-loop (sl). 

It is easy to see that simple substructures of PN can be 

derived straightforward from Tc or sl. From Example 1, 

Tc=sl=.  

Now, conditions for determining causal and concurrency 

relationships are given. 

Proposition 1. Let ta, tb be two transitions in T; then ta||tb if 

(ta, tb), (tb, ta) Seq, i.e. ta and tb have been observed 

consecutively in S in both orders, and if ta, tb do not form a Tc. 

Proof. It follows from Definition 6(ii) and from the con-

dition that excludes the subsequence characterising a Tc.  □ 

Thus, the set of concurrent transition pairs deduced from S 

is ConcR= {(ta, tb) | ta < tb  tb < ta  (ta, tb  Tc)}. Notice that 

this is a symmetric relation.  

Proposition 2. Let ta, tb be two transitions in T such that 

ta<tb; then [ta, tb] if ta ≺ tb or tb ≺ ta or (ta, tb)  Tc 
Proof. On the one hand, the fact that ta ≺ tb or tb ≺ ta 

implies that there must be a cyclic subsequence including both 
ta and tb, since they belong to a t-invariant (Property 1); thus 
since they have been observed consecutively there exists one 
place between them for assuring the consecutive firing. On the 

other hand, the Tc relation clearly states this dependency. □ 

The set of transitions in a causal relation in S, is defined as:  

CausalR = {(ta, tb)|( ta < tb  (ta≺tb  tb≺ta))  (ta, tb)  Tc}. 

From the sequence in Example 1, ConcR = {(t3, t4), (t4, t3)} 

and CausalR  ={(t1,t2), (t2,t3), (t4,t1), (t4,t5), (t5,t6), (t6,t7), (t7,t4), 

(t2,t4), (t3,t1)}. 

It is possible that several transition pairs in Seq cannot be 

classed as causal or as concurrent, for example (t3,t5). Such 

pairs, contained in Seq’= ((Seq\ CausalR) \ ConcR, will be 

treated later. 

Remark 1: The computational complexity of finding the 

previous relations is Ο(|S|) in the worst case, for the sequential 

and repetitive dependence relations, and O(|T|2) for computing 

causal and concurrent relations. 

 

V. COMPUTING THE T-INVARIANTS 

Based on the previous definitions and properties, a 
technique for determining the t-invariants is proposed. A first 
approximation to the supports of the t-invariants is Rd(tj) 
(Property 1). The main challenge is to discover the t-
invariants whose transitions appear interleaved in S. In 
particular, complex situations can appear when the transitions 
in a Rd(tj) need for its execution the firing of other transitions 
not included in it; also when two or more t-invariants share 
transitions. 

A. Extending the repetitive dependencies  

In order to determine the t-invariants it is necessary to 
extend the Rd sets to obtain the supports of the invariants, by 
using additional notions introduced below. 

Definition 9. A transition ta is indirect repetitive dependent 
of tc denoted as ta ≺≺ tc iff there is a transition tb such that (ta 
≺ tb) and (tb ≺ tc). Therefore, the indirect repetitive dependent 
set is IRd(ta) = {tc |ta≺≺tc}. The transitive extension of a Rd(ta) 
is Rdex(ta) = Rd(ta) ∪ Ird(ta). 

Property 2. All the transitions in a Rdex(ta)belong to the 

support of a t-invariant. 
Proof. It follows from Property 1 and Definition 7; if the 

firing of tb is conditioned to the firing of tc, and  ta≺tb, then the 

firing of ta is also conditioned to the firing of all the tcRd(tb), 
even if tc does not always appears between two occurrences of 

ta (tc Rd(ta)). □ 

Rdex sets approximate the supports of t-invariants; thus it is 
necessary to enlarge these sets. For this purpose, relevant Rdex 
have to be handled.     

Definition 10. A Rdex(tj) set is said to be maximal iff there 
is no other Rdex(tk) that includes Rdex(tj). RdM={RdMi | RdMi 
is a maximal Rdex(tj)}.  

Example 2. Consider the set of tasks T={t0, t1, t2, t3, t4, t5, 
t6, t7} and the sequence S = t6 t1 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 

t2 t3 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t2 

t3 t6 t0 t7 t3 t6 t0 t7 t5 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t5 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 

t0 t5 t2 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 

t0 t5 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t7 

t3 t6 t1 t7 t4 t6 t0 t7 t5 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5 t4 t6 t0 t5 t7 t4 

t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5,…, where |S| = 200.  

The repetitive dependencies computed from S are: Rd(t0) = 

{t0, t6}, Rd(t1) = {t1, t6, t4}, Rd(t2) = {t2, t6}, Rd(t3) = {t3, t0, 

t6}, Rd(t4) = {t4, t6}, Rd(t5) =  {t5, t6, t4, t0}, Rd(t6) = {t6}, 

Rd(t7) = {t7, t6}; the transitive extension does not modify these 

sets, i.e. Ird(ti) = Rd(ti).  
The computed RdMi are: RdM1 ={t5, t6, t4, t0}, RdM2 ={t1, 

t6, t4}, RdM3 ={t3, t6, t0}, RdM4 ={t7, t6}, RdM5 ={t2, t6}.  Other 
relations deduced from S are summarised in Table 1.  



Ti Seq  

(●<tj) 

CausalR 

(●, tj) 

ConcR 

(●||tj) 

Seq´ 

(●<tj) 

T×T\Seq 

 (●><tj) 

t0 t2, t5, t7 t5  t2, t7 t1, t3, t4 t6 

t1 t2, t7   t2, t7 t0, t1, t3, t4, t5, t6 

t2 t3, t5, t4  t5 t3, t4 t1, t0, t7, t6 

t3 t6 t6   t0, t1, t2, t4, t5, t7 

t4 t6 t6   t0, t1, t2, t3, t5, t7 

t5 t2, t4, t7 t4 t2, t7  t1, t0, t3, t4 t6 

t6 t0, t1 t1, t0   t7, t2, t3, t4 t5 

t7 t3, t5, t4  t5 t3, t4 t1, t0, t2, t6 

Table1. Relations between tasks in Example 2. 
 

The knowledge of transitions that belong only to one RdMi 
will be useful for determining the invariants. 

Definition 11. The set of transitions that belong to only 

one RdMi  is )\ ( r

ij1,j1 ji

r

iRdM RdMRdMT    where r=|RdM|.   

Now it is possible to enlarge these sets by merging RdMi 
that share common transitions. This can be done when the 
RdMi fulfils several conditions stated below.  

Proposition 3. All the transitions in a 

yxyx RdMRdMRdM ,
 are included in the support of a t-

invariant if there exist ti  RdMx and tj   RdMy such that  i) 

(ti,tj)ConcR, and ii) Rd(ti)Rd(tj).  

Proof.  Let be tk  Rd(ti)Rd(tj).  Since (ti,tj)ConcR, the 
subsequence ti tj ... tk ... tj ti ... tk ... ti tj ... tk is found in S; that is, 
both transitions ti and tj appear between the occurrences of tk. 
Therefore ti and tj belong to a largest repetitive dependence 

RdMx,y= RdMx RdMy, which is part of the support of a t-
invariant. □ 

The next procedure obtains RdM+, the set of extensions of 
RdMi by performing the union operation between members of 
RdM. 

Algorithm 1. Merging RdMs   

Input: RdM = {RdM1, RdM2… RdMr} 

Output:  RdM+ 

1. RdM+ RdM 

2. (ti, tj)  ConcR 

 If Rd(ti)  Rd(tj)   then  

  RdMx,y  RdMx   RdMy  

 RdM+  RdM+  {RdMx,y } 

 
After applying this procedure to RdM obtained in Example 

2, given that (t5||t7), (t2||t5), and Rd(t5)Rd(t7) and 

Rd(t5)Rd(t2), two new maximal sets are obtained: RdM1,4 

=RdM1RdM4, RdM1,5=RdM1RdM5. Then RdM+={RdM1, 

RdM2, RdM3, RdM4, RdM5, RdM1,4, RdM1,5}. 

B. Finding the repetitive behaviour 

A t-invariant induces a sub-graph of the PN model, called 
repetitive component or t-component. In the case of a 
deadlock-free and 1-bounded PN the t-component is strongly 
connected (Sc). We will analyse the extended RMSi through a 
graph representation of CausalR and the transition pairs in 
Seq’. 

Definition 12. The Graph of causality relations between 

tasks, named causality graph of a RdMi, is a digraph denoted 

Gi, defined as follows.  

}́),(|),{(

}|{);,(

SeqCausalRttVVttE

RdMttVEVG

lkiilki

ikkiiii




 

The set of causality graphs corresponding to RdM+ is denoted 
CG = {G1, G2… Gq}, where Gi is the causality graph of a 

RdMi. A Gi is maximal iff there is not a GkCG such that 

GiGk. 

The set CG corresponding to the RdM+ computed before 

for Example 2 is shown in Figure 1.  

t0 t5

t7

t4 t6

G7: RdM1,4 

t1 t4 t6

G2: RdM2  

t0 t5

t2

t4 t6

G6: RdM1,5

t3 t6 t0

G3: RdM3 

t7 t6

G4: RdM4

t2 t6

G5: RdM5

G1: RdM1

t0 t5 t4 t6

 

Figure 1. CG corresponding to RDM+ of Example 2. 

Theorem 1. Let Gi be a causality graph in CG. If a 

maximal Gi is Sc, then its nodes are the support of some 

minimum t-invariant of the PN that reproduces S.  

Proof. The vertices of Gi correspond to a RdMi whose 

transitions are included in the support of a t-invariant Yi 

(Proposition 3). Suppose that the transitions in Vi are not the 

support of a t-invariant; then there exists at least a tkVi such 

that tk<Yi> that must fire to allow the repetitive firing of 

transitions in Vi together with tk; thus there are not cycles 

containing tk in Gi, consequently it is not Sc. □ 

If the connectivity test is applied to the graphs in CG, it 

may occur that some Gi are not Sc. Then it is possible to 

obtain larger graphs by merging Gi with common vertices, 

through a merging operation of graphs defined below. 

Definition 13. The merging operation (
G ) of two 

causality graphs Gi G Gj  produces a new graph Gi,j.  

}́),(|),{(

);,(

,,

,,,

SeqCausalRttVVttE

VVVEVG

lkjijilk

jijijiji








 

Figure 2 shows the merging of the graphs G2 and G5. The 

idea is to merge iteratively graphs Gi, Gj  GC such that  Vi 

 Vj ≠ . In each iteration every Gi,j produced must not 

include other Sc graphs. Based on this strategy, a procedure 
for computing all the Sc graphs from CG is presented below. 



t1 t4 t6

G2

t2 t6

G5

G

t1 t4 t6
t2

G2,5

 

Figure 2. G2 G G5, where (t1, t2), (t2, t4)  CausalR  Seq’ 
 

Algorithm 2. Getting the t-invariants from S 

Input: CG = {G1, G2… Gq} 

Output: <Y(S)>: Supports of t-invariants  

1. GSc  all maximal Sc GiCG  

2. GNSc  all non Sc GiCG 

3. lNSc  |GNSc| 

4. For 1 to lNSc  

4.1 Gi  GNSc 

Gj  GNSc  Gi  Gj  and  GiGj  

a) Gi,j  Gi G Gj 

b) If Gi,j is Sc and Gk  GSc , Gk  Gi,j 

      then GSc  GSc  Gi,j 

else NewNSc  NewNSc  {Gi,j} 

4.2 GNSc  NewNSc; NewNSc   

5. Return GSc  

The above algorithm ensures that the nodes of each Gi  

GSc correspond to the support of minimal t-invariants.  

Remark 2. The computational complexity of finding the 

supports of T-invariants when no Gi  CG is strongly 

connected (worst case) is Ο(|GNSc|3). However, the worst case 

is unlikely since when Gi,j is built (step 4.1.a), the Gi that are 

Sc are discarded. Furthermore if Gi,j is Sc but if it contains 

other Gk that is Sc (step 4.1.b), then Gi,j is also discarded. 

Theorem 2. Algorithm 2 obtains all the supports of the 

minimal t-invariants of a PN model that reproduces the task 

sequence S.  
Proof. This procedure performs exhaustively the union of 

graphs which are not Sc and have common vertices. In every 
iteration, the formed Sc graphs are no longer considered in the 
union operations; this reduces progressively the number of 
non Sc graphs. Since it is avoided using the already obtained 
Sc graphs; this guarantees finding minimal Sc graphs and then 
the support of minimal invariants. When it is not possible to 
generate new Sc graphs the procedure stops. Every Vi of Gi in 

Gsc is the support of a t-invariant. □ 

The set of obtained t-invariants is Y(S)={Yi | Yi is the 
vector corresponding to Vi} 

When Algorithm 2 is applied to CG of Example 2, the 

resulting supports of t-invariants are <Y1>={t0, t4, t5, t6, t7},  

<Y2>={t0, t4, t5, t6, t2},  <Y3>={t1, t4, t6, t2},  <Y4>={t1, t4, t6, 

t7},  <Y5> = {t0, t3, t6, t2}, and <Y6>={t0, t3, t6, t7}. 

VI. BUILDING THE PN MODEL 

Causal relations [ti, tj] determine the existence of a place 
between transitions. Using this basic structure, named 
dependency, and the knowledge of t-invariants, a technique 
for building a PN model is now presented. 

A. Merging transitions of dependencies 

All the transitions named ti within several dependencies 
must be merged into a single one.  

Rule 1. Two dependencies in the form [ti, tj] and [tj, tk] 
produce, straightforward, a sequential sub-structure including 
two places, which allows the firing of the sequence titjtk, as 
illustrated in Fig 3.a).  

Rule 2. When the first transitions in two dependencies are 
the same ([ti, tj] and [ti, tk]), two possible substructures can be 
created (Fig. 3.b): 

a) The places of the dependencies are merged into a single 

one iff tj and tk belong to different t-invariants. This is 

denoted as [ti, tj+tk]. This rule applies most of the time, but 

a special situation could appear when tj||tk; in this case the 

dependency [ti, tj+tk] is not created. 

b) The places of the dependencies are not merged iff tj and tk 

belong to a same t-invariant. This is denoted as [ti, tj||tk]. 

Similarly, for dependencies having a common second 

transition ([ti, tk] and [tj, tk]), the substructure created will be 

either [ti+tj, tk] or [ti||tj, tk] (Fig. 3.b). In both cases the 

observations (ti, tj), (ti, tk), (tj, tk)Seq, deriving the 

dependencies, are preserved. This merging rule is illustrated in 

Figure 3. In general, a set of dependencies in the form {[ti, tj], 

[ti, tk], ... [ti, tr]} may produce either [ti, tj+tk+...+tr] or [ti, 

tj||tk||...||tr] according to the relations between transitions tj, 

tk,..., tr. 

ti tjtj tk

[ti, tj] [tj, tk] 
ti tj tk

 
a) Sequential merging 
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b) OR/AND split/join merging  

Figure 3. Rules for merging dependencies 

Consequently, the merging can be applied to composed 

dependencies that coincide with one expression of transitions 

of  type ti+tj or ti||tj; for example  [ti+tj, tk] and [ti+tj, tr] leads 

to [ti+tj, tk+tr] if both tk and tr do not belong to the same 

invariant. 



The application of these merging rules to the dependencies 

derived from the pairs in CausalRSeq’, leads to a PN model 
N1 including all the transitions. 

In Example 2, the application of rules 1 and 2 to the 

obtained relations in CausalRSeq’ of Table 1 yields the set 
of composed dependencies: [t5, t4], [t0, t2||t5],  [t0, t5||t7], [t0, 
t2+t7], [t1, t2+t7], [t2, t3+t4], [t7, t3+t4], [t4+t3, t6], [t6, t0+t1], 
[t0+t1, t2], [t0+t1, t7], [t2||t5, t4], [t7||t5, t4], [t7+t2, t3] [t7+t2, t4]. 
Afterwards the obtained dependencies are p0:[t6, t1+t0], 
p1:[t0+t1, t2+t7], p1,p2: [t0, (t2+t7)||t5], p3: [t5, t4],   p4:[t2+t7, 
t4+t3], p5:[t4+t3, t6]. The sequential merging of substructures of 
the dependencies yields the PN model N1 shown in Figure 4.  

 

Figure 4. N1 built from S of example 2. 

B. Model adjustment 

Although S may be fired in N1 most of the times, the 
obtained model could not fire S, or could fire S but also 
exceeding sequences. The PN in Figure 4 does not reproduce S 
of Example 2 in particular the subsequences t1t2t4 and t1t7t4 
cannot be fired in N1. This is because the computed t-
invariants Y(S) differ from those of N1 (J(N1)). If Y(S) 
coincide with J(N1), then N1 is the correct model; otherwise it 

must be adjusted.  
The mismatching between Y(S) and J(N1) is due to the fact 

that the computed model does not include PN elements (places 

and arcs) which assure implicit behaviours not exhibited in S, 

named implicit dependencies. 

Definition 14. In a 1-bounded PN, [ti, tj] is called an 

implicit dependency, if although there is a place between the 

transitions, the firing of ti does not produce a marking that 

enables tj. It is necessary the firing of at least one transition 

before tj.    

In a PN model, implicit dependencies represent the record 

of the occurrence of a ti, which is used as condition to enable a 

future event tj. In general, an implicit dependency represents a 

constraint in the flow of tokens in the net by assuring that tj is 

fired only when ti is fired before; otherwise the absence of 

such a dependency will allow the firing of exceeding 

sequences in the remainder model.  

When Y(S)J(N1), N1 must therefore be adjusted by 
finding the pertinent implicit dependencies that extend N1 into 
N2, whose t-invariants agree with Y(S). In order to amend N1, 

two cases of mismatching are considered: 1) Y(S)J(N1), or 2) 

Y(S)J(N1) and Y(S)J(N1), i.e. YiY(S) such that YiJ(N1). 
The handling of each case is described below. 

Case 1  
In this case N1 has more invariants than those computed 

from S; thus it represents an exceeding behaviour. A new 
place between two transitions ti and tj has to be added to N1 in 
order to constrain the differed firing of tj after the firing of ti. 

Proposition 4. A dependency [ti, tj] must be added to N1 if 

the following condition holds: (ti><tj)  (ti, tj <Yk>)  (ti, 

tjTRDM). 
Proof. If [ti, tj] must not be added, it is because i) ti and tj 

have been observed consecutively (ti<tj), or ii) each transition 
belongs to a different t-component, or iii) at least one of ti, tj 

does not belong to a TRDM .  □ 

Case 2 
Let J(N1) = {J1, J2, .., Jr} be the set of t-invariants of N1, 

such that CJj=0, where C is the incidence matrix of N1. 

Consider a YrJ(N1). Let pk be the place corresponding to the 

row in which CYr 0 (i.e. C(pk)Yr 0). In order to obtain the 
dependency [ti, tj], other transition in N1 must be linked 

through pk to one of the transitions in ●pk or pk
● according to 

the following rule. 

Proposition 5. A dependency [ti, tj] must be added to N1 if 

ti><tj, and ti, tj <Yr>, and if one of the following conditions 

holds: i)   ti●pk  and  tjTRDM, when |●pk|<|pk
●|, or ii) tjpk

● 

and tiTRDM, when |●pk|>|pk
●|. This dependency ensures that 

C(pk)Yr=0. 
Proof. The two first conditions are the same than those of 

Case 1. We will analyse the conditions regarding ●pk and pk
●. 

In both situations |●pk| and |pk
●| are unbalanced and one of ti or 

tj has to be related to one of ●pk and pk
● accordingly, to enforce 

Jr as t-invariant of N1. Furthermore |●pk|=|pk
●| yielding 

C(pk)Yr=0. □ 

When all the corrections to N1 are done, it is possible that 

Y(S)J(N1), then the rule of Case 1 is applied and the new 
model N2 fulfils Y(S)=J(N2). Algorithm 3 summarises the 
procedure to obtain the implicit dependencies. 

Algorithm 3. Finding implicit dependencies  

Input: N1, J(N1), Y(S) 

Output: N2 

1. If Y(S)  J(N1) 

a)  (ti, tj) | ti, >< tj  ti, tj  TRdM  ti, tj  yi 

add a place between (ti, tj) 

2. If yiY(S) | yiJ(N1) 

 a) Find a pk | C(pk)yi 0 

b) Add [ti, tj] through pk relations that fulfil 

  ti, >< tj   ti, tj  yi  (ti●pk  , tjTRDM ) or 

ti, >< tj   ti, tj  yi  (tjpk
●  , tiTRDM )  

Remark 3. The complexity of computing the implicit 

dependencies is O(|P|×|T|); it is related to the matrix-vector 

product operation C(pk)yi.  

Let us analyze N1 in Figure 4, obtained from S in Example 

2. First it is computed J(N1) ={<J1>, <J2>, <J3>, <J4> }; <J1> = 



{t0, t4, t5, t6, t7}, <J2> = {t0, t4, t5, t6, t2}, <J3> = {t1, t2, t3, t6}, 

<J4> = {t1, t7, t3, t6}. There is a mismatch between both sets 

and since Y(S)  J(N1), the problem is handled as in Case 2. It 

can be noticed that Y3, Y4, Y5, Y6  J(N1). In the analysis of 

Y3,  pk = p3  because it fulfils the condition CN1(p3)Yi 0, as 

show in the next equation.   
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The transition in t4pk
● is chosen to find the implicit 

dependency [ti, t4]. The transition that fulfils the conditions 

ti><t4, ti, t4 <Y3>, tiTRdM, is t1; therefore the implicit 
dependency [t1, t4] is added to N1 by the corresponding arc (t1, 
p3). Similarly Y4, Y5, Y6 are treated and the implicit 
dependency [t0, t3] in p2 is found. Finally the resulting PN 
model N2, which exactly reproduces S is shown in Figure 5. 

 
Figure 5. Resulting PN N2 after model adjustment.  

Theorem 3. Given a sequence of transitions ST*, a 1-

bounded PN model N2 that reproduces S can be obtained by 

applying the rules 1 and 2, and performing the adjustments of 

Algorithm 3.  

Proof. Causality between transitions, established by the pairs 

in CausalRSeq’ represents the precedence relationship 

between consecutive transitions in S that are not in ConcR. 

The substructure associated to a dependency [ti, tj] guarantees 

the consecutive firing of these transitions; thus by applying 

Rule 1 the flow expressed in CausalRSeq’ is fulfilled by N1. 

Furthermore, Rule 2 determines, by the knowledge of the t-

invariants, whether the flow is split or joint in choice or 

parallel structures. Dependencies involving transitions 

included in Sc causality graphs assure the construction of 

repetitive components in N1. Furthermore, adjustments to N1 

provided by Propositions 4 and 5 allow fitting the invariants 

computed form the observed behaviour with those of the 

discovered model. □ 

C. Initial marking 

The Initial marking must enable S; thus the procedure for 

determining M0 is simple; it suffices a) to place tokens in the 

input places of the first transition in S, and b) executing the 

remainder tj in S and eventually adding tokens in some places 

of ●tj when the reached marking is not enough for firing tj. In 

the case of example 2, the only place initially marked in the 

PN Fig. 5 is p5. 

D. Processing several event sequences 

This synthesis method may process r event traces Si 

corresponding to the observed behaviour of the same discrete 

event process. The only constraint is that all the sequences 

must be sampled from the starting of the process. All the 

observed precedence relationships in Seqi of every Si are 

gathered into the Seq relation at the beginning of the discovery 

procedure. The initial marking is determined for enabling 

every Si. 

VII. IMPLEMENTATION AND TESTS 

Algorithms derived from the proposed method have been 
implemented as a software tool and tested on numerous 
examples of diverse complexity. The tests were performed 
using the following scheme: first, a PN model is designed, and 
with the help of the PN editor/simulator PIPE [21], a long 
sequence S is produced. Then the tool processes S and the 
obtained model, coded in XML, is displayed using PIPE 
again. 

Below we provide an example regarding a less simple PN 
model that can be discovered using the proposed PN discovery 
method. The model in Figure 6 has been obtained by 
processing the task log S = T16 T14 T2 T4 T3 T5 T9 T7 T3 T5 T9 T3 
T5 T8 T17 T2 T3 T5 T9 T3 T4 T7 T5 T8 T11 T13 T15 T16 T1 T2 T4 T3 T5 
T8 T6 T10 T17 T2 T3 T4 T5 T6 T9 T3 T5 T10 T9 T3 T5 T9 T3 T5 T9 T3 T5 
T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T4 T3 T7 T5 T9 T3 T5 
T9 T3 T5 T8 T11 T12 T15 T16 T1 T2 T4 T7 T3 T5 T8 T11 T12 T15 T16 T14 
T2 T3 T5 T8 T4 T6 T10 T17 T2 T3 T4 T6 T10 T5 T9 T3 T5 T8 T17 T2 T4 
T6 T3 T10 T5 T9 T3 T5 T8 T17 T2 T3 T5 T8 T4 T6 T10 T11 T13 T15 T16 
T14 T2 T4 T7 T3 T5 T9 T3 T5 T8 T11 T13 T15 T16 T1 T2 T3 T5 T9 T4 T6 
T3 T10 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T3 T5 T9 T4 T3 T6 T5 

T9 T3 T10 T5 T8 T11 T12 T15 T16 T14 T2 … , where |S|= 1500. 

This model includes diverse structures (nested t-
component evolving concurrently) which are more complex 
than others published in literature. As a sign of performance, 
the processing time for S in a laptop computer (2.4GHz dual-
core, Intel Core i5 processor, 4GB of 1333MHz DDR3 
memory) was about 3.6 s. 

Thanks to the software tool we developed it has been 

possible to test models of diverse structures, which include 

cycles nested into t-components, concurrency, and implicit 

dependencies. Special models such as two independent PNs 

concurrently evolving, and concurrent components related by 

mailbox places (message exchange) have been successfully 

built. This reveals the power of the method for dealing with 

black-box model discovery. 
 

VIII. CONCLUSION 

The proposed method for PN discovery handles long 

sequences Si representing the observed behaviour of a process 

from their initial states. No a priori knowledge about the 

number of places nor the start and end of tasks in traces σj in Si 

is required.  



 
Figure 6. A non trivial discovered PN model from S3 

This approach allows addressing efficiently discrete event 

processes exhibiting more complex behaviours than the 

approaches proposed in the fields of identification and process 

mining. This method is based mainly on searching the 

supports of t-invariants from the observed sequences Si, and 

allows building an initial model which is adjusted later with 

the help of the computed t-invariants; the final model includes 

implicit causal relationships between transitions that have not 

been observed consecutively. The discovered PN fires exactly 

the sequences Si from M0 and may eventually accept 

exceeding iterative sub-sequences, which correspond to the 

behaviour inherent to PN with repetitive components. 

Implementation and tests revealed accuracy and efficiency 

of the method when complex PN structures were addressed. 

Current research addresses the problem of PN discovery from 

incomplete observed sequences. 
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