
HAL Id: hal-01067790
https://hal.science/hal-01067790

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Petri Net Discovery of Discrete Event Processes by
Computing T-invariants

Tonatiuh Tapia-Flores, Ernesto López-Mellado, Ana-Paula Estrada-Vargas,
Jean-Jacques Lesage

To cite this version:
Tonatiuh Tapia-Flores, Ernesto López-Mellado, Ana-Paula Estrada-Vargas, Jean-Jacques Lesage.
Petri Net Discovery of Discrete Event Processes by Computing T-invariants. 19th IEEE Int. Conf.
on Emerging Technologies and Factory Automation (ETFA’14), Sep 2014, Barcelone, Spain. paper
345, 8 p. �hal-01067790�

https://hal.science/hal-01067790
https://hal.archives-ouvertes.fr

Petri Net Discovery of Discrete Event Processes

by Computing T-invariants

Tonatiuh Tapia-Flores1, Ernesto López-Mellado1, Ana Paula Estrada-Vargas2, Jean-Jacques Lesage3
1CINVESTAV Unidad Guadalajara. Av. del Bosque 1145, Col. El Bajío. 45019 Zapopan, Mexico

2Oracle de México S. A. de C. V. Av. de los Empresarios 135, Col. Puerta de Hierro. 45110 Zapopan, Mexico
3LURPA, Ecole Normale Supérieure de Cachan. 61, Av. du Président Wilson. 94235 Cachan Cedex, France

{ttapia, elopez}@gdl.cinvestav.mx, ana.estrada@oracle.com, Jean-Jacques.lesage@lurpa.ens-cachan.fr

Abstract— In this paper the problem of discovering a Petri net

(PN) from sampled events sequences representing the execution of

industrial or business processes is addressed. A method for building

a 1-bounded PN from a single event sequence S composed of

numerous execution traces is presented; it is based on determining

causal and concurrency relations between tasks. A technique for

computing the t-invariants of the PN from S is proposed; the

obtained invariants allow determining the structure of a PN that

executes S. The algorithms derived from the method have been

implemented and tested on numerous examples of diverse

complexity.

Keywords— Model discovery; Petri Nets; t-invariants

I. INTRODUCTION

The synthesis of formal models from external observation

of systems behaviour is an interesting and challenging

approach for reverse engineering purposes in discrete event

systems. Although the problem is relatively recent, it deserves

the attention of several research groups in the fields of discrete

event systems (DES) and workflow management systems

(WMS).

Pioneer works on the matter, named language learning

techniques, appear in computer sciences. The aim was to build

fine representations (finite automata, grammars) of languages

from samples of accepted words [1, 2].

In the field of DES, where the problem is named

identification, several approaches have been proposed for

building models representing the observed behaviour of

automated processes. The incremental approach proposed in

[3, 4] allows building safe interpreted Petri net (PN) models

from a continuous stream of system’s outputs. In [5], a method

based on the statement and solution of an integer linear

programming problem is proposed; it allows building PN from

a set of sequences of events. Extensions of this method are

proposed in [6, 7]. In [8] a method for deriving finite automata

from sequences of inputs and outputs is presented; it is applied

to fault detection of manufacturing processes. An extension to

this method that allows obtaining distributed system models is

presented in [9]. In [10] Input-output identification of

automated manufacturing process is addressed; an interpreted

PN is obtained from a set of sequences of input-output vectors

collected from the controller during the system cyclic

operation. The method is extended for dealing with a long

single observation of input-output vectors [11]. More

complete reviews on DES identification can be found in [12]

and [13].

In WMS the analogous problem is named workflow

mining; the system observation is given as a set of sequences

from a finite alphabet of tasks, representing execution logs of

business processes. A first proposal is reported in [14], in

which a finite automaton, called conformal graph is obtained.

In [15] it is proposed a probabilistic approach to find the

concurrent and direct relations between tasks. The input of the

method is a sequence of events that represent the activities that

have occurred in a workflow management system; the

obtained model is graph similar to a PN. In [16] a mining

method called algorithm alpha is presented. In this method a

workflow tasks log composed by several traces is recorded

sequentially and processed yielding a subclass of PN called

workflow net. Numerous publications present extensions of

this algorithm namely [17, 18, and 19]. In particular in this last

work a strong hypothesis is held: the workflow engine

provides, for every task in the log, the next tasks to be

executed even if they are not consecutive; this means that all

the causal relationships are a priori known. More related

works can be found in [20].
In the present paper a new method for building a safe Petri

net (PN) from a single sequence of tasks S, composed by
numerous processes execution traces, is proposed. It follows
the approach presented in [10] and proposes new results
allowing addressing more complex behaviours such as implicit
dependencies between tasks that are not observed
consecutively. The method is based on determining, from S,
causal and concurrency relations between tasks and the
computing of the t-invariants of the PN to discover. The
obtained invariants allow, first, determining the initial
structure of a PN, and later, adjusting the model when the
computed t-invariants do not coincide with those of the initial
model. The paper is organized as follows. In Section 2, the
basic notions on PN are recalled. Section 3 states the
addressed problem. In Section 4, basic relations, computed
form the tasks sequence, are introduced. Section 5 presents a
technique for determining the t-invariants. In Section 6, the
PN synthesis method is described. Section 7 outlines
implementation and tests.

II. BACKGROUND

This section presents the basic concepts and notations of

ordinary PN used in this paper.

Definition 1. An ordinary Petri Net structure G is a

bipartite digraph represented by the 4-tuple G = (P, T, I, O)

where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite

sets of vertices named places and transitions respectively;

I(O) : P × T  {0,1} is a function representing the arcs going

from places to transitions (from transitions to places).

The incidence matrix of G is C = C+  C, where

C = [cij
]; cij

 = I(pi, tj); and C+ = [cij
+]; cij

+ = O(pi, tj) are the

pre-incidence and post-incidence matrices respectively.

A marking function M : P Z+ represents the number of

tokens residing inside each place; it is usually expressed as an

|P|-entry vector. Z+ is the set of nonnegative integers.

 Definition 2. A Petri Net system or Petri Net (PN) is the

pair N = (G,M0), where G is a PN structure and M0 is an initial

marking.

In a PN system, a transition tj is enabled at marking Mk if

pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired

reaching a new marking Mk+1, which can be computed as

Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation is

called the PN state equation. The reachability set of a PN is

the set of all possible reachable markings from M0 firing only

enabled transitions; this set is denoted by R(G,M0).

Definition 3. A t-invariant Yi of a PN is an integer solution

to the equation CYi=0 such that Yi0 and Yi0. The support of
Yi denoted as <Yi> is the set of transitions whose
corresponding entries in Yi are strictly positive. Y is minimal if
its support is not included in the support of other t-invariant. A
t-component G(Yi) is a subnet of PN induced by a <Yi>:

G(Yi)=(Pi, Ti, Ii, Oi), where Pi =<Yi><Yi>, Ti =<Yi>, Ii=

PiTiI, and Oi=PiTiO; where  () is the set formed by

the input (output) nodes to (from) nodes in .

III. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Model discovery

First, we formulate the problem of model discovering in a

general way; afterwards this technique is placed in the

contexts of automated manufacturing processes and workflow

management systems.

Definition 4. Given a finite alphabet of events or tasks

T={t1, t2,…, tn} and a set of finite sequences Si=t1t2…tj  T*,

we define the PN discovery problem as the synthesis of a 1-

bounded PN structure using only transitions in T and the

discovery of an initial marking, which allows firing every Si.

The number of places of the PN is not known a priori.

In the context of automated manufacturing systems, Si
represents the observation of relevant input-output events
sampled from the controller during a long execution period of
time, for example a complete production process performing
repetitive jobs [10].

In the context of workflow mining, the observed behaviour

is a log composed by traces σi  T*, which are sampled from

the beginning to the end of execution traces (cases). In the

current problem formulation a S can be formed by the

concatenation of tasks traces S = σ1σ2...σr regardless the order

of σi in S. The knowledge of cases delimiting, i.e., the

beginning and ending of traces, is no longer required.
Assumptions. In both contexts it is assumed that processes

are well behaved, i.e. there are no faults, deadlocks, or
overflows during the observation period. This is a realistic
assumption since the processes whose models have to be
discovered are supposed to be in operation, although the
model is currently unknown or ill known. Thus we can

consider that the event stream ST* is generated by a
deadlock-free 1-bounded PN to be discovered.

B. Overview of the method

The proposed method synthesises an ordinary PN structure

and finds an initial marking from which S can be fired. It

focuses on the computation of the causal and concurrent

relations between the tasks in the sequence S. This is achieved

by determining the t-invariants (that are supposed to exist

since most systems exhibit repetitive behaviour), which also

are used to find causal implicit relations between events that

are not observed consecutively.

In a first stage several binary relations between transitions

are determined from S; based on these relations the t-

invariants are computed. Afterwards, causal and concurrent

relations are determined, and together with the discovered t-

invariants, the structure of a PN model is built. Finally, again

the t-invariants are used for reducing the possible exceeding

language by determining causality between events not

observed consecutively. The method is presented for dealing

with a single sequence S since the extension to deal with

several Si is straightforward.

IV. BASIC CONCEPTS AND RELATIONS

First we introduce several relations derived directly from
S. Some of the following definitions have been taken and
adapted from [10].

Definition 5. The relationship between transitions that are

observed consecutively in S is expressed in the relation Seq 
T×T which is defined as Seq={(tj ,tj+1) |1 ≤ j < |S|}; ta Seq tb
will be frequently denoted as ta < tb. The relation between
transitions that never occur consecutively in S is T×T\Seq;
pairs in this relation are denoted as ta >< tb.

Definition 6. Every couple of consecutive transitions (ta,tb)

 Seq can be classed into one of the following situations: i)

Causal relationship. The occurrence of ta enables tb, denoted

as [ta, tb]. In a PN structure, this implies that there must be at

least one place from ta to tb. ii) Concurrent relationship. If

both ta and tb are simultaneously enabled, and ta occurs first,

its firing does not disable tb. In a PN structure this implies that

it is impossible the existence of a place from ta to tb. In this

case, ta and tb are said to be concurrent, denoted as ta||tb.

Now a relation that establishes a key property named

repetitive dependency is introduced.

Definition 7. A transition tj is repetitively dependent of tk,
denoted as tj≺tk iff tk is always observed between two
apparitions of tj in S. If tj has been observed at least twice in S,

then tj≺tj. The set of transitions from which tj is repetitively
dependent is given by the function Rd(tj): T → 2T; then Rd(tj)=

{tk | tj≺t k}. If tj was observed only once in S, then Rd(tj) = .

Property 1. The transitions in a Rd(tj) are included in the
support of at least one t-invariant.

Proof. Rd(tj) is the set of transitions that must invariantly
occur to fire tj repeatedly. Thus the proof follows directly from

Definition 7 and the concept of t-invariant. Any tkRd(tj) may

belong also to other t-components. □

Example 1. Consider the set of tasks T={t1, t2, t3, t4, t5, t6,
t7} and the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6
t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7
t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3
t1 t2 t3 t4 t1. From S it is obtained Seq={(t1, t2), (t2, t3), (t3, t4),
(t4, t1), (t4, t5), (t5, t6), (t6, t7), (t7, t4), (t2, t4), (t4, t3), (t3, t1), (t3,
t5)}. Furthermore, one may observe that t1≺t2, t1≺t3, t1≺t4, thus
Rd(t1)={t1, t2, t3, t4}. The rest of the Rd sets are Rd(t2)={t1, t2,
t3, t4}, Rd(t3) = {t1, t2, t3}, Rd(t4) = {t4}, Rd(t5) = {t4, t5, t6, t7},
Rd(t6) = {t4, t5, t6, t7}, Rd(t7) = {t4, t5, t6, t7}.

Definition 8. Two transitions ta, tb are called transitions in
a two-length cycle (Tc) relation if S contains the subsequences
tatbta or tbtatb. The set of transition pairs fulfilling this feature is
denoted by Tc. When the subsequence tata appears in S, ta is in
the relation named self-loop (sl).

It is easy to see that simple substructures of PN can be

derived straightforward from Tc or sl. From Example 1,

Tc=sl=.

Now, conditions for determining causal and concurrency

relationships are given.

Proposition 1. Let ta, tb be two transitions in T; then ta||tb if

(ta, tb), (tb, ta) Seq, i.e. ta and tb have been observed

consecutively in S in both orders, and if ta, tb do not form a Tc.

Proof. It follows from Definition 6(ii) and from the con-

dition that excludes the subsequence characterising a Tc. □

Thus, the set of concurrent transition pairs deduced from S

is ConcR= {(ta, tb) | ta < tb  tb < ta  (ta, tb  Tc)}. Notice that

this is a symmetric relation.

Proposition 2. Let ta, tb be two transitions in T such that

ta<tb; then [ta, tb] if ta ≺ tb or tb ≺ ta or (ta, tb)  Tc
Proof. On the one hand, the fact that ta ≺ tb or tb ≺ ta

implies that there must be a cyclic subsequence including both
ta and tb, since they belong to a t-invariant (Property 1); thus
since they have been observed consecutively there exists one
place between them for assuring the consecutive firing. On the

other hand, the Tc relation clearly states this dependency. □

The set of transitions in a causal relation in S, is defined as:

CausalR = {(ta, tb)|(ta < tb  (ta≺tb  tb≺ta))  (ta, tb)  Tc}.

From the sequence in Example 1, ConcR = {(t3, t4), (t4, t3)}

and CausalR ={(t1,t2), (t2,t3), (t4,t1), (t4,t5), (t5,t6), (t6,t7), (t7,t4),

(t2,t4), (t3,t1)}.

It is possible that several transition pairs in Seq cannot be

classed as causal or as concurrent, for example (t3,t5). Such

pairs, contained in Seq’= ((Seq\ CausalR) \ ConcR, will be

treated later.

Remark 1: The computational complexity of finding the

previous relations is Ο(|S|) in the worst case, for the sequential

and repetitive dependence relations, and O(|T|2) for computing

causal and concurrent relations.

V. COMPUTING THE T-INVARIANTS

Based on the previous definitions and properties, a
technique for determining the t-invariants is proposed. A first
approximation to the supports of the t-invariants is Rd(tj)
(Property 1). The main challenge is to discover the t-
invariants whose transitions appear interleaved in S. In
particular, complex situations can appear when the transitions
in a Rd(tj) need for its execution the firing of other transitions
not included in it; also when two or more t-invariants share
transitions.

A. Extending the repetitive dependencies

In order to determine the t-invariants it is necessary to
extend the Rd sets to obtain the supports of the invariants, by
using additional notions introduced below.

Definition 9. A transition ta is indirect repetitive dependent
of tc denoted as ta ≺≺ tc iff there is a transition tb such that (ta
≺ tb) and (tb ≺ tc). Therefore, the indirect repetitive dependent
set is IRd(ta) = {tc |ta≺≺tc}. The transitive extension of a Rd(ta)
is Rdex(ta) = Rd(ta) ∪ Ird(ta).

Property 2. All the transitions in a Rdex(ta)belong to the

support of a t-invariant.
Proof. It follows from Property 1 and Definition 7; if the

firing of tb is conditioned to the firing of tc, and ta≺tb, then the

firing of ta is also conditioned to the firing of all the tcRd(tb),
even if tc does not always appears between two occurrences of

ta (tc Rd(ta)). □

Rdex sets approximate the supports of t-invariants; thus it is
necessary to enlarge these sets. For this purpose, relevant Rdex
have to be handled.

Definition 10. A Rdex(tj) set is said to be maximal iff there
is no other Rdex(tk) that includes Rdex(tj). RdM={RdMi | RdMi
is a maximal Rdex(tj)}.

Example 2. Consider the set of tasks T={t0, t1, t2, t3, t4, t5,
t6, t7} and the sequence S = t6 t1 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0

t2 t3 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t2

t3 t6 t0 t7 t3 t6 t0 t7 t5 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t5 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6

t0 t5 t2 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6

t0 t5 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t7

t3 t6 t1 t7 t4 t6 t0 t7 t5 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5 t4 t6 t0 t5 t7 t4

t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5,…, where |S| = 200.

The repetitive dependencies computed from S are: Rd(t0) =

{t0, t6}, Rd(t1) = {t1, t6, t4}, Rd(t2) = {t2, t6}, Rd(t3) = {t3, t0,

t6}, Rd(t4) = {t4, t6}, Rd(t5) = {t5, t6, t4, t0}, Rd(t6) = {t6},

Rd(t7) = {t7, t6}; the transitive extension does not modify these

sets, i.e. Ird(ti) = Rd(ti).
The computed RdMi are: RdM1 ={t5, t6, t4, t0}, RdM2 ={t1,

t6, t4}, RdM3 ={t3, t6, t0}, RdM4 ={t7, t6}, RdM5 ={t2, t6}. Other
relations deduced from S are summarised in Table 1.

Ti Seq

(●<tj)

CausalR

(●, tj)

ConcR

(●||tj)

Seq´

(●<tj)

T×T\Seq

 (●><tj)

t0 t2, t5, t7 t5 t2, t7 t1, t3, t4 t6

t1 t2, t7 t2, t7 t0, t1, t3, t4, t5, t6

t2 t3, t5, t4 t5 t3, t4 t1, t0, t7, t6

t3 t6 t6 t0, t1, t2, t4, t5, t7

t4 t6 t6 t0, t1, t2, t3, t5, t7

t5 t2, t4, t7 t4 t2, t7 t1, t0, t3, t4 t6

t6 t0, t1 t1, t0 t7, t2, t3, t4 t5

t7 t3, t5, t4 t5 t3, t4 t1, t0, t2, t6

Table1. Relations between tasks in Example 2.

The knowledge of transitions that belong only to one RdMi
will be useful for determining the invariants.

Definition 11. The set of transitions that belong to only

one RdMi is)\ (r

ij1,j1 ji

r

iRdM RdMRdMT   where r=|RdM|.

Now it is possible to enlarge these sets by merging RdMi
that share common transitions. This can be done when the
RdMi fulfils several conditions stated below.

Proposition 3. All the transitions in a

yxyx RdMRdMRdM ,
 are included in the support of a t-

invariant if there exist ti  RdMx and tj  RdMy such that i)

(ti,tj)ConcR, and ii) Rd(ti)Rd(tj).

Proof. Let be tk  Rd(ti)Rd(tj). Since (ti,tj)ConcR, the
subsequence ti tj ... tk ... tj ti ... tk ... ti tj ... tk is found in S; that is,
both transitions ti and tj appear between the occurrences of tk.
Therefore ti and tj belong to a largest repetitive dependence

RdMx,y= RdMx RdMy, which is part of the support of a t-
invariant. □

The next procedure obtains RdM+, the set of extensions of
RdMi by performing the union operation between members of
RdM.

Algorithm 1. Merging RdMs

Input: RdM = {RdM1, RdM2… RdMr}

Output: RdM+

1. RdM+ RdM

2. (ti, tj)  ConcR

 If Rd(ti)  Rd(tj)   then

 RdMx,y  RdMx  RdMy

 RdM+  RdM+  {RdMx,y }

After applying this procedure to RdM obtained in Example

2, given that (t5||t7), (t2||t5), and Rd(t5)Rd(t7) and

Rd(t5)Rd(t2), two new maximal sets are obtained: RdM1,4

=RdM1RdM4, RdM1,5=RdM1RdM5. Then RdM+={RdM1,

RdM2, RdM3, RdM4, RdM5, RdM1,4, RdM1,5}.

B. Finding the repetitive behaviour

A t-invariant induces a sub-graph of the PN model, called
repetitive component or t-component. In the case of a
deadlock-free and 1-bounded PN the t-component is strongly
connected (Sc). We will analyse the extended RMSi through a
graph representation of CausalR and the transition pairs in
Seq’.

Definition 12. The Graph of causality relations between

tasks, named causality graph of a RdMi, is a digraph denoted

Gi, defined as follows.

}́),(|),{(

}|{);,(

SeqCausalRttVVttE

RdMttVEVG

lkiilki

ikkiiii





The set of causality graphs corresponding to RdM+ is denoted
CG = {G1, G2… Gq}, where Gi is the causality graph of a

RdMi. A Gi is maximal iff there is not a GkCG such that

GiGk.

The set CG corresponding to the RdM+ computed before

for Example 2 is shown in Figure 1.

t0 t5

t7

t4 t6

G7: RdM1,4

t1 t4 t6

G2: RdM2

t0 t5

t2

t4 t6

G6: RdM1,5

t3 t6 t0

G3: RdM3

t7 t6

G4: RdM4

t2 t6

G5: RdM5

G1: RdM1

t0 t5 t4 t6

Figure 1. CG corresponding to RDM+ of Example 2.

Theorem 1. Let Gi be a causality graph in CG. If a

maximal Gi is Sc, then its nodes are the support of some

minimum t-invariant of the PN that reproduces S.

Proof. The vertices of Gi correspond to a RdMi whose

transitions are included in the support of a t-invariant Yi

(Proposition 3). Suppose that the transitions in Vi are not the

support of a t-invariant; then there exists at least a tkVi such

that tk<Yi> that must fire to allow the repetitive firing of

transitions in Vi together with tk; thus there are not cycles

containing tk in Gi, consequently it is not Sc. □

If the connectivity test is applied to the graphs in CG, it

may occur that some Gi are not Sc. Then it is possible to

obtain larger graphs by merging Gi with common vertices,

through a merging operation of graphs defined below.

Definition 13. The merging operation (
G) of two

causality graphs Gi G Gj produces a new graph Gi,j.

}́),(|),{(

);,(

,,

,,,

SeqCausalRttVVttE

VVVEVG

lkjijilk

jijijiji









Figure 2 shows the merging of the graphs G2 and G5. The

idea is to merge iteratively graphs Gi, Gj  GC such that Vi

 Vj ≠ . In each iteration every Gi,j produced must not

include other Sc graphs. Based on this strategy, a procedure
for computing all the Sc graphs from CG is presented below.

t1 t4 t6

G2

t2 t6

G5

G

t1 t4 t6
t2

G2,5

Figure 2. G2 G G5, where (t1, t2), (t2, t4)  CausalR  Seq’

Algorithm 2. Getting the t-invariants from S

Input: CG = {G1, G2… Gq}

Output: <Y(S)>: Supports of t-invariants

1. GSc  all maximal Sc GiCG

2. GNSc  all non Sc GiCG

3. lNSc  |GNSc|

4. For 1 to lNSc

4.1 Gi  GNSc

Gj  GNSc  Gi  Gj and GiGj 

a) Gi,j  Gi G Gj

b) If Gi,j is Sc and Gk  GSc , Gk  Gi,j

 then GSc  GSc  Gi,j

else NewNSc  NewNSc  {Gi,j}

4.2 GNSc  NewNSc; NewNSc  

5. Return GSc

The above algorithm ensures that the nodes of each Gi 

GSc correspond to the support of minimal t-invariants.

Remark 2. The computational complexity of finding the

supports of T-invariants when no Gi  CG is strongly

connected (worst case) is Ο(|GNSc|3). However, the worst case

is unlikely since when Gi,j is built (step 4.1.a), the Gi that are

Sc are discarded. Furthermore if Gi,j is Sc but if it contains

other Gk that is Sc (step 4.1.b), then Gi,j is also discarded.

Theorem 2. Algorithm 2 obtains all the supports of the

minimal t-invariants of a PN model that reproduces the task

sequence S.
Proof. This procedure performs exhaustively the union of

graphs which are not Sc and have common vertices. In every
iteration, the formed Sc graphs are no longer considered in the
union operations; this reduces progressively the number of
non Sc graphs. Since it is avoided using the already obtained
Sc graphs; this guarantees finding minimal Sc graphs and then
the support of minimal invariants. When it is not possible to
generate new Sc graphs the procedure stops. Every Vi of Gi in

Gsc is the support of a t-invariant. □

The set of obtained t-invariants is Y(S)={Yi | Yi is the
vector corresponding to Vi}

When Algorithm 2 is applied to CG of Example 2, the

resulting supports of t-invariants are <Y1>={t0, t4, t5, t6, t7},

<Y2>={t0, t4, t5, t6, t2}, <Y3>={t1, t4, t6, t2}, <Y4>={t1, t4, t6,

t7}, <Y5> = {t0, t3, t6, t2}, and <Y6>={t0, t3, t6, t7}.

VI. BUILDING THE PN MODEL

Causal relations [ti, tj] determine the existence of a place
between transitions. Using this basic structure, named
dependency, and the knowledge of t-invariants, a technique
for building a PN model is now presented.

A. Merging transitions of dependencies

All the transitions named ti within several dependencies
must be merged into a single one.

Rule 1. Two dependencies in the form [ti, tj] and [tj, tk]
produce, straightforward, a sequential sub-structure including
two places, which allows the firing of the sequence titjtk, as
illustrated in Fig 3.a).

Rule 2. When the first transitions in two dependencies are
the same ([ti, tj] and [ti, tk]), two possible substructures can be
created (Fig. 3.b):

a) The places of the dependencies are merged into a single

one iff tj and tk belong to different t-invariants. This is

denoted as [ti, tj+tk]. This rule applies most of the time, but

a special situation could appear when tj||tk; in this case the

dependency [ti, tj+tk] is not created.

b) The places of the dependencies are not merged iff tj and tk

belong to a same t-invariant. This is denoted as [ti, tj||tk].

Similarly, for dependencies having a common second

transition ([ti, tk] and [tj, tk]), the substructure created will be

either [ti+tj, tk] or [ti||tj, tk] (Fig. 3.b). In both cases the

observations (ti, tj), (ti, tk), (tj, tk)Seq, deriving the

dependencies, are preserved. This merging rule is illustrated in

Figure 3. In general, a set of dependencies in the form {[ti, tj],

[ti, tk], ... [ti, tr]} may produce either [ti, tj+tk+...+tr] or [ti,

tj||tk||...||tr] according to the relations between transitions tj,

tk,..., tr.

ti tjtj tk

[ti, tj] [tj, tk]
ti tj tk

a) Sequential merging

ti

ti

tj

tk

[ti, tj]

[ti, tk]

tj

ti

tk

tj[ti, tj+tk]

ti

tk
[ti, tj||tk]

ti

tj

tk

tk

[ti, tk]

[tj, tk]
tj

ti

tk

tj

[ti+tj, tk]

ti

tk

[ti||tj, tk]
b) OR/AND split/join merging

Figure 3. Rules for merging dependencies

Consequently, the merging can be applied to composed

dependencies that coincide with one expression of transitions

of type ti+tj or ti||tj; for example [ti+tj, tk] and [ti+tj, tr] leads

to [ti+tj, tk+tr] if both tk and tr do not belong to the same

invariant.

The application of these merging rules to the dependencies

derived from the pairs in CausalRSeq’, leads to a PN model
N1 including all the transitions.

In Example 2, the application of rules 1 and 2 to the

obtained relations in CausalRSeq’ of Table 1 yields the set
of composed dependencies: [t5, t4], [t0, t2||t5], [t0, t5||t7], [t0,
t2+t7], [t1, t2+t7], [t2, t3+t4], [t7, t3+t4], [t4+t3, t6], [t6, t0+t1],
[t0+t1, t2], [t0+t1, t7], [t2||t5, t4], [t7||t5, t4], [t7+t2, t3] [t7+t2, t4].
Afterwards the obtained dependencies are p0:[t6, t1+t0],
p1:[t0+t1, t2+t7], p1,p2: [t0, (t2+t7)||t5], p3: [t5, t4], p4:[t2+t7,
t4+t3], p5:[t4+t3, t6]. The sequential merging of substructures of
the dependencies yields the PN model N1 shown in Figure 4.

Figure 4. N1 built from S of example 2.

B. Model adjustment

Although S may be fired in N1 most of the times, the
obtained model could not fire S, or could fire S but also
exceeding sequences. The PN in Figure 4 does not reproduce S
of Example 2 in particular the subsequences t1t2t4 and t1t7t4
cannot be fired in N1. This is because the computed t-
invariants Y(S) differ from those of N1 (J(N1)). If Y(S)
coincide with J(N1), then N1 is the correct model; otherwise it

must be adjusted.
The mismatching between Y(S) and J(N1) is due to the fact

that the computed model does not include PN elements (places

and arcs) which assure implicit behaviours not exhibited in S,

named implicit dependencies.

Definition 14. In a 1-bounded PN, [ti, tj] is called an

implicit dependency, if although there is a place between the

transitions, the firing of ti does not produce a marking that

enables tj. It is necessary the firing of at least one transition

before tj.

In a PN model, implicit dependencies represent the record

of the occurrence of a ti, which is used as condition to enable a

future event tj. In general, an implicit dependency represents a

constraint in the flow of tokens in the net by assuring that tj is

fired only when ti is fired before; otherwise the absence of

such a dependency will allow the firing of exceeding

sequences in the remainder model.

When Y(S)J(N1), N1 must therefore be adjusted by
finding the pertinent implicit dependencies that extend N1 into
N2, whose t-invariants agree with Y(S). In order to amend N1,

two cases of mismatching are considered: 1) Y(S)J(N1), or 2)

Y(S)J(N1) and Y(S)J(N1), i.e. YiY(S) such that YiJ(N1).
The handling of each case is described below.

Case 1
In this case N1 has more invariants than those computed

from S; thus it represents an exceeding behaviour. A new
place between two transitions ti and tj has to be added to N1 in
order to constrain the differed firing of tj after the firing of ti.

Proposition 4. A dependency [ti, tj] must be added to N1 if

the following condition holds: (ti><tj)  (ti, tj <Yk>)  (ti,

tjTRDM).
Proof. If [ti, tj] must not be added, it is because i) ti and tj

have been observed consecutively (ti<tj), or ii) each transition
belongs to a different t-component, or iii) at least one of ti, tj

does not belong to a TRDM . □

Case 2
Let J(N1) = {J1, J2, .., Jr} be the set of t-invariants of N1,

such that CJj=0, where C is the incidence matrix of N1.

Consider a YrJ(N1). Let pk be the place corresponding to the

row in which CYr 0 (i.e. C(pk)Yr 0). In order to obtain the
dependency [ti, tj], other transition in N1 must be linked

through pk to one of the transitions in ●pk or pk
● according to

the following rule.

Proposition 5. A dependency [ti, tj] must be added to N1 if

ti><tj, and ti, tj <Yr>, and if one of the following conditions

holds: i) ti●pk and tjTRDM, when |●pk|<|pk
●|, or ii) tjpk

●

and tiTRDM, when |●pk|>|pk
●|. This dependency ensures that

C(pk)Yr=0.
Proof. The two first conditions are the same than those of

Case 1. We will analyse the conditions regarding ●pk and pk
●.

In both situations |●pk| and |pk
●| are unbalanced and one of ti or

tj has to be related to one of ●pk and pk
● accordingly, to enforce

Jr as t-invariant of N1. Furthermore |●pk|=|pk
●| yielding

C(pk)Yr=0. □

When all the corrections to N1 are done, it is possible that

Y(S)J(N1), then the rule of Case 1 is applied and the new
model N2 fulfils Y(S)=J(N2). Algorithm 3 summarises the
procedure to obtain the implicit dependencies.

Algorithm 3. Finding implicit dependencies

Input: N1, J(N1), Y(S)

Output: N2

1. If Y(S)  J(N1)

a)  (ti, tj) | ti, >< tj  ti, tj  TRdM  ti, tj  yi

add a place between (ti, tj)

2. If yiY(S) | yiJ(N1)

 a) Find a pk | C(pk)yi 0

b) Add [ti, tj] through pk relations that fulfil

 ti, >< tj  ti, tj  yi  (ti●pk , tjTRDM) or

ti, >< tj  ti, tj  yi  (tjpk
● , tiTRDM)

Remark 3. The complexity of computing the implicit

dependencies is O(|P|×|T|); it is related to the matrix-vector

product operation C(pk)yi.

Let us analyze N1 in Figure 4, obtained from S in Example

2. First it is computed J(N1) ={<J1>, <J2>, <J3>, <J4> }; <J1> =

{t0, t4, t5, t6, t7}, <J2> = {t0, t4, t5, t6, t2}, <J3> = {t1, t2, t3, t6},

<J4> = {t1, t7, t3, t6}. There is a mismatch between both sets

and since Y(S)  J(N1), the problem is handled as in Case 2. It

can be noticed that Y3, Y4, Y5, Y6  J(N1). In the analysis of

Y3, pk = p3 because it fulfils the condition CN1(p3)Yi 0, as

show in the next equation.






































































































0

0

1

0

0

0

0

1

0

1

0

1

1

0

01011000

10011100

00110000

00100001

10000111

01000011

 CN1 Y3

The transition in t4pk
● is chosen to find the implicit

dependency [ti, t4]. The transition that fulfils the conditions

ti><t4, ti, t4 <Y3>, tiTRdM, is t1; therefore the implicit
dependency [t1, t4] is added to N1 by the corresponding arc (t1,
p3). Similarly Y4, Y5, Y6 are treated and the implicit
dependency [t0, t3] in p2 is found. Finally the resulting PN
model N2, which exactly reproduces S is shown in Figure 5.

Figure 5. Resulting PN N2 after model adjustment.

Theorem 3. Given a sequence of transitions ST*, a 1-

bounded PN model N2 that reproduces S can be obtained by

applying the rules 1 and 2, and performing the adjustments of

Algorithm 3.

Proof. Causality between transitions, established by the pairs

in CausalRSeq’ represents the precedence relationship

between consecutive transitions in S that are not in ConcR.

The substructure associated to a dependency [ti, tj] guarantees

the consecutive firing of these transitions; thus by applying

Rule 1 the flow expressed in CausalRSeq’ is fulfilled by N1.

Furthermore, Rule 2 determines, by the knowledge of the t-

invariants, whether the flow is split or joint in choice or

parallel structures. Dependencies involving transitions

included in Sc causality graphs assure the construction of

repetitive components in N1. Furthermore, adjustments to N1

provided by Propositions 4 and 5 allow fitting the invariants

computed form the observed behaviour with those of the

discovered model. □

C. Initial marking

The Initial marking must enable S; thus the procedure for

determining M0 is simple; it suffices a) to place tokens in the

input places of the first transition in S, and b) executing the

remainder tj in S and eventually adding tokens in some places

of ●tj when the reached marking is not enough for firing tj. In

the case of example 2, the only place initially marked in the

PN Fig. 5 is p5.

D. Processing several event sequences

This synthesis method may process r event traces Si

corresponding to the observed behaviour of the same discrete

event process. The only constraint is that all the sequences

must be sampled from the starting of the process. All the

observed precedence relationships in Seqi of every Si are

gathered into the Seq relation at the beginning of the discovery

procedure. The initial marking is determined for enabling

every Si.

VII. IMPLEMENTATION AND TESTS

Algorithms derived from the proposed method have been
implemented as a software tool and tested on numerous
examples of diverse complexity. The tests were performed
using the following scheme: first, a PN model is designed, and
with the help of the PN editor/simulator PIPE [21], a long
sequence S is produced. Then the tool processes S and the
obtained model, coded in XML, is displayed using PIPE
again.

Below we provide an example regarding a less simple PN
model that can be discovered using the proposed PN discovery
method. The model in Figure 6 has been obtained by
processing the task log S = T16 T14 T2 T4 T3 T5 T9 T7 T3 T5 T9 T3
T5 T8 T17 T2 T3 T5 T9 T3 T4 T7 T5 T8 T11 T13 T15 T16 T1 T2 T4 T3 T5
T8 T6 T10 T17 T2 T3 T4 T5 T6 T9 T3 T5 T10 T9 T3 T5 T9 T3 T5 T9 T3 T5
T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T4 T3 T7 T5 T9 T3 T5
T9 T3 T5 T8 T11 T12 T15 T16 T1 T2 T4 T7 T3 T5 T8 T11 T12 T15 T16 T14
T2 T3 T5 T8 T4 T6 T10 T17 T2 T3 T4 T6 T10 T5 T9 T3 T5 T8 T17 T2 T4
T6 T3 T10 T5 T9 T3 T5 T8 T17 T2 T3 T5 T8 T4 T6 T10 T11 T13 T15 T16
T14 T2 T4 T7 T3 T5 T9 T3 T5 T8 T11 T13 T15 T16 T1 T2 T3 T5 T9 T4 T6
T3 T10 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T3 T5 T9 T4 T3 T6 T5

T9 T3 T10 T5 T8 T11 T12 T15 T16 T14 T2 … , where |S|= 1500.

This model includes diverse structures (nested t-
component evolving concurrently) which are more complex
than others published in literature. As a sign of performance,
the processing time for S in a laptop computer (2.4GHz dual-
core, Intel Core i5 processor, 4GB of 1333MHz DDR3
memory) was about 3.6 s.

Thanks to the software tool we developed it has been

possible to test models of diverse structures, which include

cycles nested into t-components, concurrency, and implicit

dependencies. Special models such as two independent PNs

concurrently evolving, and concurrent components related by

mailbox places (message exchange) have been successfully

built. This reveals the power of the method for dealing with

black-box model discovery.

VIII. CONCLUSION

The proposed method for PN discovery handles long

sequences Si representing the observed behaviour of a process

from their initial states. No a priori knowledge about the

number of places nor the start and end of tasks in traces σj in Si

is required.

Figure 6. A non trivial discovered PN model from S3

This approach allows addressing efficiently discrete event

processes exhibiting more complex behaviours than the

approaches proposed in the fields of identification and process

mining. This method is based mainly on searching the

supports of t-invariants from the observed sequences Si, and

allows building an initial model which is adjusted later with

the help of the computed t-invariants; the final model includes

implicit causal relationships between transitions that have not

been observed consecutively. The discovered PN fires exactly

the sequences Si from M0 and may eventually accept

exceeding iterative sub-sequences, which correspond to the

behaviour inherent to PN with repetitive components.

Implementation and tests revealed accuracy and efficiency

of the method when complex PN structures were addressed.

Current research addresses the problem of PN discovery from

incomplete observed sequences.

IX. REFERENCES

[1] M. E. Gold, “Language identification in the limit”, Information

and Control, 10(5), pp. 447-474, 1967

[2] D. Angluin, “Queries and Concept Learning”, Machine Learning,

vol. 2, pp. 319-342, 1988

[3] M. Meda-Campana, A. Ramirez-Treviño, and E. Loopez-

Mellado, “Asymptotic identification of discrete event systems”, in

Proc. of the 39th IEEE Conf. on Decision and Control, pp. 2266-

2271, 2000

[4] M. Meda-Campana and E. López-Mellado, “Identification of

concurrent discrete event systems using Petri nets”, in Proc. of the

17th IMACS World Congress on Computational and Applied

Mathematics, pp. 11-15, 2005

[5] M.P. Cabasino, A. Giua, C. Seatzu, "Identification of Petri nets

from knowledge of their language," Discrete Event Dynamic

Systems, Vol. 17, No. 4, pp. 447-474, 2007

[6] M. P. Cabasino, A. Giua, and C. Seatzu, “Linear programming

techniques for the identification of place/transition nets”, in

Proc. of the 47th IEEE Conf. on Decision and Control, pp. 514-

520, 2008

[7] M. Dotoli, M. Pia Fanti, A. M. Mangini, and W. Ukovich,

“Identification of the unobservable behaviour of industrial

automation systems by Petri nets”, Control Engineering Practice,

19(9), pp. 958-966, 2011

[8] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of discrete event

systems using an identification approach”, in Proc. of the 16th

IFAC world Congress, 6 pages, 2005

[9] M. Roth, S. Schneider, J.-J. Lesage, and L. Litz, “Fault

detection and isolation in manufacturing systems with an

identified discrete event model”, International Journal of

Systems Science, 43(10), pp. 1826-1841, 2012

[10] A.P. Estrada-Vargas, E. Lopez-Mellado, and J.-J. Lesage,

“Identification of partially observable discrete event

manufacturing systems”, in Proc. of the 18th IEEE Conf. on

Emerging Technologies & Factory Automation, pp. 1-7, 2013

[11] A.P. Estrada-Vargas, J-J. Lesage, E. López-Mellado “A

Stepwise Method for Identification of Controlled Discrete

Manufacturing Systems”. Int. Journal of Computer Integrated

Manufacturing. Pub. on-line: Jan, 27, 2014. ISSN: 0951-192X

pp.1-13

[12] A.P. Estrada-Vargas, E. Lopez-Mellado, and J.-J. Lesage, “A

comparative analysis of recent identification approaches for

discrete event systems”, Mathematical Problems in Engineering,

vol. 2010, 2010

[13] M. P. Cabasino, P. Darondeau, M. P. Fanti, and C. Seatzu,

“Model identification and synthesis of discrete-event systems”,

Contemporary Issues in Systems Science and Engineering,

IEEE/Wiley Press Book Series 2013

[14] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process

Models from Workflow Logs”, Lecture Notes in Computer

Science, Vol. 1377, pp. 469–483, 1998

[15] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf, “Discovering

models of behavior for concurrent workflows”, Computers in

industry, 53(3), pp. 297-319, 2004

[16] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow

mining: Discovering process models from event logs”, IEEE

Trans. On Knowledge and Data Engineering, 16(9), pp. 1128-

1142, 2004

[17] L. Wen, J. Wang, and J. Sun, “Detecting implicit

dependencies between tasks from event logs”, Lecture Notes in

Computer Science, Vol. 3841, pp 591-603, 2006

[18] D. Wang, J. Ge, H. Hu, and B. Luo, “A new process mining

algorithm based on event type”, in Proc. of the 9th IEEE Conf. on

Dependable Autonomic and Secure Computing, pp. 1144-1151,

2011

[19] D. Wang, J. Ge, H. Hu, B. Luo, and L. Huang, “Discovering

process models from event multiset”, Expert Systems with

Applications, 39(15), pp. 11970-11978, 2012.

[20] W. M. Van der Aalst, “ Discovery, Conformance and

Enhancement of Business Processes”, 368 pages, Springer, 2011

[21] PIPE 2: Platform Independent Petri net Editor 2,
http://pipe2.sourceforge.net/

