Tonatiuh Tapia-Flores

Ernesto López-Mellado

Ana Paula Estrada-Vargas

Jean-Jacques Lesage
email: jacques.lesage@lurpa.ens-cachan.fr

Petri Net Discovery of Discrete Event Processes by Computing T-invariants

Keywords: Model discovery, Petri Nets, t-invariants I

In this paper the problem of discovering a Petri net (PN) from sampled events sequences representing the execution of industrial or business processes is addressed. A method for building a 1-bounded PN from a single event sequence S composed of numerous execution traces is presented; it is based on determining causal and concurrency relations between tasks. A technique for computing the t-invariants of the PN from S is proposed; the obtained invariants allow determining the structure of a PN that executes S. The algorithms derived from the method have been implemented and tested on numerous examples of diverse complexity.

INTRODUCTION

The synthesis of formal models from external observation of systems behaviour is an interesting and challenging approach for reverse engineering purposes in discrete event systems. Although the problem is relatively recent, it deserves the attention of several research groups in the fields of discrete event systems (DES) and workflow management systems (WMS).

Pioneer works on the matter, named language learning techniques, appear in computer sciences. The aim was to build fine representations (finite automata, grammars) of languages from samples of accepted words [START_REF] Gold | Language identification in the limit[END_REF][START_REF] Angluin | Queries and Concept Learning[END_REF].

In the field of DES, where the problem is named identification, several approaches have been proposed for building models representing the observed behaviour of automated processes. The incremental approach proposed in [START_REF] Meda-Campana | Asymptotic identification of discrete event systems[END_REF][START_REF] Meda-Campana | Identification of concurrent discrete event systems using Petri nets[END_REF] allows building safe interpreted Petri net (PN) models from a continuous stream of system's outputs. In [START_REF] Cabasino | Identification of Petri nets from knowledge of their language[END_REF], a method based on the statement and solution of an integer linear programming problem is proposed; it allows building PN from a set of sequences of events. Extensions of this method are proposed in [START_REF] Cabasino | Linear programming techniques for the identification of place/transition nets[END_REF][START_REF] Dotoli | Identification of the unobservable behaviour of industrial automation systems by Petri nets[END_REF]. In [START_REF] Klein | Fault detection of discrete event systems using an identification approach[END_REF] a method for deriving finite automata from sequences of inputs and outputs is presented; it is applied to fault detection of manufacturing processes. An extension to this method that allows obtaining distributed system models is presented in [START_REF] Roth | Fault detection and isolation in manufacturing systems with an identified discrete event model[END_REF]. In [START_REF] Estrada-Vargas | Identification of partially observable discrete event manufacturing systems[END_REF] Input-output identification of automated manufacturing process is addressed; an interpreted PN is obtained from a set of sequences of input-output vectors collected from the controller during the system cyclic operation. The method is extended for dealing with a long single observation of input-output vectors [START_REF] Estrada-Vargas | A Stepwise Method for Identification of Controlled Discrete Manufacturing Systems[END_REF]. More complete reviews on DES identification can be found in [START_REF] Estrada-Vargas | A comparative analysis of recent identification approaches for discrete event systems[END_REF] and [START_REF] Cabasino | Model identification and synthesis of discrete-event systems[END_REF].

In WMS the analogous problem is named workflow mining; the system observation is given as a set of sequences from a finite alphabet of tasks, representing execution logs of business processes. A first proposal is reported in [START_REF] Agrawal | Mining Process Models from Workflow Logs[END_REF], in which a finite automaton, called conformal graph is obtained. In [START_REF] Cook | Discovering models of behavior for concurrent workflows[END_REF] it is proposed a probabilistic approach to find the concurrent and direct relations between tasks. The input of the method is a sequence of events that represent the activities that have occurred in a workflow management system; the obtained model is graph similar to a PN. In [START_REF] Van Der Aalst | Workflow mining: Discovering process models from event logs[END_REF] a mining method called algorithm alpha is presented. In this method a workflow tasks log composed by several traces is recorded sequentially and processed yielding a subclass of PN called workflow net. Numerous publications present extensions of this algorithm namely [17, 18, and 19]. In particular in this last work a strong hypothesis is held: the workflow engine provides, for every task in the log, the next tasks to be executed even if they are not consecutive; this means that all the causal relationships are a priori known. More related works can be found in [START_REF] Van Der Aalst | Discovery, Conformance and Enhancement of Business Processes[END_REF].

In the present paper a new method for building a safe Petri net (PN) from a single sequence of tasks S, composed by numerous processes execution traces, is proposed. It follows the approach presented in [START_REF] Estrada-Vargas | Identification of partially observable discrete event manufacturing systems[END_REF] and proposes new results allowing addressing more complex behaviours such as implicit dependencies between tasks that are not observed consecutively. The method is based on determining, from S, causal and concurrency relations between tasks and the computing of the t-invariants of the PN to discover. The obtained invariants allow, first, determining the initial structure of a PN, and later, adjusting the model when the computed t-invariants do not coincide with those of the initial model. The paper is organized as follows. In Section 2, the basic notions on PN are recalled. Section 3 states the addressed problem. In Section 4, basic relations, computed form the tasks sequence, are introduced. Section 5 presents a technique for determining the t-invariants. In Section 6, the PN synthesis method is described. Section 7 outlines implementation and tests.

II. BACKGROUND

This section presents the basic concepts and notations of ordinary PN used in this paper. The incidence matrix of

G is C = C +  C  , where C  = [cij ]; cij  = I(pi, tj); and C + = [cij +]; cij + = O(pi,
tj) are the pre-incidence and post-incidence matrices respectively.

A marking function M : P Z + represents the number of tokens residing inside each place; it is usually expressed as an |P|-entry vector. Z + is the set of nonnegative integers. Definition 2. A Petri Net system or Petri Net (PN) is the pair N = (G,M0), where G is a PN structure and M0 is an initial marking.

In a PN system, a transition tj is enabled at marking Mk if pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired reaching a new marking Mk+1, which can be computed as Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation is called the PN state equation. The reachability set of a PN is the set of all possible reachable markings from M0 firing only enabled transitions; this set is denoted by R(G,M0). Definition 3. A t-invariant Yi of a PN is an integer solution to the equation CYi=0 such that Yi0 and Yi0. The support of Yi denoted as <Yi> is the set of transitions whose corresponding entries in Yi are strictly positive. Y is minimal if its support is not included in the support of other t-invariant. A t-component G(Yi) is a subnet of PN induced by a <Yi>: G(Yi)=(Pi, Ti, Ii, Oi), where Pi =  <Yi><Yi>  , Ti =<Yi>, Ii= PiTiI, and Oi=PiTiO; where   ( ) is the set formed by the input (output) nodes to (from) nodes in .

III. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Model discovery

First, we formulate the problem of model discovering in a general way; afterwards this technique is placed in the contexts of automated manufacturing processes and workflow management systems. Definition 4. Given a finite alphabet of events or tasks T={t1, t2,…, tn} and a set of finite sequences Si=t1t2…tj  T*, we define the PN discovery problem as the synthesis of a 1bounded PN structure using only transitions in T and the discovery of an initial marking, which allows firing every Si. The number of places of the PN is not known a priori.

In the context of automated manufacturing systems, Si represents the observation of relevant input-output events sampled from the controller during a long execution period of time, for example a complete production process performing repetitive jobs [START_REF] Estrada-Vargas | Identification of partially observable discrete event manufacturing systems[END_REF].

In the context of workflow mining, the observed behaviour is a log composed by traces σi  T*, which are sampled from the beginning to the end of execution traces (cases). In the current problem formulation a S can be formed by the concatenation of tasks traces S = σ1σ2...σr regardless the order of σi in S. The knowledge of cases delimiting, i.e., the beginning and ending of traces, is no longer required.

Assumptions. In both contexts it is assumed that processes are well behaved, i.e. there are no faults, deadlocks, or overflows during the observation period. This is a realistic assumption since the processes whose models have to be discovered are supposed to be in operation, although the model is currently unknown or ill known. Thus we can consider that the event stream ST* is generated by a deadlock-free 1-bounded PN to be discovered.

B. Overview of the method

The proposed method synthesises an ordinary PN structure and finds an initial marking from which S can be fired. It focuses on the computation of the causal and concurrent relations between the tasks in the sequence S. This is achieved by determining the t-invariants (that are supposed to exist since most systems exhibit repetitive behaviour), which also are used to find causal implicit relations between events that are not observed consecutively.

In a first stage several binary relations between transitions are determined from S; based on these relations the tinvariants are computed. Afterwards, causal and concurrent relations are determined, and together with the discovered tinvariants, the structure of a PN model is built. Finally, again the t-invariants are used for reducing the possible exceeding language by determining causality between events not observed consecutively. The method is presented for dealing with a single sequence S since the extension to deal with several Si is straightforward.

IV. BASIC CONCEPTS AND RELATIONS

First we introduce several relations derived directly from S. Some of the following definitions have been taken and adapted from [START_REF] Estrada-Vargas | Identification of partially observable discrete event manufacturing systems[END_REF].

Definition 5. The relationship between transitions that are observed consecutively in S is expressed in the relation Seq  T×T which is defined as Seq={(tj ,tj+1) |1 ≤ j < |S|}; ta Seq tb will be frequently denoted as ta < tb. The relation between transitions that never occur consecutively in S is T×T\Seq; pairs in this relation are denoted as ta >< tb. Definition 6. Every couple of consecutive transitions (ta,tb)  Seq can be classed into one of the following situations: i) Causal relationship. The occurrence of ta enables tb, denoted as [ta, tb]. In a PN structure, this implies that there must be at least one place from ta to tb. ii) Concurrent relationship. If both ta and tb are simultaneously enabled, and ta occurs first, its firing does not disable tb. In a PN structure this implies that it is impossible the existence of a place from ta to tb. In this case, ta and tb are said to be concurrent, denoted as ta||tb. Now a relation that establishes a key property named repetitive dependency is introduced.

Definition 7.

A transition tj is repetitively dependent of tk, denoted as tj≺tk iff tk is always observed between two apparitions of tj in S. If tj has been observed at least twice in S, then tj≺tj. The set of transitions from which tj is repetitively dependent is given by the function Rd(tj): T → 2 T ; then Rd(tj)= {tk | tj≺t k}. If tj was observed only once in S, then Rd(tj) = . Property 1. The transitions in a Rd(tj) are included in the support of at least one t-invariant.

Proof. Rd(tj) is the set of transitions that must invariantly occur to fire tj repeatedly. Thus the proof follows directly from Definition 7 and the concept of t-invariant. Any tkRd(tj) may belong also to other t-components. □ Example 1. Consider the set of tasks T={t1, t2, t3, t4, t5, t6, t7} and the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1. From S it is obtained Seq={(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t4, t5), (t5, t6), (t6, t7), (t7, t4), (t2, t4), (t4, t3), (t3, t1), (t3, t5)}. Furthermore, one may observe that t1≺t2, t1≺t3, t1≺t4, thus Rd(t1)={t1, t2, t3, t4}. The rest of the Rd sets are It is easy to see that simple substructures of PN can be derived straightforward from Tc or sl. From Example 1, Tc=sl=.

Rd(t2)={t1, t2, t3, t4}, Rd(t3) = {t1, t2, t3}, Rd(t4) = {t4}, Rd(t5) = {t4, t5, t6, t7}, Rd(t6) = {t4, t5, t6, t7}, Rd(t7) = {t4, t5, t6, t7}.
Now, conditions for determining causal and concurrency relationships are given. Proposition 1. Let ta, tb be two transitions in T; then ta||tb if (ta, tb), (tb, ta) Seq, i.e. ta and tb have been observed consecutively in S in both orders, and if ta, tb do not form a Tc.

Proof. It follows from Definition 6(ii) and from the condition that excludes the subsequence characterising a Tc. □ Thus, the set of concurrent transition pairs deduced from S is ConcR= {(ta, tb) | ta < tb  tb < ta  (ta, tb  Tc)}. Notice that this is a symmetric relation.

Proposition 2.

Let ta, tb be two transitions in T such that ta<tb; then [ta, tb] if ta ≺ tb or tb ≺ ta or (ta, tb)  Tc

Proof. On the one hand, the fact that ta ≺ tb or tb ≺ ta implies that there must be a cyclic subsequence including both ta and tb, since they belong to a t-invariant (Property 1); thus since they have been observed consecutively there exists one place between them for assuring the consecutive firing. On the other hand, the Tc relation clearly states this dependency. □

The set of transitions in a causal relation in S, is defined as:

CausalR = {(ta, tb)|(ta < tb  (ta≺tb  tb≺ta))  (ta, tb)  Tc}.
From the sequence in Example 1, ConcR = {(t3, t4), (t4, t3)} and CausalR ={(t1,t2), (t2,t3), (t4,t1), (t4,t5), (t5,t6), (t6,t7), (t7,t4), (t2,t4), (t3,t1)}.

It is possible that several transition pairs in Seq cannot be classed as causal or as concurrent, for example (t3,t5). Such pairs, contained in Seq'= ((Seq\ CausalR) \ ConcR, will be treated later.

Remark 1: The computational complexity of finding the previous relations is Ο(|S|) in the worst case, for the sequential and repetitive dependence relations, and O(|T| 2) for computing causal and concurrent relations.

V. COMPUTING THE T-INVARIANTS

Based on the previous definitions and properties, a technique for determining the t-invariants is proposed. A first approximation to the supports of the t-invariants is Rd(tj) (Property 1). The main challenge is to discover the tinvariants whose transitions appear interleaved in S. In particular, complex situations can appear when the transitions in a Rd(tj) need for its execution the firing of other transitions not included in it; also when two or more t-invariants share transitions.

A. Extending the repetitive dependencies

In order to determine the t-invariants it is necessary to extend the Rd sets to obtain the supports of the invariants, by using additional notions introduced below. Definition 9. A transition ta is indirect repetitive dependent of tc denoted as ta ≺≺ tc iff there is a transition tb such that (ta ≺ tb) and (tb ≺ tc). Therefore, the indirect repetitive dependent set is IRd(ta) = {tc |ta≺≺tc}. The transitive extension of a Rd(ta) is Rdex(ta) = Rd(ta) ∪ Ird(ta). Property 2. All the transitions in a Rdex(ta)belong to the support of a t-invariant.

Proof. It follows from Property 1 and Definition 7; if the firing of tb is conditioned to the firing of tc, and ta≺tb, then the firing of ta is also conditioned to the firing of all the tcRd(tb), even if tc does not always appears between two occurrences of ta (tc Rd(ta)). □

Rdex sets approximate the supports of t-invariants; thus it is necessary to enlarge these sets. For this purpose, relevant Rdex have to be handled. Definition 10. A Rdex(tj) set is said to be maximal iff there is no other Rdex(tk) that includes Rdex(tj). RdM={RdMi | RdMi is a maximal Rdex(tj)}.

Example 2. Consider the set of tasks T={t0, t1, t2, t3, t4, t5, t6, t7} and the sequence S = t6 t1 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 t2 t3 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t2 t3 t6 t0 t7 t3 t6 t0 t7 t5 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t5 t7 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t5 t2 t4 t6 t1 t7 t4 t6 t1 t2 t4 t6 t0 t2 t3 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4 t6 t1 t2 t4 t6 t0 t7 t3 t6 t0 t5 t2 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t1 t7 t4 t6 t0 t7 t3 t6 t1 t7 t4 t6 t0 t7 t5 t4 t6 t1 t2 t4 t6 t0 t5 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5 t4 t6 t0 t5 t7 t4 t6 t0 t2 t5 t4 t6 t1 t7 t4 t6 t0 t7 t3 t6 t0 t2 t5,…, where |S| = 200.

The repetitive dependencies computed from S are: Rd(t0) = {t0, t6}, Rd(t1) = {t1, t6, t4}, Rd(t2) = {t2, t6}, Rd(t3) = {t3, t0, t6}, Rd(t4) = {t4, t6}, Rd(t5) = {t5, t6, t4, t0}, Rd(t6) = {t6}, Rd(t7) = {t7, t6}; the transitive extension does not modify these sets, i.e. Ird(ti) = Rd(ti).

The computed RdMi are: RdM1 ={t5, t6, t4, t0}, RdM2 ={t1, t6, t4}, RdM3 ={t3, t6, t0}, RdM4 ={t7, t6}, RdM5 ={t2, t6}. Other relations deduced from S are summarised in Table 1. The knowledge of transitions that belong only to one RdMi will be useful for determining the invariants.

Definition 11. The set of transitions that belong to only one

RdMi is) \ (r i j 1, j 1 j i r i RdM RdM RdM T      
where r=|RdM|.

Now it is possible to enlarge these sets by merging RdMi that share common transitions. This can be done when the RdMi fulfils several conditions stated below.

Proposition 3.

All the transitions in a

y x y x RdM RdM RdM   ,
are included in the support of a tinvariant if there exist ti  RdMx and tj  RdMy such that i) (ti,tj)ConcR, and ii) Rd(ti)Rd(tj).

Proof. Let be tk  Rd(ti)Rd(tj). Since (ti,tj)ConcR, the subsequence ti tj ... tk ... tj ti ... tk ... ti tj ... tk is found in S; that is, both transitions ti and tj appear between the occurrences of tk. Therefore ti and tj belong to a largest repetitive dependence RdMx,y= RdMx RdMy, which is part of the support of a tinvariant. □

The next procedure obtains RdM + , the set of extensions of RdMi by performing the union operation between members of RdM.

Algorithm 1. Merging RdMs

Input: RdM = {RdM1, RdM2… RdMr} Output: RdM + 1. RdM +  RdM 2. (ti, tj)  ConcR If Rd(ti)  Rd(tj)   then RdMx,y  RdMx  RdMy RdM +  RdM +  {RdMx,y }
After applying this procedure to RdM obtained in Example 2, given that (t5||t7), (t2||t5), and Rd(t5)Rd(t7) and Rd(t5)Rd(t2), two new maximal sets are obtained: RdM1,4 =RdM1RdM4, RdM1,5=RdM1RdM5. Then RdM + ={RdM1, RdM2, RdM3, RdM4, RdM5, RdM1,4, RdM1,5}.

B. Finding the repetitive behaviour

A t-invariant induces a sub-graph of the PN model, called repetitive component or t-component. In the case of a deadlock-free and 1-bounded PN the t-component is strongly connected (Sc). We will analyse the extended RMSi through a graph representation of CausalR and the transition pairs in Seq'. Definition 12. The Graph of causality relations between tasks, named causality graph of a RdMi, is a digraph denoted Gi, defined as follows.

´}

) , (|) , {(} | {); , (Seq CausalR t t V V t t E RdM t t V E V G l k i i l k i i k k i i i i        
The set of causality graphs corresponding to RdM + is denoted CG = {G1, G2… Gq}, where Gi is the causality graph of a RdMi. A Gi is maximal iff there is not a GkCG such that GiGk.

The set CG corresponding to the RdM + computed before for Example 2 is shown in Figure 1. Theorem 1. Let Gi be a causality graph in CG. If a maximal Gi is Sc, then its nodes are the support of some minimum t-invariant of the PN that reproduces S.

t
Proof. The vertices of Gi correspond to a RdMi whose transitions are included in the support of a t-invariant Yi (Proposition 3). Suppose that the transitions in Vi are not the support of a t-invariant; then there exists at least a tkVi such that tk<Yi> that must fire to allow the repetitive firing of transitions in Vi together with tk; thus there are not cycles containing tk in Gi, consequently it is not Sc. □

If the connectivity test is applied to the graphs in CG, it may occur that some Gi are not Sc. Then it is possible to obtain larger graphs by merging Gi with common vertices, through a merging operation of graphs defined below.

Definition 13. The merging operation (

G ) of two causality graphs Gi G  Gj produces a new graph Gi,j. ´}) , (|) , {(); , (, , , , , Seq CausalR t t V V t t E V V V E V G l k j i j i l k j i j i j i j i        
Figure 2 shows the merging of the graphs G2 and G5. The idea is to merge iteratively graphs Gi, Gj  GC such that Vi  Vj ≠ . In each iteration every Gi,j produced must not include other Sc graphs. Based on this strategy, a procedure for computing all the Sc graphs from CG is presented below.

Gj  GNSc  Gi  Gj and GiGj  a) Gi,j  Gi G Gj b) If Gi,j is Sc and Gk  GSc , Gk  Gi,j then GSc  GSc  Gi,j else NewNSc  NewNSc  {Gi,j} 4.2 GNSc  NewNSc; NewNSc   5. Return GSc
The above algorithm ensures that the nodes of each Gi  GSc correspond to the support of minimal t-invariants.

Remark 2. The computational complexity of finding the supports of T-invariants when no Gi  CG is strongly connected (worst case) is Ο(|GNSc| 3). However, the worst case is unlikely since when Gi,j is built (step 4.1.a), the Gi that are Sc are discarded. Furthermore if Gi,j is Sc but if it contains other Gk that is Sc (step 4.1.b), then Gi,j is also discarded. Theorem 2. Algorithm 2 obtains all the supports of the minimal t-invariants of a PN model that reproduces the task sequence S.

Proof. This procedure performs exhaustively the union of graphs which are not Sc and have common vertices. In every iteration, the formed Sc graphs are no longer considered in the union operations; this reduces progressively the number of non Sc graphs. Since it is avoided using the already obtained Sc graphs; this guarantees finding minimal Sc graphs and then the support of minimal invariants. When it is not possible to generate new Sc graphs the procedure stops. Every Vi of Gi in Gsc is the support of a t-invariant. □

The set of obtained t-invariants is Y(S)={Yi | Yi is the vector corresponding to Vi}

When Algorithm 2 is applied to CG of Example 2, the resulting supports of t-invariants are <Y1>={t0, t4, t5, t6, t7}, <Y2>={t0, t4, t5, t6, t2}, <Y3>={t1, t4, t6, t2}, <Y4>={t1, t4, t6, t7}, <Y5> = {t0, t3, t6, t2}, and <Y6>={t0, t3, t6, t7}.

VI. BUILDING THE PN MODEL

Causal relations [ti, tj] determine the existence of a place between transitions. Using this basic structure, named dependency, and the knowledge of t-invariants, a technique for building a PN model is now presented.

A. Merging transitions of dependencies

All the transitions named ti within several dependencies must be merged into a single one. a) The places of the dependencies are merged into a single one iff tj and tk belong to different t-invariants. This is denoted as [ti, tj+tk]. This rule applies most of the time, but a special situation could appear when tj||tk; in this case the dependency [ti, tj+tk] is not created.

b) The places of the dependencies are not merged iff tj and tk belong to a same t-invariant. This is denoted as [ti, tj||tk]. Similarly, for dependencies having a common second transition ([ti, tk] and [tj, tk]), the substructure created will be either [ti+tj, tk] or [ti||tj, tk] (Fig. 3.b). In both cases the observations (ti, tj), (ti, tk), (tj, tk)Seq, deriving the dependencies, are preserved. This merging rule is illustrated in Figure 3 Consequently, the merging can be applied to composed dependencies that coincide with one expression of transitions of type ti+tj or ti||tj; for example [ti+tj, tk] and [ti+tj, tr] leads to [ti+tj, tk+tr] if both tk and tr do not belong to the same invariant.

The application of these merging rules to the dependencies derived from the pairs in CausalRSeq', leads to a PN model N1 including all the transitions.

In Example 2, the application of rules 1 and 2 to the obtained relations in CausalRSeq' of Table 1 yields the set of composed dependencies:

[t5, t4], [t0, t2||t5], [t0, t5||t7], [t0, t2+t7], [t1, t2+t7], [t2, t3+t4], [t7, t3+t4], [t4+t3, t6], [t6, t0+t1], [t0+t1, t2], [t0+t1, t7], [t2||t5, t4], [t7||t5, t4], [t7+t2, t3] [t7+t2,

B. Model adjustment

Although S may be fired in N1 most of the times, the obtained model could not fire S, or could fire S but also exceeding sequences. The PN in Figure 4 does not reproduce S of Example 2 in particular the subsequences t1t2t4 and t1t7t4 cannot be fired in N1. This is because the computed tinvariants Y(S) differ from those of N1 (J(N1)). If Y(S) coincide with J(N1), then N1 is the correct model; otherwise it must be adjusted.

The mismatching between Y(S) and J(N1) is due to the fact that the computed model does not include PN elements (places and arcs) which assure implicit behaviours not exhibited in S, named implicit dependencies. Definition 14. In a 1-bounded PN, [ti, tj] is called an implicit dependency, if although there is a place between the transitions, the firing of ti does not produce a marking that enables tj. It is necessary the firing of at least one transition before tj.

In a PN model, implicit dependencies represent the record of the occurrence of a ti, which is used as condition to enable a future event tj. In general, an implicit dependency represents a constraint in the flow of tokens in the net by assuring that tj is fired only when ti is fired before; otherwise the absence of such a dependency will allow the firing of exceeding sequences in the remainder model.

When Y(S)J(N1), N1 must therefore be adjusted by finding the pertinent implicit dependencies that extend N1 into N2, whose t-invariants agree with Y(S). In order to amend N1, two cases of mismatching are considered: 1) Y(S)J(N1), or 2) Y(S)J(N1) and Y(S)J(N1), i.e. YiY(S) such that YiJ(N1). The handling of each case is described below.

Case 1

In this case N1 has more invariants than those computed from S; thus it represents an exceeding behaviour. A new place between two transitions ti and tj has to be added to N1 in order to constrain the differed firing of tj after the firing of ti. Proposition 4. A dependency [ti, tj] must be added to N1 if the following condition holds: (ti><tj)  (ti, tj <Yk>)  (ti, tjTRDM).

Proof. If [ti, tj] must not be added, it is because i) ti and tj have been observed consecutively (ti<tj), or ii) each transition belongs to a different t-component, or iii) at least one of ti, tj does not belong to a TRDM . □

Case 2

Let J(N1) = {J1, J2, .., Jr} be the set of t-invariants of N1, such that CJj=0, where C is the incidence matrix of N1. Consider a YrJ(N1). Let pk be the place corresponding to the row in which CYr 0 (i.e. C(pk)Yr 0). In order to obtain the dependency [ti, tj], other transition in N1 must be linked through pk to one of the transitions in • pk or pk • according to the following rule. Let us analyze N1 in Figure 4, obtained from S in Example 2. First it is computed J(N1) ={<J1>, <J2>, <J3>, <J4> }; <J1> = {t0, t4, t5, t6, t7}, <J2> = {t0, t4, t5, t6, t2}, <J3> = {t1, t2, t3, t6}, <J4> = {t1, t7, t3, t6}. There is a mismatch between both sets and since Y(S)  J(N1), the problem is handled as in Case 2. It can be noticed that Y3, Y4, Y5, Y6  J(N1). In the analysis of Y3, pk = p3 because it fulfils the condition CN1(p3)Yi 0, as show in the next equation.

                                                                              0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1

CN1 Y3

The transition in t4pk • is chosen to find the implicit dependency [ti, t4]. The transition that fulfils the conditions ti><t4, ti, t4 <Y3>, tiTRdM, is t1; therefore the implicit dependency [t1, t4] is added to N1 by the corresponding arc (t1, p3). Similarly Y4, Y5, Y6 are treated and the implicit dependency [t0, t3] in p2 is found. Finally the resulting PN model N2, which exactly reproduces S is shown in Figure 5.

C. Initial marking

The Initial marking must enable S; thus the procedure for determining M0 is simple; it suffices a) to place tokens in the input places of the first transition in S, and b) executing the remainder tj in S and eventually adding tokens in some places of • tj when the reached marking is not enough for firing tj. In the case of example 2, the only place initially marked in the PN Fig. 5 is p5.

D. Processing several event sequences

This synthesis method may process r event traces Si corresponding to the observed behaviour of the same discrete event process. The only constraint is that all the sequences must be sampled from the starting of the process. All the observed precedence relationships in Seqi of every Si are gathered into the Seq relation at the beginning of the discovery procedure. The initial marking is determined for enabling every Si.

VII. IMPLEMENTATION AND TESTS

Algorithms derived from the proposed method have been implemented as a software tool and tested on numerous examples of diverse complexity. The tests were performed using the following scheme: first, a PN model is designed, and with the help of the PN editor/simulator PIPE [START_REF]Platform Independent Petri net Editor 2[END_REF], a long sequence S is produced. Then the tool processes S and the obtained model, coded in XML, is displayed using PIPE again. Below we provide an example regarding a less simple PN model that can be discovered using the proposed PN discovery method. The model in Figure 6 This model includes diverse structures (nested tcomponent evolving concurrently) which are more complex than others published in literature. As a sign of performance, the processing time for S in a laptop computer (2.4GHz dualcore, Intel Core i5 processor, 4GB of 1333MHz DDR3 memory) was about 3.6 s.

Thanks to the software tool we developed it has been possible to test models of diverse structures, which include cycles nested into t-components, concurrency, and implicit dependencies. Special models such as two independent PNs concurrently evolving, and concurrent components related by mailbox places (message exchange) have been successfully built. This reveals the power of the method for dealing with black-box model discovery.

VIII. CONCLUSION

The proposed method for PN discovery handles long sequences Si representing the observed behaviour of a process from their initial states. No a priori knowledge about the number of places nor the start and end of tasks in traces σj in Si is required. This approach allows addressing efficiently discrete event processes exhibiting more complex behaviours than the approaches proposed in the fields of identification and process mining. This method is based mainly on searching the supports of t-invariants from the observed sequences Si, and allows building an initial model which is adjusted later with the help of the computed t-invariants; the final model includes implicit causal relationships between transitions that have not been observed consecutively. The discovered PN fires exactly the sequences Si from M0 and may eventually accept exceeding iterative sub-sequences, which correspond to the behaviour inherent to PN with repetitive components.

Implementation and tests revealed accuracy and efficiency of the method when complex PN structures were addressed. Current research addresses the problem of PN discovery from incomplete observed sequences.

Definition 1 .

 1 An ordinary Petri Net structure G is a bipartite digraph represented by the 4-tuple G = (P, T, I, O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of vertices named places and transitions respectively; I(O) : P × T  {0,1} is a function representing the arcs going from places to transitions (from transitions to places).

Definition 8 .

 8 Two transitions ta, tb are called transitions in a two-length cycle (Tc) relation if S contains the subsequences tatbta or tbtatb. The set of transition pairs fulfilling this feature is denoted by Tc. When the subsequence tata appears in S, ta is in the relation named self-loop (sl).

Figure 2 .Algorithm 2 .

 22 Figure 2. G2 G G5, where (t1, t2), (t2, t4)  CausalR  Seq' Algorithm 2. Getting the t-invariants from S Input: CG = {G1, G2… Gq} Output: <Y(S)>: Supports of t-invariants 1. GSc  all maximal Sc GiCG 2. GNSc  all non Sc GiCG 3. lNSc  |GNSc| 4. For 1 to lNSc 4.1 Gi  GNSc

Rule 1 .Rule 2 .

 12 Two dependencies in the form [ti, tj] and [tj, tk] produce, straightforward, a sequential sub-structure including two places, which allows the firing of the sequence titjtk, as illustrated in Fig 3.a). When the first transitions in two dependencies are the same ([ti, tj] and [ti, tk]), two possible substructures can be created (Fig. 3.b):

 t4]. Afterwards the obtained dependencies are p0:[t6, t1+t0], p1:[t0+t1, t2+t7], p1,p2: [t0, (t2+t7)||t5], p3: [t5, t4], p4:[t2+t7, t4+t3], p5:[t4+t3, t6]. The sequential merging of substructures of the dependencies yields the PN model N1 shown in Figure 4.

Figure 4 .

 4 Figure 4. N1 built from S of example 2.

Proposition 5 .Algorithm 3 .Remark 3 .

 533 A dependency [ti, tj] must be added to N1 if ti><tj, and ti, tj <Yr>, and if one of the following conditions holds: i) ti • pk and tjTRDM, when | • pk|<|pk • |, or ii) tjpk • and tiTRDM, when | • pk|>|pk • |. This dependency ensures that C(pk)Yr=0. Proof. The two first conditions are the same than those of Case 1. We will analyse the conditions regarding • pk and pk • . In both situations | • pk| and |pk • | are unbalanced and one of ti or tj has to be related to one of • pk and pk • accordingly, to enforce Jr as t-invariant of N1. Furthermore | • pk|=|pk • | yielding C(pk)Yr=0. □ When all the corrections to N1 are done, it is possible that Y(S)J(N1), then the rule of Case 1 is applied and the new model N2 fulfils Y(S)=J(N2). Algorithm 3 summarises the procedure to obtain the implicit dependencies. Finding implicit dependencies Input: N1, J(N1), Y(S) Output: N21. If Y(S)  J(N1) a)  (ti, tj) | ti, >< tj  ti, tj  TRdM  ti, tj  yi add a place between (ti, tj) 2. If yiY(S) | yiJ(N1) a) Find a pk | C(pk)yi 0 b) Add [ti, tj] through pk relations that fulfil ti, >< tj  ti, tj  yi  (ti • pk , tjTRDM) or ti, >< tj  ti, tj  yi  (tjpk • , tiTRDM)The complexity of computing the implicit dependencies is O(|P|×|T|); it is related to the matrix-vector product operation C(pk)yi.

Figure 5 .Theorem 3 .

 53 Figure 5. Resulting PN N2 after model adjustment. Theorem 3. Given a sequence of transitions ST*, a 1bounded PN model N2 that reproduces S can be obtained by applying the rules 1 and 2, and performing the adjustments of Algorithm 3. Proof. Causality between transitions, established by the pairs in CausalRSeq' represents the precedence relationship between consecutive transitions in S that are not in ConcR. The substructure associated to a dependency [ti, tj] guarantees the consecutive firing of these transitions; thus by applying Rule 1 the flow expressed in CausalRSeq' is fulfilled by N1. Furthermore, Rule 2 determines, by the knowledge of the tinvariants, whether the flow is split or joint in choice or parallel structures. Dependencies involving transitions included in Sc causality graphs assure the construction of repetitive components in N1. Furthermore, adjustments to N1 provided by Propositions 4 and 5 allow fitting the invariants computed form the observed behaviour with those of the discovered model. □

 has been obtained by processing the task log S = T16 T14 T2 T4 T3 T5 T9 T7 T3 T5 T9 T3 T5 T8 T17 T2 T3 T5 T9 T3 T4 T7 T5 T8 T11 T13 T15 T16 T1 T2 T4 T3 T5 T8 T6 T10 T17 T2 T3 T4 T5 T6 T9 T3 T5 T10 T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T4 T3 T7 T5 T9 T3 T5 T9 T3 T5 T8 T11 T12 T15 T16 T1 T2 T4 T7 T3 T5 T8 T11 T12 T15 T16 T14 T2 T3 T5 T8 T4 T6 T10 T17 T2 T3 T4 T6 T10 T5 T9 T3 T5 T8 T17 T2 T4 T6 T3 T10 T5 T9 T3 T5 T8 T17 T2 T3 T5 T8 T4 T6 T10 T11 T13 T15 T16 T14 T2 T4 T7 T3 T5 T9 T3 T5 T8 T11 T13 T15 T16 T1 T2 T3 T5 T9 T4 T6 T3 T10 T5 T9 T3 T5 T9 T3 T5 T9 T3 T5 T8 T17 T2 T3 T5 T9 T4 T3 T6 T5 T9 T3 T10 T5 T8 T11 T12 T15 T16 T14 T2 … , where |S|= 1500.

Figure 6 .

 6 Figure 6. A non trivial discovered PN model from S3

 . In general, a set of dependencies in the form {[ti, tj], [ti, tk], ... [ti, tr]} may produce either [ti, tj+tk+...+tr] or [ti, tj||tk||...||tr] according to the relations between transitions tj, tk,..., tr.

			[t i , t j]	[t j , t k]		
		t		t	t			t	t	t	t
		i		j	j			k	i	j	k
					a)			Sequential merging
					[t i , t j +t k]	t	j	[t i +t j , t k]
									t
					t				i
					i			
		[t i , t j]							[t i , t k]	t
									k
							t		t
								k	j
	t	i	t	j				t	i	t	k
	t		t				t	t	t
		i		k				j	j	k
					t				t
		[t i , t k]			i				[t j , t k]	i
									t
									j	t
									k
							t	
					[t i , t j ||t k]		k	[t i ||t j , t k]
					b)	OR/AND split/join merging
	Figure 3. Rules for merging dependencies