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benoit.baudry@inria.fr, martin.monperrus@univ-lille1.fr

Early experiments with software diversity in the mid 1970’s investigated N-version programming and recov-
ery blocks to increase the reliability of embedded systems. Four decades later, the literature about software
diversity has expanded in multiple directions: goals (fault-tolerance, security, software engineering); means
(managed or automated diversity) and analytical studies (quantification of diversity and its impact). Our
paper contributes to the field of software diversity as the first paper that adopts an inclusive vision of
the area, with an emphasis on the most recent advances in the field. This survey includes classical work
about design and data diversity for fault tolerance, as well as the cybersecurity literature that investigates
randomization at different system levels. It broadens this standard scope of diversity, to include the study
and exploitation of natural diversity and the management of diverse software products. Our survey includes
the most recent works, with an emphasis from 2000 to present. The targeted audience is researchers and
practitioners in one of the surveyed fields, who miss the big picture of software diversity. Assembling the
multiple facets of this fascinating topic sheds a new light on the field.

1. INTRODUCTION

In nature, diversity refers to the fact that many species coexist (among many other defini-
tions). In society, it sometimes refers to the idea of gathering people coming from different
cultures and background. In all these domains, diversity (a fact) is considered essential for
the emergence of resilience, stability or novelty (a property) [McCann 2000]. In software,
we take the problem upside-down. We want properties, e.g. resilience, for which diversity
may be the key. The main research question is thus formulated as: how to create, maintain,
exploit – i.e. engineer – diversity in software?

For instance, early experiments with software diversity in the mid 1970’s (e.g. recovery
blocks [Randell 1975]) advocate design and implementation diversity as a means for tolerat-
ing faults. Indeed, similarly to natural systems, software systems including diverse functions
and elements are able to cope with many kinds of unanticipatable problems and failures.
Currently, the concept of software diversity appears as a rich and polymorphic notion, with
multiple applications. Yet, the exploration of this concept is very fragmented over different
communities, who do not necessarily know each other.

We aim at putting together the many pieces of the puzzle of software diversity. Previous
surveys on classical work about diversity for fault-tolerance [Deswarte et al. 1998] or for
security [Just and Cornwell 2004] provide important milestones in this direction. Yet, their
scope is very focused on a single type of software diversity and they do not include the most
recent works in the area. Our paper contributes to the field of software diversity, as the
first paper that adopts an inclusive vision of the area, with an emphasis on the most recent
advances in the field.

Scope. This survey includes classical work about design and data diversity for fault tol-
erance, as well as the cybersecurity literature that investigates randomization at different
system levels. Beyond that, we broaden this standard scope of diversity, to include work
about the study and exploitation of natural diversity and about the management of diverse
software products in software architecture. Since the main barriers between communities
are words, we had to cross terminological chasms several times: diversity, randomization,
poly- and meta-morphism, to only cite a few that are intrinsically related. This inclusive
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Table I. The diversity of software diversity (not exhaustive overview). Over time and over research communities,
many kinds of software diversity have been proposed or studied.

Software diversity for . . . Fault tolerance [Randell 1975; Avizienis and Kelly 1984], security [For-
rest et al. 1997; Cox et al. 2006], reusability [Pohl et al. 2005], soft-
ware testing [Chen et al. 2010], performance [Sidiroglou-Douskos et al.
2011], bypassing antivirus software [Borello et al. 2010] . . .

Software diversity at the scale
of . . .

Networks [O’Donnell and Sethu 2004], operating systems [Koopman
and DeVale 1999], components [Gashi et al. 2004], data structures
[Ammann and Knight 1988], statements [Schulte et al. 2013], . . .

Software diversity as . . . a natural phenomenon [Mendez et al. 2013], a goal [Cohen 1993], a
means [Collberg et al. 2012], a research object [Knight and Leveson
1986] . . .

Software diversity in . . . market products [Han et al. 2009], operating systems [Koopman and
DeVale 1999], developer expertise [Posnett et al. 2013], . . .

Software diversity when . . . the specifications are written [Yoo and Seong 2002], the code is de-
veloped [Avizienis and Kelly 1984], the application is deployed [Franz
2010], executed [Ammann and Knight 1988] . . .

definition allows us to draw a more complete landscape of software diversity than previous
surveys [Knight 2011; Schaefer et al. 2012; Just and Cornwell 2004; Deswarte et al. 1998],
which we discuss in section 2.1. For the first time, this survey gathers under the same um-
brella works that are often considered very different, while they share a similar underlying
concept: software diversity.

Novelty. The field of software diversity has been very active in the 70’s and 80’s for
fault-tolerance purposes. There has been a revival in the late 90’s, early 2000’s, this time
with automatic diversity for security. Both periods have been covered by previous surveys
[Deswarte et al. 1998; Just and Cornwell 2004]. The last decade’s research on software
diversity has also been extremely rich and dynamic. Yet, this activity is only partially
covered in recent surveys by Schaeffer et al. [Schaefer et al. 2012], Knight [Knight 2011] and
Larsen et al. [Larsen et al. 2014], which have specific focuses. Our survey includes the most
recent works in all areas of software diversity, with an emphasis from 2000 to present.

Audience. The targeted audience of this paper is researchers and practitioners in one
of the surveyed fields, who miss the big picture of software diversity. Our intention is to
let them know and understand the related approaches, so far unknown to them because
of the community boundaries. We believe that this shared awareness and understanding,
with different technical backgrounds, will be the key enabling factor for the development
of integrated and multi-tier software diversification techniques [Allier et al. 2014]. This will
contribute to the construction of future resilient and secure software systems.

Structure. Given the breadth of this work’s scope, there is no single decomposition cri-
terion to structure our paper. Software diversity has multiple facets: the goal of diversity,
the diversification techniques, the scale of diversity, the application domain, when it is ap-
plied . . . This diversity of software diversity is reflected in table I. As shown in Figure 1,
we decide to organize this survey mainly along two oppositions. First, we differentiate engi-
neering work that aims at exploiting diversity (Sections 3 and 4) from papers that are more
observational in nature, where software diversity is a study subject (Section 5.2). Then, we
split the engineering papers on managed diversity approaches, that aim at manually control-
ling software diversity (section 3); and the papers describing automated diversity techniques
(section 4). This structuring supports our main goal of bridging different research communi-
ties and enables us to discuss, in the same section, papers coming from very different fields.
The paper can be read linearly. However, each section is meant to be self-contained and
there is a diversity of reading pathways. We invite the reader to use Figure 1 for choosing
her own one.
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Fig. 1. The diverse dimensions of software diversity

2. SURVEY PROCESS

To prepare this survey, we first analyzed the existing surveys on the topic (see Section 2.1).
None of them covers the material we cover. Second, we set up and conducted a systematic
process described in 2.2

2.1. Other Surveys on Software Diversity

The oldest survey we found is by Deswarte et al. in 1998 [Deswarte et al. 1998]. It clearly
shows that software diversity has different scales: from the level of human users or operators
to the level of hardware and execution. Our survey exactly goes along this line of exploring
the diversity of diversities. In addition to classical and 90ies’ software diversity, our survey
discusses the rich work that has been done around software diversity during the last fifteen
years: instruction-set randomization, adaptive random testing, and many others.

In 2001, Littlewood et al. [Littlewood et al. 2001] focus on design diversity (N-version
programming). They review in particular their own work on the probabilistic reasoning that
can be made on N-version systems. To this extent, as the abstract puts it, the survey is
more a tutorial on design diversity than a broad perspective on software diversity.

The goal of Just et al.’s review paper [Just and Cornwell 2004] is to list the techniques of
synthetic diversity that can improve software survivability. “Synthetic diversity” is equiva-
lent, in our views, to “artificial automated diversity”. In our paper, we consider other goals
than only security (such as quality of service, see section 4.1.3), and consider other diversity
engineering techniques (e.g., managed software diversity, see 3).

John Knight published a survey in 2011 [Knight 2011]. He discusses four kinds of di-
versity: classical design diversity (N-version and recovery block), data diversity (a research
direction he has both invented and lead), artificial diversity (in the sense of instruction-set
randomization for security and the like), and N-variant systems (compared to N-version,
N-variant diversity uses artificial and automated diversity). In addition, he introduces the
concept of “temporal diversity” as a diversity over time, for instance by regularly changing
the key for instruction-set randomization. We agree on all points that Knight considers as
software diversity. However, we have a broader definition of software diversity: we discuss

Technical report, Inria, #hal-01067782, 2014



A:4

more kinds of managed software diversity (such as software product lines, see 3.3.2), more
kinds of artificial diversity (such as runtime diversity, see section 4.1.2), and papers for
which diversity is the main study subject (see Section 5).

Schaefer and colleagues co-authored in 2012 “Software diversity: state of the art and
perspectives” [Schaefer et al. 2012]. Despite what the title suggests, this paper surveys
only one kind of software diversity: software product lines. As we will discuss later, the
techniques of software product lines enable one to manage a set of related features to build
diverse products in a specific domain. We refer to this kind of diversity as “managed software
diversity”. In our paper, not only do we describe other kinds of managed software diversity
such as design diversity, but we also discuss artificial diversity and natural diversity as well.

Larsen et al. [Larsen et al. 2014] recently authored a survey about automated software
diversity for security and privacy. They discuss the different threat models that can be
addressed via diversification. Then, they classify the surveyed approaches according to the
nature of the object to be diversified and the temporal dimension of the diversification pro-
cess. They conclude with an insightful discussion about compiler-based vs. binary rewriting
diversity synthesis.

2.2. Systematic Process

We followed a systematic process to select the papers discussed in this paper. We started
with 30 papers that we knew and are written by the most remarkable authors: Avizienis,
Randell, Forrest, Cohen, Knight and Levenson, Schaeffer, etc.. They appear in top publi-
cations of these fields (ACM TISSEC, IEEE TSE, IEEE S&P, CCS, ICSE, PLDI, DSN,
etc.) and are generally considered as seminal work in each area. Then, we increased this set
through a systematic keyword-based search using Google Scholar, IEEE Xplore and ACM
DL. This set went through a second expansion phase when we followed the citation graph
of the selected papers. This provided us with a set of more than 300 papers. Then, we
filtered out papers. First, we discarded the redundant papers that discuss a similar problem
or solution (e.g., we selected only a few papers about product lines or about multi-version
execution). Second, we filtered out the papers that had no impact on the literature (that
appear in unknown conferences or that had less than 5 citations after 20 years). Since our
survey focuses on recent developments in the field of software diversity, we took a special
care to keep the most significant recent works (up to papers that appeared in 2014).

3. MANAGED SOFTWARE DIVERSITY

“Managed software diversity” relates to technical approaches aiming at encouraging or con-
trolling software diversity. This kind of diversity is principally embodied in the work on
multi-version software (early structuring of diversity), open software architecture (encour-
aging diversity) and software product lines (controlling diversity).

3.1. Design Diversity (N-Version)

Since the late 1970’s many different authors have devised engineering methods for software
diversification to cope with accidental and deliberate faults. Here, an accidental fault is
any form of bug, i.e., an internal problem unintentionally introduced by a developer of
the execution environment. N-version programming [Avizienis 1985] and recovery blocks
[Randell 1975] were the two initial proposals to introduce diversity in computation to limit
the impact of bugs. Those techniques are traditionally called “design diversity” techniques.

N-version design is defined as “the independent generation of N ≥ 2 functionally equiva-
lent programs from the same initial specification” [Avizienis and Kelly 1984; Avizienis 1985].
This consists in providing N development teams with the same requirements. Those teams
then develop N independent versions, using different technologies, processes, verification
techniques, etc. The N versions are then run in parallel and a voting mechanism is executed
on the N results. The increased diversity in design, programming languages and humans
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is meant to reduce the number of faults by emergence of the best behavior, the emergence
resulting from the vote on the output value.

Since the initial definition of the N-version paradigm, it has been refined along different
dimensions: the process, the product and the environment necessary for N-version develop-
ment [Avizienis 1995]. For example Kelly [Kelly et al. 1991] distinguishes between random
diversity (let independent teams develop their version) from enforced diversity in which
there is an explicit effort to design diverse algorithms or data structures. More recently,
Avizienis proposed to adapt the concept to software survivability [Avizienis 2000].

Recovery blocks were developed at the same time as N-version design, and proposed a
way of structuring the code, using diverse alternative software solutions, for fault tolerance
[Randell 1975]. The idea is to have recovery blocks in the program, i.e., blocks equipped
with error detection mechanisms and one or more spares that are executed in case of errors.
These spares are diverse variant implementations of the function.

In the latest work about N-version development, both N-version design and recovery
blocks were included in the same global framework [Avizienis 1995]. This framework has
then been used in multiple domains, including the design of multiple versions of firewalls [Liu
and Gouda 2008]. While the essential conceptual elements of design diversity have remained
stable over time, most subsequent works have focused on experimenting and quantifying the
effects of this approach on fault tolerance. The work related to the analysis of N-version
programming is synthesized in section 5.1.

3.2. Managed Natural Software Diversity

We call “natural diversity”, the existence of different software solutions that provide simi-
lar functionalities and which spontaneously emerge from software development processes.
There exists several forms of natural software diversity. For example, the programs that can
be customized through several parameters, embed a natural mechanism for diversification
(two instances of the same program, tuned with different parameters can have different be-
haviors in terms of performance). Software market and competition are also strong vectors
that drive the natural emergence for software diversity. For example, the gigantic business
opportunities offered by the world wide web has driven the emergence of many competing
web browsers. Web browsers are diverse in their implementation, in their performance, in
some of their plugins, yet they are functionally very similar and can be used for one another
in most cases. Other examples of such market software diversity include operating systems,
firewalls, database management systems, virtual machines, routers, middleware, application
servers, etc. In this section we present a set of works which exploit this natural diversity for
different purposes. We will come back to natural diversity later in Section 5.2, for discussing
authors who study natural diversity with no engineering goals at all.

Hiltunen et al. [Hiltunen et al. 2000] propose the Cactus mechanism for survivability,
i.e., a mechanism that monitors and controls a running application in order to tolerate
unpredictable events such as bugs or attacks. The Cactus approach relies on fine grain
customization of the different components in the application, as well as runtime adaptation,
to achieve survivability. They discuss how they can switch between different security and
fault-tolerance solutions through customization and they also discuss how this natural way of
changing a system supports the emergence of natural diversity and thus increases resilience.

Caballero et al. [Caballero et al. 2008] exploit the existing diversity in router technology to
design a network topology that has a diverse routing infrastructure. Their work introduces
a novel metric to quantify the robustness of a network. Then, they use it to compare the
robustness of different, more or less diverse, routing infrastructure. They explore the impact
of different levels of diversity, by converting the problem into a graph coloring problem. They
show that a small amount of router technology and well designed topology actually increases
the global robustness of the infrastructure.
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Totel et al. [Totel et al. 2006] propose to design an intrusion detection mechanism by
design diversity, leveraging the natural diversity of components-off-the-shelf (COTS). They
exploit the fact that COTS for database management and web servers have very few common
mode failures [Wang et al. 2003; Gashi et al. 2004] and are thus very good candidates
for N-version design based on natural diversity. The authors deploy an architecture with
three diverse servers running on three different operating systems and feed it with the
requests sent on their campus web page in the last month (800000 requests, out of which
around 1% can be harmful). The results show that the COTS-based IDS only raises a
small number of false positives. Along the same line, Garcia et al. [Garcia et al. 2014]
conducted a study on the impact of operating system diversity w.r.t. to security bugs of
the NIST National Vulnerability Database (NVD). Their results show that diversity indeed
contribute to building intrusion-tolerant systems.

Oberheide et al. [Oberheide et al. 2008] exploit the diversity of antivirus and malware
systems to propose what is called “N-version protection”. It is based on multiple and diverse
detection engines running in parallel. Their prototype system intercepts suspicious files on
a host machine and send them in the cloud to check for viruses and malware against diverse
antivirus systems. They evaluate their system over 7220 malware and show that it is able to
detect 98% of the malware. It provides better results than a single antivirus in 35% of the
cases. The idea has been further explored by Bishop et al. [Bishop et al. 2011], who explored
the deep characteristics of the dataset of known malware to reduce global vulnerability.

O’Donnell and Sethu [O’Donnell and Sethu 2004] leverage the diversity of software pack-
ages in operating systems and investigates several algorithms to increase the global diversity
in a network of machines. They model the diversification of distributed machines as a graph
coloring problem and compare different algorithms according to their ability of setting a
network that is tolerant to attacks. The experiments are based on a simulation, which uses
the topology from email traffic at the authors’ institution. They show that the introduction
of diversity at multiple levels provides the best defense.

Carzaniga et al. [Carzaniga et al. 2010] find multiple different sequences of method calls
in Javascript code, which happen to have the same behavior. They harness this redundancy
to setup a runtime recovery mechanism for web applications.

Gorbenko et al. [Gorbenko et al. 2011] propose an intrusion avoidance architecture based
on multi-level software diversity and dynamic software reconfiguration in IaaS cloud layers.
The approach leverages the natural diversity of off-the-shelf components that are found
in the cloud (operating system, web server, database management system and application
server), in combination with dynamic reconfiguration strategies. The authors illustrate the
approach with an experiment over several weeks, during which they switch between 4 diverse
operating systems that have different open vulnerabilities. They discuss how this mechanism
reduces exposure to vulnerabilities.

3.3. Managed Functional Diversity

In software, it is known that many functions are the same yet different. For instance, passing
a message to a distant machine or writing to a local file is conceptually the same: writing
data to a location. However, the different implementations (say for network or for file in-
put/output) of this abstract function are radically different. One responsibility of software
abstractions is to capture this conceptual identity and to abstract over the diversity of
implementation details. For instance, Unix is well known because of Unix’ concept of file
captures all input/output operations, whether on the network, on a physical file on disk or
on the memory of a kernel module. We refer to this facet of abstraction as managing the
functional diversity.

Many software abstractions have the clear goal of managing functional diversity. In the fol-
lowing, we will review classical object-oriented software, software product lines and plugin-
based architecture.
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3.3.1. Class Diversity. The object-oriented software paradigm is a rich paradigm with impli-
cations on understandability, reuse, etc. There is one point in this paradigm really related
to managing the diversity: polymorphism.

Polymorphism is the mechanism enabling us to have code that calls other pieces of code
in a non predefined manner. The late binding between functions enables an object to call
a diverse set of functions and even to call code that will be written in the future. To this
extent, polymorphism is the key mechanism enabling to manage the function diversity (as
embodied in classes). In other words, polymorphism (with abstract methods, interfaces or
other fancy object-oriented constructs) supports the construction of a program architecture
that is ready for handling diversity.

As Bertrand Meyer [Meyer 1988] puts it:

“We are at the heart of the object-oriented method’s contribution to reusability:
offering not just frozen components (such as found in subroutine libraries), but
flexible solutions that provide the basic schemes and can be adapted to suit the
needs of many diverse applications.”

3.3.2. Software product lines. The techniques around software product lines can be consid-
ered as means of controlling a diversity of software solutions capable of handling a diversity
of requirements (user requirements or environmental constraints) [Pohl et al. 2005; Clements
and Northrop 2002]. Software product line engineering is about the development of “a di-
versity of software products and software-intensive systems at lower costs, in shorter time,
and with higher quality” [Pohl et al. 2005]. This consists in building an explicit variability
model, which captures all commonalities and variation points in requirements and software
solutions. In other words, the variability model is an explicit definition of the space of diverse
solutions that can be engineered in a particular domain. This model is usually expressed as
a form of feature model [Kang et al. 1990].

In the context of software product lines, the main challenge for software diversity man-
agement consists in providing systematic ways to reuse existing parts of software systems
in order to derive diverse solutions.

We synthesize the main works in software product lines, for an exhaustive survey, we refer
the reader to Schaefer et al.’s survey “Software diversity: state of the art and perspectives”
[Schaefer et al. 2012]. We start by looking at solutions that handle diversity in design, then
we summarize solutions for diversity in implementation.

Software product lines mainly offer support for design diversity through architectural so-
lutions [Clements and Northrop 2002]. An essential challenge is to handle both the logical
variability (the set of features that architects manipulate) and the variability of concrete
assets (diversity of software pieces that can actually be composed to implement a particular
product). Initial solutions are based on annotations to relate both views [Atkinson 2002].
Hendrikson et al. [Hendrickson and van der Hoek 2007] propose a product line architecture
modeling approach that unites the two, using change sets to cluster related architectural
differences. Several approaches are founded on a compositional approach to derive products
from architectural models. Ziadi et al. [Ziadi et al. 2004] propose sound composition opera-
tions for UML 2.0 scenarii in order to automatically synthesize diverse statecharts inside a
given product line, while Morin et al. [Morin et al. 2008] compose software components to
derive software configurations at runtime. Other approaches rely on an orthogonal variabil-
ity model associated to model transformations for product derivation, as is the case for the
Common Variability Language [Haugen et al. 2008] or the Orthogonal Variability Model
[Pohl et al. 2005]. At the boundary between models and implementation, it is possible to
capture the variants of a program with explicit design patterns, as suggested by Jézéquel
[Jézéquel 1998]. At the source code level, there exist several mechanisms to manage a set of
variants for a given program: delta-oriented programming [Schaefer et al. 2010] instantiates
the concept of delta-modeling [Clarke et al. 2011] to specify a specific set of deltas for a
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program, as well as transformations that can systematically inject a set of selected deltas
in a program to derive a variant; Figueiredo and colleagues have reported on the usage of
aspect-oriented programming to hanlde variants in a product line and discuss the postive
and negative effects on design stability [Figueiredo et al. 2008]; preprocessing was one of
the first language technology used to handle program variants and has been extensively
analyzed, for example in the recent work by Liebig et al. [Liebig et al. 2010].

3.3.3. Diversity through Plugin- and Component- based Software Architecture. Plugin-based soft-
ware architectures offer means to design open software systems. Plugins are software units
that encapsulate a given functionality as well as some information about its dependencies.
As far as we know, Wijnstra [Wijnstra 2000] was one of the first authors to assess the suit-
ability of plugins to handle the diversity of configurations and usages of a complex software
system [Wijnstra 2000]. He proposed to use plugins, together with a component framework
to design an extensible system for medical imaging. In this context, he needed to have a
core set of functionalities to deploy a diversity of products that fit different requirements or
different environments.

More recently, very successful software projects such as Wordpress, Firefox or Eclipse
have adopted plugin-based architectures. This allows them to be open, thus leveraging the
efforts of large open source communities, while keeping a core set of functionalities across
all versions. But most importantly, this architecture supports a true explosion of functional
software diversity. For example, there are 25000 plugins available for Wordpress, which can
be combined by users in billions of functionally diverse configurations, each of them fitting
a specific purpose or need. This was somehow predicted by Ommering [Van Ommering
2002], who used a plugin-based architecture in which connections between plugins handle
design-time or run-time diversity.

3.3.4. Discussion. The main benefit of those software construction paradigms with respect
to diversity is reusability: a large range of diverse products can be made with a smaller
number of software “bricks”. This is our motivation for considering software construction
and design paradigms in our survey.

However, the overall effect of those paradigms is to reduce software design diversity for
a given set of product functions. Indeed, those reuse-oriented paradigms create a tension
between reusability and monoculture [Allier et al. 2014]. Both relate to diversity (the second
one in a dual manner). In practice, there is an engineering tradeoff between the increase of
diversity due to the infinite number of possible combinations and the decrease of diversity
due to massive reuse.

3.4. Summary

This section has focused on three areas of software engineering, which manage software
diversity. The first was about multi-version design, an approach to fault-tolerance that
aims at managing the manual development of diverse program versions. The second part
was about managing and exploiting software diversity that naturally emerges in software
markets or open source communities, in order to build fault or attack tolerant systems. The
last part opened on a series of works dedicated to the management of functional diversity,
in order to fulfill the various usages of a given system. These three parts refer to different
research communities, yet, they all share a common approach: software diversity can be
managed and harnessed in order to achieve specific software engineering objectives.

4. AUTOMATED SOFTWARE DIVERSITY

“Automated software diversity” consists of techniques for artificially and automatically syn-
thesizing diversity in software. Instead of using the adjective automated, some authors call
it “synthetic diversity” [Just and Cornwell 2004] or “artificial” diversity (e.g. [Locasto et al.
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2006]). However, artificial literaly means “created or caused by people”1. To this extent,
N-version programming also produces artificial diversity but, the diverse program variants
are produced manually. We prefer “automated diversity” which emphasizes the absence of
human in the loop and is in clear opposition to managed software diversity. Beyond those
details, we actually equate those three terms: artificial, synthetic and automated diversity.

Automated software diversity is valuable in different contexts, for instance software secu-
rity or fault tolerance. However, these different goals are not the only dimension in which
we can characterize the various approaches to automated software diversity. First, the scale
dimension characterizes the fact that software systems are engineered at several scales: from
a set of interacting machines in a distributed system down to the optimization of a par-
ticular loop. Research has produced techniques for automated software diversity along all
those different scales. Second, the genericity dimension explores whether the diversification
technique is domain-specific or not. Third, the integrated dimension is about the assembly
of multiple diversification techniques in a global approach.

4.1. Randomization

The mainstream software paradigms are built on determinism. All layers of the software
stack tend to be deterministic, from programming language constructs, to compilers, to
middleware, up to application-level code.

However, it is known that randomization can be useful, for instance to improve security
[Bhatkar et al. 2003]. A classical example of randomization is compiler based-randomization:
a compiler may compile the same code with different memory layouts to decrease the risk
of code injection.

What is the relation between randomization and diversity? A randomization technique
creates, directly or indirectly, set of unique executions for the very same program. As men-
tioned by [Bhatkar et al. 2003], “the use of randomized program transformations [is] a way to
introduce diversity into applications”. The notion of “diversity of execution” is broad: it may
mean diverse performances, diverse outputs, diverse memory locations, etc. We present an
overview of diversifying randomization techniques in this survey. For a more detailed survey
about randomization, we refer the reader to surveys dedicated to that topic, in particular
the one of Keromytis and Prevelakis [Keromytis and Prevelakis 2005].

There are different kinds of diversifying randomization. First, one can create different ver-
sions of the same program. For instance, one can randomize the data structures at the source
or at the binary level. We call this kind of randomization “static”. Static randomization is
discussed in Section 4.1.1.

Second, one can automatically integrate randomization points in the executable program.
For instance, a malloc primitive (memory allocation) with random padding is a random-
ization point: each execution of malloc yields a different result. Contrary to static random-
ization, there is still one single version of the executable program but their executions are
diverse. We call this kind of randomization “dynamic randomization” (also called runtime
randomization [Xu et al. 2003]) and discuss it in 4.1.2.

Third, some randomization techniques do not aim at providing a strict behavioral equiv-
alence between the the original program and the randomized executions. They are are
discussed in Section 4.1.3.

Finally, as we will see later in Section 4.3, diversification techniques can be stacked. This
also holds for randomization: one can stack static and dynamic randomization. In this case,
there are diverse versions of the same program which embed randomization points that
themselves produce different executions.

1Merriam-Webster, http://www.merriam-webster.com/dictionary/artificial
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4.1.1. Static Randomization. One of seminal papers on static randomization is by Forrest
and colleagues [Forrest et al. 1997], who highlight two families of randomization: randomly
adding or deleting non-functional code and reordering code. Those transformations are also
described by Cohen [Cohen 1993] in the context of operating system protection. Lin et al.
[Lin et al. 2009] randomize the data structure of C code. Following the line of thought of
Forrest et al. [Forrest et al. 1997] they re-order fields of data structures (struct and class

in C/C++ code) and insert garbage ones.
The concept of instruction-set randomization has been invented in 2003 in two indepen-

dent teams [Kc et al. 2003; Barrantes et al. 2003] It consists of creating a unique mapping
between artificial CPU instructions and real ones. This mapping is encoded in a key which
must be known at runtime to actually execute the program. Eventually, the instruction set
of a machine can be considered as unique, and it is very hard for an attacker ignoring the key
to inject executable code. Instruction-set randomization can be done statically (a variant
of the program using a generated instruction set is written somewhere) or dynamically (the
artificial instruction set is synthesized at load time). In both cases, instruction-set random-
ization indeed creates a diversity of execution which is the essence of the counter-measure
against code injection.

In some execution environments (e.g. x86 CPUs), there exists a “NOP” instruction. It
means “no operation” and it has been invented for the sake of optimization, in order to
align instructions with respect to some alignment criteria (e.g. memory or cache). Merckx
[Merckx 2006] and later Jackson [Jackson 2012] have explored how to use NOP to statically
diversify programs. The intuition is simple: by construction “NOP” does nothing and the
insertion of any amount of it results in a semantically equivalent program. However, it
breaks the predictability of program execution and to this extent mitigates certain exploits.

Obfuscation is a classical application domain of static randomization. Code obfuscation
consists of modifying software for the sake of hindering reverse engineering and code tamper-
ing. Its main goal is to protect intellectual property and business secrets. A basic obfuscation
technique simply transforms a program P in a program P

′ which is distributed. However,
since obfuscation is automated, it is often possible to generate several different obfuscated
versions of the same program (as proposed by Collberg et al. [Collberg et al. 2012] for ex-
ample). To this extent, code obfuscation is one kind of software diversification, with one
specific criterion in mind. For an overview on code obfuscation, we refer to the now classical
taxonomy by Collberg and colleagues [Collberg et al. 1997]. For an example of a concrete
obfuscation engine for Java programs, we refer to [Collberg et al. 1998] and its Figure 1.
When obfuscation happens at runtime, it is a kind of execution diversity and we discuss it
in 4.1.2.

4.1.2. Dynamic Randomization. Chew and Song [Chew and Song 2002] target “operating sys-
tem randomization”. More specifically, they randomize the interface between the operating
system and the user-land applications: the system call numbers, the library entry points
(memory addresses) and the stack placement. All those techniques are dynamic, done at
runtime using load-time preprocessing and rewriting.

Dynamic randomization can address different kinds of problems. In particular, it miti-
gates a large range of memory error exploits. Bathkar et al. [Bhatkar et al. 2003; Bhatkar
et al. 2005] have proposed some of the seminal research in this direction. Their approach
is based on three kinds of randomization transformations: randomizing the base addresses
of applications and libraries memory regions, random permutation of the order of variables
and routines, and the random introduction of random gaps between objects.

Static randomization creates diverse version of the same program at compilation time, dy-
namic randomization creates diverse executions of the same program under the same input
at runtime. What about just-in-time compilation randomization? This point has been stud-
ied by Homescu and colleagues at the University of California Irvine [Homescu et al. 2013].
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Their approach neither creates diverse versions of the same program nor introduces ran-
domization points: the randomization happens in the just-in-time compiler directly. Their
randomization is based on two diversification techniques: insertion of NOP instructions and
constant blinding.

In the techniques we have just discussed, the support for dynamic randomization is imple-
mented within the execution environment. On the contrary, self-modifying programs embed
their own randomization techniques [Mavrogiannopoulos et al. 2011]. This is done for sake of
security and is considered one of the strongest obfuscation mechanism [Mavrogiannopoulos
et al. 2011].

Ammann and Knight’s “data diversity” [Ammann and Knight 1988] represents another
family of randomization. The goal of data diversity is not security but fault tolerance. The
technique aims at enabling the computation of a program in the presence of failures. The
idea of data diversity is that, when a failure occurs, the input data is changed so that the
new input does not result in a failure. The output based on this artificial input, through
a inverse transformation, remains acceptable in the domain under consideration. To this
extent, this technique dynamically diversifies the input data.

The notion of “environment diversity” [Vaidyanathan and Trivedi 2005] refers to tech-
niques that change the environment to overcome failures. For instance, changing the sched-
uler or its parameter is indeed a change in the environment. This is larger in scope than
just changing some process data, such as standard randomization.

4.1.3. Unsound Randomization. Traditional randomization techniques are meant to produce
programs or executions that are semantically equivalent to the original program or exe-
cution. However, have explored the domain of “unsound” randomization techniques, either
statically or dynamically.

Foster and Somayaji [Foster and Somayaji 2010] recombine binary object files of com-
modity applications. If an application is made of two binary files A and B, they show that
is possible to run the application by artificially linking a version of A with a different yet
close version of B. The technique enables them to tolerate bugs and even let new functions
emerging but has no guarantee on the behavior of the recombination.

Schulte et al. [Schulte et al. 2011] describe a property of software that has never been
reported before. Software can be mutated and at the same time, it can preserve a certain level
of correctness. Using an analogy from genomics, they call this property “software mutational
robustness”. This property has a direct relation to diversification: one can mutate the code
in order to get functionally equivalent variants of a program. Doing this in advance is called
“proactive diversity”. The authors present a set of experiments that show that this proactive
diversity is able to fix certain bugs.

In our previous work [Baudry et al. 2014], we experiment with different transformation
strategies, on Java statements, to synthesize “sosie” programs. The sosies of a program P
are variants of P, i.e., different source code, which pass the same test suite and that exhibit
a form of computation diversity. In other words, our technique synthesizes large quantities
of variants, which provide the same functionality as the original through a different control
or data flow, reducing the predictability of the program’s computation.

Another kind of runtime diversity emerges from the technique of loop perforation
[Sidiroglou-Douskos et al. 2011]. In this paper, Sidiroglou et al. have shown that in some do-
mains it is possible to skip the execution of loop iterations. For instance, in a video decoding
algorithm (codec), skipping some loop iterations has an effect on some pixels or contours
but does not further degrade or crash the software application. On the other hand, skip-
ping loop iterations is key with respect to performance. In other words, there is a trade-off
between the performance and accuracy. This trade-off can be set offline (e.g. by arbitrarily
skipping one every two loops) or dynamically based on the current load of the machine. In
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both cases, this kind of technique results in a semantic diversity of execution profiles, and
consequently is deeply related to automated diversity.

4.1.4. Summary. In this subsection, we have focused on techniques that automatically ran-
domize some aspect of a program, thus producing a diversity of program versions. Diversity
occurs in memory, in the operating system, in the bytecode or in the source code, but in all
cases it happens with no human intervention, through random processes.

4.2. Domain-specific Diversity

The techniques we have presented so far are independent of any application domain. Yet,
domain knowledge can be essential to devise efficient diversification techniques. This section
illustrates such situations.

For instance, a common vulnerability of web applications is the possibility of injecting
SQL code in order to access unauthorized data or corrupt existing one. Boyd et al. [Boyd
and Keromytis 2004] proposed a technique to diversify the SQL query themselves. By simply
prefixing all SQL keywords with an execution specific token, they create an unpredictable
language that is hardly attackable from the outside and diverse for each database.

Feldt [Feldt 1998] exploited the structure of the genetic programming problem domain for
the sake of diversification. He uses a genetic programming system to create a pool of diverse
airplane arrestment controllers. He then shows that the failure modes of the synthesized
programs are diverse, i.e. that the approach is effective for the generation of a kind of
failure diversity.

Oh et al. [Oh et al. 2002] presented a program transformation aiming at detecting a par-
ticular hardware fault (stuck-at faults in data paths of functional units). The transformation
consists of multiplying all numerical computations by a constant k in a semantics-preserving
way. The authors show that this technique is effective with respect to their fault model. Ob-
viously, it enables one to automatically obtain diverse implementations of the same program
(for different values of k).

Computer viruses are programs whose main opponents are anti-virus systems. Inventors of
computer viruses of course care about being reverse-engineered. However, more importantly
for them, the computer viruses must remain undetectable as long as possible. Diversification
is one solution in this very specific domain: if the virus exists under many different forms, it is
harder for anti-virus systems to detect them all. From the perspective of the virus itself, it is
even better to constantly change itself. This kind of diversification is performed through so-
called “metamorphic engines”, where metamorphism refers to the concept of having different
forms for the same identity. For a recent account on this kind of diversification we refer the
reader to Borello and Mé [Borello et al. 2010].

In the domain of sensor networks, Alarifi and Du [Alarifi and Du 2006] propose an ap-
proach to diversifying sensor software in order to mitigate reverse engineering effort. Their
approach diversifies both the data (e.g. the keys used to communicate between nodes) and
the code. As a result, each node in a sensor network is very likely to be unique.

So far, we have discussed the diversification of software applications. Test cases are exe-
cutable programs, but very specific ones. Although they are often written in general purpose
programming languages, their unique goal is to verify the correctness of an application. They
do not provide services to users. Interestingly, this fundamental difference does not prevent
diversity and diversification to be valuable in test cases as well. Adaptive random testing
[Chen et al. 2010] is a random testing technique whose goal is generate input test data. It
is adaptive in the sense that the generated test cases depend on the previously generated
ones. The final goal is to evenly spread test cases throughout the input domain. To this
extent, adaptive random testing aims at generating diverse test cases, and this is clear for
the authors themselves, who subtitled their flagship paper: “The art of test case diversity”.
Feldt et al.’s VAT model is an example of adaptive random testing [Feldt et al. 2008]. They
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use an information distance for information theory to maximize the diversity of generated
test cases.

4.3. Integrated Diversity

Integrated software diversity is about works that aim at automatically injecting different
forms of diversity at the same time in the same program. In this line of thought, previous
researchers have either emphasized the fact that the diversity is stacked (Section 4.3.1) or
whether these different forms of diversity are managed with a specific diversity controller
(Section 4.3.2).

4.3.1. Stacked Diversity. The different contributions discussed in this section all share the
same intuition that each kind of artificial diversity has value in one perspective (a specific
kind of attack or bug), and thus, integrating several forms of diversity should increase the
global ability of the software system with respect to security or fault tolerance.

Wang et al. [Wang et al. 2001] propose a multi-level program transformation that aims
at introducing diversity at multiple levels in the control flow so as to provide in-depth
obfuscation. This work on program transformation takes place in the context of a software
architecture for survivable systems as proposed by Knight et al. [Knight et al. 2000]. Wang
et al’s architecture relies on probing mechanisms that integrate two forms of diversity: in
time (the probe algorithms are replaced regularly) and in space (there are different probing
algorithms running on the different nodes of the distributed system).

Bhatkar et al. [Bhatkar et al. 2003] aim at developing a technique for address obfuscation
in order to thwart code injection attacks. This obfuscation approach relies on the combina-
tion of several randomization transformations: randomize base addresses of memory regions
to make the address of objects unpredictable; permute the order of variables in the stack;
and introduce random gaps in the memory layout. Since all these transformations have a
random component, they synthesize different outputs on different machines, thus increasing
the diversity of attack surfaces that are visible to attackers.

Knight et al., in a report of the DARPA project Self-Regenerative System (SRS) [Knight
et al. 2007], summarize the main features of the Genesis Diversity Toolkit. This tool is one
of the most recent approaches that integrates multiple forms of artificial diversity. The goal
of the project was to generate 100 diverse versions of a program that were functionally
equivalent but for which a maximum of 33 versions had the same deficiency. The tool
supports the injection of 5 forms of diversity: Address Space Randomization (ASR), Stack
Space Randomization (SSR), Simple Execution Randomization (SER), Strong Instruction
Set Randomization (SISR), Calling Sequence Diversity (CSD).

The GENESIS project, also coordinated by Knight’s group, explored a complete program
compilation chain that applies diversity transformations at different steps to break the
monoculture [Williams et al. 2009]. Diversity transformations are applied compile time, link
time, load time, and runtime. The latter step is the main innovation of GENESIS and relies
on the Strata virtual machine technology, which supports the injection of runtime software
diversity. This application-level virtual machine realizes two forms of diversification: calling
sequence diversity and instruction set diversity.

Jacob et al. [Jacob et al. 2008] propose superdiversification as a technique that inte-
grates several forms of diversification to synthesize individualized versions of programs.
The approach, inspired by compilation superoptimization, consists in selecting sequences
of bytecode and in synthesizing new sequences that are functionally equivalent. Given the
very large number of potential candidate sequences, the authors discuss several strategies
to reduce the search space, including learning occurrence frequencies of certain sequences.

Franz [Franz 2010] advocates for massive-scale diversity as a new paradigm for software
security. The idea is that today some programs are distributed several million times and all
these software clones run on millions of machines in the world. The essential issue is that,
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even if takes a long time to an attacker to discover a way to exploit a vulnerability, this
time is worth spending since the exploit can be reused to attack millions of machines. Franz
envisions a new context in which, each time a binary program is shipped, it is automatically
diversified and individualized, to prevent large-scale reuse of exploits. The approach relies
on four paradigm shifts as enablers for his vision: online software distribution, ultra reliable
compilers, cloud computing and good enough performance.

In 2010, Moving Target Defense (MTD) was announced as one of the three “game-
changing” themes to cyber security the President’s Cyber Policy Review announced. The
software component of MTD integrates spatial and temporal software diversity, in order
to “limit the exposure of vulnerabilities and opportunities for attack” [Jajodia et al. 2011].
With such a statement, future solutions for MTD will heavily rely on the integration of
various software diversity mechanisms to achieve their objectives.

Inspired by the work of Cohen, who suggested multiple kinds of program transforma-
tions to diversify software [Cohen 1993], Collberg et al. [Collberg et al. 2012] compose
multiple forms of diversity and code replacement in a distributed system in order to pro-
tect it from remote man-at-the-end attacks. The diversification transformations used in
this work are adapted from obfuscation techniques: flatten the control flow, merge or split
functions, non-functional code addition, parameter reordering and variable encoding. These
transformations for spatial diversity are combined with temporal diversity (when and how
frequently diversity is injected), which rely on a diversity scheduler that regularly produces
new variants.

Allier et al. recently proposed to use software diversification in multiple components of web
applications [Allier et al. 2014]. They combine different software diversification strategies,
from the deployment of different vendor solutions, to fine-grained code transformations, in
order to provide different forms of protection. Their form of multi-tier software diversity is
a kind of integrated diversity in application-level code.

4.3.2. Controllers of Automated Diversity. If mixed together and put at a certain scale of
automation and size, all kinds of automated diversity need to be controlled. Popov et al
[Popov et al. 2012] provide an in-depth analysis of diversity controllers, showing that diver-
sity controlled with specific diversity management decisions is better than naive diversity
maximization. On the engineering side, several researchers have discussed how to manage
the diverse variants of the same program.

Cox et al. [Cox et al. 2006] introduce the idea of N-variant systems, which consists in
automatically generating variants of a given program and then running them in parallel in
order to detect security issues. This is different from N-version programming because the
variants are generated automatically and not written manually. The approach is integrated
because it synthesizes variants using two different techniques: address space partitioning
and instruction set tagging. Both techniques are complementary, since address space parti-
tioning protects against attacks that rely on absolute memory addresses, while instruction
set tagging is effective against the injection of malicious instructions. In subsequent work,
the same group proposed another transformation that aims at thwarting user ID corruption
attacks [Nguyen-Tuong et al. 2008].

Salamat and colleagues find a nice name for this concept: “multi-variant execution envi-
ronment” [Salamat et al. 2008; Jackson et al. 2011]. A multi-variant execution environment
provides support for running multiple diverse versions of the same program in parallel. The
diverse versions are automatically synthesized at compile-time, with reverse stack execu-
tion [Salamat et al. 2009; Salamat et al. 2011]. The execution differences allow some kind
of analysis and reasoning on the program behavior. For instance, in [Salamat et al. 2008],
multi-variant execution enables the authors to detect malicious code trying to manipulate
the stack.
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Locasto and colleagues [Locasto et al. 2006] introduced the idea of collaborative appli-
cation communities. The same application (e.g. a web server) is run on different nodes. In
presence of bugs (invalid memory accesses), each node tries a different runtime fix alterna-
tive. If the fix proves to be successful, a controller shared it among other nodes. This healing
process contains both a diversification phase (at the level of nodes) and a convergence phase
(at the level of the community).

4.3.3. Summary. Each form of software diversification targets a specific goal (e.g., against
a specific attack vector). Many recent work have thus experimented with the integration of
multiple forms of diversity in a system, ot benefit from several forms of protection. We have
discussed these works here, as well as the specific kinds of controllers that are required to
integrate various diversification techniques.

4.4. Summary

This section has presented a broad range of contributions on automated software diversity.
They come from different research communities, some of them do not even use the word
diversity. However, they all share the same idea that programs and program executions need
not be identical. With respect to the rest of this paper, they are fully automated, which is
different from the natural diversity discussed in section 3.2 and 5.2 and the managed, yet
mostly manual diversity presented in section 3.

5. DIVERSITY AS STUDY SUBJECT

In this section, we present different works that focus on analyzing and quantifying software
diversity and its effects on different aspects of reliability (e.g., fault-tolerance or intrusion-
avoidance). Contrary to the previous sections, the work presented here is not primarily an
engineering contribution, it is not a new technique to support, encourage, or create a new
kind of software diversity. These approaches all have in common that they consider software
diversity as their research subject per se. They simply aim at understanding the deep nature
of software diversity from the causes to the implications.

First, section 5.1 discusses the theoretical models of design diversity and its effects on
fault-tolerance. Then, section 5.2 presents the literature on the analysis of the natural
diversity that is found in off-the-shelf components and source code.

5.1. Theoretical Modeling Of Design Diversity

Failure independence is a critical assumption of the design diversity principle for fault-
tolerant critical systems. After the introduction of N-version programming and recovery
blocks in the late 70’s, a large number of studies have investigated their theoretical founda-
tions and the validity of their assumptions. We discuss the most important studies here.

Design diversity (N-version programming, recovery blocks) was one of the earliest proposal
to leverage diversity and redundancy in software for sake of fault-tolerance. Fault-tolerance
is ensured under one essential assumption: the independence of failures among the diverse
solutions. Because of the critical impact of this assumption, a large number of papers have
investigated the validity of this assumption. While section 3.1 focused on the principles
of design diversity, here we focus on the studies that have evaluated the impact of this
approach through empirical studies and statistical modeling.

Knight and Levenson [Knight and Leveson 1986] provided the first large-scale experi-
ment that aimed at validating the independence assumption in N-version programming.
They asked students to write a program from a single requirements document (for a simple
antimissile system) and obtained 27 programs. Each program was tested against 1 million
random test cases. The quality of the programs was very high (very few faults), but still
there were errors that were found in more than one version (the same error in independently
developed programs). A statistical analysis of the results revealed a significant lack of in-
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dependence between certain errors in the multiple versions of this program. Consequently,
the paper was the first major criticism of the effectiveness of design diversity.

Bishop et al. [Bishop et al. 1986] summarized the results of the PODS project, which
aimed at evaluating N-version design on the reliability of software. Their experimental setup
is based on the development of three versions of a controller for over-power protection. The
requirements document is the same for the three teams, but then they use different methods
and languages for the implementation. They concluded that running the three versions, with
a voting mechanism, produces a system that is more reliable than the most reliable version
and also that back-to-back testing on all three versions is an effective solution to find residual
bugs.

Several pieces of work proposed theoretical frameworks to analyze and quantify the ef-
fects of N-version design on reliability. Eckhardt and Lee [De Eckhardt and Lee 1985] have
developed a theoretical statistical model for evaluating the impact of diversity on fault-
tolerance. This model quantifies the effect of joint occurrences of errors on the reliability
of the global system. Then, they use this model to explore the conditions under which N-
version design can improve fault-tolerance and what are the limits of coincidental errors on
the effect of N-version design. Littlewood and colleagues have refined the work of Eckhardt,
first by considering the diversity of development methods [Littlewood and Miller 1989], and
more recently by adding further hypotheses and studying two-channel systems [Littlewood
and Rushby 2012]. They show that methodological diversity, analyzed as the diversity of
development decisions, is very likely to produce behavioral diversity. Popov and Strigini
[Popov and Strigini 2001] proposed another model to analyze the effects of design diversity,
in which they rely on data that are more related to physical attributes than previous pro-
posals, making the model more actionable for reliability analysis and prediction. Mitra et al.
[Mitra et al. 1999] defined metrics to quantify diversity in N-version designs and highlighted
new results about the effectiveness of N versions on software reliability: diversity increases
fault tolerance in the presence of common mode failures, as well as self-testing capacities,
but the effects of diversity decrease over time. Nicola and Goyal [Nicola and Goyal 1990]
proposed a statistical model that captures the distribution of correlated failures in multiple
versions, as well as a combinatorial formula to predict the reliability of a system running
N versions. They analyze the effectiveness of N-version design and demonstrate the need
for loose correlations between failures in the N versions. Hatton [Hatton 1997] evaluates
N-version design slightly differently: he proposes a theoretical model to compare the de-
velopment of a single highly reliable version of a software component, vs. the development
of N versions of the component. He concludes that N-version design is good, especially
considering our inability to make a really good version.

Kanoun focuses [Kanoun 1999] on a cost analysis of developing 2 diverse versions of the
same program. She aims at providing feedback about the overhead of developing the second
version, considering one version as the reference. She focuses on working hours records for
cost estimates. She observes between 25% and 134% overhead depending on the development
phase (the highest overhead is for the coding and unit tests, while the lowest if for functional
specification). These results confirm other observations from controlled experiments, with
actual data from industrial software development.

Partridge and Krzanowski [Partridge and Krzanowski 1997] start from the framework of
Littlewood and Miller and extend it: they look at the impact of multiple versions beyond
failure diversity, including other targets for diversity, such as specializing the performance
of some versions for specific tasks. They evaluate the possibility of an optimal diversity level
for reliable software. Partridge and Krzanowski provide an initial attempt to understand
the role of software diversity at multiple levels and to systematically quantify diversity in
complex systems.

More recently, van der Meulen and Revilla [van der Meulen and Revilla 2008] analyze the
impact of design diversity with thousands of programs that all implement the same set of
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requirements. Those programs come from the UVa Online Judge Website, which proposes
a set of programming challenges that can be automatically corrected. Hence, the programs
were written by thousands of anonymous programmers attracted by the website concept.
van der Meulen and Revilla use the frameworks of Eckhardt and Lee [De Eckhardt and Lee
1985] and Littlewood and Miller [Littlewood and Miller 1989]. The authors classify different
categories of faults that occur in different versions, and then, through random selections of
pairs of versions, evaluate the reliability of the system (assuming that the system does not
fail if one of the versions does not fail). They confirm that N-version design is more effective
when different versions fail independently and that the diversity of programming language
has a positive effect (programmers make different faults and different kinds of faults, with
different languages). Given the size of their dataset, the authors really stress the statistical
validity of their findings.

Salako et al. [Salako and Strigini 2014] question the independent sampling assumption
posed by the models of Eckhardt and Lee [De Eckhardt and Lee 1985] and Littlewood
and Miller [Littlewood and Miller 1989]. They analyze the consequences of violating this
assumption and evaluate the opportunity of using different versions of a program (not de-
veloped independently) to build fault-tolerant systems. Their results confirm the important
influence of independence on diversity. Yet, they also open the discussion about different
forms of independence and different processes that can be applied to mitigate the influences
between different versions.

A large number of theoretical and empirical studies have dissected the foundations of
design diversity. We have summarized these works here and discussed how they have con-
tributed to a finer grain understanding of the conditions for effective design diversity.

5.2. Study of Natural Software Diversity

“Natural software diversity” is any form of software diversity that spontaneously emerges
from software development. The emergence comes from many factors such as the market
competition, the diversity of developers, of languages or of execution environments. In Sec-
tion 3, we have discussed how natural diversity can be used to establish reliable software
systems (Section 3.2). In this section, we resume on natural diversity and discuss the litera-
ture that studies and describes this existing natural diversity. The different studies presented
in this section explore different kinds of software diversity: in software components, in source
code, as well as in the social behaviors in open source communities.

Gashi et al. [Gashi et al. 2004] have studied bug reports for 4 off-the-shelf SQL servers
(Oracle 8.0.5, Microsoft SQL, PostgreSQL 7.0.0 and Interbase 6.0), to understand whether
these solutions could be good candidates for fault-tolerance, i.e., exhibit failure diversity.
The study consisted in selecting bugs for each of the servers, collect the test cases that
trigger the bug on a server and run them on the other servers to check whether the other
solutions present the same bug. Following this protocol, for a total of 181 bugs, they observed
that only 4 were bugs in two versions simultaneously, and no bug was found in more than
2 versions. They emphasize that the diversity of solutions is major asset for forward error
recovery, since it is possible to copy the state of a correct database in a failed one. They
have proposed to use this natural diversity to design an architecture for a fault-tolerant
database management system [Gashi et al. 2007].

Barman et al. [Barman et al. 2009] focus on host intrusion detection systems (HIDS)
deployed on all machines of entreprise networks. The ability of an IDS to detect intrusions
depends on different thresholds that should depend on each user, yet these thresholds are
usually set to the same value on each machine, because of a lack of guidelines about how
to configure them. The authors analyze the impact of this monoculture of HIDS, showing
that it provides very poor results in terms of intrusion detection. These poor results are
mainly because the behavior of users are so diverse that they HIDS should also have diverse
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configurations to be effective. Then, the authors experiment with increasing configuration
diversity and observe a clear benefit to reduce the number of missed detections.

Koopman and De Vale [Koopman and DeVale 1999] evaluate the diversity of POSIX
operating systems, using a robustness metric based on failure rates. The authors compare
13 implementations of POSIX. They use the Ballista testing tool to generate large quantities
of robustness test cases that they run on each version. This reveals between 6% and 19% of
failure rate. Then, the authors perform a multi-version comparison to analyze the diversity
of failures and thus the usability of these POSIX versions for N-version fault-tolerance. The
results demonstrate that multi-versions can be used to increase robustness, yet, with the 2
most diverse solutions, there is still a 9.7% common mode failure exposure for system calls.

Han et al. [Han et al. 2009] analyze the diversity of off-the-shelf components with respect
to their diversity of vulnerabilities. They provide a systematic analysis of the ability of multi
version systems to prevent exploits. The study is based on 6000 vulnerabilities published in
2007. The main result is that components available for web servers are diverse with respect
to their vulnerabilities and cannot be compromised by the same exploit. Consequently, all
these components can run on multiple operating systems in order to increase diversity. They
conclude that the natural diversity of off-the-shelf software applications is beneficial to build
attack tolerant systems.

Some recent work study the natural diversity or redundancy that emerges in large-scale
source code. Gabel and Su [Gabel and Su 2010] analyze uniqueness in source code through
the analysis of 6000 programs covering 420 million lines of code. The authors focus on the
level of granularity at which diversity emerges in source code. Their main finding is that,
for sequences up to 40 tokens, there is a lot of redundancy. Beyond this (of course fuzzy)
threshold, the diversity and uniqueness of source code appears. Jiang and Su [Jiang and
Su 2009] propose an approach for the identification of functionally equivalent source code
snippets in large software projects. This approach consists in extracting code snippets of a
given length, randomly generating input data for these snippets and identify the snippets
that produce the same output values (which are considered functionally equivalent, w.r.t
the set of random test inputs). They run their analysis on the Linux kernel 2.6.24 during
several days and find a large number of functionally equivalent code fragments, most of
which are syntactically different. Both studies explore the tension between redundancy and
diversity that exists in software.

Mendez et al. [Mendez et al. 2013] analyze the diversity in source code at the level of
usages of Java classes. They analyze hundreds of thousands of Java classes, looking for type
usages, i.e. sets of methods called on an object of a given type. They find 748 classes with
more than 100 different usages of the API, the most extreme case being the String of the
Java library, for which they found 2460 different usages. This reveals a very high degree of
usage diversity in object-oriented software.

Diversity also emerges in social behaviors in open source software development. In this
area, Posnett et al. [Posnett et al. 2013] analyze the focus of developers (whether they
contribute to few or many artifacts) and the ownership (to what extent an artifact is “owned”
by one or several developers). Through an analogy with predator-prey relations, they set
up entropy measures to quantify the diversity in focus and ownership. They observe high
levels of diversity in open source projects, and also demonstrate that these entropy metrics
have good predictive properties: focused developers introduce less defects, while artifacts
that receive contributions from several developers tend to have more defects. Vasilescu et
al. [Vasilescu et al. 2013] studied the development of the GNOME community and observed
diversity both from the point of view of contributors (how diverse are the activities of
different project contributors) as well as from the point of view of project (how diverse are
the activities going on in different GNOME projects).

Software diversity spontaneously emerges through multiple phenomena. In this section we
have discussed the methods to study these different phenomena, as well as the experimental
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procedures that have been implemented to analyze the impact of this specific form of soft-
ware diversity. These recent studies illustrate how the analysis of complex diversification
processes must leverage techniuqes from multiple domains ranging from software analysis,
data mining, statistics to threat models and exploit replication.

5.3. Summary

This section has presented two main areas in the analysis and the theoretical modeling
of software diversity and its impact. The first part provided an overview of 3 decades of
works that analyzed N-version programming and proposed several statistical methods and
foundational assumptions that underly the effectiveness of this technique for fault-tolerant
software systems. The second part discusses novel work that analyze the implication and the
effectiveness of natural software diversity (as presented in section 3.2) for building resilient
systems.

6. CONCLUSION

In this paper, we provided a global picture of the software diversity landscape. We decided
to broaden the standard scope of diversity, in order to give a very inclusive vision of the field
and, hopefully, a better understanding of the nature of software diversity. The survey gath-
ered work from various scientific communities (security, software engineering, programming
languages), which we organized around one dimension: the diversity engineering technique
(managed, automated, natural).

Looking at all these works from a temporal perspective, we realize that the interest for
diversity has always existed in the last 40 years. The latest studies even discover phenom-
ena of natural diversity emergence, i.e. diversity is observed but the processes that led to
its presence are unknown. We believe that harnessing this natural diversity will be an es-
sential step in the future of software diversification. This could be the intermediate step
towards the amplification of natural diversity. Indeed, diversity in natural complex systems
is never explicitly developed, but emerges as a side effect of other phenomena. For example,
biodiversity at different scales of ecosystems, emerges as the result of sexual reproduction,
mutation, dispersal and frequency-dependent selection [De Aguiar et al. 2009; Melián et al.
2010]. To this extent, the main area of future work is to identify the software engineering
principles and evolution rules that drive the emergence and the constant renewal of diversity
in software systems. In other words, can we engineer open-ended software diversification?
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