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THE INCOMPRESSIBLE LIMIT IN LP TYPE CRITICAL SPACES

RAPHAEL DANCHIN AND LINGBING HE

ABSTRACT. This paper aims at justifying the low Mach number convergence to the incom-
pressible Navier-Stokes equations for viscous compressible flows in the ill-prepared data case.
The fluid domain is either the whole space, or the torus.

A number of works have been dedicated to this classical issue, all of them being, to our
knowledge, related to L? spaces and to energy type arguments. In the present paper, we
investigate the low Mach number convergence in the LP type critical regularity framework.
More precisely, in the barotropic case, the divergence-free part of the initial velocity field
just has to be bounded in the critical Besov space B;f,/f"l N B;{l for some suitable (p,r) €
[2,4] x [1, +00]. We still require L? type bounds on the low frequencies of the potential part
of the velocity and on the density, though, an assumption which seems to be unavoidable in
the ill-prepared data framework, because of acoustic waves.

In the last part of the paper, our results are extended to the full Navier-Stokes system

for heat conducting fluids.

We are concerned with the study of the convergence of the solutions to the compressible
Navier-Stokes equations when the Mach number € goes to 0. In the barotropic case, the
system under consideration reads

O + div(p®u®) = 0,
(NSCE) €, € : €, € € : € € €\ ixr 0,E vps
A (pu®) + div(p*u® @ u®) — div (2u(p°®) D(u®) + A(p°)dive® Id) + o= 0,

where p® = p°(t,z) € R, stands for the density, u® = u®(t,x) € R?, for the velocity field,
P = P(p°) € R is the pressure, A = A(p®) and pu = u(p®) are the (given) viscosity functions
that are assumed to satisfy x> 0 and A + 2p > 0. Finally, D(u®) stands for the deformation
tensor, that is (D(uf));; = 3(9;u®’ + 0;u®*). We assume that the functions P, A and p are
smooth, and we restrict our attention to the case where the fluid domain is either the whole
space R? or the periodic box T? (combinations such as T x R~ and so on may be considered
as well).

At the formal level, in the low Mach number asymptotic, we expect p® to tend to some
constant positive density p* (say p* =1 for simplicity) and u® to tend to some vector field v
satisfying the (homogeneous) incompressible Navier-Stokes equations:

O ~+v-Vu—pu(l)Av+ VII =0,
(NS) { t p(1)

dive = 0.

This heuristics has been justified rigorously in different contexts (see e.g. [11, 12, 15, 16, 17,

18, 20, 24, 25, 26, 28, 29, 30]). In the present paper, we want to consider ill-prepared data of

the form pj = p* + eaf and uf where (af, ) are bounded in a sense that will be specified

later on. Assuming (with no loss of generality) that P'(p*) = p* = 1 and setting p° = 1+ea®,
1



2 R. DANCHIN AND L. HE

we get the following system for (a®, u®):

( 3 15
ora® + dive’ _ —div (a®u®),
&€ 15 kj 1>
(0.1) Opu® 4+ u® - Vu® — Au + vat _ (ea )VaE
1+ ea® € €

\ +7 p: div (2fi(ea®) D (u) + A(ea®)divu® 1d),
where A := pA + (A + p)Vdiv with A := A(1) and p := p(1),

P'(1+ _ ~

) = - P ), i) = 14 2) (1) amd 3() = A7) - M),

In what follows, the exact value of functions k, A and 1 will not matter. We shall only use
that those functions are smooth and vanish at 0.

We strive for critical regularity assumptions consistent with those of the well-posedness
issue for the limit system (N S). At this stage, let us recall that, by definition, critical spaces
for (NS) are norm invariant for all £ > 0 by the scaling transformations Ty : v(t,z) —
¢v(£?t, ), in accordance with the fact that v is a solution to (NS) if and only if so does Tyv
(provided the initial data has been changed accordingly of course).

As first observed in [9], in the context of the barotropic Navier-Stokes equations (0.1), the
relevant scaling transformations read

(0.2) (a,u)(t, ) — (a,u)(F*t, lx), >0,
which suggest our taking initial data (ag, ug) in spaces invariant by (ag, ug)(z) — (ag, lug)({x).

In order to be more specific, let us introduce now the notations and function spaces that
will be used throughout the paper. For simplicity, we focus on the R? case. Similar notations
and definitions may be given in the T¢ case.

We are given an homogeneous Littlewood-Paley decomposition (Aj)jez that is a dyadic
decomposition in the Fourier space for R%. One may for instance set A; := ¢(277D) with
o(€) == x(&/2) — x(§), and x a non-increasing nonnegative smooth function supported in
B(0,4/3), and with value 1 on B(0,3/4) (see [2], Chap. 2 for more details).

We then define, for 1 < p,r < oo and s € R, the semi-norms

HZHB;T = HQJSHAJZ'HLP(Rd) o (z)"

Like in [2], we adopt the following definition of homogeneous Besov spaces, which turns out
to be well adapted to the study of nonlinear PDEs:

B, = {z €S (RY ¢ ||zl <oo and lim Sz = o} with $; == (277 D).
’ P, Jj——00

As we shall work with time-dependent functions valued in Besov spaces, we introduce the
norms:

HUHL%(B;’T) = HHu(t, ')HB,%,T Le(0,1)’

As pointed out in [6], when using parabolic estimates in Besov spaces, it is somehow natural

to take the time-Lebesgue norm before performing the summation for computing the Besov
norm. This motivates our introducing the following quantities:

Jullzg s, = 1185l ) ooy
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The index T will be omitted if 7' = +oo and we shall denote by @(B;r) the subset of

functions of L (BS ) which are also continuous from R to B
Let us emphamze that, owing to Minkowski inequality, we have ifr<gq

s i < Mol s
with equality if and only if ¢ = r. Of course, the opposite inequality occurs if r > q.
An important example where those nonclassical norms are suitable is the heat equation
(0.3) Oz — plAz = f, zt=0 = 20
for which the following family of inequalities holds true (see [2, 6]):
(0.4 el assorm, < Clzols;, + 1z )
forany T'> 0,1 <m,p,r <ooand s € R.

Restricting ourselves to the case of small and global-in-time solutions (just for simplicity),
the reference global well-posedness result for (N.S) that we have in mind reads as follows:

Theorem 0.1. Let ug € Bf,l,/rpfl with divug = 0 and p < 0o, and r € [1,+00]. There exists
¢ > 0 such that if
[ e——
then (NS) has a unique global solution u in the space
L®(Ry; Bﬁ/f’l) NL'(Ry; B%pﬂ),
which is also in C(Ry; Bd/p ) if r < 0. Besides, we have

(05) el ey + Bl sty < Clluollgarpes,

for some constant C depending only on d and p.

Although Theorem 0.1 is not related to energy arguments, to our knowledge, all the math-
ematical results proving the convergence of (NSC.) to (NS), strongly rely on the use of L?
type norms in order to get estimates independent of . This is due to the presence of singular
first order skew symmetric terms (which disappear when performing L? or H* estimates) in
the following linearized equations of (0.1):

div u®
ata8 + v = f87
0.6 €
(06) O e
ou® — Au® +

= ge.

However, it is clear that those singular terms do not affect the divergence-free part Pu® of
the velocity, which just satisfies the heat equation (0.3). We thus expect handling Puf to be
doable by means of a LP type approach similar to that of Theorem 0.1. At the same time,
for low frequencies (‘low’ meaning small with respect to (ev)~!), the singular terms tend
to dominate the evolution of a® and Quf, which precludes a LP-type approach with p # 2,
as the wave equation is ill-posed in such spaces. Finally, for very high frequencies (that is
greater than (ev)~!), it is well known that a® and Quf tend to behave as the solutions of

IThe statement in the Sobolev framework is due to H. Fujita and T. Kato in [19]. Data in general critical
Besov spaces, with a slightly different solution space, have been considered by H. Kozono and M. Yamazaki
in [27], and by M. Cannone, Y. Meyer and F. Planchon in [4]. The above statement has been proved exactly
under this shape by J.-Y. Chemin in [6].
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a damped equation and of a heat equation, respectively, and are thus tractable in LP type
spaces. Besides, keeping in mind the notion of critical space introduced in (0.2), it is natural
to work at the same level of regularity for Va® and Quf (see e.g. [2], Chap. 10, or [5]
for more explanations). The rest of the paper is devoted to clarifying this heuristics, first
in the barotropic case (Sections 1 to 4), and next for the full Navier-Stokes-Fourier system
(Section 5).

1. MAIN RESULTS

Before stating our main results, let us introduce some notation. From now on, we agree
that for z € S'(R?),

(1.7) 2= Z Ajz and M= Z Ajz,
27 <290 27 >270

for some large enough nonnegative integer jy depending only on p, d, and on the functions k,
A/v, p/v with v := XA+ 2u. The corresponding “truncated” semi-norms are defined as follows:

14 A h h
el ==y, and ol = 22 g

Let € := ev. Based on the heuristics of the introduction, it is natural to consider families
of data (af,uf) so that

o (a5, Qug)F e By,
o (a§)F ¢ Bd/p (Qug)he e Bd/p 17
e Pug EBf,l,/rp 1ﬁBOO1
Recall that B;,l,/rp s only embedded in Bgo%r. The reason why we prescribe the slightly

stronger assumption Bgoll for Pug is that we need the constructed velocity to have gradient

in L'(Ry; L) in order to preserve the Besov regularity of a® through the mass equation.
Indeed, it is well known that for a solution z to the free heat equation, the norm of Vz in
LY(Ry; L) is equivalent to that of zg in Bo_o%l (see e.g. [2], Chap. 2).

Our assumptions on the data induce us to look for a solution to (0.1) in the space X%, of
functions (a,u) such that
o (a'%, Qut%) € Cy(Ry; By~ N L (Ry; BT,
o a"F € Cy(R: BYP) N LR, BYP),
o QUi e Cb(R+,Bd/p Hn LI(R+,Bd/”+1),
e PucCy(Ry;B ;,l/rp ! NBZ )ﬂLl(RJr, Bd/erl NBL 1) (only weak continuity in Bg,/rpfl
if r = 00).

We shall endow that space with the norm:

LE h,&
(@ wllxzg =l QI s +1Qu HLOO(BW,J 1Pl sy EaE

2 -1 h,e
4@, Qu! (W)wnguu vy P g+ ol

Our main result reads as follows:
Theorem 1.1. Assume that the fluid domain is either R% or T4, that the initial data (a, us)
are as above with 1 <r < p/(p —2) and that, in addition,
e Cased=2:2<p<A4,
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e Cased=3:2<p<A4,
o Cased>4:2<p<2d/(d—2), orp=2d/(d—2) and r = 1.
Let € := ev. There exists a constant n independent of € and of v such that if

(1.8) G5 = (a5, Qup)Il's, B/ e prt 1Pusll gare—1p-1, +&lagls By S

then System (0.1) with initial data (af,uy) has a global solution (aa,ue) in the space Xt
with, for some constant C' independent of € and v,

(1.9) I(a®, u)llxzy < CCG".

In addition, Qu° converges weakly to 0 when € goes to 0, and, if Pug — vo then Pu® converges
in the sense of distributions to the solution of

(1.10) Ou+ P(u - Vu) — pAu =0, ult=0 = vo.
Finally, if the fluid domain is R® and d > 3 then we have

2| (af, Qua)HZQ(B(dl-Fl)/P—l/Q) < COYVEY2=Yr gnd
P,
1P =0 oo sty FRIPUE =0l 53 grassrsmnrsay < C(IPuG—vol giasn pmsja+C572/271P).

In the R? case, we have,
VI 2||(a%, Quo) |2y peraisp—csay < CCFPENTIP) and
L*(By )

1P = vllgo pierorimmerr-ry + BllPU" = vllgy perno-crze,

< C’(||73u0 - vo|| (c2)/p—c/2-1 + CS’Vgc(l/z_l/p))
where the constant c verifies the conditions 0 < ¢ <1/2 and ¢ < (8 —2p)/(p — 2).

Some remarks are in order:

(1) According to [14], uniqueness holds true if 7 = 1. We conjecture that it also holds in
the other cases but, to the best of our knowledge, the question has not been addressed.

(2) The first part of the theorem (the global existence issue) may be extended to 2d/(d +
2) <p<2andallrel,x] provided the following smallness condition is fulfilled:

(a5, Qu§)|1%5 pirz-1 T 1Qug|" B2 + [[Pugll 320 +€H%H B2 < nr.
21 21

Indeed, Theorem 1.1 provides a global small solution in Xe,’,f. Therefore it is only a
matter of checking that the constructed solution has additional regularity XZ7,. This
may be checked by following steps 3 and 4 of the proof below, knowing already that
the solution is in X27. The condition that 2d/(d+2) < p comes from the part u’%-Va
d/2

1)

of the convection term in the mass equation, as Vu’¢ is only in LY(Ry; B , and

the regularity to be transported is B;l,/lp . Hence we need to have d/p < d/2 —|— 1 (see
e.g. Chap. 3 of [2]). The same condition appears when handling k(ca®)Va®.
As we believe the case p < 2 to be somewhat anecdotic (it is just a regularity

result), we decided to concentrate on the case p > 2 in the rest of the paper.

(3) We can afford source terms in the mass and velocity equations, the regularity of which
is given by scaling considerations.

(4) We also expect results in the same spirit (but only local-in-time) to be provable for
large data, as in [11, 12].
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(5) To keep the paper a reasonable size, we also refrained to establish more accurate
convergence results in the case of periodic boundary conditions, based on Schochet’s
filtering method (see [12] for more details on that issue if p = 2).

2. THE PROOF OF GLOBAL EXISTENCE FOR FIXED € AND v

Recall that v := X\ 4 2u. Performing the change of unknowns

(2.11) (a,u)(t,z) == e(a®,u®)(e°vt, eva)
and the change of data
(2.12) (ag, up)(z) = e(ay, uy) (eve)

reduces the proof of the global existence to the case v = 1 and € = 1. So in the rest of this
section, we assume that e = v = 1, and simply denote

(2.13) 2ti=201 and 2P =Ml

1 — |41 . h - h,1| .
(214) lell, = 11205y, and [y, = "5,

The threshold between low and high frequencies will be set at 2/° for some large enough
nonnegative integer jo depending only on d, k, i/v and X/I/

Resuming to the original variables will yield the desired uniform estimate (1.9) under
Condition (1.8). Indeed, we notice that we have up to some harmless constant:

0F hE
106, QuE)g5ra-s + Qe s + 1P i1, + 2l

J4 h
= V(H(aoa QUO)HBS,G%I + HQUOHBZ/lP*l + HPUOHBg{f‘ImBQI + “a0”3§{f)

and

1@, u) I xzy = Vi@, w)llxpr-

2.1. A priori estimates of the solutions to system (2.15). In this paragraph, we con-
centrate on the proof of global estimates for a global smooth solution (a,u) to the following
system:

Ora + divu = —div (au),

(2.15) ou~+u-Vu— Au+ Va = k(a)Va — J(a)Au

1 . (.Ji(a) Xa) |,
—i—1+adlv<2 ” D(u) + ” divuld |,

with k, A, i as above, J(a) := a/(1 +a) and A := A/v.

To simplify the presentation we assume the viscosity coefficients A and p to be constant
(i.e. the last line of the velocity equation in (2.15), is zero). The general case will be discussed
at the end of the subsection.

Throughout we make the assumption that

(2.16) sup la(t,x)| <1/2

teRy, zeR4
which will enable us to use freely the composition estimate stated in Proposition 6.1. Note
that as B;lff) — L*°, Condition (2.16) will be ensured by the fact that the constructed solution
has small norm in Xf:lr .
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Step 1: the incompressible part of the velocity. Projecting the velocity equation onto the set
of divergence free vector fields yields

OPu — pAPu = —P(J(a).iu) —P(u-Vu) with pg:=pu/v.
Hence, using the estimates (0.4) for the heat equation, we get
(2.17) ”PuHZoo(Bﬁ/rpfl)mZI(BZ,/f“) < ||PuO||Bg{Tp71 + H’P(J(Q)VQU) +P(u- Vu)‘|Z1(Bg/Tp71)
(2.18) ”PUHEOO(B;{I)OU(BC{OJ) < HPUOHB;1,1 + [|P(J(a)V?u) + P(u - vu)HLl(B;O{I)'

In order to bound the right-hand sides, we use the fact that the 0-th order Fourier multiplier P

maps Ll(Bd/p 1) (or Ll(Booll)) into itself. In addition, classical product laws and Proposition
6.1 give (if p < 2d):

HJ(G)V2UHE1(B;I’/TP—1) S HaHfloo(BgGP)HV2UHE1(B$/TP—1)7
Hu ’ vu”Z1(Bg(TP—1) < HuHZoo(Bg’/rP—l)HUHZ1(B;1’/TP+1)'
Because, by Bernstein inequality,

(2.19) lall gare < < llall il + a5 il < 20la’| pa/2-1 + la™ | /s

we deduce from (2.17) that

(2.20) 1Pl iy iy S 1Pl s + 20, )

Next, in order to bound the r.h.s. of (2.18), we use Bony’s decomposition (see [3] and the
definition in appendix):

J(a)V?u = Ty V2 + Ty2,J (a) + R(J(a), V?u)

and, with the summation convention over repeated indices,
(2.21) (u-Vu)' = T,;0;u" + Ta,uiuj + 0;R((Pu) ,u') + R((Qu)’, 0ju’)  with i=1,---,d.
On the one hand, T maps L™ x B 11 and B 1 x L in B_ 11 while R maps B;l,/lp X B;f,/g;’l
in Bg{f) _1, if 2 < p < 2d. Hence, taking advantage of functional embeddings (adapted to
Lm(B;r) spaces),
(2.22) ||J(Q)V2u||L1(B;171) S ||a‘|floo(3§{1p)||V2u||z1(3gfrpfl)-
On the other hand, thanks to the fact that, if 2 < p < 2d,

1T Oju HLl(B_ ) S ||Uj||L°o(B;o{1)HajuiHLl(Bgo’oo)

HTajwu HL1 (B2 S ||<9juz||Loo(3;jl)HuﬂHLl(B;O’oo)

10 R(PuP gty S 1P s Il e,

HR((QU)J7ajul)HLl(B;l’l) S ”(QU)JH~oo(B;l’/1P—1)HajuZHp(Bg’/rpy
we get

[ VUHIA(B;O{I) S (”PuHZoo(B;h) + HQUHZ*(B%"”))HuHF(Bﬁ(f“)'

Plugging this latter inequality and (2.22) in (2.18) and using Bernstein inequality, we end up
with

(2.23) IPullzeo 522 )nr s, ) S IPuollg, + 210||(a,U)H§(f:1r.
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Step 2: the low frequencies of (a, Qu). Throughout, we set p* = 2p/(p — 2) (that is 1/p +
1/p*=1/2) and 1/r* =6/r +1 — 0 with § = p/2 — 1. Because 2 < p < min(4,2d/(d — 2)),
we have max(p,d) < p*, and r* € [1,r]. We shall use repeatedly the following facts, based on

straightforward interpolation inequalities :
e The space ZOO(B%”’I) N L®(BZY,) is continuously embedded in EOO(B;I{%;*JI),
e The space 52(31%1) )N LQ(BgoJ) is continuously embedded in ZQ(BZ/;‘) (here comes
that r < p/(p — 2)).
e We have 1/r* +1/r > 1 (again, we use that r < p/(p — 2)),
e If p = d* (that is p = 2d/(d — 2)) then r = 1 by assumption, and thus r* = 1, too.

00,1

Now, to estimate the low frequencies of (a, Qu), we write that
Ora + div Qu = —div (au),
(2.24) ~
9Qu— AQu+ Va=—-9(u-Vu) — 9Q(J(a)Au) + k(a)Va,

and the energy estimates for the barotropic linearized equations (see [2], Prop. 10.23, or [9])
thus give
0 QI sy S Naos Quolga s + i @)l

’Ll(B
a/2-1) +1Q(J (a VAW, o N G )Val!

ALY(B d/2— Ly

+HIQ(u - V)l

d/2— 1)

LY By LY(By LY By

Let us first bound? u - Vu in Ll(B;lﬁ%l). For that, we use again decomposition (2.21). To
handle the first term of (2.21), we just use that (see [2], Chap. 2)
T L®(BUYY) x LNBYP) — LNBYT).

This is due to the fact that 1/p+1/p* =1/2, and that either d/p*—1 < 0and 1/r+1/r* > 1,
ord/p" —1=0and r*=1. As T": LOO(Bd/p ) El(B;i/rpH) — Ll(B;lﬁ%l), the second
term of (2.21) also satisfies quadratic estimates with respect to the norm of the solution in
Xf’{.
Next, because
R: By x BY) — By?,
we have
. J ot
0 R(PaY )y garasy S Pl g Nl s

For the last term of (2.21), we just have to use that
R: LB x LY (BYP) — LYBy™Y) for  pe(2,4N[2,2d).
Putting all the above mformatlons together, we conclude that

2
(2.25) -Vl ggraeny S o) gy

In order to bound (div (au))’, we notice that

(2.26) (div (au))e = (div (R(a,u) + Tau))e +divT,ea’ + (div (Sjou Aj0+1a,))€.

2We do not get anything better by just considering the low frequencies of Q(u - Vu).
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Now, the remainder R and the paraproduct T map E‘X’(Bd/p*_l) X Ll(Bd/pH) in LI(B%Q)
and we have EOO(B;[,/IPA) — LOO(B;l/p ) because p* > p. Hence |
v (R, ) + Tow)l s g, S ol gos el g
To handle the third term of (2.26), it suffices to use the fact that
T: L*(L®) x L¥(B3))) — LY(By).
Finally,
HSJOUHLOO(LP*)HAJ‘oHaHLl(m

Hsjou Ajo-i-lCZHLl(LQ) <
S 2i-dlr) (209 Ay a3 gy )2,

Loo(Bd/P* 1)

Hence

(2.27) 200218 50u Ajyall 2y S 2j0\|u||~00(3§£f, Ha”Ll(Bd/p)

We can thus conclude that

(2.29) v @) o) S 2000 g

Next, denoting Qf := .j0+1 Q, we write that

(2.29) Q' (J(a)Au) = Q' (T3, (a) + R(Au, J(a))) + Ty AQ u + [QF, Ty (o] Au.
To handle the first two terms, it suffices to notice that

(2.30) R and T map L¥(BIP7Y) x L{BYP) to LY(BI,

and to use Proposition 6.1. Therefore, by virtue of (2.19),
1T 5,7 (a) + R(Au, J(a))

s ey S 2o ) By

d/2 1 d/2 1

For the third term, we just have to use that T : L x B — B
tator term may be handled according to Lemma 6.1, Wthh ensures that3

Q" Ty Aul 1 garory < V(@)

. Finally the commu-

yarv—1 [V 2ull7y gasm-ry-
Ll(B (Bp*,l ) Ll(BpJ )
Hence using embeddings and composition estimates, we end up with

(2.31) 190 (a)Au)] ", s S < 2| (a, ) Repy -

Finally, we decompose k(a)Va as follows:
(k(a)Va)Z = (Ty.k(a) + R(Va, k:(a)))z + T(k(a))zVag + (Sjok(a)AjOHVa)z.
To bound the first two terms, we use again (2.30) and composition estimates. For the third

term, we use that T : L?(L°°) x L2(Bg7/12_1) — LI(B%Q_l). For the last term, we proceed as
in (2.27) and get

202|185 k() Ajg1Val| 2 S QjOHk(a)HBdgp;—lHaH’]gd/lp-
p, P,

Therefore, by embedding,
(A1) & . . "
2O |4 h(0) Ay Vel ) S 20 el -

3Recall that r = 1 if p* =d.
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For bounding k(a), one cannot use directly Proposition 6.1 as it may happen that d/p—1 < 0.
So we write _ B
k(a) = k' (0)a + ak(a) with k(0) =0

Now, combining Proposition 6.1 and product laws in Besov spaces, we get for 2 < p < 2d,

(232) K@ garp-1 S (KO + el go ol s
So finally,
(233) K@Vl s gty S 200+ ol ) a0 ey

Putting together Inequalities (2.25), (2.28), (2.31) and (2.33), we conclude that

L L j
(2:34) 0 QI gy oo, S 10, Qo) s+ 21 el e g

Step 3: Effective velocity. To estimate the high frequencies of Qu, we follow the approach of
[21, 22, 23], and introduce the following “effective” velocity field*:
w:= Qu + (-A)"'Va.
We find out that
dw — Aw = —Q(u - Vu) — Q(J(a)Au) + k(a)Va + Q(au) + w — (—A) "' Va.
Applying the heat estimates (0.4) for the high frequencies of w only, we get

h h h 1 h
”w”Zm(32{1P—1)0L1(32(1P+1 rS HwOHBi/lp_l—i_Huqu 1 ';i’/lp—l +HQ(J(G)AU)H I 'd/p—l)

+HIk(@)Vall?, n + Q)| o N O 1) parn- y +a "

LY(B LY(BY LY(B} LY(BIP2y
The important point is that, owing to the high frequency cut-off at |£] ~ 270,
h —2j h —2j h
ol oty S 27 0l g, and Nl gas S22l

Hence, if jj is large enough then the term ||w|| B may be absorbed by the Lh.s. The

other terms satlsfy quadratlc estimates. Indeed 1t is clearly the case of u - Vu according

o (2.25), for d/2 embeds in B;i/lp ' Next, because the product maps Bd/p X Bd/p Uin
B;i/lp_l, we have 1fp < 2d,

@)Vl ) Sl o

To handle Q(J(a).Au), we decompose it into

Q(J(a)Au) = T7(a)AQu + OR(J(a), Au) + QT z,J(a) + [Q,TJ(G)].Zu.
Arguing as from proving (2.31), we readily get

HQ(J(G)AU)HLl(B;l’/lP—l) S HaHZoo(Bg’/IP)(HQu”[/l(B;l’/lP"'l) + “u”Z1(Bg(TP+1))'
Finally, using Bony’s decomposition, we see that

“au”zl(Bg(Tp) rs HG’HE2(B§/IP)Hqug(Bg’/rPﬁBgo1)

Because

h
1QU@wI?, s, S ol e
p, ’

4The idea is to write the term AQu — Va in (2.24) as the Laplacian of some gradient-like vector-field.
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we conclude that
(2.35) Hw”%%(Bﬁff”)mD(B"fﬁ”*l) S ||w0||};§{1,],1 + 2j0‘|(a,u)||?xf:{ + 272]'0”&”21(]3;7/117).
Step 4: High frequencies of the density. We notice that
oa+u-Va+a=—adivu — divw.

To bound the high frequencies of a, we write that for all j > jo,

OAja+ Sj_1u-VAja+ Aja=—~Aj(Ty, - u+ R(Va,u) + adivu + divw) + R;
with R; := .j,lu . VAja — Aj(Tu -Va).

Arguing as in [13], we thus get for all ¢ > 0,

. o . 1/t . .
2:36) 1400l + [ 185allrdr < Asaoleo + 5 [ 1divSy-rul=|Ajaln dr
0 0
t t
+/ 1A;(Tvq - u+ R(Va,u) + adivu + divw)||z» dT+/ |R;|ze dT.
0 0

Now, because B / P is an algebra, we may write

ladivul gar S llall garp lldivul] garp,

and continuity results for the paraproduct, and remainder yield
1Tva - UHLl(BZ,/f’) S Hva”ioo(B;{I)HUHZ%B&/’"MI)’
HR(va7u)HL1(3$’/1P) S Hva”Zoo(B;l’/lP—l)HUHZ1(B;1’/TP+1)'
Finally, because

R; = A; Z Sj—1— Sj/,l)u VA a+ Z Si_qu, A - VAj/a,

7' —jl<4 |7/ —j]<4
commutator estimates from [2] lead to
SS9 Ry 1 < OVl al -
jez a
Multiplying (2.36) by 274/P ysing the above inequalities, and summing up over j > jo thus

leads to

t t
h h .
lall gy + | Nello dm < laallyas +C [ (1l + vl )l g

HCITl e gy Wil ) + Cll, o

Therefore,
(237) HaHfllll(Bzy/lp)ﬁzoo( d/P) ~ HG’Oth/P + 2-70“(0’ U)HXPT + H HLl(Bd/p+1)
Plugging (2.35) in (2.37) and taking jy large enough, we thus get

(2.38) la

h h Jo 2
b ity S a0l + 1Quollhur s + 2000,y
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Step 5: Closing the a priori estimates. Resuming to (2.35) yields

h h j
(2.39) 01 g1y sty S N0l + 1900 s + 200, ) Pepy-

As Qu = w" — (—~A)~7'Va", the same inequality holds true for Qu”. Finally, putting together
(2.20), (2. 23), (2.34) and (2.38), we conclude that

‘ h
(240) (@) lxzy < C (a0, Quo)ltyens + IPuoll p-1 s, + ol
N .
+1Quollyps + 201+ (a0 xpp ) )
p, B
It is now easy to close the estimates if the data are small enough; we end up with (1.9).

Step 6: The case of nonconstant viscosity coefficients. 1t is only a matter of checking that
the last line of (2.15) satisfies quadratic estimates. To this end, we write that

(2.41)

~ ~
T adiv (11(a)D(w)) = %div D(u) + @D(u) -Va,
and a similar relation for the term pertaining to A

The first term of the r.h.s. of (2.41) may be handled exactly as J(a).Au. As for the second

term, it suffices to estimate it in Ll(Bd/p 1) and to show that applying Q° to it leads to
estimates in L(B 3/12 1).

Throughout, we use the fact that “ (a) Va = V(L(a)) for some smooth function L vanishing
at 0. Now, continuity properties of R and T imply that

S IV | gt | Tl gy
! ,

IRV E@). Tl pygarnsy S IVED g gy IVl ey
S 190l o) V@) e iy

179 L@y Vull ;4 (B2

ITv.V(L(a >>HL1(Bd/p y

Bd/pfl

1) norm, after using suitable

which in particular yields quadratic estimates for the L!(
embedding and the composition estimate (2.33).
To complete the proof, it is only a matter of getting quadratic estimates for Q(Tv,VL(a))

in Ll(Bg{f—l). To this end, we observe that

| TV L@l /21, S 21 Q(TeuVL(0))

) ”Ll(BS,/f”)’

and thus
IIQK(TvuVL(a))IILl /21 < 29| Vullz, B fI)HV( @)lzzp 4/p-1)

S 20lull 75 d/p Hall

)~
LQ(Bd/P)

Therefore we end up with

ii(a)
pn aD(u) -Va

< 290(1 + ||a . a,u)||%pr
sy S 20 el i )l

and one may conclude that (2.40) is still fulfilled in this more general situation.
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2.2. Existence of a global solution to System (2.15). Let us now give a few words on
the existence issue. The simplest way is to smooth out the initial velocity ug into a sequence
of initial velocities (ufl)nen with (u2)¢ in Bd/2 uniformly, and (u2)" in B;l,/lpfl. Then using
the results of [8, 14] yields a unique local-in-time solution (a™,u™) to (2.15) with data (ag, ug).
From the above estimates, we know in addition that (with obvious notation)
(@™, ™)l xrr 0.0y < C(l(af, Qui)ll, g F Pl garp-ropr + Halod/p + HQulod/p )

is fulfilled whenever t is smaller than the lifespan 7" of (a”,u™). As the above inequality
implies that
Tn
n n

a straightforward adaptation of Prop. 10.10 of [2] to p # 2 implies that T}" = +oo. We thus
have for all n € N,

¢ h h
(@™, u") I xpr < (Il (ao, QUO)HBg/f—l + H’PUOHBZI’/;? s, t l[aol|’: Bily + || Quol|’; Bl 1)

Next, compactness arguments similar to those of e.g. [2] or [8] allow to conclude that
(a™,u")nen weakly converges (up to extraction) to some global solution of (2.15) with the
desired regularity properties, and satisfying (1.9) (with e = v = 1 of course). Resuming to
the original unknowns completes the proof of the first part of Theorem 1.1.

3. THE INCOMPRESSIBLE LIMIT: WEAK CONVERGENCE

Granted with the uniform estimates established in the previous section, it is now possible
to pass to the limit in the system in the sense of distributions. As in the work by P.-L. Lions
and N. Masmoudi [30] dedicated to the finite energy weak solutions of (0.1), the proof relies
on compactness arguments, and works the same in the R? and T cases. To simplify the
presentation, we assume that the viscosity functions A and p are constant.

So we consider a family (af, uf) of data satisfying (1.8) and Pu§ — vy when € goes to 0.
We denote by (a®,u®) the corresponding solution of (0.1) given by Theorem 1.1. Because

(3.42) lag s B/ S elagll’y s

the data (af, uf) are uniformly bounded in Bd/p ' x (B;,l,/p N B_l 1), and thus in Bd/ ' Like-

wise, (1.9) ensures that (a2, u¢) is bounded in the space Cy (R ; Bj / ) given our assumptions
on p and 7. Therefore there exists a sequence (e, )nen decaying to 0 so that

(ag™,uy") = (ag,up) in Bi/;_l and (a"",u"") = (a,u) in L(Ry; Bd/4 ) weakly .
Of course, we have Pug = vg.

The strong convergence of the density to 1 is obvious: we have p*» = 1 4 ¢,a°", and
(a*")nen is bounded (in L?(R,; B /p) for instance).
In order to justify that divu = 0, we rewrite the mass equation as follows:
divu™ = —g,div (a""u") — £,0pa"".
Given that a* and u®" are bounded in L?(Ry; Bd/ ' N L) (use the definition of XP) and
interpolation), the first term in the right-hand side is O(e,,) in L'(Ry; Bd/4 1) As for the
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last term, it tends to 0 in the sense of distributions, for a®» — a in L*>°(Ry; Bi/;‘_l

*. We thus have divu®» — 0, whence divu = 0.

) weakly

To complete the proof of the weak convergence, it is only a matter of justifying that u®»
converges in the sense of distributions to the solution u of (1.10). To achieve it, we project
the velocity equation onto divergence-free vector fields, and get

(3.43) OPu" — pAPu™ = —P(u - Vu) — P(J(ena®™) Aum).

Because Qu = 0, the left-hand side weakly converges to dyu — uAu.
To prove that the last term tends to 0, we use the fact that having £(a®)"¢ and (a)%®

bounded in L™ (Bd/p) and LOO( d/p ), respectively, implies that, for all « € [0, 1],

(3.44) £%a° is bounded in L*®(B I%p 1+a)

Now Auf is bounded in EI(BS,/TP 71) and p < 2d. Hence, according to product laws in Besov
spaces, composition inequality and (3.44), we get J(ca®)Au® = O(E"%) in El(Bg/rpﬁjLa),
whenever 2max(0,1 —d/p) < a < 1.

In order to prove that P(u®" - Vut") — P(u - Vu), we note that

1
um - Vu™ = §V]Qu€"]2 + Pu" - Vu™ + Qu™ - VPu ™.

Projecting the first term onto divergence free vector fields gives 0, and we also know that
Pu = u. Hence we just have to prove that

(3.45) P(Pu - Vur") = P(Pu-Vu) and P(Qu" - VPu") — 0.

This requires our proving results of strong convergence for Puf". To this end, we shall exhibit
uniform bounds for d;Pu®" in a suitable space. First, arguing by interpolation, we see that

(V2uer) is bounded in L™ (B, d/p+2/m 3) for any m > 1. Choosing m > 1 so that 2d/p+2/m —

3 > 0 (this is possible as p < 2d) and remembering that (¢"a°") is bounded in EOO(BI%’)),

we thus get (J(e,a").Au") bounded in L™ ( 'd,/rp +2/ ™73 Similarly, combining the facts that
(uen) and (Vuen) are bounded in L( g/rp 1) and EM(B%”“/’”‘Q), respectively, we see that
(ufm - Vu) is bounded in EM(B%””/”L %), too. Computing 9;Puc from (3.43), it is now
clear that (0;Pu") is bounded in Em(Bﬁ/errQ/m*s). Hence (Pu — Pug") is bounded in
cHm(Ry, Bg/errQ/m*s). As Pufr is also bounded in Cy(R Bg,/rp*l), and as the embedding
of B;i/lp “lin B;i/lp T2/m=8 g locally compact (see e.g. [2], page 108), we conclude by means of
Ascoli theorem that, up to a new extraction, for all ¢ € S(R%) and T > 0,

(3.46) $Pu —s ¢Pu in C([0,T]; B3,

Interpolating with the uniform in Cp(R4; Bd/ P 1) we can upgrade the strong convergence in

(3.46) to the space C([0,T7; Bd/p - %) for all small enough « > 0, and all T > 0. Combining
with the properties of weak convergence for Vu®™ to Vu, and Quf” to 0 that may be deduced
from the uniform bounds on u*", it is now easy to conclude to (3.45).
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4. THE INCOMPRESSIBLE LIMIT: STRONG CONVERGENCE IN THE WHOLE SPACE CASE

In this section, we combine Strichartz estimates for the following acoustic wave equations

div uf

Btae—i— :FE,

(4.47) vie (t,z) € Ry x R?

-G

associated to (0.1), with the unlform bounds (1.9) for the constructed solution (a®,u®) so as
to establish the strong convergence for u® to the solution v of (1.10) in a proper function
space. Recall that in a different context (that of global weak solutions), the idea of taking
advantage of Strichartz estimates for investigating the incompressible limit goes back to the
work of B. Desjardins and E. Grenier in [16].

Throughout the proof, we assume the viscosity coefficients to be constant, for simplicity.
Recall that C§" denotes the Lh.s. of (1.8).

We first consider the case d > 3 which is slightly easier than the two-dimensional case,
owing to more available Strichartz estimates.

The case d > 3. Let us assume that ¢ = v = 1 for a while. Then the solution (a,u) to (0.1)
satisfies (4.47) with F' = —div (au) and G = AQu — Q(u - Vu) — Q(J(a)Au) + k(a)Va, and
Proposition 2.2 in [11] ensures that for all ¢ € [2,00), we have

1 Q) gy a7, 0. Quo) g + IE O s,

Following the proof of (2.34) to bound F' and G, we eventually get

¢ 1,1
(@ Qa4 a2y S Co™

As we also have

1,1
(a, QU)H (B2 SCys

we conclude by using the following complex 1nterpolation result

5d/24+1 d 1)/q—1/2 d+1)/p—1/2 .
[Ll(B2,/1+ ), 1.24/(a— 2)( ( )/a—1/ )]q/(q+) LQ(B(fL )/p—1/ ) with p=(q+2)/2,
that
(@, Q% jyasnsoa) S Cp" forall p € [2,+00).
p,

Back to the original variables in (2.11), we deduce that for all positive ¢ and v,

1/2 LE ~1/2—1 ,
vt/ | (a®, Qu* )H iy B(d+1)/p 1/2) SeE /2-1/p CS v

Of course, for the above inequality to be true, we need in addition that the index p fulfills the
assumptions in Theorem 1.1. Now, taking advantage of the high-frequency cut-off (second
line below) and (1.9) (third line), we get

0,
| (a®, Qu6)||z2(32()d1+1)/17*1/2) < (s, Qua)HL;(B(d-Fl)/p 12 + [|(a®, Qu® )H (d+1)/p 1/2)
lLE ~1/2—1 h,e
S 10, QUINIZ, ytasvmoaay +8 /2717 |(af, Quf )HZQ B

5 1/71/2 g1/271/p CE N7

which yields the strong convergence of (a®, Quf) to 0 in LQ(B(dH)/p 1/2), with an explicit
rate.
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Let us now go to the proof of the convergence of Puc. Setting u® := Pu® — u, we see that
BuE — PAGE + P(PUE - VOl + 0w - Vu) = —P <u5 VU + Quf - VPuUE + J(eaE)Au5>-

In what follows, we aim at estimating du® in the space EOO(BZ(,?T—FU/])_?’/Z) N El(BI(,‘,jfl)/pH/Q).

First, applying (0.4) and the fact that P is a self-map in any homogeneous Besov space gives
U = 00"l foo gytarvysm—ssay + IO | 71 iarnsmsey
S gl ey /o-srz + [1Pus - Vo +u® - Vullzy s so-s/2)
+ju® - VOu® + Quf - VPu® + J(gae)Aue‘|’I"11(B(d+1)/p—3/2).
p,T
Next, product and composition estimates in the spirit of those of the previous sections
(where we use repeatedly that (d+1)/p—1/2<d/p and (d+1)/p—3/2+d/p > 0) yield:

1Pus - VOulllgy paenm=srey S NPU N poe gare=1) IVOE | 1 iarnyso-rey
+\|73U€||31(Bgfrp+1)||V5U€\|Zoo(gzgtfr+1)/p75/2),
”&[€ ’ quZl(Bédjl)/P—S/Q) < ”quZoo(Bg/TP—Q)”&fH21(B§)d:'1)/P+1/2)

IVl g 14 -2,

and also
™ VU parvm-sizy S IVQU o parvm-sz) [0z garmpo
HQuE-VPueHzl(BI(ﬁl)/p—s/z) < HQu€|’52(31(7(f{|>1)/p—1/2)HVPUEHEQ(B(;’/TP—I),
10 Al sy S I e gt AW s
S 0+ Hgaa|’Zoo(35{f))\\5a6|fzoo(3éft;r1>/p—1/2)\\USIILI(Bg(Tp+1)-
Let us observe that
[ e 4, eth,e
ea HZoo(B;fjll-H)/z)—l/Q) < lea “ZOO(BI(ijlfl)/p—l/Q) + [lea ”EOO(B;L}IQ—I)/Z)—I/Q)

A

+ V2P ot |22

—1~1/9— 0E
v 181/2 1/1’7”aa”zt; Loo(Bd/p)
p,1

By

(4.48)

A

V—lgl/Z—l/pCS,l/.
Therefore, putting together all the above estimates and using (1.9), we get
U= S N0l giarry/o-a2
7 (el gy + el o) JAU° +0 8210 GGG

Note that Theorem 0.1 implies that as vg is small compared to p (a consequence of smallness
condition (1.8)) then the solution u to (1.10) with data vy exists globally and satisfies (0.5).
We thus get

U3 H&i%HBI()d;I)/p—S/z + el osy,

which completes the proof of convergence in R if d > 3.
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The case d = 2. Applying Proposition 2.2 in [11] to (4.47) in the case d = 2, and using the
bounds of the previous section to bound the r.h.s. in Ll(Bgl)7 we now get if e =v =1,

l|(a, Qu )H B2la 14/ <C’ whenever 2/r <1/2—1/q.

) ~

Let us emphasize that in contrast with the high-dimensional case, we cannot have r smaller
than 4. In what follows, we set 1/r = ¢(1/2 — 1/q) with ¢ € [0,1/2] to be fixed later on.
Observing that (1.9) implies that

1,1
I(a, Qu)l|7, 2, <~ Co
and adapting the interpolation argument used in the previous paragraph, we get
¢ 1,1
I(a, Qu)||32(31(:1+2>/p—c/2) S

where p, ¢ and ¢ are interrelated through
_ 4g+(4-2q)c
g+2+(2—-q)c

Note that as ¢ € [0,1/2] and g € [2,+0o0], one can achieve any p € [2, 6], which is a weaker
condition than that which is imposed for p in the statement of Theorem 1.1.

For general € and v, the above inequality recasts in

V1/2H( < 50(1/271/19)087%

Qu )HL2 B(c+2)/p c/2) ~

Arguing as in the high-dimensional case, one can get a similar inequality for the high fre-
quencies of (a®, Quf), namely

lE
105, @ g perny 5 10°, QU i + 10 QU o
~ ”( Qu )”LQ(B (c+2)/p— c/2) +e€ ”(a 7Qu )”EQ(B;/f)

V—l/Qgc(l/Z l/p)COE 1/.

N

Let us finally prove the convergence of Puf to u in L (Bz(fjm/p*c/%l) N El(BI(f;ﬂ)/p*cQH).
Again, we apply Inequality (0.4) to the equation fulfilled by du®, and get
U = (|00 || oo eamrrm—era=1y N |71 pierarmmerzrny S 105l peesnso—eron
+||Pu® - Viu® + du® - Vu”zl(B;?;‘k2)/pfc/27l)
+H||u® - VQu© 4+ Quf - VPu + J(aae).AusHzl(B(c+z)/p_c/z_1).
p,T

In order to bound the nonlinear terms, we use standard continuity results for the product
or paraproduct, and also (repeatedly) the fact that the condition on ¢ in Theorem 1.1 is
equivalent to (¢ +2)/p —c¢/2 —142/p > 0. Then we get

1Pus - V&fuﬁ(ggﬁ)/f)—c”‘l) < HPUE”ZOO(BI%’/;)_I)HV&’LEHZI(BIE?:»2)/IQ_C/2)
NPz e e IV e e ovm-cra2),
6 - VUHZI(BI()C,TQ)/P‘C/Q_I) < HVUHZW(BE,/,P_2) H&,LEHZI(BI(?C;F2)/P—C/2+1)

IVl g I ey
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and also
I QeI ggesovo-erncny S 19 Q Ngaggesmimmorios W e

1Que + VPUelz, ggermo—eiamsy S QU Iagsicsnrvmerny IVPUl 5y g

<
I (€0) Ay iesarim—ernery S (1 0l i Mol icsarimmer 6 I oy

in Lo° (BI()C;LQ)/Z?*C/Q)

)

In order to bound ca® , one may argue exactly as in the case d > 3:

0F
Jea g giegrmerny S VI crnnmciy NI cromcn

< —lze(1/2- 1/1,)Hag”€e +§C(1/2 1/p) Hgaau

BO 1) Loo(B2/P)

5 V—lgc(l/Z—l/p)CS,l/.

So using Theorem 0.1 to bound the terms pertaining to wu, it is now easy to conclude to the
last inequality of Theorem 1.1. |

5. THE FULL NAVIER-STOKES-FOURIER SYSTEM

In this final section, we aim at extending the previous results to the more physically
relevant case of non-isothermal polytropic fluids. The corresponding governing equations, the
so-called Navier-Stokes-Fourier system, involves the density of the fluid p® and its velocity u®.
To fully describe the fluid, we need to consider a third (real valued) unknown, for instance
the temperature 6°.

For simplicity, we only consider the case of perfect heat conducting and viscous gases. We
set the reference density and temperature to be 1, and focus on ll-prepared data of the form
p5 = 1+ eaf, uo and 05 = 1+ ] where (aj,uf, ) are bounded in a sense that will be
specified later on® Settlng p° =1+ ¢ea® and 6° = 1 4 e9°, we get the following system for
(a, uf,9¥°):

div uf
oa® + MU div (a®uf),
Au® V(a® 4+ 9% 4 ea®v°)
) Ot +uf - Vu — =0,
(5.49) L+ u v 1+ eas + e(1 + ea®)

divu® AY* €

€ : €,€) _ — 2ulD €2 : € 2>_

\8,519 + + div (¥°u®) S 1+6a5(M’ u| + A(divu®)

We assume that the fluid is genuinely viscous and heat-conductive, that is to say
w>0, v:=A+2u>0 and x> 0.

Even though our results should hold for coefficients A, p and x depending smoothly on the
density, we only consider the constant case, for simplicity.

Keeping in mind our results on the barotropic case, we want to consider families of small
data (af, u,vj) in the space Yop defined by (still setting € := ev):

o (a5, Quy,95)"% € By,
o (a )he GBd/p (Qu )he c Bd/P 1, (lga)ha c Bd/P 2
e PuS € Bd/p L

5The reader may refer to [18] for the construction and the low Mach asymptotic of the weak solutions to
the Navier-Stokes-Fourier equations, and to [1] for the case of smoother data with large entropy variations.



THE INCOMPRESSIBLE LIMIT IN LP TYPE CRITICAL SPACES 19

The existence space Y, is the set of triplets (a,u, ) so that

o (a'%, Qul%,9%) € Cy(Ry; By N L (Ry; BY)TH),

o " € (R B N Ll(R+, Bd/”)

o 9F € Cy(Ry; B d/” %) ﬂLl(R+,Bd/p)

e QuF and Puf are in Cb(R+,Bd/p YA LY Ry BIFT,
endowed with the norm:

I(a,w, 9)llyr, = [l(a, Qu 9", b TP, Qu")|, . pale-1y HEla [

L°°(B L‘X’(Bd/p)
1 q1hE 0z , hE
+e ‘|19||L°°(Bi/1p_2) +V‘|(a’ Qu, 19)”[/1(3;’/12-0—1) +V‘|(Pu’ Qu )‘|L1(Bz’/1p+l) +e H(a’ ﬂ)HLl(B;l’/lp)'
We also set
LE
H((Io, Uo, 190)||YOPE N = H(a()a Quy, 190)”33/271
& 2,1

HI(Puo, Qug )l 4 sa/p- v Elaoll’ss, +E 90l B2
pl

Here the integer jo appearing in the threshold between low and high frequencies depends only
on kK :=k/v, i ;= p/v and X := \/v with v := X+ 2p.

In the case p = 2 and ¢ = 1, global existence for (5.49) in the above space and for small
data has been established in [10]. The main goal of this section is to extend the statement to
more general p’s, and to get estimates independent of € and v for the constructed solution.
Furthermore, in the R? case, we establish a strong convergence result in the low Mach number
asymptotics, in the spirit of our recent work [15]. Here is the main result of this section:

Theorem 5.1. Assume that the fluid domain is either R® or T¢ with d > 3, and that the
initial data (af,u, V) are as above with 2 < p < d and p < 2d/(d — 2). There exists a
constant 1 independent of € and of v (but depending on k/v) such that if

(5.50) (a5, 95) e < v

then System (5.49) with initial data (af, ug, 95) has a unique global solution (a,u®,9%) in the
space Y2, with, for some constant C' independent of € and v,

(5.51) 1(a®; u®,9%)[lyz, < Cli(ag, w6, 96)llyp_,

Furthermore, in the R? case, if (af, u§,95) is a family of data fulfilling (5.50) with Pu§ — vo
and 95 — a5 — Oq for suitable norms, then we have

e (¢, Qu°) — 0 with ¢° := V¢ + a°,

o Puf — u with u solution to (1.10),

e O — O with ©° := 9¥° — a® and O satisfying

(5.52) 8,6 — gAQ fu-VO =0, Ol =6y
More precisely, we have

(55 167, QU eniomsiny S 0722, 0, ),

(5.54) |[Pu — uHLoo(Bz(f;a)/p—s/z) + plPu® — u“Ll(B;fjlf'l)/P+1/2

< I1Pug — ol geasoym-sva + 2P (05, 95) -
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and

1> g
(5:55) 10| oo pinrsmsra , prp—2) + 10O o arnimmasay g arm)
<185 — Q9| - g2 aspen 4+ EVEVP| (a8, ug, 95 .
< 1195 OHBéfﬁ“)/p 302 =2 + | (ag, ug o)||ngE’V
Remark 5.1. Regarding the global existence and convergence issues, we expect similar results
for slightly larger Besov spaces, as in the barotropic case. Here we only considered Besov
spaces with last index 1 for simplicity, in order to benefit from uniqueness (see [7]), an open

question otherwise, and also because it allows us to avoid resorting to Lm(B;r) spaces and
complicated product estimates.

Proof. As in the barotropic case, performing a suitable change of unknowns reduces the proof
to the case ¢ = v = 1, and coefficients i, A and k. More precisely, we set

(5.56) (a,u,9)(t,z) = e(a®,us, 9°)(*vt, evz).
Thanks to (2.14), we notice that

(5.57)  vll(a,u, 9)llyp, = [l(a®, " 9%)llyz, and  v(ao,uo, o)llvp, | = ll(a5, u5, J5)llvy

0,e,v

So we may assume from now on that v = ¢ = 1, and thus omit the exponent &.

Let us give the outline of the proof. The first six steps are dedicated to proving global-in-
time a priori estimates (namely (5.51)) for smooth solutions to (5.49), which is a rather easy
adaptation of what we did in the barotropic case. In Step 7, we sketch the proof of existence.
The last step is dedicated to the low Mach number asymptotics in the R¢ case. Throughout,
we assume that (2.16) is satisfied, so that one may freely apply Proposition 6.1.

Step 1. Incompressible part of the velocity. Let A= A/v. we have
O Pu — iAPu = —P(u - Vu) — P(J(a)Au) — PWVK (a)) with J(0) = K(0) = 0.
Hence heat estimates (0.4) yield

1Pull oo a/pi1y S IIPuOHBd/lp—l+\|P(U-VU)+7’(J(G)AVU)+7’(19V(K(G)))
P, P,

5d/p—1 . sd/p—1y -
BB s ar

Only the last term is new compared to the barotropic case. Decomposing it into
V(K (a)) = 9'V(K(a)) +9"V(K(a)),

we may write

14
(5:58) [PV @)ys 1, S IVE @) s 19 e

+ V(K (a)) NES

Sd/p—1 Sd .
i 1 iy

So arguing as in the barotropic case and using (2.19), we eventually get

(5:539) 1Pl oty sy S 1Pl s + 201+l gyl s ) 3.
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Step 2. Low frequencies. Applying Projector Q to the velocity equation, we see that (a, Qu, )
fulfills

Ora + div Qu = —div (au),
8Qu — AQu + V(a+ V) = O(—u - Vu — J(a)Au + (a — 9)V(K (a))),
~ . : ~ 1 ~ UPT
Y — RAY + div Qu = —div (Yu) — kJ(a)AY + 1ta <2,u\Du]2 + )\(d1vu)2)-

The results of [10] guarantee that

(560) (2 Qu.?) S a0, Quo, 90) s + s,

¢
HLoo(337/12_1)0111(337/12"'1) 337/12—1)-
Compared to the barotropic case, we have to bound in Ll(B%Q_l) the low frequencies of the
following additional terms:

~ 1 ~ ~
(5.61) IV(K(@). div(iu), FI(@AD and (2,u|Du|2 n A(dm)?).
a
To handle the first term, we start with the observation that
)4 )4 h j h
(6:62)  IVE@)fas S (0 +lalgor) (lallye + lall,) + 2 all g1l

Indeed, because V((K(a)) = K'(0)Va 4 K (a)Va for some smooth function K vanishing at
zero, it suffices to prove that®

K £ < . £ . jo . h
IR @)Vl S ol g (19alyga-s + IVl goe) + 20 el s [Vl o
To this end, we use Bony’s decomposition restricted to low frequencies:

(K(@)Va)' = (TvaK (a) + (R(Va, K ()" + T (e Va" + (Sjo K (@)Ajo41Va)".

To deal with the first two terms, we just use (2.30). For the third one, we use that 7' :
L>® x Bg{ffl — Bi/f*l and the embedding B;lff) — L. For the last one, we argue as
follows:

202015, K () Ajo41 Val 2 < 20200085 K (@)l| o 2@V A o1 Val o
Putting all those inequalities together, and using also composition estimates and the fact
that d/p* — 1 < 0 eventually leads to the desired inequality.

Let us now bound (IV (K (a)))¢ in Ll(Bg{f—l). We start again from Bony’s decomposition:

(5.63) (IV(K(a)" = (Toxa)?)' + (R(V(K(a)),))"
+ Ty V(K (a))' + (Sjo0A,11 VK (a)).
The first two terms may be bounded by splitting ¢ into ¥ + 9", using the continuity of R
and T from B;i/lp_l X B;i/lp to Bg{f—l . We end up with
I Potaean®)ll s sy S IV o, (197 e, + 2000 o).
and
I(R(V (K (a)), 7))

IV (K(a)) 0"

‘|Loo(BZ{117*1)| ||L1(B§{117)

IV @) o g, 190

l
Iy =

6For p*, we keep the definition 1/p+ 1/p* = 1/2.
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For the third term in (5.63), by virtue of (5.62), we write
1T V7 (K (a)) lpapgzy ‘|79£HL2(L°°)HV(K(G))ZHB%?*
S Hﬂgup(lég’/f)(l +2]0”a€H o (B2

~

I ey (Nl e + Nl ).
Finally,
20020185, 9A, 11V K (a)) | 2 < 2002 D1 8500]| e 2207 Ay 11V (K (a))| -
Hence
18309801V (K (@) s a1y 5 200N e ey 1K @I,
That the last term does belong to Ll( / 7) may be seen by writing
K(a) = K'(0)a+ K(a)a with K(0) =0,

which ensures, using composition estimates in Bg/lp ,
h < 2

(5.64) K@%, e S Tl g, + a2

Resuming to (5.63), we conclude that

L j ¢ h 2
(5.65) OV K @)) N1 garz-ry S 20N poo iy (0™l o e +\|a||L2(B$(1p))

+ (1 + 2j0‘|a£||Loo(Bd/2 1, + ||ah||Loo(BZ/1P 1 )(Hl? ||L2(Bd/2)
h h
+27°19 a1y + 19 o arm )(HGH By T HGHLQ(Bd/p))

To handle div (Yu), we decompose ¥ into low and high frequencies. To deal with both parts,
we resort again to Bony’s decomposition and continuity results for R and T. We end up with

¢ ¢ Y4
(5:66) 19%ull 72 5 19" e el g + =19
h h h
(5:67) 9%l g S 19" gl g+ e 19" e
Therefore, taking advantage of the low frequency cut-off and of Bernstein inequality yields
: ¢ ¢
(5.68) (v (90)) I3 a0 e grnesy el o
¢ 0 [1,9% j h
+ (Hﬂ HL%B;T) +2 OHﬂ HL2(BZ/11’_1)) Hu”L2(B§/1P) + 27° |’u“Loo(BZ‘f{1P—1) ”79 |’L1(B§,/1p).
For the next term, we use
J(a)AY = J(a) A" + J(a)Av"
and Bony’s decomposition. For the first term, we easily get

17 (@) A9, garzry S A9

Ll(B Ll(Bd/2 I)HGHLOO(BZGP)

For the second one, we use that R and T" map Bp7/1p72 X B;i/lp to 337/1272, ifp<dandd >3,
and that
(T @) A" + R(J (@), AO") || gasa-2 S 1T (@)l aro | A" gasp-2-
2,1 p,1 p,1
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Hence, combining with Bernstein inequality,
@A 1 g2
S 20 (lall e ey + 2l ) (I sy + 1Ay o).
To handle the last term in (5.61), we use the fact that
150 Du® Dul gaje-2 S [ J(0) |z | Du ® Dul| gaa-—
IR(J(a), Du @ Du)| d/2 2 17 (a)ll 5 d/pHDU®DUH d/z >

<
Touepnd @l sz S [1Du® Bl e 7@ g

At this point, we notice that, under assumptlon 2<p<2d/(d—-2),p<dandd >3 the
usual product maps Bd/p % B;l/lp ! to Bd/2 . Therefore
D1
Inserting all the above inequalities in (5.60) and using (2.19), we thus end up with
(5.70) [(a, Qu,19)||ioo(33’/12—1)m1(3;’/12+1)

< Il (@0, Quo, 90) a1 + 2% (1 + (a9 g, (e . 9) 3

(5.69) ( -

2
Ll(Bd/2 2) ~ (1 + ||aHL°°(B§{f)>HDU||L2(B‘;7/1P’1)'

Step 3. High frequencies: the effective velocity. Let w := Qu + (—A)~1Va. We have
dw—Aw = —Q(u-Vu)+9(J(a)Au)— Q(WIVK (a))+aV K (a)+ Q(au) — VI +w—(—A) "' Va.
By virtue of (0.4), we have

h
S P L

h
HwHL‘X’(Bg’/Ip_I)ﬂLl(Bg’/lp-H)
Compared to the barotropic case, two new terms have to be handled : Q(VV (K (a))) and V1.
The first one has been estimated in (5.58), and the second one is just linear. We eventually

get if jp is large enough:

b h
(571) H’U)HLOO(B;l’/lp—l)le(Bg’/lp-H) rg ||U](]|| ~g’/p—1

+ 27 (a, u, D)5y, + V] +27%a?

LY(BYP LY(BYPY

Step 4. High frequencies: the temperature. Applying (0.4) to the heat equation
~ ~ 1 ~ ~
O — RAY = —a — divw — div (Yu) — kJ (a)AY + T+a (2u\Du!2 + )\(divu)Q)
a
yields
h < h h

”79“1100(327/1@—2)0111(327/119) ~ ”790”3511)—2 + ”r'h's'HL1(Bi/1p—2)'
The term div (Yu) can be bounded according to (5.66) and (5.67), using obvious embedding.
For the other nonlinear terms, we observe that under condition p < d, we have

h h
HJ(CL)A19 HLl(B;i’/lP—Q) rg Ha'HLoo( 'd/P ||A19 HLI(Bg,/f)_Q)’

@AV, sy S 2o )AMH';I(BM ) S 2l o | ATy e
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1 2 f )2 < 2
| (CrtpaP eraiv R )|, s S @+l g IV

whence

(5.72) [l9II" |90]|" g2 T2 2”IICLerlva

Loo d/P 2)ﬂL1(Bd/p ~ ‘ ’1)

+oi0(1 4 u<a,u,mnyﬁl)H(a,uﬁﬂl?ffl-

Step 5. High frequencies: the density. Exactly as in the barotropic case, Inequality (2.37) is
fulfilled.

Step 6. Closure of the estimates. Inserting (5.72) in (5.71), we get for large enough j
h < h h
”w”Loo(Bzflpfl)ﬁLl(Bzflp+1) ~ HwOHB%pA + ”790“]3;/1174
j 2 —2j h
200+ 00,0y DR, + 27l
Next, plugging that latter inequality in (2.37), we get for large enough jo,

h h h j 2
la” S IIaoHBz’/lp + ||wo||BZ(1,J,1 + H%HBZ,Q”” + 27 (14 || (ayu9)llyp, (@, 1w, 0) 3, -

LINL>=(BYP)
Resuming to (5.59) and (5.70), it is now easy to conclude that
e, w, D)llyp, < a0 wo, do)lyg, | + 2701+ [I(a w9y, (@ w95y

from which it is clear that we may get (5.51) if ||(ao, uo, Jo)|lyp, | is small enough.

Step 7. The proof of global existence and uniqueness. Uniqueness up to p < d is just a
consequence of the recent paper [7]. Local-in-time existence of a solution (a,u,?) to (5.49)

with a € C((0.7); B,Y), w € C((0, T By ™) n L}0, T3 BYY™) and 9 € €((0,T); Bd/” )N

LY(0,T; Bg/lp ) has been established in [8]. That the additional low frequency L? type regu-
larity is préserved during the evolution is a consequence of the computations that have been
carried out in Step 2.

Finally, by slight modifications of the blow-up criterion of Prop. 10.10 of [2], one can show
that if

IVl o) + ey + 191 gy < o0

then the solution may be continued beyond 7. As the norm in the space Yf 1 (restricted to
[0,T)) clearly controls the above Lh.s., Inequality (5.51) implies the global existence.

Step 8. Low Mach number limit : strong convergence in the whole space case. As in our
recent work [15] dedicated to the Oberbeck-Boussinesq approximation, the proof of strong
convergence relies on the dispersive properties of the system fulfilled by ¢ := 9¥° 4+ a® and
Quf, namely

0qF + 2div Qu° = —div (u°¢°) + KAV + kJ(ea®)AV* + 1+€ Z (2M|DUE|2 + A(div ue)z),
5 ea
1 Va®
£ INTE — e _ e . ey _ _ € .
0,Qu + —Vq© = vAQu® — Q(u* - Vut) — Q(J(ea®) Au®) + Q<(a v )Hma)

Remembering that the low frequencies of the r.h.s. have been bounded in L'(R,; Bd/ > 1) by

cyY = [(ag, ug, 95)|lyp_ (see Step 2), one can mimic the proof of the strong convergence
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for the barotropic case in the case d > 3 (see the beginning of Section 4) and easily conclude
that (5.53) is satisfied.

The high frequencies of a® and Qu® may be bounded as in (5.53) (argue as in the barotropic
case) but not (9°)€ which is one derivative less regular than (a)"*.

Let us now study the strong convergence of Pu® to u. To this end, we observe that du® :=
Puf — u fulfills

(5.73)  Opou® — pAdu® + P(Pu’-V&u© + &u’-Vu) + P(u-VOu® + Qu°-VPu) + J(ea®) Au®)

:P<1—}—15a5 <V(q Jo2af + V(af)Eaf + V(9°)"Ea a) + J(eaf )V(a5ﬁ5)>-

The first line may be handled as in the barotropic case : we get
IP(Pu® - Vour + 0 - Vu)ll  garvm-szy S IPU oo aro-1) VO Ly peainrso-vz)
3
+H5u oo itz vim=sr2) IVl Ly ),

1P (- V Que + Que - VPu) +J (20 ) Au) |y ooz S v e TP (14T R (G,

)

In order to bound the terms of the second line of (5.73), we shall use repeatedly the fact that
for any smooth function K vanishing at 0, we have, by virtue of Proposition 6.1,

LE h,g — R
(5.74) 1K (ea®) | Sv(llaf] N G - d/p)) SvTGy”.

Lo (BIP) Loo(B/P~ Loo(B?

On the one hand, using product laws in Besov spaces yields

IV (@) el BUD/P-3/2) S @) HLQ(B(dH)/p 172 [la® HLQ(Bd/p)
IV(a)"a]] BU/r-3/2) S @) “LQ(B;?”/” /2, [|a® ||L2(B§ff)
IV (9)"%as |’L1(Bpfll+1>/p /2y S |!(19€)h’6|’L1(3g(111)\\a€|’Lm(B£’fll+1>/p—1/2)
17 (ea®) V(@) o asnrm-srzy S HmeHLoo(B;#l)/p—w)(|!(19€)h’g|!L1(Bg(f)\\ae\\Lm(Bg(f)

le
I g 193 g
Hence using (4.48), (5.53), (5.51) and (5.74),

HP(Hlm (V) 50" + V(@)% + V()07 ) + (o) V (@) )|

LI(B;‘A"'U/P—?)/Q)
S+ GG
Putting together all the above inequalities and the uniform estimate (5.51), we end up with
U = ||0u® : - du® :
|| HLoo(BI()"ilJfl)/P 3/2) +1UJH HLl(BI()"ilJFl)/P‘H/?)

S Pug = voll gasno-sr + v ORI UE + v BT (14 IO (CRY)?,
P,

which obviously implies (5.54), owing to the smallness condition satisfied by C§".

Let us finally study the strong convergence of ©¢ := ¢ — a® to the solution © of (5.52).
Given the uniform bounds for (¥5) and for (af), it is natural to assume that the limit ©q

belongs to By /2 ! (as a matter of fact Bd/p_l is enough for what follows). Likewise, as (Pug)
is bounded in B / P7" one may assume that its weak limit vy belongs to Bd/ P~" Hence the
corresponding solutlon u to (1.10) is in C(Ry; Bd/p 1) NLY(Ry; Bd/p+ ), and using the fact
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that div (u©) = u - VO, it is easy to prove that the linear equation (5.52) admits a unique
solution © € Cp(R; Bd/2 ALY Ry Be.
Next, from (5.52), observing that A9 = %A@E + %Aqe, we readily get that ¢ := ©° — O

satisfies

5.75) 9,00° — AN = —Puf - VIOF — &uf - VO — div (QuEO°
2

- gAqa — kJ(ea®)AY° + (2,u|Du’3|2 + A(divu®) )

1+

The level of regularity on which estimates for 8° may be proved, is essentially given by the

available estimates for fu®, through the term du®-VO = div (u®0), by the fact that decay esti-
(R B(d+1)/p 5/2)

mates are available for the low frequencies of the term Ag® in the space L?
only through (5.53), and by observing that the high frequencies of Ag® (and more precisely

of A¥¢) are at most in the space Ll(Bg{f_z), but have decay ¢.

As regards du® - VO, product laws in Besov spaces give the following bound:

”&L5 ’ VGHLI(BgﬁH)/p_S/Q) S ”&fHLw(Bz(jrl)/p_S/Q)H@HLl(Bg’/f"'l)'

Note that only an L%*in-time estimate is available for (Ag®)%¢, through (5.53). However, a
small variation on (0.4) (see e.g. [2]) ensures that the solution to

Oz — KAz = —g(Aqe)g’g, Zlt=0 =0
belongs to Cp(R4; Bl(jf_l)/p_gﬂ) NL2(Ry; Bl(jf_l)/p_lﬂ) and satisfies

LE
||ZHL2(BI(;’11+1)/P*1/2) + ||ZHLoo (d+1)/p 3/2 < HAQ H s B(d+l)/p 5/2)

So in short we expect to be able to bound #° in
00 5 (d+1)/p—3/2 d/p—2 5 (d+1)/p—1/2 d
L (R+7B1(),1+ )/p—3/ +B /p ) (L2(R+,BI()’1+ )/p—1/ )+L1(R+,B /p))

Let us now look at the other terms in the r.h.s. of (5.75). It is clear that (Aa®)PF may be
bounded exactly as (Ag®)“%. Next, product laws easily give that

Hpuf . V(S@‘EHLI(Bétf;r1)/p—3/2+3$’/lp—2) S |]’Pu€HL2 ~d/p ”596”L2(B(d+1)/p_1/2+32,/1”_1)’

. LE h,e
v (Qu O o, oy S 19 oo (115 s 167125 )

L2(BI/
h
+”QUEHL2(B§/1) ”79€”L26(Bd/p 1)7
~ LE
HJ(EGE)A(W)Z’E|!L1(Béd;1>/p—3/2) S HEGEHLOO(BwH)/p—lm HAWHLT(B%Q_W
~ h ?
\lJ(eaE)A(ﬁe)h’a||L1(Bg/lpf2) S lleall oo gtim) IA°II1 N palp-2y
s P

2pl D P+ A(divu)?) || 1 a2y S e(1+leall Bi/P) )HDUEII2
D,

H lJri:aLE ( LQ(Bd/p 1)

)
Putting all the above inequalities together, remembering of (5.51) and (5.53), and setting

OXZ = (007 oo ptarvm=sre parp—2) + 107 o peasnrsooizy pagarm)s
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we eventually get
e < e _ =OEY -1 —1,evN\=1/2—1/p ( NE V)2
X* <195 @OHBédl-kl)/p—S/Q_’_Bd/lp—Q +eCy"+rv(1+vCyY)E Cy")
» P,
€ -1V eye
+ ([ 0u HLOO(B;rf;l)/p—3/2+3§{f—2)”V@)”Ll(ggflz)) + v Gy oXE,
which allows to conclude to (5.55). O

6. APPENDIX

In this short appendix, we recall the definition of paraproduct and remainder operators,
and give some technical estimates that have been used throughout in the paper.

To start with, let us recall that, in the homogeneous setting, the paraproduct and remainder
operators 1" and R are formally defined as follows:

T.v _ZSJ 1uAv and R(u,v) ZAu j— 1+A —|—AJ+1)
JEL JEZ
where Sy, stands for the low-frequency cut-off operator defined by Sy := x(27*D).

The fundamental observation is that the general term of T,,v is spectrally localized in the
annulus {¢{ € RY, 1/12 < 277|¢| < 10/3}, and that the general term of R(u,v) is localized in
the ball B(0,27.20/3) (of course the values 1/12, 10/3 and 20/3 do not matter).

The main interest of the above definition lies in the following Bony’s decomposition (first
introduced in [3]):

wv = Tyv + R(u,v) + Tyu,
that has been used repeatedly in the present paper.

The following lemma has been used to get appropriate estimates of the solution both in
the barotropic and in the polytropic cases:

Lemma 6.1. Let A(D) be a 0-order Fourier multiplier, and jo € Z. Let s < 1, 0 € R and
1 <p,p1,p2 <00 with 1/p =1/p1 + 1/pa. Then there exists a constant C' depending only on
jo and on the reqularity parameters such that

(850 AD), Tl g1+ < ClVal gt bl 5y

In the limit case s = 1, we have

(850 AD), Talbl g1 < CIVallon 0] 5,
Proof. We just treat the case s < 1. By the definition of paraproduct, we have

[SjoA(D), Tulb =[S, A(D), S;-1a]Asb.

JEL

Usmg that A(D) is homogeneous of degree 0 and the properties of localization of operators
Sy, and Ay, we get for some smooth function gb and for j < jo — 4,

[Si0A(D), Sj—1a]Ajb = Y [6(277 D), AralAjh.
k<j—2
Applying Lemma 2.97 of [2] yields
(6.76) 16277 D), Ara]Abllr < 277 [|Agallze [|Az0]] o2

~
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In the case where j is close to jo (say |7 — jo| < 4), one may still find some smooth function
1) supported in an annulus, and such that

[SjOA(D), Sj_la]Ajb = [w(Q_jOD), Sj_la]A]’b,

which allows to get again (6.76). Summing up over j and k, and using convolution inequalities
for series, it is easy to conclude to the desired inequality. O

Finally, we recall the following composition result.

Proposition 6.1. Let G be a smooth function defined on some open interval I of R contain-
ing 0. Assume that G(0) = 0. Then for all s > 0, bounded interval J C I, 1 < m < oo, and
function a valued in J, the following estimates hold true:

1G(@)lgs, < Clalgs, and [G(@lzwps ) < Cllalpng,
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