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Abstract. This paper aims at justifying the low Mach number convergence to the incompressible Navier-Stokes equations for viscous compressible flows in the ill-prepared data case. The fluid domain is either the whole space, or the torus.

A number of works have been dedicated to this classical issue, all of them being, to our knowledge, related to L 2 spaces and to energy type arguments. In the present paper, we investigate the low Mach number convergence in the L p type critical regularity framework. More precisely, in the barotropic case, the divergence-free part of the initial velocity field just has to be bounded in the critical Besov space Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 for some suitable (p, r) ∈ [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF] × [1, +∞]. We still require L 2 type bounds on the low frequencies of the potential part of the velocity and on the density, though, an assumption which seems to be unavoidable in the ill-prepared data framework, because of acoustic waves.

In the last part of the paper, our results are extended to the full Navier-Stokes system for heat conducting fluids.

We are concerned with the study of the convergence of the solutions to the compressible Navier-Stokes equations when the Mach number ε goes to 0. In the barotropic case, the system under consideration reads

(N SC ε )    ∂ t ρ ε + div(ρ ε u ε ) = 0, ∂ t (ρ ε u ε ) + div(ρ ε u ε ⊗ u ε ) -div 2µ(ρ ε )D(u ε ) + λ(ρ ε )div u ε Id + ∇P ε ε 2 = 0,
where ρ ε = ρ ε (t, x) ∈ R + stands for the density, u ε = u ε (t, x) ∈ R d , for the velocity field, P ε = P (ρ ε ) ∈ R is the pressure, λ = λ(ρ ε ) and µ = µ(ρ ε ) are the (given) viscosity functions that are assumed to satisfy µ > 0 and λ + 2µ > 0. Finally, D(u ε ) stands for the deformation tensor, that is (D(u ε )) ij := 1 2 (∂ i u ε,j + ∂ j u ε,i ). We assume that the functions P, λ and µ are smooth, and we restrict our attention to the case where the fluid domain is either the whole space R d or the periodic box T d (combinations such as T × R d-1 and so on may be considered as well).

At the formal level, in the low Mach number asymptotic, we expect ρ ε to tend to some constant positive density ρ * (say ρ * = 1 for simplicity) and u ε to tend to some vector field v satisfying the (homogeneous) incompressible Navier-Stokes equations:

(N S) ∂ t v + v • ∇v -µ(1)∆v + ∇Π = 0, div v = 0.
This heuristics has been justified rigorously in different contexts (see e.g. [START_REF] Danchin | Zero Mach number limit in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Danchin | Zero Mach Number Limit for Compressible Flows with Periodic Boundary Conditions[END_REF][START_REF] Danchin | The Oberbeck-Boussinesq approximation in critical spaces[END_REF][START_REF] Desjardins | Low Mach number limit of viscous compressible flows in the whole space[END_REF][START_REF] Desjardins | Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions[END_REF][START_REF] Feireisl | Singular limits in thermodynamics of viscous fluids[END_REF][START_REF] Hagstrom | All-time existence of classical solutions for slightly compressible flows[END_REF][START_REF] Hoff | The zero-Mach limit of compressible flows[END_REF][START_REF] Klainerman | Compressible and incompressible fluids[END_REF][START_REF] Klein | Multiple spatial scales in engineering and atmospheric low Mach number flows[END_REF][START_REF] Kreiss | Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations[END_REF][START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF][START_REF] Lions | Une approche locale de la limite incompressible[END_REF]). In the present paper, we want to consider ill-prepared data of the form ρ ε 0 = ρ * + εa ε 0 and u ε 0 where (a ε 0 , u ε 0 ) are bounded in a sense that will be specified later on. Assuming (with no loss of generality) that P ′ (ρ * ) = ρ * = 1 and setting ρ ε = 1 + εa ε , 1 we get the following system for (a ε , u ε ): (0.1)

               ∂ t a ε + div u ε ε = -div (a ε u ε ), ∂ t u ε + u ε • ∇u ε - Au ε 1 + εa ε + ∇a ε ε = k(εa ε ) ε ∇a ε + 1 1 + εa ε div 2 µ(εa ε )D(u ε ) + λ(εa ε )div u ε Id ,
where A := µ∆ + (λ + µ)∇div with λ := λ(1) and µ := µ(1), k(z) := -P ′ (1 + z) 1 + z + P ′ (1), µ(z) := µ(1 + z) -µ(1) and λ(z) := λ(1 + z) -λ [START_REF] Alazard | Low Mach number limit of the full Navier-Stokes equations[END_REF].

In what follows, the exact value of functions k, λ and µ will not matter. We shall only use that those functions are smooth and vanish at 0.

We strive for critical regularity assumptions consistent with those of the well-posedness issue for the limit system (N S). At this stage, let us recall that, by definition, critical spaces for (N S) are norm invariant for all ℓ > 0 by the scaling transformations T ℓ : v(t, x) -→ ℓv(ℓ 2 t, ℓx), in accordance with the fact that v is a solution to (N S) if and only if so does T ℓ v (provided the initial data has been changed accordingly of course).

As first observed in [START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF], in the context of the barotropic Navier-Stokes equations (0.1), the relevant scaling transformations read (0.2) (a, u)(t, x) -→ (a, ℓu)(ℓ 2 t, ℓx), ℓ > 0, which suggest our taking initial data (a 0 , u 0 ) in spaces invariant by (a 0 , u 0 )(x) → (a 0 , ℓu 0 )(ℓx).

In order to be more specific, let us introduce now the notations and function spaces that will be used throughout the paper. For simplicity, we focus on the R d case. Similar notations and definitions may be given in the T d case.

We are given an homogeneous Littlewood-Paley decomposition ( ∆j ) j∈Z that is a dyadic decomposition in the Fourier space for R d . One may for instance set ∆j := ϕ(2 -j D) with ϕ(ξ) := χ(ξ/2) -χ(ξ), and χ a non-increasing nonnegative smooth function supported in B(0, 4/3), and with value 1 on B(0, 3/4) (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2 for more details).

We then define, for 1 ≤ p, r ≤ ∞ and s ∈ R, the semi-norms z Ḃs p,r := 2 js ∆j z L p (R d ) ℓ r (Z) .

Like in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], we adopt the following definition of homogeneous Besov spaces, which turns out to be well adapted to the study of nonlinear PDEs:

Ḃs p,r = z ∈ S ′ (R d ) : z Ḃs p,r < ∞ and lim j→-∞ Ṡj z L ∞ = 0 with Ṡj := χ(2 -j D).
As we shall work with time-dependent functions valued in Besov spaces, we introduce the norms: u L q T ( Ḃs p,r ) := u(t, •) Ḃs p,r L q (0,T ) . As pointed out in [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF], when using parabolic estimates in Besov spaces, it is somehow natural to take the time-Lebesgue norm before performing the summation for computing the Besov norm. This motivates our introducing the following quantities:

u L q T ( Ḃs p,r ) := (2 js ∆j u L q T (L p ) ) ℓ r (Z) .
The index T will be omitted if T = +∞ and we shall denote by C b ( Ḃs p,r ) the subset of functions of L ∞ ( Ḃs p,r ) which are also continuous from R + to Ḃs p,r . Let us emphasize that, owing to Minkowski inequality, we have if r ≤ q z L q T ( Ḃs

p,r ) ≤ z L q T ( Ḃs p,r )
with equality if and only if q = r. Of course, the opposite inequality occurs if r ≥ q.

An important example where those nonclassical norms are suitable is the heat equation

(0.3) ∂ t z -µ∆z = f, z| t=0 = z 0
for which the following family of inequalities holds true (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF]):

(0.4) z L m T ( Ḃs+2/m p,r ) ≤ C z 0 Ḃs p,r + f L 1 T ( Ḃs p,r )
for any T > 0, 1 ≤ m, p, r ≤ ∞ and s ∈ R.

Restricting ourselves to the case of small and global-in-time solutions (just for simplicity), the reference global well-posedness result for (N S) that we have in mind reads as follows 1 :

Theorem 0.1. Let u 0 ∈ Ḃd/p-1 p,r
with div u 0 = 0 and p < ∞, and r ∈ [1, +∞]. There exists c > 0 such that if

u 0 Ḃd/p-1 p,r
≤ cµ then (N S) has a unique global solution u in the space

L ∞ (R + ; Ḃd/p-1 p,r ) ∩ L 1 (R + ; Ḃd/p+1 p,r
),

which is also in C(R + ; Ḃd/p-1 p,r
) if r < ∞. Besides, we have

(0.5) u L ∞ ( Ḃd/p-1 p,r ) + µ u L 1 ( Ḃd/p+1 p,r ) ≤ C u 0 Ḃd/p-1 p,r
, for some constant C depending only on d and p.

Although Theorem 0.1 is not related to energy arguments, to our knowledge, all the mathematical results proving the convergence of (N SC ε ) to (N S), strongly rely on the use of L 2 type norms in order to get estimates independent of ε. This is due to the presence of singular first order skew symmetric terms (which disappear when performing L 2 or H s estimates) in the following linearized equations of (0.1):

(0.6)      ∂ t a ε + div u ε ε = f ε , ∂ t u ε -Au ε + ∇a ε ε = g ε .
However, it is clear that those singular terms do not affect the divergence-free part Pu ε of the velocity, which just satisfies the heat equation (0.3). We thus expect handling Pu ε to be doable by means of a L p type approach similar to that of Theorem 0.1. At the same time, for low frequencies ('low' meaning small with respect to (εν) -1 ), the singular terms tend to dominate the evolution of a ε and Qu ε , which precludes a L p -type approach with p = 2, as the wave equation is ill-posed in such spaces. Finally, for very high frequencies (that is greater than (εν) -1 ), it is well known that a ε and Qu ε tend to behave as the solutions of 1 The statement in the Sobolev framework is due to H. Fujita and T. Kato in [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF]. Data in general critical Besov spaces, with a slightly different solution space, have been considered by H. Kozono and M. Yamazaki in [START_REF] Kozono | Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data[END_REF], and by M. Cannone, Y. Meyer and F. Planchon in [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF]. The above statement has been proved exactly under this shape by J.-Y. Chemin in [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF].

a damped equation and of a heat equation, respectively, and are thus tractable in L p type spaces. Besides, keeping in mind the notion of critical space introduced in (0.2), it is natural to work at the same level of regularity for ∇a ε and Qu ε (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 10, or [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF] for more explanations). The rest of the paper is devoted to clarifying this heuristics, first in the barotropic case (Sections 1 to 4), and next for the full Navier-Stokes-Fourier system (Section 5).

Main results

Before stating our main results, let us introduce some notation. From now on, we agree that for z ∈ S ′ (R d ),

(1.7) z ℓ,α := 2 j α≤2 j 0 ∆j z and z h,α :=

2 j α>2 j 0 ∆j z,
for some large enough nonnegative integer j 0 depending only on p, d, and on the functions k, λ/ν, µ/ν with ν := λ + 2µ. The corresponding "truncated" semi-norms are defined as follows:

z ℓ,α Ḃσ p,r := z ℓ,α Ḃσ p,r and z h,α Ḃσ p,r := z h,α Ḃσ p,r
.

Let ε := εν. Based on the heuristics of the introduction, it is natural to consider families of data (a ε 0 , u ε 0 ) so that

• (a ε 0 , Qu ε 0 ) ℓ, ε ∈ Ḃd/2-1 2,1 , • (a ε 0 ) h, ε ∈ Ḃd/p p,1 , (Qu ε 0 ) h, ε ∈ Ḃd/p-1 p,1 , • Pu ε 0 ∈ Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 . Recall that Ḃd/p-1 p,r is only embedded in Ḃ-1 ∞,r .
The reason why we prescribe the slightly stronger assumption Ḃ-1 ∞,1 for Pu ε 0 is that we need the constructed velocity to have gradient in L 1 (R + ; L ∞ ) in order to preserve the Besov regularity of a ε through the mass equation. Indeed, it is well known that for a solution z to the free heat equation, the norm of ∇z in

L 1 (R + ; L ∞ ) is equivalent to that of z 0 in Ḃ-1
∞,1 (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2). Our assumptions on the data induce us to look for a solution to (0.1) in the space X p,r ε,ν of functions (a, u) such that

• (a ℓ, ε , Qu ℓ, ε ) ∈ C b (R + ; Ḃd/2-1 2,1 ) ∩ L 1 (R + ; Ḃd/2+1 2,1
),

• a h, ε ∈ C b (R + ; Ḃd/p p,1 ) ∩ L 1 (R + ; Ḃd/p p,1 ), • Qu h, ε ∈ C b (R + ; Ḃd/p-1 p,1 ) ∩ L 1 (R + ; Ḃd/p+1 p,1
),

• Pu ∈ C b (R + ; Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 ) ∩ L 1 (R + ; Ḃd/p+1 p,r ∩ Ḃ1 ∞,1 ) (only weak continuity in Ḃd/p-1 p,r
if r = ∞). We shall endow that space with the norm:

(a, u) X p,r ε,ν := (a, Qu) ℓ, ε L ∞ ( Ḃd/2-1 2,1
)

+ Qu h, ε L ∞ ( Ḃd/p-1 p,1 ) + Pu L ∞ ( Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 ) + ε a h, ε L ∞ ( Ḃd/p p,1 ) +ν (a, Qu) ℓ, ε L 1 ( Ḃd/2+1 2,1
)

+ ν Qu h, ε L 1 ( Ḃd/p+1 p,1
)

+ ν Pu L 1 ( Ḃd/p+1 p,r ∩ Ḃ1 ∞,1 ) + ε -1 a h, ε L 1 ( Ḃd/p p,1 )
.

Our main result reads as follows:

Theorem 1.1. Assume that the fluid domain is either R d or T d , that the initial data (a ε 0 , u ε 0 ) are as above with 1 ≤ r ≤ p/(p -2) and that, in addition,

• Case d = 2: 2 ≤ p < 4,

• Case d = 3: 2 ≤ p ≤ 4, • Case d ≥ 4: 2 ≤ p < 2d/(d -2)
, or p = 2d/(d -2) and r = 1. Let ε := εν. There exists a constant η independent of ε and of ν such that if

(1.8) C ε,ν 0 := (a ε 0 , Qu ε 0 ) ℓ, ε Ḃd/2-1 2,1 + Qu ε 0 h, ε Ḃd/p-1 p,1 + Pu ε 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + ε a ε 0 h, ε Ḃd/p p,1 ≤ ην,
then System (0.1) with initial data (a ε 0 , u ε 0 ) has a global solution (a ε , u ε ) in the space X p,r ε,ν with, for some constant C independent of ε and ν,

(1.9) (a ε , u ε ) X p,r ε,ν ≤ CC ε,ν 0 . In addition, Qu ε converges weakly to 0 when ε goes to 0, and, if Pu ε 0 ⇀ v 0 then Pu ε converges in the sense of distributions to the solution of (1.10)

∂ t u + P(u • ∇u) -µ∆u = 0, u| t=0 = v 0 .
Finally, if the fluid domain is R d and d ≥ 3 then we have

ν 1/2 (a ε , Qu ε ) L 2 ( Ḃ(d+1)/p-1/2 p,1 ) ≤ CC ε,ν 0 ε 1/2-1/p and Pu ε -v L ∞ ( Ḃ(d+1)/p-3/2 p,r ) +µ Pu ε -v L 1 ( Ḃ(d+1)/p+1/2 p,r ) ≤ C Pu ε 0 -v 0 Ḃ(d+1)/p-3/2 p,r +C ε,ν 0 ε 1/2-1/p .
In the R 2 case, we have,

ν 1/2 (a ε , Qu ε ) L 2 ( Ḃ(c+2)/p-c/2 p,1 ) ≤ CC ε,ν 0 ε c(1/2-1/p) and Pu ε -v L ∞ ( Ḃ(c+2)/p-c/2-1 p,r ) + µ Pu ε -v L 1 ( Ḃ(c+2)/p-c/2+1 p,r ) ≤ C Pu ε 0 -v 0 Ḃ(c+2)/p-c/2-1 p,r + C ε,ν 0 ε c(1/2-1/p)
where the constant c verifies the conditions 0 ≤ c ≤ 1/2 and c < (8 -2p)/(p -2).

Some remarks are in order:

(1) According to [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF], uniqueness holds true if r = 1. We conjecture that it also holds in the other cases but, to the best of our knowledge, the question has not been addressed. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] The first part of the theorem (the global existence issue) may be extended to 2d/(d + 2) ≤ p < 2 and all r ∈ [1, ∞] provided the following smallness condition is fulfilled:

(a ε 0 , Qu ε 0 ) ℓ, ε Ḃd/2-1 2,1 + Qu ε 0 h, ε Ḃd/2-1 2,1 + Pu ε 0 Ḃd/2-1 2,r ∩ Ḃ-1 ∞,1 + ε a ε 0 h, ε Ḃd/2 2,1 ≤ ην.
Indeed, Theorem 1.1 provides a global small solution in X 2,r ε,ν . Therefore it is only a matter of checking that the constructed solution has additional regularity X p,r ε,ν . This may be checked by following steps 3 and 4 of the proof below, knowing already that the solution is in X 2,r ε,ν . The condition that 2d/(d+2) ≤ p comes from the part u ℓ, ε •∇a of the convection term in the mass equation, as ∇u ℓ, ε is only in L 1 (R + ; Ḃd/2 2,1 ), and the regularity to be transported is Ḃd/p p,1 . Hence we need to have d/p ≤ d/2 + 1 (see e.g. Chap. 3 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). The same condition appears when handling k(εa ε )∇a ε .

As we believe the case p < 2 to be somewhat anecdotic (it is just a regularity result), we decided to concentrate on the case p ≥ 2 in the rest of the paper.

(3) We can afford source terms in the mass and velocity equations, the regularity of which is given by scaling considerations. (4) We also expect results in the same spirit (but only local-in-time) to be provable for large data, as in [START_REF] Danchin | Zero Mach number limit in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Danchin | Zero Mach Number Limit for Compressible Flows with Periodic Boundary Conditions[END_REF].

(5) To keep the paper a reasonable size, we also refrained to establish more accurate convergence results in the case of periodic boundary conditions, based on Schochet's filtering method (see [START_REF] Danchin | Zero Mach Number Limit for Compressible Flows with Periodic Boundary Conditions[END_REF] for more details on that issue if p = 2).

The proof of global existence for fixed ε and ν

Recall that ν := λ + 2µ. Performing the change of unknowns

(2.11) (a, u)(t, x) := ε(a ε , u ε )(ε 2 νt, ενx)
and the change of data (2.12) (a 0 , u 0 )(x) := ε(a ε 0 , u ε 0 )(ενx) reduces the proof of the global existence to the case ν = 1 and ε = 1. So in the rest of this section, we assume that ε = ν = 1, and simply denote

z ℓ := z ℓ,1 and z h := z h,1 , (2.13) z ℓ Ḃσ p,r := z ℓ,1 Ḃσ p,r and z h Ḃσ p,r := z h,1 Ḃσ p,r . (2.14)
The threshold between low and high frequencies will be set at 2 j 0 for some large enough nonnegative integer j 0 depending only on d, k, µ/ν and λ/ν.

Resuming to the original variables will yield the desired uniform estimate (1.9) under Condition (1.8). Indeed, we notice that we have up to some harmless constant:

(a ε 0 , Qu ε 0 ) ℓ, ε Ḃd/2-1 2,1 + Qu ε 0 h, ε Ḃd/p-1 p,1 + Pu ε 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + ε a ε 0 Ḃd/p p,1 = ν (a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 + Qu 0 h Ḃd/p-1 p,1 + Pu 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + a 0 Ḃd/p p,1 and (a ε , u ε ) X p,r ε,ν = ν (a, u) X p,r 1,1 . 2.1.
A priori estimates of the solutions to system (2.15). In this paragraph, we concentrate on the proof of global estimates for a global smooth solution (a, u) to the following system:

(2.15)

           ∂ t a + div u = -div (au), ∂ t u + u • ∇u -Au + ∇a = k(a)∇a -J(a) Au + 1 1 + a div 2 µ(a) ν D(u) + λ(a) ν div u Id ,
with k, λ, µ as above, J(a) := a/(1 + a) and A := A/ν.

To simplify the presentation we assume the viscosity coefficients λ and µ to be constant (i.e. the last line of the velocity equation in (2.15), is zero). The general case will be discussed at the end of the subsection.

Throughout we make the assumption that (2.16) sup

t∈R + , x∈R d |a(t, x)| ≤ 1/2
which will enable us to use freely the composition estimate stated in Proposition 6.1. Note that as Ḃd/p p,1 ֒→ L ∞ , Condition (2.16) will be ensured by the fact that the constructed solution has small norm in X p,r 1,1 .

Step 1: the incompressible part of the velocity. Projecting the velocity equation onto the set of divergence free vector fields yields

∂ t Pu -µ∆Pu = -P J(a) Au -P(u • ∇u) with µ := µ/ν.
Hence, using the estimates (0.4) for the heat equation, we get

Pu L ∞ ( Ḃd/p-1 p,r )∩ L 1 ( Ḃd/p+1 p,r ) Pu 0 Ḃd/p-1 p,r + P(J(a)∇ 2 u) + P(u • ∇u) L 1 ( Ḃd/p-1 p,r )
(2.17)

Pu L ∞ ( Ḃ-1 ∞,1 )∩L 1 ( Ḃ1 ∞,1 ) Pu 0 Ḃ-1 ∞,1 + P(J(a)∇ 2 u) + P(u • ∇u) L 1 ( Ḃ-1 ∞,1
) .

(2.18)

In order to bound the right-hand sides, we use the fact that the 0-th order Fourier multiplier P maps L 1 ( Ḃd/p-1 p,r

) (or L 1 ( Ḃ-1 ∞,1
)) into itself. In addition, classical product laws and Proposition 6.1 give (if p < 2d):

J(a)∇ 2 u L 1 ( Ḃd/p-1 p,r ) a L ∞ ( Ḃd/p p,1 ) ∇ 2 u L 1 ( Ḃd/p-1 p,r ) , u • ∇u L 1 ( Ḃd/p-1 p,r ) u L ∞ ( Ḃd/p-1 p,r ) u L 1 ( Ḃd/p+1 p,r
) . Because, by Bernstein inequality,

(2.19) a Ḃd/p p,1 a ℓ Ḃd/p p,1 + a h Ḃd/p p,1 2 j 0 a ℓ Ḃd/2-1 2,1 + a h Ḃd/p p,1
, we deduce from (2.17) that (2.20)

Pu L ∞ ( Ḃd/p-1 p,r )∩ L 1 ( Ḃd/p+1 p,r ) Pu 0 Ḃd/p-1 p,r + 2 j 0 (a, u) 2 X p,r 1,1 
.

Next, in order to bound the r.h.s. of (2.18), we use Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] and the definition in appendix):

J(a)∇ 2 u = T J(a) ∇ 2 u + T ∇ 2 u J(a) + R(J(a), ∇ 2 u)
and, with the summation convention over repeated indices,

(2.21) (u • ∇u) i = T u j ∂ j u i + T ∂ j u i u j + ∂ j R((Pu) j , u i ) + R((Qu) j , ∂ j u i ) with i = 1, • • • , d.
On the one hand, T maps

L ∞ × Ḃ-1 ∞,1 and Ḃ-1 ∞,1 × L ∞ in Ḃ-1 ∞,1 while R maps Ḃd/p p,1 × Ḃd/p-1 p,∞ in Ḃd/p-1 p,1
, if 2 ≤ p < 2d. Hence, taking advantage of functional embeddings (adapted to L m ( Ḃs p,r ) spaces), (2.22)

J(a)∇ 2 u L 1 ( Ḃ-1 ∞,1 ) a L ∞ ( Ḃd/p p,1 ) ∇ 2 u L 1 ( Ḃd/p-1 p,r
) . On the other hand, thanks to the fact that, if 2 ≤ p < 2d,

T u j ∂ j u i L 1 ( Ḃ-1 ∞,1 ) u j L ∞ ( Ḃ-1 ∞,1 ) ∂ j u i L 1 ( Ḃ0 ∞,∞ ) T ∂ j u i u j L 1 ( Ḃ-1 ∞,1 ) ∂ j u i L ∞ ( Ḃ-2 ∞,1 ) u j L 1 ( Ḃ1 ∞,∞ ) ∂ j R((Pu) j , u i ) L 1 ( Ḃ-1 ∞,1 ) (Pu) j L ∞ ( Ḃ-1 ∞,1 ) u i L 1 ( Ḃd/p+1 p,r ) R((Qu) j , ∂ j u i ) L 1 ( Ḃ-1 ∞,1 ) (Qu) j L ∞ ( Ḃd/p-1 p,1 ) ∂ j u i L 1 ( Ḃd/p p,r ) , we get u • ∇u L 1 ( Ḃ-1 ∞,1 ) Pu L ∞ ( Ḃ-1 ∞,1 ) + Qu L ∞ ( Ḃd/p-1 p,1 ) u L 1 ( Ḃd/p+1 p,r
) . Plugging this latter inequality and (2.22) in (2.18) and using Bernstein inequality, we end up with

(2.23) Pu L ∞ ( Ḃ-1 ∞,1 )∩L 1 ( Ḃ1 ∞,1 ) Pu 0 Ḃ-1 ∞,1 + 2 j 0 (a, u) 2 X p,r 1,1 
.

Step 2: the low frequencies of (a, Qu). Throughout, we set

p * = 2p/(p -2) (that is 1/p + 1/p * = 1/2) and 1/r * = θ/r + 1 -θ with θ = p/2 -1. Because 2 ≤ p ≤ min(4, 2d/(d - 2 
)), we have max(p, d) ≤ p * , and r * ∈ [1, r]. We shall use repeatedly the following facts, based on straightforward interpolation inequalities :

• The space L ∞ ( Ḃd/p-1 p,r ) ∩ L ∞ ( Ḃ-1 ∞,1 ) is continuously embedded in L ∞ ( Ḃd/p * -1 p * ,r * ), • The space L 2 ( Ḃd/p p,r ) ∩ L 2 ( Ḃ0 ∞,1 ) is continuously embedded in L 2 ( Ḃd/4 4,2 ) (here comes that r ≤ p/(p -2)), • We have 1/r * + 1/r ≥ 1 (again, we use that r ≤ p/(p -2)), • If p = d * (that is p = 2d/(d -2
)) then r = 1 by assumption, and thus r * = 1, too. Now, to estimate the low frequencies of (a, Qu), we write that (2.24)

∂ t a + div Qu = -div (au),

∂ t Qu -∆Qu + ∇a = -Q(u • ∇u) -Q(J(a) Au) + k(a)∇a,
and the energy estimates for the barotropic linearized equations (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Prop. 10.23, or [START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF]) thus give

(a, Qu) ℓ L ∞ ( Ḃd/2-1 2,1 )∩L 1 ( Ḃd/2+1 2,1
)

(a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 + div (au) ℓ L 1 ( Ḃd/2-1 2,1
)

+ Q(u • ∇u) ℓ L 1 ( Ḃd/2-1 2,1
)

+ Q(J(a) Au) ℓ L 1 ( Ḃd/2-1 2,1
)

+ k(a)∇a ℓ L 1 ( Ḃd/2-1 2,1
)

.

Let us first bound 2 u • ∇u in L 1 ( Ḃd/2-1 2,1
). For that, we use again decomposition (2.21). To handle the first term of (2.21), we just use that (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2)

T : L ∞ ( Ḃd/p * -1 p * ,r * ) × L 1 ( Ḃd/p p,r ) -→ L 1 ( Ḃd/2-1 2,1
).

This is due to the fact that 1/p + 1/p * = 1/2, and that either d/p * -1 < 0 and

1/r + 1/r * ≥ 1, or d/p * -1 = 0 and r * = 1. As T : L ∞ ( Ḃd/p * -2 p * ,r * ) × L 1 ( Ḃd/p+1 p,r ) -→ L 1 ( Ḃd/2-1 2,1
), the second term of (2.21) also satisfies quadratic estimates with respect to the norm of the solution in X p,r 1,1 .

Next, because

R : Ḃd/4 4,2 × Ḃd/4 4,2 -→ Ḃd/2 2,1 , we have ∂ j R((Pu) j , u i ) L 1 ( Ḃd/2-1 2,1
)

Pu L 2 ( Ḃd/4 4,2 ) u L 2 ( Ḃd/4 4,2
) . For the last term of (2.21), we just have to use that

R : L ∞ ( Ḃd/p-1 p,1 ) × L 1 ( Ḃd/p p,r ) -→ L 1 ( Ḃd/2-1 2,1 ) for p ∈ [2, 4] ∩ [2, 2d).
Putting all the above informations together, we conclude that

(2.25) u • ∇u L 1 ( Ḃd/2-1 2,1 ) (a, u) 2 X p,r 1,1 
.

In order to bound (div (au)) ℓ , we notice that

(2.26) div (au) ℓ = div (R(a, u) + T a u) ℓ + div T u ℓ a ℓ + div Ṡj 0 u ∆j 0 +1 a ℓ .
Now, the remainder R and the paraproduct T map L ∞ ( Ḃd/p * -1

p * ,1 ) × L 1 ( Ḃd/p+1 p,r ) in L 1 ( Ḃd/2 2,1 ) and we have L ∞ ( Ḃd/p-1 p,1 ) ֒→ L ∞ ( Ḃd/p * -1 p * ,1 ) because p * ≥ p. Hence div (R(a, u) + T a u) L 1 ( Ḃd/2-1 2,1
)

a L ∞ ( Ḃd/p-1 p,1 ) u L 1 ( Ḃd/p+1 p,r
) . To handle the third term of (2.26), it suffices to use the fact that

T : L 2 (L ∞ ) × L 2 ( Ḃd/2 2,1 ) -→ L 1 ( Ḃd/2 2,1 ). Finally, Ṡj 0 u ∆j 0 +1 a L 1 (L 2 ) ≤ Ṡj 0 u L ∞ (L p * ) ∆j 0 +1 a L 1 (L p ) 2 j 0 (1-d/p * ) u L ∞ ( Ḃd/p * -1 p * ,r ) 2 j 0 d/p ∆j 0 +1 a L 1 (L p ) 2 -j 0 d/p . Hence (2.27) 2 j 0 d/2 Ṡj 0 u ∆j 0 +1 a L 1 (L 2 ) 2 j 0 u L ∞ ( Ḃd/p * -1 p * ,r ) a h L 1 ( Ḃd/p p,1 )
.

We can thus conclude that

(2.28) div (au) ℓ L 1 ( Ḃd/2-1 2,1
)

2 j 0 (a, u) 2 X p,r 1,1 . Next, denoting Q ℓ := Ṡj 0 +1 Q, we write that (2.29) Q ℓ (J(a) Au) = Q ℓ T Au J(a) + R( Au, J(a)) + T J(a) ∆Q ℓ u + [Q ℓ , T J(a) ] Au.
To handle the first two terms, it suffices to notice that

(2.30) R and T map L ∞ ( Ḃd/p * -1 p * ,r * ) × L 1 ( Ḃd/p p,1 ) to L 1 ( Ḃd/2-1 2,1
), and to use Proposition 6.1. Therefore, by virtue of (2.19),

T Au J(a) + R( Au, J(a)) L 1 ( Ḃd/2-1 2,1
)

2 j 0 (a, u) 2 X p,r 1,1 
.

For the third term, we just have to use that T :

L ∞ × Ḃd/2-1 2,1 → Ḃd/2-1 2,1
. Finally the commutator term may be handled according to Lemma 6.1, which ensures that 3

[Q ℓ , T J(a) ] Au L 1 ( Ḃd/2-1 2,1 ) ∇J(a) L ∞ ( Ḃd/p * -1 p * ,1 ) ∇ 2 u L 1 ( Ḃd/p-1 p,r
) . Hence using embeddings and composition estimates, we end up with

(2.31) Q(J(a) Au) ℓ L 1 ( Ḃd/2-1 2,1
)

2 j 0 (a, u) 2 X p,r 1,1 
.

Finally, we decompose k(a)∇a as follows:

k(a)∇a ℓ = T ∇a k(a) + R(∇a, k(a)) ℓ + T (k(a)) ℓ ∇a ℓ + Ṡj 0 k(a) ∆j 0 +1 ∇a ℓ .
To bound the first two terms, we use again (2.30) and composition estimates. For the third term, we use that

T : L 2 (L ∞ ) × L 2 ( Ḃd/2-1 2,1 ) → L 1 ( Ḃd/2-1 2,1
). For the last term, we proceed as in (2.27) and get

2 j 0 (d/2-1) Ṡj 0 k(a) ∆j 0 +1 ∇a L 2 2 j 0 k(a) Ḃd/p * -1 p * ,1 a h Ḃd/p p,1
.

Therefore, by embedding,

2 j 0 (d/2-1) Ṡj 0 k(a) ∆j 0 +1 ∇a L 1 (L 2 ) 2 j 0 k(a) L ∞ ( Ḃd/p-1 p,1 ) a h L 1 ( Ḃd/p p,1 )
.

3 Recall that r = 1 if p * = d.
For bounding k(a), one cannot use directly Proposition 6.1 as it may happen that d/p-1 < 0. So we write k(a) = k ′ (0) a + a k(a) with k(0) = 0. Now, combining Proposition 6.1 and product laws in Besov spaces, we get for 2 ≤ p < 2d,

(2.32) k(a) Ḃd/p-1 p,1 (|k ′ (0)| + a Ḃd/p p,1
) a Ḃd/p-1 p,1

.

So finally,

(2.33) k(a)∇a L 1 ( Ḃd/2-1 2,1
)

2 j 0 (1 + a L ∞ ( Ḃd/p p,1 ) ) (a, u) 2 X p,r 1,1 
.

Putting together Inequalities (2.25), (2.28), (2.31) and (2.33), we conclude that

(2.34) (a, Qu) ℓ L ∞ ( Ḃd/2-1 2,1 )∩L 1 ( Ḃd/2+1 2,1
)

(a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 +2 j 0 (1+ a L ∞ ( Ḃd/p p,1 ) ) (a, u) 2 X p,r 1,1 
.

Step 3: Effective velocity. To estimate the high frequencies of Qu, we follow the approach of [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF][START_REF] Haspot | Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces[END_REF][START_REF] Haspot | Global existence of strong solution for shallow water system with large initial data on the irrotational part[END_REF], and introduce the following "effective" velocity field 4 :

w := Qu + (-∆) -1 ∇a.
We find out that

∂ t w -∆w = -Q(u • ∇u) -Q(J(a) Au) + k(a)∇a + Q(au) + w -(-∆) -1 ∇a.
Applying the heat estimates (0.4) for the high frequencies of w only, we get

w h L ∞ ( Ḃd/p-1 p,1
)∩L 1 ( Ḃd/p+1 p,1

)

w 0 h Ḃd/p-1 p,1 + u • ∇u h L 1 ( Ḃd/p-1 p,1
)

+ Q(J(a) Au) h L 1 ( Ḃd/p-1 p,1
)

+ k(a)∇a h L 1 ( Ḃd/p-1 p,1
)

+ Q(au) h L 1 ( Ḃd/p-1 p,1
)

+ w h L 1 ( Ḃd/p-1 p,1
)

+ a h L 1 ( Ḃd/p-2 p,1
)

.

The important point is that, owing to the high frequency cut-off at |ξ| ∼ 2 j 0 ,

w h L 1 ( Ḃd/p-1 p,1
)

2 -2j 0 w h L 1 ( Ḃd/p+1 p,1
)

and a h L 1 ( Ḃd/p-2 p,1
)

2 -2j 0 a h L 1 ( Ḃd/p p,1 )
.

Hence, if j 0 is large enough then the term

w h L 1 ( Ḃd/p-1 p,1
) may be absorbed by the l.h.s. The other terms satisfy quadratic estimates. Indeed, it is clearly the case of u • ∇u according to (2.25), for Ḃd/2-1 .

To handle Q(J(a) Au), we decompose it into

Q(J(a) Au) = T J(a) ∆Qu + QR(J(a), Au) + QT Au J(a) + [Q, T J(a) ] Au.
Arguing as from proving (2.31), we readily get

Q(J(a) Au) L 1 ( Ḃd/p-1 p,1
)

a L ∞ ( Ḃd/p p,1 ) ( Qu L 1 ( Ḃd/p+1 p,1 ) + u L 1 ( Ḃd/p+1 p,r
) ). Finally, using Bony's decomposition, we see that

au L 1 ( Ḃd/p p,r ) a L 2 ( Ḃd/p p,1 ) u L 2 ( Ḃd/p p,r ∩ Ḃ0 ∞,1 ) . Because Q(au) h L 1 ( Ḃd/p-1 p,1
)

au L 1 ( Ḃd/p p,r ) ,
we conclude that

(2.35) w h L ∞ ( Ḃd/p-1 p,1
)∩L 1 ( Ḃd/p+1 p,1

)

w 0 h Ḃd/p-1 p,1 + 2 j 0 (a, u) 2 X p,r 1,1 + 2 -2j 0 a h L 1 ( Ḃd/p p,1 )
.

Step 4: High frequencies of the density. We notice that

∂ t a + u • ∇a + a = -a div u -div w.
To bound the high frequencies of a, we write that for all j ≥ j 0 ,

∂ t ∆j a + Ṡj-1 u • ∇ ∆j a + ∆j a = -∆j (T ∇a • u + R(∇a, u) + a div u + div w) + R j with R j := Ṡj-1 u • ∇ ∆j a -∆j (T u • ∇a).
Arguing as in [START_REF] Danchin | Fourier Analysis methods for compressible flows, Topics on compressible Navier-Stokes equations, états de la recherche SMF[END_REF], we thus get for all t ≥ 0, , and continuity results for the paraproduct, and remainder yield

(2.36) ∆j a(t) L p + t 0 ∆j a L p dτ ≤ ∆j a 0 L p + 1 p t 0 div Ṡj-1 u L ∞ ∆j a L p dτ + t 0 ∆j (T ∇a • u + R(∇a, u) + a div u + div w) L p dτ + t 0 R j L p dτ
T ∇a • u L 1 ( Ḃd/p p,1 ) ∇a L ∞ ( Ḃ-1 ∞,1 ) u L 1 ( Ḃd/p+1 p,r ) , R(∇a, u) L 1 ( Ḃd/p p,1 ) ∇a L ∞ ( Ḃd/p-1 p,1 ) u L 1 ( Ḃd/p+1 p,r
) .

Finally, because

R j = ∆j |j ′ -j|≤4 ( Ṡj-1 -Ṡj ′ -1 )u • ∇ ∆j ′ a + |j ′ -j|≤4 [ Ṡj-1 u, ∆j ] • ∇ ∆j ′ a, commutator estimates from [2] lead to j∈Z 2 jd/p R j L p ≤ C ∇u L ∞ a Ḃd/p p,1 .
Multiplying (2.36) by 2 jd/p , using the above inequalities, and summing up over j ≥ j 0 thus leads to

a h L ∞ t ( Ḃd/p p,1 ) + t 0 a h Ḃd/p p,1 dτ ≤ a 0 h Ḃd/p p,1 + C t 0 ∇u L ∞ + div u Ḃd/p p,1 a Ḃd/p p,1 dτ +C ∇a L ∞ ( Ḃd/p-1 p,1 ) u L 1 ( Ḃd/p+1 p,r ) + C w h L 1 ( Ḃd/p+1 p,1
)

.

Therefore,

(2.37)

a h L 1 ( Ḃd/p p,1 )∩ L ∞ ( Ḃd/p p,1 ) a 0 h Ḃd/p p,1 + 2 j 0 (a, u) 2 X p,r 1,1 + w h L 1 ( Ḃd/p+1 p,1
)

.

Plugging (2.35) in (2.37) and taking j 0 large enough, we thus get

(2.38) a h L 1 ( Ḃd/p p,1 )∩ L ∞ ( Ḃd/p p,1 ) a 0 h Ḃd/p p,1 + Qu 0 h Ḃd/p-1 p,1 + 2 j 0 (a, u) 2 X p,r 1,1 
.

Step 

+ Qu 0 h Ḃd/p-1 p,1 + 2 j 0 (a, u) 2 X p,r 1,1 
.

As Qu h = w h -(-∆) -1 ∇a h , the same inequality holds true for Qu h . Finally, putting together (2.20), (2.23), (2.34) and (2.38), we conclude that

(2.40) (a, u) X p,r 1,1 ≤ C (a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 + Pu 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + a 0 h Ḃd/p p,1 + Qu 0 h Ḃd/p-1 p,1 + 2 j 0 (1 + (a, u) X p,r 1,1 ) (a, u) 2 X p,r
1,1

•

It is now easy to close the estimates if the data are small enough; we end up with (1.9).

Step 6: The case of nonconstant viscosity coefficients. It is only a matter of checking that the last line of (2.15) satisfies quadratic estimates. To this end, we write that

(2.41) 1 1 + a div µ(a)D(u) = µ(a) 1 + a div D(u) + µ ′ (a) 1 + a D(u) • ∇a,
and a similar relation for the term pertaining to λ.

The first term of the r.h.s. of (2.41) may be handled exactly as J(a) Au. As for the second term, it suffices to estimate it in L 1 ( Ḃd/p-1 p,1

) and to show that applying Q ℓ to it leads to

estimates in L 1 ( Ḃd/2-1 2,1
).

Throughout, we use the fact that µ ′ (a) 1+a ∇a = ∇(L(a)) for some smooth function L vanishing at 0. Now, continuity properties of R and T imply that

T ∇(L(a)) ∇u L 1 ( Ḃd/2-1 2,1 ) ∇(L(a)) L ∞ ( Ḃd/p * -1 p * ,1 ) ∇u L 1 ( Ḃd/p p,r ) , R(∇(L(a)), ∇u) L 1 ( Ḃd/2-1 2,1 ) ∇(L(a)) L ∞ ( Ḃd/p-1 p,1 ) ∇u L 1 ( Ḃd/p p,r ) , T ∇u ∇(L(a)) L 1 ( Ḃd/p-1 p,1 ) ∇u L ∞ (L ∞ ) ∇(L(a)) L ∞ ( Ḃd/p-1 p,1
) , which in particular yields quadratic estimates for the L 1 ( Ḃd/p-1 p,1

) norm, after using suitable embedding and the composition estimate (2.33).

To complete the proof, it is only a matter of getting quadratic estimates for

Q ℓ (T ∇u ∇L(a)) in L 1 ( Ḃd/2-1 2,1
). To this end, we observe that

Q ℓ (T ∇u ∇L(a)) L 1 ( Ḃd/2-1 2,1
)

2 j 0 Q ℓ (T ∇u ∇L(a)) L 1 ( Ḃd/2-2 2,1
) , and thus

Q ℓ (T ∇u ∇L(a)) L 1 ( Ḃd/2-1 2,1
)

2 j 0 ∇u L 2 ( Ḃd/p * -1 p * ,r ) ∇(L(a)) L 2 ( Ḃd/p-1 p,1
)

2 j 0 u L 2 ( Ḃd/p * p * ,r ) a L 2 ( Ḃd/p p,1
) . Therefore we end up with

µ ′ (a) 1 + a D(u) • ∇a L 1 ( Ḃd/p-1 p,1
) . Then using the results of [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF][START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF] yields a unique local-in-time solution (a n , u n ) to (2.15) with data (a 0 , u n 0 ). From the above estimates, we know in addition that (with obvious notation)

2 j 0 (1 + a L ∞ ( Ḃd/p p,1 ) ) (a, u) 2 X p,r 1 
(a n , u n ) X p,r 1,1 (0,t) ≤ C (a n 0 , Qu n 0 ) ℓ Ḃd/2-1 2,1 + Pu n 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + a n 0 h Ḃd/p p,1 + Qu n 0 h Ḃd/p-1 p,1
is fulfilled whenever t is smaller than the lifespan T n * of (a n , u n ). As the above inequality implies that

a n L ∞ T n * ( Ḃd/p p,1 ) + T n * 0 ∇u n L ∞ dt < ∞,
a straightforward adaptation of Prop. 10.10 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] to p = 2 implies that T n * = +∞. We thus have for all n ∈ N,

(a n , u n ) X p,r 1,1 ≤ C (a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 + Pu 0 Ḃd/p-1 p,r ∩ Ḃ-1 ∞,1 + a 0 h Ḃd/p p,1 + Qu 0 h Ḃd/p-1 p,1
.

Next, compactness arguments similar to those of e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] or [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF] allow to conclude that (a n , u n ) n∈N weakly converges (up to extraction) to some global solution of (2.15) with the desired regularity properties, and satisfying (1.9) (with ε = ν = 1 of course). Resuming to the original unknowns completes the proof of the first part of Theorem 1.1.

The incompressible limit: weak convergence

Granted with the uniform estimates established in the previous section, it is now possible to pass to the limit in the system in the sense of distributions. As in the work by P.-L. Lions and N. Masmoudi [START_REF] Lions | Une approche locale de la limite incompressible[END_REF] dedicated to the finite energy weak solutions of (0.1), the proof relies on compactness arguments, and works the same in the R d and T d cases. To simplify the presentation, we assume that the viscosity functions λ and µ are constant.

So we consider a family (a ε 0 , u ε 0 ) of data satisfying (1.8) and Pu ε 0 ⇀ v 0 when ε goes to 0. We denote by (a ε , u ε ) the corresponding solution of (0.1) given by Theorem 1. ), given our assumptions on p and r. Therefore there exists a sequence (ε n ) n∈N decaying to 0 so that (a εn 0 , u εn 0 ) ⇀ (a 0 , u 0 ) in Ḃd/4-1 ) weakly * .

Of course, we have Pu 0 = v 0 .

The strong convergence of the density to 1 is obvious: we have ρ εn = 1 + ε n a εn , and (a εn ) n∈N is bounded (in L 2 (R + ; Ḃd/p p,1 ) for instance). In order to justify that div u = 0, we rewrite the mass equation as follows:

div u εn = -ε n div (a εn u εn ) -ε n ∂ t a εn .
Given that a εn and u εn are bounded in L 2 (R + ;

Ḃd/4 4,2 ∩ L ∞ ) (use the definition of X p,r ε,ν and interpolation), the first term in the right-hand side is

O(ε n ) in L 1 (R + ; Ḃd/4-1 4,2
). As for the last term, it tends to 0 in the sense of distributions, for a εn ⇀ a in L ∞ (R + ; Ḃd/4-1

4,2
) weakly * . We thus have div u εn ⇀ 0, whence div u = 0.

To complete the proof of the weak convergence, it is only a matter of justifying that u εn converges in the sense of distributions to the solution u of (1.10). To achieve it, we project the velocity equation onto divergence-free vector fields, and get (3.43) ∂ t Pu εn -µ∆Pu εn = -P(u εn • ∇u εn ) -P J(ε n a εn )Au εn .

Because Qu = 0, the left-hand side weakly converges to ∂ t u -µ∆u.

To prove that the last term tends to 0, we use the fact that having ε(a ε ) h, ε and (a ε ) ℓ, ε bounded in L ∞ ( Ḃd/p p,1 ) and L ∞ ( Ḃd/p-1

p,1
), respectively, implies that, for all α ∈ [0, 1],

(3.44) ε α a ε is bounded in L ∞ ( Ḃd/p-1+α p,1
).

Now Au ε is bounded in L 1 ( Ḃd/p-1 p,r
) and p < 2d. Hence, according to product laws in Besov spaces, composition inequality and (3.44), we get J(εa

ε )Au ε = O( ε 1-α ) in L 1 ( Ḃd/p-2+α p,r
), whenever 2 max(0, 1 -d/p) < α ≤ 1.

In order to prove that P(u εn • ∇u εn ) ⇀ P(u • ∇u), we note that

u εn • ∇u εn = 1 2 ∇|Qu εn | 2 + Pu εn • ∇u εn + Qu εn • ∇Pu εn .
Projecting the first term onto divergence free vector fields gives 0, and we also know that Pu = u. Hence we just have to prove that (3.45) P(Pu εn • ∇u εn ) ⇀ P(Pu • ∇u) and P(Qu εn • ∇Pu εn ) ⇀ 0.

This requires our proving results of strong convergence for Pu εn . To this end, we shall exhibit uniform bounds for ∂ t Pu εn in a suitable space. First, arguing by interpolation, we see that

(∇ 2 u εn ) is bounded in L m ( Ḃd/p+2/m-3 p,r
) for any m ≥ 1. Choosing m > 1 so that 2d/p + 2/m -3 > 0 (this is possible as p < 2d) and remembering that (ε n a εn ) is bounded in L ∞ ( Ḃd/p p,1 ), we thus get (J(ε n a εn )Au εn ) bounded in L m ( Ḃd/p+2/m-3 p,r

). Similarly, combining the facts that (u εn ) and (∇u εn ) are bounded in L ∞ ( Ḃd/p-1

p,r
) and L m ( Ḃd/p+2/m-2

p,r
), respectively, we see that

(u εn • ∇u εn ) is bounded in L m ( Ḃd/p+2/m-3 p,r ), too. Computing ∂ t Pu εn from (3.43), it is now clear that (∂ t Pu εn ) is bounded in L m ( Ḃd/p+2/m-3 p,r
). Hence (Pu εn -Pu εn 0 ) is bounded in

C 1-1/m (R + ; Ḃd/p+2/m-3 p,r
). As Pu εn is also bounded in

C b (R + ; Ḃd/p-1 p,r
), and as the embedding of Ḃd/p-1

p,1 in Ḃd/p+2/m-3 p,1
is locally compact (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], page 108), we conclude by means of Ascoli theorem that, up to a new extraction, for all φ ∈ S(R d ) and T > 0, (3.46)

φPu εn -→ φPu in C([0, T ]; Ḃd/p+2/m-3 p,1
).

Interpolating with the uniform in

C b (R + ; Ḃd/p-1 p,r
), we can upgrade the strong convergence in (3.46) to the space C([0, T ];

Ḃd/p-1-α p,1

) for all small enough α > 0, and all T > 0. Combining with the properties of weak convergence for ∇u εn to ∇u, and Qu εn to 0 that may be deduced from the uniform bounds on u εn , it is now easy to conclude to (3.45).

The incompressible limit: strong convergence in the whole space case

In this section, we combine Strichartz estimates for the following acoustic wave equations (4.47)

     ∂ t a ε + div u ε ε = F ε , ∂ t u ε + ∇a ε ε = G ε (t, x) ∈ R + × R d
associated to (0.1), with the uniform bounds (1.9) for the constructed solution (a ε , u ε ) so as to establish the strong convergence for u ε to the solution v of (1.10) in a proper function space. Recall that in a different context (that of global weak solutions), the idea of taking advantage of Strichartz estimates for investigating the incompressible limit goes back to the work of B. Desjardins and E. Grenier in [START_REF] Desjardins | Low Mach number limit of viscous compressible flows in the whole space[END_REF].

Throughout the proof, we assume the viscosity coefficients to be constant, for simplicity. Recall that C ε,ν 0 denotes the l.h.s. of (1.8). We first consider the case d ≥ 3 which is slightly easier than the two-dimensional case, owing to more available Strichartz estimates.

The case d ≥ 3. Let us assume that ε = ν = 1 for a while. Then the solution (a, u) to (0.1) satisfies (4.47) with F = -div (au) and G = ∆Qu -Q(u • ∇u) -Q(J(a) Au) + k(a)∇a, and Proposition 2.2 in [START_REF] Danchin | Zero Mach number limit in critical spaces for compressible Navier-Stokes equations[END_REF] ensures that for all q ∈ [2, ∞), we have

(a, Qu) ℓ L 2q/(q-2) ( Ḃ(d-1)/q-1/2 q,1
)

(a 0 , Qu 0 ) ℓ Ḃd/2-1 2,1 + (F, G) ℓ L 1 ( Ḃd/2-1 2,1
)

.

Following the proof of (2.34) to bound F and G, we eventually get

(a, Qu) ℓ L 2q/(q-2) ( Ḃ(d-1)/q-1/2 q,1 ) C 1,1 0 .
As we also have (a, Qu)

ℓ L 1 ( Ḃd/2+1 2,1
)

C 1,1 0 , we conclude by using the following complex interpolation result

[L 1 ( Ḃd/2+1 2,1
), L 2q/(q-2) ( Ḃ(d-1)/q-1/2 q,1 )] q/(q+2) = L 2 ( Ḃ(d+1)/p-1/2 p,1

) with p = (q + 2)/2, that (a, Qu) ℓ Back to the original variables in (2.11), we deduce that for all positive ε and ν,

ν 1/2 (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(d+1)/p-1/2 p,1
)

ε 1/2-1/p C ε,ν 0 .
Of course, for the above inequality to be true, we need in addition that the index p fulfills the assumptions in Theorem 1.1. Now, taking advantage of the high-frequency cut-off (second line below) and (1.9) (third line), we get

(a ε , Qu ε ) L 2 ( Ḃ(d+1)/p-1/2 p,1 ) (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(d+1)/p-1/2 p,1
)

+ (a ε , Qu ε ) h, ε L 2 ( Ḃ(d+1)/p-1/2 p,1 ) (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(d+1)/p-1/2 p,1
)

+ ε 1/2-1/p (a ε , Qu ε ) h, ε L 2 ( Ḃd/p p,1 ) ν -1/2 ε 1/2-1/p C ε,ν 0 , which yields the strong convergence of (a ε , Qu ε ) to 0 in L 2 ( Ḃ(d+1)/p-1/2 p,1
), with an explicit rate.

Let us now go to the proof of the convergence of Pu ε . Setting δu ε := Pu ε -u, we see that

∂ t δu ε -µ∆δu ε + P(Pu ε • ∇δu ε + δu ε • ∇u) = -P u ε • ∇Qu ε + Qu ε • ∇Pu ε + J(εa ε )Au ε •
In what follows, we aim at estimating δu ε in the space L ∞ ( Ḃ(d+1)/p-3/2 p,r

) ∩ L 1 ( Ḃ(d+1)/p+1/2 p,r
). First, applying (0.4) and the fact that P is a self-map in any homogeneous Besov space gives

δU ε := δu ε L ∞ ( Ḃ(d+1)/p-3/2 p,r ) + µ δu ε L 1 ( Ḃ(d+1)/p+1/2 p,r ) δu ε 0 Ḃ(d+1)/p-3/2 p,r + Pu ε • ∇δu ε + δu ε • ∇u L 1 ( Ḃ(d+1)/p-3/2 p,r ) + u ε • ∇Qu ε + Qu ε • ∇Pu ε + J(εa ε )Au ε L 1 ( Ḃ(d+1)/p-3/2 p,r
) .

Next, product and composition estimates in the spirit of those of the previous sections (where we use repeatedly that (d + 1)/p -1/2 ≤ d/p and (d + 1)/p -3/2 + d/p > 0) yield:

Pu ε • ∇δu ε L 1 ( Ḃ(d+1)/p-3/2 p,r ) Pu ε L ∞ ( Ḃd/p-1 p,r ) ∇δu ε L 1 ( Ḃ(d+1)/p-1/2 p,r ) + Pu ε L 1 ( Ḃd/p+1 p,r ) ∇δu ε L ∞ ( Ḃ(d+1)/p-5/2 p,r ) , δu ε • ∇u L 1 ( Ḃ(d+1)/p-3/2 p,r ) ∇u L ∞ ( Ḃd/p-2 p,r ) δu ε L 1 ( Ḃ(d+1)/p+1/2 p,r ) + ∇u L 1 ( Ḃd/p p,r ) δu ε L ∞ ( Ḃ(d+1)/p-3/2 p,r
) , and also

u ε • ∇Qu ε L 1 ( Ḃ(d+1)/p-3/2 p,r ) ∇Qu ε L 2 ( Ḃ(d+1)/p-3/2 p,1 ) u ε L 2 ( Ḃd/p p,r ∩ Ḃ0 ∞,1 ) , Qu ε • ∇Pu ε L 1 ( Ḃ(d+1)/p-3/2 p,r ) Qu ε L 2 ( Ḃ(d+1)/p-1/2 p,1 ) ∇Pu ε L 2 ( Ḃd/p-1 p,r ) , J(εa ε )Au ε L 1 ( Ḃ(d+1)/p-3/2 p,r ) J(εa ε ) L ∞ ( Ḃ(d+1)/p-1/2 p,1 ) Au ε L 1 ( Ḃd/p-1 p,r ) (1 + εa ε L ∞ ( Ḃd/p p,1 ) ) εa ε L ∞ ( Ḃ (d+1)/p-1/2 p,1 ) u ε L 1 ( Ḃd/p+1 p,r 
) .

Let us observe that

εa ε L ∞ ( Ḃ(d+1)/p-1/2 p,1
)

εa ε ℓ, ε L ∞ ( Ḃ(d+1)/p-1/2 p,1
)

+ εa ε h, ε L ∞ ( Ḃ(d+1)/p-1/2 p,1
)

ν -1 ε 1/2-1/p a ε ℓ, ε L ∞ ( Ḃd/2-1 2,1
)

+ ε 1/2-1/p εa ε h, ε L ∞ ( Ḃd/p p,1 ) ν -1 ε 1/2-1/p C ε,ν 0 . (4.48)
Therefore, putting together all the above estimates and using (1.9), we get

δU ε δu ε 0 Ḃ(d+1)/p-3/2 p,r +µ -1 u L ∞ ( Ḃd/p-1 p,r ) + µ u L 1 ( Ḃd/p+1 p,r ) δU ε + ν -1 ε 1/2-1/p (1 + ν -1 C ε,ν 0 )(C ε,ν 0 ) 2 .
Note that Theorem 0.1 implies that as v 0 is small compared to µ (a consequence of smallness condition (1.8)) then the solution u to (1.10) with data v 0 exists globally and satisfies (0.5). We thus get

δU ε δu ε 0 Ḃ(d+1)/p-3/2 p,r + ε 1/2-1/p C ε,ν 0 , which completes the proof of convergence in R d if d ≥ 3.
The case d = 2. Applying Proposition 2.2 in [START_REF] Danchin | Zero Mach number limit in critical spaces for compressible Navier-Stokes equations[END_REF] to (4.47) in the case d = 2, and using the bounds of the previous section to bound the r.h.s. in L 1 ( Ḃ0 2,1 ), we now get if

ε = ν = 1, (a, Qu) ℓ L r ( Ḃ2/q-1+1/r q,1 ) C 1,1 0 whenever 2/r ≤ 1/2 -1/q.
Let us emphasize that in contrast with the high-dimensional case, we cannot have r smaller than [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF]. In what follows, we set 1/r = c(1/2 -1/q) with c ∈ [0, 1/2] to be fixed later on.

Observing that (1.9) implies that

(a, Qu) ℓ L 1 ( Ḃ2 2,1 )
C 1,1 0 and adapting the interpolation argument used in the previous paragraph, we get

(a, Qu) ℓ L 2 ( Ḃ(c+2)/p-c/2 p,1 ) C 1,1 0 ,
where p, c and q are interrelated through

p = 4q + (4 -2q)c q + 2 + (2 -q)c •
Note that as c ∈ [0, 1/2] and q ∈ [2, +∞], one can achieve any p ∈ [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF], which is a weaker condition than that which is imposed for p in the statement of Theorem 1.1.

For general ε and ν, the above inequality recasts in

ν 1/2 (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(c+2)/p-c/2 p,1 ) ε c(1/2-1/p) C ε,ν 0 .
Arguing as in the high-dimensional case, one can get a similar inequality for the high frequencies of (a ε , Qu ε ), namely

(a ε , Qu ε ) L 2 ( Ḃ(c+2)/p-c/2 p,1 ) (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(c+2)/p-c/2 p,1
)

+ (a ε , Qu ε ) h, ε L 2 ( Ḃ(c+2)/p-c/2 p,1 ) (a ε , Qu ε ) ℓ, ε L 2 ( Ḃ(c+2)/p-c/2 p,1
)

+ ε c(1/2-1/p) (a ε , Qu ε ) h, ε L 2 ( Ḃ2/p p,1 ) ν -1/2 ε c(1/2-1/p) C ε,ν 0 .
Let us finally prove the convergence of

Pu ε to u in L ∞ ( Ḃ(c+2)/p-c/2-1 p,r ) ∩ L 1 ( Ḃ(c+2)/p-c/2+1 p,r
). Again, we apply Inequality (0.4) to the equation fulfilled by δu ε , and get

δU ε := δu ε L ∞ ( Ḃ(c+2)/p-c/2-1 p,r ) + δu ε L 1 ( Ḃ(c+2)/p-c/2+1 p,r ) δu ε 0 Ḃ(c+2)/p-c/2-1 p,r + Pu ε • ∇δu ε + δu ε • ∇u L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) + u ε • ∇Qu ε + Qu ε • ∇Pu ε + J(εa ε )Au ε L 1 ( Ḃ(c+2)/p-c/2-1 p,r
) . In order to bound the nonlinear terms, we use standard continuity results for the product or paraproduct, and also (repeatedly) the fact that the condition on c in Theorem 1.1 is equivalent to (c + 2)/p -c/2 -1 + 2/p > 0. Then we get

Pu ε • ∇δu ε L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) Pu ε L ∞ ( Ḃ2/p-1 p,r ) ∇δu ε L 1 ( Ḃ(c+2)/p-c/2 p,r ) + Pu ε L 1 ( Ḃ2/p+1 p,r ) ∇δu ε L ∞ ( Ḃ(c+2)/p-c/2-2 p,r ) , δu ε • ∇u L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) ∇u L ∞ ( Ḃ2/p-2 p,r ) δu ε L 1 ( Ḃ(c+2)/p-c/2+1 p,r ) + ∇u L 1 ( Ḃ2/p p,r ) δu ε L ∞ ( Ḃ(c+2)/p-c/2-1 p,r
) ,

and also

u ε • ∇Qu ε L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) ∇Qu ε L 2 ( Ḃ(c+2)/p-c/2-1 p,1 ) u ε L 2 ( Ḃ2/p p,r ∩ Ḃ0 ∞,1 ) , Qu ε • ∇Pu ε L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) Qu ε L 2 ( Ḃ(c+2)/p-c/2 p,1 ) ∇Pu ε L 2 ( Ḃ2/p-1 p,r ) , J(εa ε )Au ε L 1 ( Ḃ(c+2)/p-c/2-1 p,r ) (1 + εa ε L ∞ ( Ḃ2/p p,1 ) ) εa ε L ∞ ( Ḃ(c+2)/p-c/2 p,1 ) u ε L 1 ( Ḃ2/p+1 p,r
) .

In order to bound εa ε in L ∞ ( Ḃ(c+2)/p-c/2 p,1

), one may argue exactly as in the case d ≥ 3:

εa ε L ∞ ( Ḃ(c+2)/p-c/2 p,1
)

εa ε ℓ, ε L ∞ ( Ḃ(c+2)/p-c/2 p,1
)

+ εa ε h, ε L ∞ ( Ḃ(c+2)/p-c/2 p,1 ) ν -1 ε c(1/2-1/p) a ε ℓ, ε L ∞ ( Ḃ0 2,1 ) + ε c(1/2-1/p) εa ε h, ε L ∞ ( Ḃ2/p p,1 )
ν -1 ε c(1/2-1/p) C ε,ν 0 . So using Theorem 0.1 to bound the terms pertaining to u, it is now easy to conclude to the last inequality of Theorem 1.1.

The full Navier-Stokes-Fourier system

In this final section, we aim at extending the previous results to the more physically relevant case of non-isothermal polytropic fluids. The corresponding governing equations, the so-called Navier-Stokes-Fourier system, involves the density of the fluid ρ ε and its velocity u ε . To fully describe the fluid, we need to consider a third (real valued) unknown, for instance the temperature θ ε .

For simplicity, we only consider the case of perfect heat conducting and viscous gases. We set the reference density and temperature to be 1, and focus on ill-prepared data of the form ρ ε 0 = 1 + εa ε 0 , u ε 0 and θ ε 0 = 1 + εϑ ε 0 where (a ε 0 , u ε 0 , ϑ ε 0 ) are bounded in a sense that will be specified later on 5 . Setting ρ ε = 1 + εa ε and θ ε = 1 + εϑ ε , we get the following system for (a ε , u ε , ϑ ε ):

(5.49)

               ∂ t a ε + div u ε ε = -div (a ε u ε ), ∂ t u ε + u ε • ∇u ε - Au ε 1 + εa ε + ∇(a ε + ϑ ε + εa ε ϑ ε ) ε(1 + εa ε ) = 0, ∂ t ϑ ε + div u ε ε + div (ϑ ε u ε ) -κ ∆ϑ ε 1 + εa ε = ε 1 + εa ε 2µ|Du ε | 2 + λ(div u ε ) 2 •
We assume that the fluid is genuinely viscous and heat-conductive, that is to say µ > 0, ν := λ + 2µ > 0 and κ > 0.

Even though our results should hold for coefficients λ, µ and κ depending smoothly on the density, we only consider the constant case, for simplicity.

Keeping in mind our results on the barotropic case, we want to consider families of small data (a ε 0 , u ε 0 , ϑ ε 0 ) in the space Y p 0,ε,ν defined by (still setting ε := εν):

• (a ε 0 , Qu ε 0 , ϑ ε 0 ) ℓ, ε ∈ Ḃd/2-1 2,1 , • (a ε 0 ) h, ε ∈ Ḃd/p p,1 , (Qu ε 0 ) h, ε ∈ Ḃd/p-1 p,1 , (ϑ ε 0 ) h, ε ∈ Ḃd/p-2 p,1 , • Pu ε 0 ∈ Ḃd/p-1 p,1
.

The existence space Y p ε,ν is the set of triplets (a, u, ϑ) so that

• (a ℓ, ε , Qu ℓ, ε , ϑ ℓ, ε ) ∈ C b (R + ; Ḃd/2-1 2,1 ) ∩ L 1 (R + ; Ḃd/2+1 2,1
),

• a h, ε ∈ C b (R + ; Ḃd/p p,1 ) ∩ L 1 (R + ; Ḃd/p p,1 ), • ϑ h, ε ∈ C b (R + ; Ḃd/p-2 p,1 ) ∩ L 1 (R + ; Ḃd/p p,1 ), • Qu h, ε and Pu ε are in C b (R + ; Ḃd/p-1 p,1 ) ∩ L 1 (R + ; Ḃd/p+1 p,1
), endowed with the norm:

(a, u, ϑ) Y p ε,ν := (a, Qu, ϑ) ℓ, ε L ∞ ( Ḃd/2-1 2,1
)

+ (Pu, Qu h, ε ) L ∞ ( Ḃd/p-1 p,1 ) + ε a h, ε L ∞ ( Ḃd/p p,1 ) + ε -1 ϑ h, ε L ∞ ( Ḃd/p-2 p,1 ) + ν (a, Qu, ϑ) ℓ, ε L 1 ( Ḃd/2+1 2,1
)

+ ν (Pu, Qu h, ε ) L 1 ( Ḃd/p+1 p,1 ) + ε -1 (a, ϑ) h, ε L 1 ( Ḃd/p p,1 )
.

We also set

(a 0 , u 0 , ϑ 0 ) Y p 0,ε,ν := (a 0 , Qu 0 , ϑ 0 ) ℓ, ε Ḃd/2-1 2,1 + (Pu 0 , Qu h, ε 0 ) Ḃd/p-1 p,1 + ε a 0 h, ε Ḃd/p p,1 + ε -1 ϑ 0 h, ε Ḃd/p-2 p,1
.

Here the integer j 0 appearing in the threshold between low and high frequencies depends only on κ := κ/ν, µ := µ/ν and λ := λ/ν with ν := λ + 2µ.

In the case p = 2 and ε = 1, global existence for (5.49) in the above space and for small data has been established in [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF]. The main goal of this section is to extend the statement to more general p's, and to get estimates independent of ε and ν for the constructed solution. Furthermore, in the R d case, we establish a strong convergence result in the low Mach number asymptotics, in the spirit of our recent work [START_REF] Danchin | The Oberbeck-Boussinesq approximation in critical spaces[END_REF]. Here is the main result of this section: Theorem 5.1. Assume that the fluid domain is either R d or T d with d ≥ 3, and that the initial data (a ε 0 , u ε 0 , ϑ ε 0 ) are as above with 2 ≤ p < d and p ≤ 2d/(d -2). There exists a constant η independent of ε and of ν (but depending on κ/ν) such that if

(5.50) (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν ≤ ην, then 
System (5.49) with initial data (a ε 0 , u ε 0 , ϑ ε 0 ) has a unique global solution (a ε , u ε , ϑ ε ) in the space Y p ε,ν with, for some constant C independent of ε and ν, (5.51)

(a ε , u ε , ϑ ε ) Y p ε,ν ≤ C (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν . Furthermore, in the R d case, if (a ε 0 , u ε 0 , ϑ ε 0
) is a family of data fulfilling (5.50) with Pu ε 0 → v 0 and ϑ ε 0 -a ε 0 → Θ 0 for suitable norms, then we have

• (q ε , Qu ε ) → 0 with q ε := ϑ ε + a ε , • Pu ε → u with u solution to (1.10), • Θ ε → Θ with Θ ε := ϑ ε -a ε and Θ satisfying (5.52) ∂ t Θ - κ 2 ∆Θ + u • ∇Θ = 0, Θ| t=0 = Θ 0 .
More precisely, we have

(5.53) (q ε , Qu ε ) ℓ, ε L 2 ( Ḃ(d+1)/p-1/2 p,1 ) ν -1/2 ε 1/2-1/p (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν , (5.54) Pu ε -u L ∞ ( Ḃ(d+1)/p-3/2 p,1 ) + µ Pu ε -u L 1 ( Ḃ(d+1)/p+1/2 p,1 Pu ε 0 -v 0 Ḃ(d+1)/p-3/2 p,1 + ε 1/2-1/p (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν , and 
(5.55) δΘ ε L ∞ ( Ḃ(d+1)/p-3/2 p,1 + Ḃd/p-2 p,1 ) + δΘ ε L 2 ( Ḃ(d+1)/p-1/2 p,1
)+L 1 ( Ḃd/p p,1 )

Θ ε 0 -Θ 0 Ḃ(d+1)/p-3/2 2,1 + Ḃd/p-2 p,1 + ε 1/2-1/p (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν .
Remark 5.1. Regarding the global existence and convergence issues, we expect similar results for slightly larger Besov spaces, as in the barotropic case. Here we only considered Besov spaces with last index 1 for simplicity, in order to benefit from uniqueness (see [START_REF] Chikami | On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces[END_REF]), an open question otherwise, and also because it allows us to avoid resorting to L m ( Ḃs p,r ) spaces and complicated product estimates.

Proof. As in the barotropic case, performing a suitable change of unknowns reduces the proof to the case ε = ν = 1, and coefficients μ, λ and κ. More precisely, we set

(5.56) (a, u, ϑ)(t, x) = ε(a ε , u ε , ϑ ε )(ε 2 νt, ενx).
Thanks to (2.14), we notice that

(5.57) ν (a, u, ϑ) Y p 1,1 = (a ε , u ε , ϑ ε ) Y p ε,ν
and ν (a 0 , u 0 , ϑ 0 ) Y p 0,1,1 = (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν . So we may assume from now on that ν = ε = 1, and thus omit the exponent ε.

Let us give the outline of the proof. The first six steps are dedicated to proving global-intime a priori estimates (namely (5.51)) for smooth solutions to (5.49), which is a rather easy adaptation of what we did in the barotropic case. In Step 7, we sketch the proof of existence. The last step is dedicated to the low Mach number asymptotics in the R d case. Throughout, we assume that (2.16) is satisfied, so that one may freely apply Proposition 6.1.

Step 1. Incompressible part of the velocity. ) .

Only the last term is new compared to the barotropic case. Decomposing it into

ϑ∇(K(a)) = ϑ ℓ ∇(K(a)) + ϑ h ∇(K(a)),
we may write (5.58) P(ϑ∇(K(a))

) L 1 ( Ḃd/p-1 p,1 ) ∇(K(a)) L 2 ( Ḃd/p-1 p,1 ) ϑ ℓ L 2 ( Ḃd/p p,1 ) + ∇(K(a)) L ∞ ( Ḃd/p-1 p,1 ) ϑ h L 1 ( Ḃd/p p,1
) . So arguing as in the barotropic case and using (2.19), we eventually get (5.59)

Pu L ∞ ( Ḃd/p-1 p,1
)∩L 1 ( Ḃd/p+1 p,1

)

Pu 0 Ḃd/p-1 p,1 + 2 j 0 (1 + a L ∞ ( Ḃd/p p,1 ) ) (a, u, ϑ) 2 Y p 1,1
.

Step 2. Low frequencies. Applying Projector Q to the velocity equation, we see that (a, Qu, ϑ)

fulfills          ∂ t a + div Qu = -div (au), ∂ t Qu -∆Qu + ∇(a + ϑ) = Q -u • ∇u -J(a) Au + (a -ϑ)∇(K(a)) , ∂ t ϑ -κ∆ϑ + div Qu = -div (ϑu) -κJ(a)∆ϑ + 1 1 + a 2 µ|Du| 2 + λ(div u) 2 •
The results of [START_REF] Danchin | Global existence in critical spaces for flows of compressible viscous and heat-conductive gases[END_REF] guarantee that

(5.60) (a, Qu, ϑ) ℓ L ∞ ( Ḃd/2-1 2,1 )∩L 1 ( Ḃd/2+1 2,1 ) (a 0 , Qu 0 , ϑ 0 ) ℓ Ḃd/2-1 2,1 + r.h.s. ℓ L 1 ( Ḃd/2-1 2,1
)

.

Compared to the barotropic case, we have to bound in L 1 ( Ḃd/2-1 2,1

) the low frequencies of the following additional terms:

(5.61) ϑ∇(K(a)), div (ϑu), κJ(a)∆ϑ and 1 1 + a 2 µ|Du| 2 + λ(div u) .

To this end, we use Bony's decomposition restricted to low frequencies:

( K(a)∇a) ℓ = (T ∇a K(a)) ℓ + (R(∇a, K(a))) ℓ + T ( K(a)) ℓ ∇a ℓ + ( Ṡj 0 K(a) ∆j 0 +1 ∇a) ℓ .

To deal with the first two terms, we just use (2.30). For the third one, we use that T :

L ∞ × Ḃd/2-1 2,1 → Ḃd/2-1 2,1
and the embedding Ḃd/p p,1 ֒→ L ∞ . For the last one, we argue as follows:

2 j 0 (d/2-1)
Ṡj 0 K(a) ∆j 0 +1 ∇a L 2 ≤ 2 j 0 2 j 0 (d/p * -1) Ṡj 0 K(a) L p * 2 j 0 (d/p-1) ∆j 0 +1 ∇a L p .

Putting all those inequalities together, and using also composition estimates and the fact that d/p * -1 ≤ 0 eventually leads to the desired inequality.

Let us now bound (ϑ∇(K(a))) ℓ in L 1 ( Ḃd/2-1 2,1

). We start again from Bony's decomposition: ) . and ) ϑ ℓ L 2 ( Ḃd/p p,1 ) .

6 For p * , we keep the definition 1/p + 1/p * = 1/2. .

Step 5. High frequencies: the density. Exactly as in the barotropic case, Inequality (2.37) is fulfilled.

Step 6. Closure of the estimates. Inserting (5.72) in (5.71), we get for large enough j 0

w h L ∞ ( Ḃd/p-1 p,1
)∩L , from which it is clear that we may get (5.51) if (a 0 , u 0 , ϑ 0 ) Y p 0,1,1 is small enough. ) ∩ L 1 (0, T ; Ḃd/p+1 p,1

) and ϑ ∈ C([0, T ]; Ḃd/p-2 p,1

) ∩ L 1 (0, T ; Ḃd/p p,1 ) has been established in [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF]. That the additional low frequency L 2 type regularity is preserved during the evolution is a consequence of the computations that have been carried out in Step 2.

Finally, by slight modifications of the blow-up criterion of Prop. 10.10 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], one can show that if ∇u L 1 T (L ∞ ) + a L ∞ T ( Ḃd/p p,1 ) + ϑ L 1 T ( Ḃd/p p,1 ) < ∞ then the solution may be continued beyond T. As the norm in the space Y p 1,1 (restricted to [0, T )) clearly controls the above l.h.s., Inequality (5.51) implies the global existence.

Step 8. Low Mach number limit : strong convergence in the whole space case. As in our recent work [START_REF] Danchin | The Oberbeck-Boussinesq approximation in critical spaces[END_REF] dedicated to the Oberbeck-Boussinesq approximation, the proof of strong convergence relies on the dispersive properties of the system fulfilled by q ε := ϑ ε + a ε and Qu ε , namely

       ∂ t q ε + 2 ε div Qu ε = -div (u ε q ε ) + κ∆ϑ ε + κJ(εa ε )∆ϑ ε + ε 1+εa ε 2µ|Du ε | 2 + λ(div u ε ) 2 , ∂ t Qu ε + 1 ε ∇q ε = ν∆Qu ε -Q(u ε • ∇u ε ) -Q(J(εa ε )Au ε ) + Q (a ε -ϑ ε ) ∇a ε 1+εa ε •
Remembering that the low frequencies of the r.h.s. have been bounded in L 1 (R + ; Ḃd/2-1 ) by C ε,ν 0 := (a ε 0 , u ε 0 , ϑ ε 0 ) Y p 0,ε,ν (see Step 2), one can mimic the proof of the strong convergence

In the case where j is close to j 0 (say |j -j 0 | ≤ 4), one may still find some smooth function ψ supported in an annulus, and such that [ Ṡj 0 A(D), Ṡj-1 a] ∆j b = [ψ(2 -j 0 D), Ṡj-1 a] ∆j b, which allows to get again (6.76). Summing up over j and k, and using convolution inequalities for series, it is easy to conclude to the desired inequality.

Finally, we recall the following composition result. 

1 )C 1 , 1 0

 111 for all p ∈ [2, +∞).

1 +

 1 Let A := A/ν. we have ∂ t Pu -µ∆Pu = -P(u • ∇u) -P(J(a) Au) -P(ϑ∇K(a)) with J(0) = K(0) = 0. Hence heat estimates (0.4) yield Pu L ∞ ( Ḃd/p-1 P(u•∇u)+P(J(a) Au)+P(ϑ∇(K(a))) L 1 ( Ḃd/p-1 p,1

( 5 .

 5 63) (ϑ∇(K(a))) ℓ = (T ∇(K(a)) ϑ) ℓ + (R(∇(K(a)), ϑ)) ℓ + T ϑ ℓ ∇(K(a)) ℓ + ( Ṡj 0 ϑ ∆j 0 +1 ∇K(a)) ℓ .The first two terms may be bounded by splitting ϑ into ϑ ℓ + ϑ h , using the continuity of R and T from Ḃd/p-1

(

  

Step 7 .

 7 The proof of global existence and uniqueness. Uniqueness up to p < d is just a consequence of the recent paper [7]. Local-in-time existence of a solution (a, u, ϑ) to (5.49) with a ∈ C([0, T ]; Ḃd/p p,1 ), u ∈ C([0, T ]; Ḃd/p-1 p,1

Proposition 6 . 1 .

 61 Let G be a smooth function defined on some open interval I of R containing 0. Assume that G(0) = 0. Then for all s > 0, bounded interval J ⊂ I, 1 ≤ m ≤ ∞, and function a valued in J, the following estimates hold true: ) L m ( Ḃs p,1 ) ≤ C a L m ( Ḃs p,1 ) .

  .

	Now, because	Ḃd/p p,1 is an algebra, we may write
		a div u Ḃd/p p,1	a Ḃd/p p,1	div u Ḃd/p p,1

  5: Closing the a priori estimates. Resuming to (2.35) yields

	(2.39)	w h L ∞ (	Ḃd/p-1 p,1	)∩L 1 (	Ḃd/p+1 p,1	)	a 0	h Ḃd/p p,1

  Existence of a global solution to System (2.15). Let us now give a few words on the existence issue. The simplest way is to smooth out the initial velocity u 0 into a sequence of initial velocities (u n 0 ) n∈N with (u n

	2.2. 0 ) ℓ in	Ḃd/2-1 2,1	uniformly, and (u n 0 ) h in	Ḃd/p-1 p,1
				,1	,
	and one may conclude that (2.40) is still fulfilled in this more general situation.

  L ∞ ( Ḃd/p p,1 ) ) ∇u 2 + 2 j 0 (1 + (a, u, ϑ) Y p 1,1 ) (a, u, ϑ) 2

	1 1 + a	2µ|Du| 2 +λ(div u) 2	L 1 (	Ḃd/p-2 p,1	L 2 (	Ḃd/p-1 p,1	)	,
	whence							
	(5.72) ϑ h L ∞ (	Ḃd/p-2 p,1	)∩L 1 (	Ḃd/p p,1 )	ϑ 0	h Ḃd/p-2 p,1	+ 2 -2j 0 a + div w h L 1 (	Ḃd/p p,1 )
									Y p 1,1

)

(1 + a

  (a 0 , u 0 , ϑ 0 ) Y p 0,1,1 + 2 2j 0 (1 + (a, u, ϑ) Y p 1,1 ) (a, u, ϑ) 2

		1 (	Ḃd/p+1 p,1	)	w 0	h Ḃd/p-1 p,1	+ ϑ 0	h Ḃd/p-2 p,1
								+2 j 0 (1 + (a, u, ϑ) Y p 1,1 ) (a, u, ϑ) 2 Y p 1,1	+ 2 -2j 0 a h L 1 (	Ḃd/p p,1 )	.
	Next, plugging that latter inequality in (2.37), we get for large enough j 0 ,
	a h L 1 ∩L ∞ (	Ḃd/p p,1 )	a 0	h Ḃd/p p,1	+ w 0	h Ḃd/p-1 p,1	+ ϑ 0	h Ḃd/p-2 p,1	+ 2 j 0 (1 + (a, u, ϑ) Y p 1,1 ) (a, u, ϑ) 2 Y p 1,1	.
	Resuming to (5.59) and (5.70), it is now easy to conclude that
		(a, u, ϑ) Y p 1,1								Y p 1,1

We do not get anything better by just considering the low frequencies of Q(u • ∇u).

The idea is to write the term ∆Qu -∇a in (2.24) as the Laplacian of some gradient-like vector-field.

The reader may refer to[START_REF] Feireisl | Singular limits in thermodynamics of viscous fluids[END_REF] for the construction and the low Mach asymptotic of the weak solutions to the Navier-Stokes-Fourier equations, and to[START_REF] Alazard | Low Mach number limit of the full Navier-Stokes equations[END_REF] for the case of smoother data with large entropy variations.

For the third term in (5.63), by virtue of (5.62), we write

) .

Finally, 2 j 0 (d/2-1) Ṡj 0 ϑ ∆j 0 +1 ∇K(a)) L 2 ≤ 2 j 0 (d/p * -1) Ṡj 0 ϑ L p * 2 j 0 d/p ∆j 0 +1 ∇(K(a)) L p .

Hence Ṡj 0 ϑ ∆j 0 +1 ∇(K(a)) L 1 ( Ḃd/2-1

)

) K(a) h L 1 ( Ḃd/p p,1 )

.

That the last term does belong to L 1 ( Ḃd/p p,1 ) may be seen by writing K(a) = K ′ (0) a + K(a) a with K(0) = 0, which ensures, using composition estimates in Ḃd/p p,1 ,

(5.64) K(a) .

Resuming to (5.63), we conclude that (5.65) (ϑ∇(K(a)))

)

) a h L 1 ( Ḃd/p p,1 ) + a 2 L 2 ( Ḃd/p p,1 )

.

To handle div (ϑu), we decompose ϑ into low and high frequencies. To deal with both parts, we resort again to Bony's decomposition and continuity results for R and T. We end up with (5.67) Therefore, taking advantage of the low frequency cut-off and of Bernstein inequality yields

)

) . For the next term, we use J(a)∆ϑ = J(a)∆ϑ ℓ + J(a)∆ϑ h and Bony's decomposition. For the first term, we easily get

)

) a L ∞ ( Ḃd/p p,1 ) . For the second one, we use that R and T map Ḃd/p-2 )

) . To handle the last term in (5.61), we use the fact that )

.

Inserting all the above inequalities in (5.60) and using (2.19), we thus end up with

)

.

Step 3. High frequencies: the effective velocity. Let w := Qu + (-∆) -1 ∇a. We have

By virtue of (0.4), we have

)

)

.

Compared to the barotropic case, two new terms have to be handled : Q(ϑ∇(K(a))) and ∇ϑ.

The first one has been estimated in (5.58), and the second one is just linear. We eventually get if j 0 is large enough:

)∩L 1 ( Ḃd/p+1 p,1

)

.

Step 4. High frequencies: the temperature. Applying (0.4) to the heat equation

)∩L 1 ( Ḃd/p p,1 )

)

.

The term div (ϑu) can be bounded according to (5.66) and (5.67), using obvious embedding.

For the other nonlinear terms, we observe that under condition p < d, we have

)

)

) ,

for the barotropic case in the case d ≥ 3 (see the beginning of Section 4) and easily conclude that (5.53) is satisfied.

The high frequencies of a ε and Qu ε may be bounded as in (5.53) (argue as in the barotropic case) but not (ϑ ε ) h, ε which is one derivative less regular than (a ε ) h, ε .

Let us now study the strong convergence of Pu ε to u. To this end, we observe that δu

The first line may be handled as in the barotropic case : we get

)

) ∇u L 1 ( Ḃd/p p,1 ) ,

)

In order to bound the terms of the second line of (5.73), we shall use repeatedly the fact that for any smooth function K vanishing at 0, we have, by virtue of Proposition 6.1,

(5.74)

)

On the one hand, using product laws in Besov spaces yields

)

)

)

) ). Hence using (4.48), (5.53), (5.51) and (5.74),

)

Putting together all the above inequalities and the uniform estimate (5.51), we end up with

)

which obviously implies (5.54), owing to the smallness condition satisfied by C ε,ν 0 . Let us finally study the strong convergence of Θ ε := ϑ ε -a ε to the solution Θ of (5.52). Given the uniform bounds for (ϑ ε 0 ) and for (a ε 0 ), it is natural to assume that the limit Θ 0 belongs to Ḃd/2-1 , one may assume that its weak limit v 0 belongs to Ḃd/p-1 p,1

. Hence the

), and using the fact that div (uΘ) = u • ∇Θ, it is easy to prove that the linear equation ( 5.52) admits a unique solution

).

Next, from (5.52), observing that ∆ϑ ε = 1 2 ∆Θ ε + 1 2 ∆q ε , we readily get that δΘ ε := Θ ε -Θ satisfies

The level of regularity on which estimates for δΘ ε may be proved, is essentially given by the available estimates for δu ε , through the term δu ε •∇Θ = div (δu ε Θ), by the fact that decay estimates are available for the low frequencies of the term ∆q ε in the space L 2 (R + ; Ḃ(d+1)/p-5/2 p,1

) only through (5.53), and by observing that the high frequencies of ∆q ε (and more precisely of ∆ϑ ε ) are at most in the space L 1 ( Ḃd/p-2 p,1

), but have decay ε. As regards δu ε • ∇Θ, product laws in Besov spaces give the following bound:

) .

Note that only an L 2 -in-time estimate is available for (∆q ε ) ℓ, ε , through (5.53). However, a small variation on (0.4) (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) ensures that the solution to

) and satisfies

)

.

So in short we expect to be able to bound δΘ ε in

) + L 1 (R + ; Ḃd/p p,1 ) .

Let us now look at the other terms in the r.h.s. of (5.75). It is clear that (∆a ε ) h, ε may be bounded exactly as (∆q ε ) ℓ, ε . Next, product laws easily give that

)

. Putting all the above inequalities together, remembering of (5.51) and (5.53), and setting

)+L 1 ( Ḃd/p p,1 ) ,

we eventually get

) ∇Θ L 1 ( Ḃd/p p,1 ) + ν -1 C ε,ν 0 δX ε , which allows to conclude to (5.55).

Appendix

In this short appendix, we recall the definition of paraproduct and remainder operators, and give some technical estimates that have been used throughout in the paper.

To start with, let us recall that, in the homogeneous setting, the paraproduct and remainder operators T and R are formally defined as follows:

where Ṡk stands for the low-frequency cut-off operator defined by Ṡk := χ(2 -k D).

The fundamental observation is that the general term of T u v is spectrally localized in the annulus ξ ∈ R d , 1/12 ≤ 2 -j |ξ| ≤ 10/3 , and that the general term of R(u, v) is localized in the ball B(0, 2 j .20/3) (of course the values 1/12, 10/3 and 20/3 do not matter).

The main interest of the above definition lies in the following Bony's decomposition (first introduced in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]): uv = T u v + R(u, v) + T v u, that has been used repeatedly in the present paper.

The following lemma has been used to get appropriate estimates of the solution both in the barotropic and in the polytropic cases: Lemma 6.1. Let A(D) be a 0-order Fourier multiplier, and j 0 ∈ Z. Let s < 1, σ ∈ R and 1 ≤ p, p 1 , p 2 ≤ ∞ with 1/p = 1/p 1 + 1/p 2 . Then there exists a constant C depending only on j 0 and on the regularity parameters such that