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THE INCOMPRESSIBLE LIMIT IN Lp TYPE CRITICAL SPACES

RAPHAËL DANCHIN AND LINGBING HE

Abstract. This paper aims at justifying the low Mach number convergence to the incom-
pressible Navier-Stokes equations for viscous compressible flows in the ill-prepared data case.
The fluid domain is either the whole space, or the torus.

A number of works have been dedicated to this classical issue, all of them being, to our
knowledge, related to L2 spaces and to energy type arguments. In the present paper, we
investigate the low Mach number convergence in the Lp type critical regularity framework.
More precisely, in the barotropic case, the divergence-free part of the initial velocity field

just has to be bounded in the critical Besov space Ḃ
d/p−1
p,r ∩ Ḃ−1

∞,1 for some suitable (p, r) ∈

[2, 4]× [1,+∞]. We still require L2 type bounds on the low frequencies of the potential part
of the velocity and on the density, though, an assumption which seems to be unavoidable in
the ill-prepared data framework, because of acoustic waves.

In the last part of the paper, our results are extended to the full Navier-Stokes system
for heat conducting fluids.

We are concerned with the study of the convergence of the solutions to the compressible
Navier-Stokes equations when the Mach number ε goes to 0. In the barotropic case, the
system under consideration reads

(NSCε)





∂tρ
ε + div(ρεuε) = 0,

∂t(ρ
εuε) + div(ρεuε ⊗ uε)− div

(
2µ(ρε)D(uε) + λ(ρε)divuε Id

)
+

∇P ε

ε2
= 0,

where ρε = ρε(t, x) ∈ R+ stands for the density, uε = uε(t, x) ∈ R
d, for the velocity field,

P ε = P (ρε) ∈ R is the pressure, λ = λ(ρε) and µ = µ(ρε) are the (given) viscosity functions
that are assumed to satisfy µ > 0 and λ+ 2µ > 0. Finally, D(uε) stands for the deformation
tensor, that is (D(uε))ij := 1

2(∂iu
ε,j + ∂ju

ε,i). We assume that the functions P, λ and µ are
smooth, and we restrict our attention to the case where the fluid domain is either the whole
space Rd or the periodic box T

d (combinations such as T×R
d−1 and so on may be considered

as well).

At the formal level, in the low Mach number asymptotic, we expect ρε to tend to some
constant positive density ρ∗ (say ρ∗ = 1 for simplicity) and uε to tend to some vector field v
satisfying the (homogeneous) incompressible Navier-Stokes equations:

(NS)

{
∂tv + v · ∇v − µ(1)∆v +∇Π = 0,

div v = 0.

This heuristics has been justified rigorously in different contexts (see e.g. [11, 12, 15, 16, 17,
18, 20, 24, 25, 26, 28, 29, 30]). In the present paper, we want to consider ill-prepared data of
the form ρε0 = ρ∗ + εaε0 and uε0 where (aε0, u

ε
0) are bounded in a sense that will be specified

later on. Assuming (with no loss of generality) that P ′(ρ∗) = ρ∗ = 1 and setting ρε = 1+εaε,
1
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we get the following system for (aε, uε):

(0.1)





∂ta
ε +

divuε

ε
= −div (aεuε),

∂tu
ε + uε · ∇uε −

Auε

1 + εaε
+

∇aε

ε
=
k(εaε)

ε
∇aε

+
1

1 + εaε
div

(
2µ̃(εaε)D(uε) + λ̃(εaε)divuε Id

)
,

where A := µ∆+ (λ+ µ)∇div with λ := λ(1) and µ := µ(1),

k(z) := −
P ′(1 + z)

1 + z
+ P ′(1), µ̃(z) := µ(1 + z)− µ(1) and λ̃(z) := λ(1 + z)− λ(1).

In what follows, the exact value of functions k, λ̃ and µ̃ will not matter. We shall only use
that those functions are smooth and vanish at 0.

We strive for critical regularity assumptions consistent with those of the well-posedness
issue for the limit system (NS). At this stage, let us recall that, by definition, critical spaces
for (NS) are norm invariant for all ℓ > 0 by the scaling transformations Tℓ : v(t, x) 7−→
ℓv(ℓ2t, ℓx), in accordance with the fact that v is a solution to (NS) if and only if so does Tℓv
(provided the initial data has been changed accordingly of course).

As first observed in [9], in the context of the barotropic Navier-Stokes equations (0.1), the
relevant scaling transformations read

(0.2) (a, u)(t, x) 7−→ (a, ℓu)(ℓ2t, ℓx), ℓ > 0,

which suggest our taking initial data (a0, u0) in spaces invariant by (a0, u0)(x) 7→ (a0, ℓu0)(ℓx).

In order to be more specific, let us introduce now the notations and function spaces that
will be used throughout the paper. For simplicity, we focus on the Rd case. Similar notations
and definitions may be given in the T

d case.
We are given an homogeneous Littlewood-Paley decomposition (∆̇j)j∈Z that is a dyadic

decomposition in the Fourier space for R
d. One may for instance set ∆̇j := ϕ(2−jD) with

ϕ(ξ) := χ(ξ/2) − χ(ξ), and χ a non-increasing nonnegative smooth function supported in
B(0, 4/3), and with value 1 on B(0, 3/4) (see [2], Chap. 2 for more details).

We then define, for 1 ≤ p, r ≤ ∞ and s ∈ R, the semi-norms

‖z‖Ḃs
p,r

:=
∥∥2js‖∆̇jz‖Lp(Rd)

∥∥
ℓr(Z)

.

Like in [2], we adopt the following definition of homogeneous Besov spaces, which turns out
to be well adapted to the study of nonlinear PDEs:

Ḃs
p,r =

{
z ∈ S ′(Rd) : ‖z‖Ḃs

p,r
<∞ and lim

j→−∞
‖Ṡjz‖L∞ = 0

}
with Ṡj := χ(2−jD).

As we shall work with time-dependent functions valued in Besov spaces, we introduce the
norms:

‖u‖Lq
T (Ḃs

p,r)
:=

∥∥‖u(t, ·)‖Ḃs
p,r

∥∥
Lq(0,T )

.

As pointed out in [6], when using parabolic estimates in Besov spaces, it is somehow natural
to take the time-Lebesgue norm before performing the summation for computing the Besov
norm. This motivates our introducing the following quantities:

‖u‖L̃q
T (Ḃs

p,r)
:=

∥∥(2js‖∆̇ju‖Lq
T (Lp))

∥∥
ℓr(Z)

.
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The index T will be omitted if T = +∞ and we shall denote by C̃b(Ḃ
s
p,r) the subset of

functions of L̃∞(Ḃs
p,r) which are also continuous from R+ to Ḃs

p,r.
Let us emphasize that, owing to Minkowski inequality, we have if r ≤ q

‖z‖Lq
T (Ḃs

p,r)
≤ ‖z‖L̃q

T (Ḃs
p,r)

with equality if and only if q = r. Of course, the opposite inequality occurs if r ≥ q.

An important example where those nonclassical norms are suitable is the heat equation

(0.3) ∂tz − µ∆z = f, z|t=0 = z0

for which the following family of inequalities holds true (see [2, 6]):

(0.4) ‖z‖
L̃m
T (Ḃ

s+2/m
p,r )

≤ C
(
‖z0‖Ḃs

p,r
+ ‖f‖L̃1

T (Ḃs
p,r)

)

for any T > 0, 1 ≤ m, p, r ≤ ∞ and s ∈ R.

Restricting ourselves to the case of small and global-in-time solutions (just for simplicity),
the reference global well-posedness result for (NS) that we have in mind reads as follows1:

Theorem 0.1. Let u0 ∈ Ḃ
d/p−1
p,r with divu0 = 0 and p < ∞, and r ∈ [1,+∞]. There exists

c > 0 such that if
‖u0‖Ḃd/p−1

p,r
≤ cµ

then (NS) has a unique global solution u in the space

L̃∞(R+; Ḃ
d/p−1
p,r ) ∩ L̃1(R+; Ḃ

d/p+1
p,r ),

which is also in C(R+; Ḃ
d/p−1
p,r ) if r <∞. Besides, we have

(0.5) ‖u‖
L̃∞(Ḃ

d/p−1
p,r )

+ µ‖u‖
L̃1(Ḃ

d/p+1
p,r )

≤ C‖u0‖Ḃd/p−1
p,r

,

for some constant C depending only on d and p.

Although Theorem 0.1 is not related to energy arguments, to our knowledge, all the math-
ematical results proving the convergence of (NSCε) to (NS), strongly rely on the use of L2

type norms in order to get estimates independent of ε. This is due to the presence of singular
first order skew symmetric terms (which disappear when performing L2 or Hs estimates) in
the following linearized equations of (0.1):

(0.6)





∂ta
ε +

divuε

ε
= f ε,

∂tu
ε −Auε +

∇aε

ε
= gε.

However, it is clear that those singular terms do not affect the divergence-free part Puε of
the velocity, which just satisfies the heat equation (0.3). We thus expect handling Puε to be
doable by means of a Lp type approach similar to that of Theorem 0.1. At the same time,
for low frequencies (‘low’ meaning small with respect to (εν)−1), the singular terms tend
to dominate the evolution of aε and Quε, which precludes a Lp-type approach with p 6= 2,
as the wave equation is ill-posed in such spaces. Finally, for very high frequencies (that is
greater than (εν)−1), it is well known that aε and Quε tend to behave as the solutions of

1The statement in the Sobolev framework is due to H. Fujita and T. Kato in [19]. Data in general critical
Besov spaces, with a slightly different solution space, have been considered by H. Kozono and M. Yamazaki
in [27], and by M. Cannone, Y. Meyer and F. Planchon in [4]. The above statement has been proved exactly
under this shape by J.-Y. Chemin in [6].
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a damped equation and of a heat equation, respectively, and are thus tractable in Lp type
spaces. Besides, keeping in mind the notion of critical space introduced in (0.2), it is natural
to work at the same level of regularity for ∇aε and Quε (see e.g. [2], Chap. 10, or [5]
for more explanations). The rest of the paper is devoted to clarifying this heuristics, first
in the barotropic case (Sections 1 to 4), and next for the full Navier-Stokes-Fourier system
(Section 5).

1. Main results

Before stating our main results, let us introduce some notation. From now on, we agree
that for z ∈ S ′(Rd),

(1.7) zℓ,α :=
∑

2jα≤2j0

∆̇jz and zh,α :=
∑

2jα>2j0

∆̇jz,

for some large enough nonnegative integer j0 depending only on p, d, and on the functions k,
λ/ν, µ/ν with ν := λ+2µ. The corresponding “truncated” semi-norms are defined as follows:

‖z‖ℓ,α
Ḃσ

p,r
:= ‖zℓ,α‖Ḃσ

p,r
and ‖z‖h,α

Ḃσ
p,r

:= ‖zh,α‖Ḃσ
p,r
.

Let ε̃ := εν. Based on the heuristics of the introduction, it is natural to consider families
of data (aε0, u

ε
0) so that

• (aε0,Qu
ε
0)

ℓ,ε̃ ∈ Ḃ
d/2−1
2,1 ,

• (aε0)
h,ε̃ ∈ Ḃ

d/p
p,1 , (Quε0)

h,ε̃ ∈ Ḃ
d/p−1
p,1 ,

• Puε0 ∈ Ḃ
d/p−1
p,r ∩ Ḃ−1

∞,1.

Recall that Ḃ
d/p−1
p,r is only embedded in Ḃ−1

∞,r. The reason why we prescribe the slightly

stronger assumption Ḃ−1
∞,1 for Puε0 is that we need the constructed velocity to have gradient

in L1(R+;L
∞) in order to preserve the Besov regularity of aε through the mass equation.

Indeed, it is well known that for a solution z to the free heat equation, the norm of ∇z in
L1(R+;L

∞) is equivalent to that of z0 in Ḃ−1
∞,1 (see e.g. [2], Chap. 2).

Our assumptions on the data induce us to look for a solution to (0.1) in the space Xp,r
ε,ν of

functions (a, u) such that

• (aℓ,ε̃,Quℓ,ε̃) ∈ C̃b(R+; Ḃ
d/2−1
2,1 ) ∩ L1(R+; Ḃ

d/2+1
2,1 ),

• ah,ε̃ ∈ C̃b(R+; Ḃ
d/p
p,1 ) ∩ L

1(R+; Ḃ
d/p
p,1 ),

• Quh,ε̃ ∈ C̃b(R+; Ḃ
d/p−1
p,1 ) ∩ L1(R+; Ḃ

d/p+1
p,1 ),

• Pu ∈ C̃b(R+; Ḃ
d/p−1
p,r ∩ Ḃ−1

∞,1)∩ L̃
1(R+; Ḃ

d/p+1
p,r ∩ Ḃ1

∞,1) (only weak continuity in Ḃ
d/p−1
p,r

if r = ∞).

We shall endow that space with the norm:

‖(a, u)‖Xp,r
ε,ν

:=‖(a,Qu)‖ℓ,ε̃
L̃∞(Ḃ

d/2−1
2,1 )

+‖Qu‖h,ε̃
L̃∞(Ḃ

d/p−1
p,1 )

+ ‖Pu‖
L̃∞(Ḃ

d/p−1
p,r ∩Ḃ−1

∞,1)
+ ε̃‖a‖h,ε̃

L̃∞(Ḃ
d/p
p,1 )

+ν‖(a,Qu)‖ℓ,ε̃
L1(Ḃ

d/2+1
2,1 )

+ ν‖Qu‖h,ε̃
L1(Ḃ

d/p+1
p,1 )

+ ν‖Pu‖
L̃1(Ḃ

d/p+1
p,r ∩Ḃ1

∞,1)
+ ε−1‖a‖h,ε̃

L1(Ḃ
d/p
p,1 )

.

Our main result reads as follows:

Theorem 1.1. Assume that the fluid domain is either Rd or Td, that the initial data (aε0, u
ε
0)

are as above with 1 ≤ r ≤ p/(p− 2) and that, in addition,

• Case d = 2: 2 ≤ p < 4,
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• Case d = 3: 2 ≤ p ≤ 4,

• Case d ≥ 4: 2 ≤ p < 2d/(d − 2), or p = 2d/(d − 2) and r = 1.

Let ε̃ := εν. There exists a constant η independent of ε and of ν such that if

(1.8) Cε,ν
0 := ‖(aε0,Qu

ε
0)‖

ℓ,ε̃

Ḃ
d/2−1
2,1

+ ‖Quε0‖
h,ε̃

Ḃ
d/p−1
p,1

+ ‖Puε0‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1

+ ε̃‖aε0‖
h,ε̃

Ḃ
d/p
p,1

≤ ην,

then System (0.1) with initial data (aε0, u
ε
0) has a global solution (aε, uε) in the space Xp,r

ε,ν

with, for some constant C independent of ε and ν,

(1.9) ‖(aε, uε)‖Xp,r
ε,ν

≤ CCε,ν
0 .

In addition, Quε converges weakly to 0 when ε goes to 0, and, if Puε0 ⇀ v0 then Puε converges
in the sense of distributions to the solution of

(1.10) ∂tu+ P(u · ∇u)− µ∆u = 0, u|t=0 = v0.

Finally, if the fluid domain is R
d and d ≥ 3 then we have

ν1/2‖(aε,Quε)‖
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

≤ CCε,ν
0 ε̃1/2−1/p and

‖Puε−v‖
L̃∞(Ḃ

(d+1)/p−3/2
p,r )

+µ‖Puε−v‖
L̃1(Ḃ

(d+1)/p+1/2
p,r )

≤ C
(
‖Puε0−v0‖Ḃ(d+1)/p−3/2

p,r
+Cε,ν

0 ε̃1/2−1/p
)
.

In the R
2 case, we have,

ν1/2‖(aε,Quε)‖
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

≤ CCε,ν
0 ε̃ c(1/2−1/p) and

‖Puε − v‖
L̃∞(Ḃ

(c+2)/p−c/2−1
p,r )

+ µ‖Puε − v‖
L̃1(Ḃ

(c+2)/p−c/2+1
p,r )

≤ C
(
‖Puε0 − v0‖Ḃ(c+2)/p−c/2−1

p,r
+ Cε,ν

0 ε̃ c(1/2−1/p)
)

where the constant c verifies the conditions 0 ≤ c ≤ 1/2 and c < (8− 2p)/(p − 2).

Some remarks are in order:

(1) According to [14], uniqueness holds true if r = 1. We conjecture that it also holds in
the other cases but, to the best of our knowledge, the question has not been addressed.

(2) The first part of the theorem (the global existence issue) may be extended to 2d/(d+
2) ≤ p < 2 and all r ∈ [1,∞] provided the following smallness condition is fulfilled:

‖(aε0,Qu
ε
0)‖

ℓ,ε̃

Ḃ
d/2−1
2,1

+ ‖Quε0‖
h,ε̃

Ḃ
d/2−1
2,1

+ ‖Puε0‖Ḃd/2−1
2,r ∩Ḃ−1

∞,1
+ ε̃‖aε0‖

h,ε̃

Ḃ
d/2
2,1

≤ ην.

Indeed, Theorem 1.1 provides a global small solution in X2,r
ε,ν . Therefore it is only a

matter of checking that the constructed solution has additional regularity Xp,r
ε,ν . This

may be checked by following steps 3 and 4 of the proof below, knowing already that
the solution is in X2,r

ε,ν . The condition that 2d/(d+2) ≤ p comes from the part uℓ,ε̃ ·∇a

of the convection term in the mass equation, as ∇uℓ,ε̃ is only in L1(R+; Ḃ
d/2
2,1 ), and

the regularity to be transported is Ḃ
d/p
p,1 . Hence we need to have d/p ≤ d/2 + 1 (see

e.g. Chap. 3 of [2]). The same condition appears when handling k(εaε)∇aε.
As we believe the case p < 2 to be somewhat anecdotic (it is just a regularity

result), we decided to concentrate on the case p ≥ 2 in the rest of the paper.
(3) We can afford source terms in the mass and velocity equations, the regularity of which

is given by scaling considerations.
(4) We also expect results in the same spirit (but only local-in-time) to be provable for

large data, as in [11, 12].
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(5) To keep the paper a reasonable size, we also refrained to establish more accurate
convergence results in the case of periodic boundary conditions, based on Schochet’s
filtering method (see [12] for more details on that issue if p = 2).

2. The proof of global existence for fixed ε and ν

Recall that ν := λ+ 2µ. Performing the change of unknowns

(2.11) (a, u)(t, x) := ε(aε, uε)(ε2νt, ενx)

and the change of data

(2.12) (a0, u0)(x) := ε(aε0, u
ε
0)(ενx)

reduces the proof of the global existence to the case ν = 1 and ε = 1. So in the rest of this
section, we assume that ε = ν = 1, and simply denote

zℓ := zℓ,1 and zh := zh,1,(2.13)

‖z‖ℓ
Ḃσ

p,r
:= ‖zℓ,1‖Ḃσ

p,r
and ‖z‖h

Ḃσ
p,r

:= ‖zh,1‖Ḃσ
p,r
.(2.14)

The threshold between low and high frequencies will be set at 2j0 for some large enough

nonnegative integer j0 depending only on d, k, µ̃/ν and λ̃/ν.

Resuming to the original variables will yield the desired uniform estimate (1.9) under
Condition (1.8). Indeed, we notice that we have up to some harmless constant:

‖(aε0,Qu
ε
0)‖

ℓ,ε̃

Ḃ
d/2−1
2,1

+ ‖Quε0‖
h,ε̃

Ḃ
d/p−1
p,1

+ ‖Puε0‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1
+ ε̃‖aε0‖Ḃd/p

p,1

= ν
(
‖(a0,Qu0)‖

ℓ

Ḃ
d/2−1
2,1

+ ‖Qu0‖
h

Ḃ
d/p−1
p,1

+ ‖Pu0‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1

+ ‖a0‖Ḃd/p
p,1

)

and
‖(aε, uε)‖Xp,r

ε,ν
= ν‖(a, u)‖Xp,r

1,1
.

2.1. A priori estimates of the solutions to system (2.15). In this paragraph, we con-
centrate on the proof of global estimates for a global smooth solution (a, u) to the following
system:

(2.15)





∂ta+ divu = −div (au),

∂tu+ u · ∇u− Ãu+∇a = k(a)∇a− J(a)Ãu

+
1

1 + a
div

(
2
µ̃(a)

ν
D(u) +

λ̃(a)

ν
divu Id

)
,

with k, λ̃, µ̃ as above, J(a) := a/(1 + a) and Ã := A/ν.

To simplify the presentation we assume the viscosity coefficients λ and µ to be constant
(i.e. the last line of the velocity equation in (2.15), is zero). The general case will be discussed
at the end of the subsection.

Throughout we make the assumption that

(2.16) sup
t∈R+, x∈Rd

|a(t, x)| ≤ 1/2

which will enable us to use freely the composition estimate stated in Proposition 6.1. Note

that as Ḃ
d/p
p,1 →֒ L∞, Condition (2.16) will be ensured by the fact that the constructed solution

has small norm in Xp,r
1,1 .
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Step 1: the incompressible part of the velocity. Projecting the velocity equation onto the set
of divergence free vector fields yields

∂tPu− µ̃∆Pu = −P
(
J(a)Ãu

)
− P(u · ∇u) with µ̃ := µ/ν.

Hence, using the estimates (0.4) for the heat equation, we get

‖Pu‖
L̃∞(Ḃ

d/p−1
p,r )∩L̃1(Ḃ

d/p+1
p,r )

. ‖Pu0‖Ḃd/p−1
p,r

+ ‖P(J(a)∇2u) + P(u · ∇u)‖
L̃1(Ḃ

d/p−1
p,r )

(2.17)

‖Pu‖L̃∞(Ḃ−1
∞,1)∩L

1(Ḃ1
∞,1)

. ‖Pu0‖Ḃ−1
∞,1

+ ‖P(J(a)∇2u) + P(u · ∇u)‖L1(Ḃ−1
∞,1)

.(2.18)

In order to bound the right-hand sides, we use the fact that the 0-th order Fourier multiplier P

maps L̃1(Ḃ
d/p−1
p,r ) (or L1(Ḃ−1

∞,1)) into itself. In addition, classical product laws and Proposition

6.1 give (if p < 2d):

‖J(a)∇2u‖
L̃1(Ḃ

d/p−1
p,r )

. ‖a‖
L̃∞(Ḃ

d/p
p,1 )

‖∇2u‖
L̃1(Ḃ

d/p−1
p,r )

,

‖u · ∇u‖
L̃1(Ḃ

d/p−1
p,r )

. ‖u‖
L̃∞(Ḃ

d/p−1
p,r )

‖u‖
L̃1(Ḃ

d/p+1
p,r )

.

Because, by Bernstein inequality,

(2.19) ‖a‖
Ḃ

d/p
p,1

. ‖aℓ‖
Ḃ

d/p
p,1

+ ‖ah‖
Ḃ

d/p
p,1

. 2j0‖aℓ‖
Ḃ

d/2−1
2,1

+ ‖ah‖
Ḃ

d/p
p,1
,

we deduce from (2.17) that

(2.20) ‖Pu‖
L̃∞(Ḃ

d/p−1
p,r )∩L̃1(Ḃ

d/p+1
p,r )

. ‖Pu0‖Ḃd/p−1
p,r

+ 2j0‖(a, u)‖2Xp,r
1,1
.

Next, in order to bound the r.h.s. of (2.18), we use Bony’s decomposition (see [3] and the
definition in appendix):

J(a)∇2u = TJ(a)∇
2u+ T∇2uJ(a) +R(J(a),∇2u)

and, with the summation convention over repeated indices,

(2.21) (u · ∇u)i = Tuj∂ju
i + T∂juiuj + ∂jR((Pu)

j , ui) +R((Qu)j , ∂ju
i) with i = 1, · · · , d.

On the one hand, T maps L∞ × Ḃ−1
∞,1 and Ḃ−1

∞,1 × L∞ in Ḃ−1
∞,1 while R maps Ḃ

d/p
p,1 × Ḃ

d/p−1
p,∞

in Ḃ
d/p−1
p,1 , if 2 ≤ p < 2d. Hence, taking advantage of functional embeddings (adapted to

L̃m(Ḃs
p,r) spaces),

(2.22) ‖J(a)∇2u‖L1(Ḃ−1
∞,1)

. ‖a‖
L̃∞(Ḃ

d/p
p,1 )

‖∇2u‖
L̃1(Ḃ

d/p−1
p,r )

.

On the other hand, thanks to the fact that, if 2 ≤ p < 2d,

‖Tuj∂ju
i‖L1(Ḃ−1

∞,1)
. ‖uj‖L∞(Ḃ−1

∞,1)
‖∂ju

i‖L1(Ḃ0
∞,∞)

‖T∂juiuj‖L1(Ḃ−1
∞,1)

. ‖∂ju
i‖L∞(Ḃ−2

∞,1)
‖uj‖L1(Ḃ1

∞,∞)

‖∂jR((Pu)
j , ui)‖L1(Ḃ−1

∞,1)
. ‖(Pu)j‖L̃∞(Ḃ−1

∞,1)
‖ui‖

L̃1(Ḃ
d/p+1
p,r )

‖R((Qu)j , ∂ju
i)‖L1(Ḃ−1

∞,1)
. ‖(Qu)j‖

L̃∞(Ḃ
d/p−1
p,1 )

‖∂ju
i‖

L̃1(Ḃ
d/p
p,r )

,

we get
‖u · ∇u‖L1(Ḃ−1

∞,1)
.

(
‖Pu‖L̃∞(Ḃ−1

∞,1)
+ ‖Qu‖

L̃∞(Ḃ
d/p−1
p,1 )

)
‖u‖

L̃1(Ḃ
d/p+1
p,r )

.

Plugging this latter inequality and (2.22) in (2.18) and using Bernstein inequality, we end up
with

(2.23) ‖Pu‖L̃∞(Ḃ−1
∞,1)∩L

1(Ḃ1
∞,1)

. ‖Pu0‖Ḃ−1
∞,1

+ 2j0‖(a, u)‖2Xp,r
1,1
.
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Step 2: the low frequencies of (a,Qu). Throughout, we set p∗ = 2p/(p − 2) (that is 1/p +
1/p∗ = 1/2) and 1/r∗ = θ/r + 1 − θ with θ = p/2 − 1. Because 2 ≤ p ≤ min(4, 2d/(d − 2)),
we have max(p, d) ≤ p∗, and r∗ ∈ [1, r]. We shall use repeatedly the following facts, based on
straightforward interpolation inequalities :

• The space L̃∞(Ḃ
d/p−1
p,r ) ∩ L̃∞(Ḃ−1

∞,1) is continuously embedded in L̃∞(Ḃ
d/p∗−1
p∗,r∗ ),

• The space L̃2(Ḃ
d/p
p,r ) ∩ L̃2(Ḃ0

∞,1) is continuously embedded in L̃2(Ḃ
d/4
4,2 ) (here comes

that r ≤ p/(p − 2)),
• We have 1/r∗ + 1/r ≥ 1 (again, we use that r ≤ p/(p− 2)),
• If p = d∗ (that is p = 2d/(d − 2)) then r = 1 by assumption, and thus r∗ = 1, too.

Now, to estimate the low frequencies of (a,Qu), we write that

(2.24)

{
∂ta+ divQu = −div (au),

∂tQu−∆Qu+∇a = −Q(u · ∇u)−Q(J(a)Ãu) + k(a)∇a,

and the energy estimates for the barotropic linearized equations (see [2], Prop. 10.23, or [9])
thus give

‖(a,Qu)‖ℓ
L̃∞(Ḃ

d/2−1
2,1 )∩L1(Ḃ

d/2+1
2,1 )

. ‖(a0,Qu0)‖
ℓ

Ḃ
d/2−1
2,1

+ ‖div (au)‖ℓ
L1(Ḃ

d/2−1
2,1 )

+‖Q(u · ∇u)‖ℓ
L1(Ḃ

d/2−1
2,1 )

+ ‖Q(J(a)Ãu)‖ℓ
L1(Ḃ

d/2−1
2,1 )

+ ‖k(a)∇a‖ℓ
L1(Ḃ

d/2−1
2,1 )

.

Let us first bound2 u · ∇u in L1(Ḃ
d/2−1
2,1 ). For that, we use again decomposition (2.21). To

handle the first term of (2.21), we just use that (see [2], Chap. 2)

T : L̃∞(Ḃ
d/p∗−1
p∗,r∗ )× L̃1(Ḃd/p

p,r ) −→ L1(Ḃ
d/2−1
2,1 ).

This is due to the fact that 1/p+1/p∗ = 1/2, and that either d/p∗−1 < 0 and 1/r+1/r∗ ≥ 1,

or d/p∗ − 1 = 0 and r∗ = 1. As T : L̃∞(Ḃ
d/p∗−2
p∗,r∗ ) × L̃1(Ḃ

d/p+1
p,r ) −→ L1(Ḃ

d/2−1
2,1 ), the second

term of (2.21) also satisfies quadratic estimates with respect to the norm of the solution in
Xp,r

1,1 .

Next, because

R : Ḃ
d/4
4,2 × Ḃ

d/4
4,2 −→ Ḃ

d/2
2,1 ,

we have

‖∂jR((Pu)
j , ui)‖

L1(Ḃ
d/2−1
2,1 )

. ‖Pu‖
L2(Ḃ

d/4
4,2 )

‖u‖
L2(Ḃ

d/4
4,2 )

.

For the last term of (2.21), we just have to use that

R : L̃∞(Ḃ
d/p−1
p,1 )× L̃1(Ḃd/p

p,r ) −→ L1(Ḃ
d/2−1
2,1 ) for p ∈ [2, 4] ∩ [2, 2d).

Putting all the above informations together, we conclude that

(2.25) ‖u · ∇u‖
L1(Ḃ

d/2−1
2,1 )

. ‖(a, u)‖2Xp,r
1,1
.

In order to bound (div (au))ℓ, we notice that

(2.26)
(
div (au)

)ℓ
=

(
div (R(a, u) + Tau)

)ℓ
+ divTuℓaℓ +

(
div

(
Ṡj0u ∆̇j0+1a

))ℓ
.

2We do not get anything better by just considering the low frequencies of Q(u · ∇u).
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Now, the remainder R and the paraproduct T map L̃∞(Ḃ
d/p∗−1
p∗,1 ) × L̃1(Ḃ

d/p+1
p,r ) in L1(Ḃ

d/2
2,1 )

and we have L̃∞(Ḃ
d/p−1
p,1 ) →֒ L̃∞(Ḃ

d/p∗−1
p∗,1 ) because p∗ ≥ p. Hence

‖div (R(a, u) + Tau)‖L1(Ḃ
d/2−1
2,1 )

. ‖a‖
L̃∞(Ḃ

d/p−1
p,1 )

‖u‖
L̃1(Ḃ

d/p+1
p,r )

.

To handle the third term of (2.26), it suffices to use the fact that

T : L2(L∞)× L2(Ḃ
d/2
2,1 ) −→ L1(Ḃ

d/2
2,1 ).

Finally,

‖Ṡj0u ∆̇j0+1a‖L1(L2) ≤ ‖Ṡj0u‖L∞(Lp∗ )‖∆̇j0+1a‖L1(Lp)

. 2j0(1−d/p∗)‖u‖
L̃∞(Ḃ

d/p∗−1
p∗,r

)

(
2j0d/p‖∆̇j0+1a‖L1(Lp)

)
2−j0d/p.

Hence

(2.27) 2j0d/2‖Ṡj0u ∆̇j0+1a‖L1(L2) . 2j0‖u‖
L̃∞(Ḃ

d/p∗−1
p∗,r

)
‖a‖h

L1(Ḃ
d/p
p,1 )

.

We can thus conclude that

(2.28) ‖div (au)‖ℓ
L1(Ḃ

d/2−1
2,1 )

. 2j0‖(a, u)‖2Xp,r
1,1
.

Next, denoting Qℓ := Ṡj0+1Q, we write that

(2.29) Qℓ(J(a)Ãu) = Qℓ
(
TÃuJ(a) +R(Ãu, J(a))

)
+ TJ(a)∆Qℓu+ [Qℓ, TJ(a)]Ãu.

To handle the first two terms, it suffices to notice that

(2.30) R and T map L̃∞(Ḃ
d/p∗−1
p∗,r∗ )× L̃1(Ḃ

d/p
p,1 ) to L1(Ḃ

d/2−1
2,1 ),

and to use Proposition 6.1. Therefore, by virtue of (2.19),

‖TÃuJ(a) +R(Ãu, J(a))‖
L1(Ḃ

d/2−1
2,1 )

. 2j0‖(a, u)‖2Xp,r
1,1
.

For the third term, we just have to use that T : L∞ × Ḃ
d/2−1
2,1 → Ḃ

d/2−1
2,1 . Finally the commu-

tator term may be handled according to Lemma 6.1, which ensures that3

‖[Qℓ, TJ(a)]Ãu‖L1(Ḃ
d/2−1
2,1 )

. ‖∇J(a)‖
L̃∞(Ḃ

d/p∗−1
p∗,1

)
‖∇2u‖

L̃1(Ḃ
d/p−1
p,r )

.

Hence using embeddings and composition estimates, we end up with

(2.31) ‖Q(J(a)Ãu)‖ℓ
L1(Ḃ

d/2−1
2,1 )

. 2j0‖(a, u)‖2Xp,r
1,1
.

Finally, we decompose k(a)∇a as follows:
(
k(a)∇a

)ℓ
=

(
T∇ak(a) +R(∇a, k(a))

)ℓ
+ T(k(a))ℓ∇a

ℓ +
(
Ṡj0k(a)∆̇j0+1∇a

)ℓ
.

To bound the first two terms, we use again (2.30) and composition estimates. For the third

term, we use that T : L2(L∞)× L2(Ḃ
d/2−1
2,1 ) → L1(Ḃ

d/2−1
2,1 ). For the last term, we proceed as

in (2.27) and get

2j0(d/2−1)‖Ṡj0k(a) ∆̇j0+1∇a‖L2 . 2j0‖k(a)‖
Ḃ

d/p∗−1
p∗ ,1

‖a‖h
Ḃ

d/p
p,1

.

Therefore, by embedding,

2j0(d/2−1)‖Ṡj0k(a) ∆̇j0+1∇a‖L1(L2) . 2j0‖k(a)‖
L∞(Ḃ

d/p−1
p,1 )

‖a‖h
L1(Ḃ

d/p
p,1 )

.

3Recall that r = 1 if p∗ = d.
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For bounding k(a), one cannot use directly Proposition 6.1 as it may happen that d/p−1 < 0.
So we write

k(a) = k′(0) a+ ak̃(a) with k̃(0) = 0.

Now, combining Proposition 6.1 and product laws in Besov spaces, we get for 2 ≤ p < 2d,

(2.32) ‖k(a)‖
Ḃ

d/p−1
p,1

. (|k′(0)| + ‖a‖
Ḃ

d/p
p,1

)‖a‖
Ḃ

d/p−1
p,1

.

So finally,

(2.33) ‖k(a)∇a‖
L1(Ḃ

d/2−1
2,1 )

. 2j0(1 + ‖a‖
L∞(Ḃ

d/p
p,1 )

)‖(a, u)‖2Xp,r
1,1
.

Putting together Inequalities (2.25), (2.28), (2.31) and (2.33), we conclude that

(2.34) ‖(a,Qu)‖ℓ
L̃∞(Ḃ

d/2−1
2,1 )∩L1(Ḃ

d/2+1
2,1 )

. ‖(a0,Qu0)‖
ℓ

Ḃ
d/2−1
2,1

+2j0(1+‖a‖
L̃∞(Ḃ

d/p
p,1 )

)‖(a, u)‖2Xp,r
1,1
.

Step 3: Effective velocity. To estimate the high frequencies of Qu, we follow the approach of
[21, 22, 23], and introduce the following “effective” velocity field4:

w := Qu+ (−∆)−1∇a.

We find out that

∂tw −∆w = −Q(u · ∇u)−Q(J(a)Ãu) + k(a)∇a+Q(au) + w − (−∆)−1∇a.

Applying the heat estimates (0.4) for the high frequencies of w only, we get

‖w‖h
L̃∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖w0‖
h

Ḃ
d/p−1
p,1

+ ‖u · ∇u‖h
L1(Ḃ

d/p−1
p,1 )

+ ‖Q(J(a)Ãu)‖h
L1(Ḃ

d/p−1
p,1 )

+‖k(a)∇a‖h
L1(Ḃ

d/p−1
p,1 )

+ ‖Q(au)‖h
L1(Ḃ

d/p−1
p,1 )

+ ‖w‖h
L1(Ḃ

d/p−1
p,1 )

+ ‖a‖h
L1(Ḃ

d/p−2
p,1 )

.

The important point is that, owing to the high frequency cut-off at |ξ| ∼ 2j0 ,

‖w‖h
L1(Ḃ

d/p−1
p,1 )

. 2−2j0‖w‖h
L1(Ḃ

d/p+1
p,1 )

and ‖a‖h
L1(Ḃ

d/p−2
p,1 )

. 2−2j0‖a‖h
L1(Ḃ

d/p
p,1 )

.

Hence, if j0 is large enough then the term ‖w‖h
L1(Ḃ

d/p−1
p,1 )

may be absorbed by the l.h.s. The

other terms satisfy quadratic estimates. Indeed, it is clearly the case of u · ∇u according

to (2.25), for Ḃ
d/2−1
2,1 embeds in Ḃ

d/p−1
p,1 . Next, because the product maps Ḃ

d/p
p,1 × Ḃ

d/p−1
p,1 in

Ḃ
d/p−1
p,1 , we have if p < 2d,

‖k(a)∇a‖
L1(Ḃ

d/p−1
p,1 )

. ‖a‖2
L2(Ḃ

d/p
p,1 )

.

To handle Q(J(a)Ãu), we decompose it into

Q(J(a)Ãu) = TJ(a)∆Qu+QR(J(a), Ãu) +QTÃuJ(a) + [Q, TJ(a)]Ãu.

Arguing as from proving (2.31), we readily get

‖Q(J(a)Ãu)‖
L1(Ḃ

d/p−1
p,1 )

. ‖a‖
L̃∞(Ḃ

d/p
p,1 )

(‖Qu‖
L1(Ḃ

d/p+1
p,1 )

+ ‖u‖
L̃1(Ḃ

d/p+1
p,r )

).

Finally, using Bony’s decomposition, we see that

‖au‖
L̃1(Ḃ

d/p
p,r )

. ‖a‖
L̃2(Ḃ

d/p
p,1 )

‖u‖
L̃2(Ḃ

d/p
p,r ∩Ḃ0

∞,1)
.

Because
‖Q(au)‖h

L1(Ḃ
d/p−1
p,1 )

. ‖au‖
L̃1(Ḃ

d/p
p,r )

,

4The idea is to write the term ∆Qu−∇a in (2.24) as the Laplacian of some gradient-like vector-field.
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we conclude that

(2.35) ‖w‖h
L̃∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖w0‖
h

Ḃ
d/p−1
p,1

+ 2j0‖(a, u)‖2Xp,r
1,1

+ 2−2j0‖a‖h
L1(Ḃ

d/p
p,1 )

.

Step 4: High frequencies of the density. We notice that

∂ta+ u · ∇a+ a = −adivu− divw.

To bound the high frequencies of a, we write that for all j ≥ j0,

∂t∆̇ja+ Ṡj−1u · ∇∆̇ja+ ∆̇ja = −∆̇j(T∇a · u+R(∇a, u) + adivu+ divw) +Rj

with Rj := Ṡj−1u · ∇∆̇ja− ∆̇j(Tu · ∇a).

Arguing as in [13], we thus get for all t ≥ 0,

(2.36) ‖∆̇ja(t)‖Lp +

∫ t

0
‖∆̇ja‖Lp dτ ≤ ‖∆̇ja0‖Lp +

1

p

∫ t

0
‖div Ṡj−1u‖L∞‖∆̇ja‖Lp dτ

+

∫ t

0
‖∆̇j(T∇a · u+R(∇a, u) + adivu+ divw)‖Lp dτ +

∫ t

0
‖Rj‖Lp dτ.

Now, because Ḃ
d/p
p,1 is an algebra, we may write

‖adivu‖
Ḃ

d/p
p,1

. ‖a‖
Ḃ

d/p
p,1

‖divu‖
Ḃ

d/p
p,1

,

and continuity results for the paraproduct, and remainder yield

‖T∇a · u‖L1(Ḃ
d/p
p,1 )

. ‖∇a‖L̃∞(Ḃ−1
∞,1)

‖u‖
L̃1(Ḃ

d/p+1
p,r )

,

‖R(∇a, u)‖
L1(Ḃ

d/p
p,1 )

. ‖∇a‖
L̃∞(Ḃ

d/p−1
p,1 )

‖u‖
L̃1(Ḃ

d/p+1
p,r )

.

Finally, because

Rj = ∆̇j

∑

|j′−j|≤4

(Ṡj−1 − Ṡj′−1)u · ∇∆̇j′a+
∑

|j′−j|≤4

[Ṡj−1u, ∆̇j] · ∇∆̇j′a,

commutator estimates from [2] lead to
∑

j∈Z

2jd/p‖Rj‖Lp ≤ C‖∇u‖L∞‖a‖
Ḃ

d/p
p,1
.

Multiplying (2.36) by 2jd/p, using the above inequalities, and summing up over j ≥ j0 thus
leads to

‖a‖h
L̃∞

t (Ḃ
d/p
p,1 )

+

∫ t

0
‖a‖h

Ḃ
d/p
p,1

dτ ≤ ‖a0‖
h

Ḃ
d/p
p,1

+ C

∫ t

0

(
‖∇u‖L∞ + ‖divu‖

Ḃ
d/p
p,1

)
‖a‖

Ḃ
d/p
p,1

dτ

+C‖∇a‖
L̃∞(Ḃ

d/p−1
p,1 )

‖u‖
L̃1(Ḃ

d/p+1
p,r )

+ C‖w‖h
L1(Ḃ

d/p+1
p,1 )

.

Therefore,

(2.37) ‖a‖h
L1(Ḃ

d/p
p,1 )∩L̃∞(Ḃ

d/p
p,1 )

. ‖a0‖
h

Ḃ
d/p
p,1

+ 2j0‖(a, u)‖2Xp,r
1,1

+ ‖w‖h
L1(Ḃ

d/p+1
p,1 )

.

Plugging (2.35) in (2.37) and taking j0 large enough, we thus get

(2.38) ‖a‖h
L1(Ḃ

d/p
p,1 )∩L̃∞(Ḃ

d/p
p,1 )

. ‖a0‖
h

Ḃ
d/p
p,1

+ ‖Qu0‖
h

Ḃ
d/p−1
p,1

+ 2j0‖(a, u)‖2Xp,r
1,1
.
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Step 5: Closing the a priori estimates. Resuming to (2.35) yields

(2.39) ‖w‖h
L̃∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖a0‖
h

Ḃ
d/p
p,1

+ ‖Qu0‖
h

Ḃ
d/p−1
p,1

+ 2j0‖(a, u)‖2Xp,r
1,1
.

As Quh = wh−(−∆)−1∇ah, the same inequality holds true for Quh. Finally, putting together
(2.20), (2.23), (2.34) and (2.38), we conclude that

(2.40) ‖(a, u)‖Xp,r
1,1

≤ C
(
‖(a0,Qu0)‖

ℓ

Ḃ
d/2−1
2,1

+ ‖Pu0‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1
+ ‖a0‖

h

Ḃ
d/p
p,1

+ ‖Qu0‖
h

Ḃ
d/p−1
p,1

+ 2j0(1 + ‖(a, u)‖Xp,r
1,1

)‖(a, u)‖2Xp,r
1,1

)
·

It is now easy to close the estimates if the data are small enough; we end up with (1.9).

Step 6: The case of nonconstant viscosity coefficients. It is only a matter of checking that
the last line of (2.15) satisfies quadratic estimates. To this end, we write that

(2.41)
1

1 + a
div

(
µ̃(a)D(u)

)
=

µ̃(a)

1 + a
divD(u) +

µ̃′(a)

1 + a
D(u) · ∇a,

and a similar relation for the term pertaining to λ̃.

The first term of the r.h.s. of (2.41) may be handled exactly as J(a)Ãu. As for the second

term, it suffices to estimate it in L1(Ḃ
d/p−1
p,1 ) and to show that applying Qℓ to it leads to

estimates in L1(Ḃ
d/2−1
2,1 ).

Throughout, we use the fact that µ̃′(a)
1+a ∇a = ∇(L(a)) for some smooth function L vanishing

at 0. Now, continuity properties of R and T imply that

‖T∇(L(a))∇u‖L1(Ḃ
d/2−1
2,1 )

. ‖∇(L(a))‖
L̃∞(Ḃ

d/p∗−1
p∗,1

)
‖∇u‖

L̃1(Ḃ
d/p
p,r )

,

‖R(∇(L(a)),∇u)‖
L1(Ḃ

d/2−1
2,1 )

. ‖∇(L(a))‖
L̃∞(Ḃ

d/p−1
p,1 )

‖∇u‖
L̃1(Ḃ

d/p
p,r )

,

‖T∇u∇(L(a))‖
L1(Ḃ

d/p−1
p,1 )

. ‖∇u‖L∞(L∞)‖∇(L(a))‖
L∞(Ḃ

d/p−1
p,1 )

,

which in particular yields quadratic estimates for the L1(Ḃ
d/p−1
p,1 ) norm, after using suitable

embedding and the composition estimate (2.33).
To complete the proof, it is only a matter of getting quadratic estimates for Qℓ(T∇u∇L(a))

in L1(Ḃ
d/2−1
2,1 ). To this end, we observe that

‖Qℓ(T∇u∇L(a))‖L1(Ḃ
d/2−1
2,1 )

. 2j0‖Qℓ(T∇u∇L(a))‖L1(Ḃ
d/2−2
2,1 )

,

and thus

‖Qℓ(T∇u∇L(a))‖L1(Ḃ
d/2−1
2,1 )

. 2j0‖∇u‖
L̃2(Ḃ

d/p∗−1
p∗,r

)
‖∇(L(a))‖

L̃2(Ḃ
d/p−1
p,1 )

. 2j0‖u‖
L̃2(Ḃ

d/p∗

p∗,r
)
‖a‖

L̃2(Ḃ
d/p
p,1 )

.

Therefore we end up with
∥∥∥∥
µ̃′(a)

1 + a
D(u) · ∇a

∥∥∥∥
L1(Ḃ

d/p−1
p,1 )

. 2j0(1 + ‖a‖
L∞(Ḃ

d/p
p,1 )

)‖(a, u)‖2Xp,r
1,1
,

and one may conclude that (2.40) is still fulfilled in this more general situation.
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2.2. Existence of a global solution to System (2.15). Let us now give a few words on
the existence issue. The simplest way is to smooth out the initial velocity u0 into a sequence

of initial velocities (un0 )n∈N with (un0 )
ℓ in Ḃ

d/2−1
2,1 uniformly, and (un0 )

h in Ḃ
d/p−1
p,1 . Then using

the results of [8, 14] yields a unique local-in-time solution (an, un) to (2.15) with data (a0, u
n
0 ).

From the above estimates, we know in addition that (with obvious notation)

‖(an, un)‖Xp,r
1,1 (0,t)

≤ C
(
‖(an0 ,Qu

n
0 )‖

ℓ

Ḃ
d/2−1
2,1

+ ‖Pun0 ‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1

+ ‖an0‖
h

Ḃ
d/p
p,1

+ ‖Qun0‖
h

Ḃ
d/p−1
p,1

)

is fulfilled whenever t is smaller than the lifespan T n
∗ of (an, un). As the above inequality

implies that

‖an‖
L̃∞

Tn
∗

(Ḃ
d/p
p,1 )

+

∫ Tn
∗

0
‖∇un‖L∞ dt <∞,

a straightforward adaptation of Prop. 10.10 of [2] to p 6= 2 implies that T n
∗ = +∞. We thus

have for all n ∈ N,

‖(an, un)‖Xp,r
1,1

≤ C
(
‖(a0,Qu0)‖

ℓ

Ḃ
d/2−1
2,1

+ ‖Pu0‖Ḃd/p−1
p,r ∩Ḃ−1

∞,1

+ ‖a0‖
h

Ḃ
d/p
p,1

+ ‖Qu0‖
h

Ḃ
d/p−1
p,1

)
.

Next, compactness arguments similar to those of e.g. [2] or [8] allow to conclude that
(an, un)n∈N weakly converges (up to extraction) to some global solution of (2.15) with the
desired regularity properties, and satisfying (1.9) (with ε = ν = 1 of course). Resuming to
the original unknowns completes the proof of the first part of Theorem 1.1.

3. The incompressible limit: weak convergence

Granted with the uniform estimates established in the previous section, it is now possible
to pass to the limit in the system in the sense of distributions. As in the work by P.-L. Lions
and N. Masmoudi [30] dedicated to the finite energy weak solutions of (0.1), the proof relies
on compactness arguments, and works the same in the R

d and T
d cases. To simplify the

presentation, we assume that the viscosity functions λ and µ are constant.

So we consider a family (aε0, u
ε
0) of data satisfying (1.8) and Puε0 ⇀ v0 when ε goes to 0.

We denote by (aε, uε) the corresponding solution of (0.1) given by Theorem 1.1. Because

(3.42) ‖aε0‖
h,ε̃

Ḃ
d/p−1
p,1

. ε̃‖aε0‖
h,ε̃

Ḃ
d/p
p,1

,

the data (aε0, u
ε
0) are uniformly bounded in Ḃ

d/p−1
p,1 × (Ḃ

d/p
p,r ∩ Ḃ−1

∞,1), and thus in Ḃ
d/4−1
4,2 . Like-

wise, (1.9) ensures that (aε, uε) is bounded in the space C̃b(R+; Ḃ
d/4−1
4,2 ), given our assumptions

on p and r. Therefore there exists a sequence (εn)n∈N decaying to 0 so that

(aεn0 , u
εn
0 )⇀ (a0, u0) in Ḃ

d/4−1
4,2 and (aεn , uεn)⇀ (a, u) in L∞(R+; Ḃ

d/4−1
4,2 ) weakly ∗ .

Of course, we have Pu0 = v0.

The strong convergence of the density to 1 is obvious: we have ρεn = 1 + εna
εn , and

(aεn)n∈N is bounded (in L2(R+; Ḃ
d/p
p,1 ) for instance).

In order to justify that divu = 0, we rewrite the mass equation as follows:

divuεn = −εndiv (a
εnuεn)− εn∂ta

εn .

Given that aεn and uεn are bounded in L2(R+; Ḃ
d/4
4,2 ∩ L∞) (use the definition of Xp,r

ε,ν and

interpolation), the first term in the right-hand side is O(εn) in L1(R+; Ḃ
d/4−1
4,2 ). As for the
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last term, it tends to 0 in the sense of distributions, for aεn ⇀ a in L∞(R+; Ḃ
d/4−1
4,2 ) weakly

∗. We thus have divuεn ⇀ 0, whence divu = 0.

To complete the proof of the weak convergence, it is only a matter of justifying that uεn

converges in the sense of distributions to the solution u of (1.10). To achieve it, we project
the velocity equation onto divergence-free vector fields, and get

(3.43) ∂tPu
εn − µ∆Puεn = −P(uεn · ∇uεn)− P

(
J(εna

εn)Auεn
)
.

Because Qu = 0, the left-hand side weakly converges to ∂tu− µ∆u.

To prove that the last term tends to 0, we use the fact that having ε̃(aε)h,ε̃ and (aε)ℓ,ε̃

bounded in L̃∞(Ḃ
d/p
p,1 ) and L̃

∞(Ḃ
d/p−1
p,1 ), respectively, implies that, for all α ∈ [0, 1],

(3.44) ε̃αaε is bounded in L̃∞(Ḃ
d/p−1+α
p,1 ).

Now Auε is bounded in L̃1(Ḃ
d/p−1
p,r ) and p < 2d. Hence, according to product laws in Besov

spaces, composition inequality and (3.44), we get J(εaε)Auε = O(ε̃1−α) in L̃1(Ḃ
d/p−2+α
p,r ),

whenever 2max(0, 1 − d/p) < α ≤ 1.

In order to prove that P(uεn · ∇uεn)⇀ P(u · ∇u), we note that

uεn · ∇uεn =
1

2
∇|Quεn |2 + Puεn · ∇uεn +Quεn · ∇Puεn .

Projecting the first term onto divergence free vector fields gives 0, and we also know that
Pu = u. Hence we just have to prove that

(3.45) P(Puεn · ∇uεn)⇀ P(Pu · ∇u) and P(Quεn · ∇Puεn)⇀ 0.

This requires our proving results of strong convergence for Puεn . To this end, we shall exhibit
uniform bounds for ∂tPu

εn in a suitable space. First, arguing by interpolation, we see that

(∇2uεn) is bounded in L̃m(Ḃ
d/p+2/m−3
p,r ) for any m ≥ 1. Choosing m > 1 so that 2d/p+2/m−

3 > 0 (this is possible as p < 2d) and remembering that (εnaεn) is bounded in L̃∞(Ḃ
d/p
p,1 ),

we thus get (J(εna
εn)Auεn) bounded in L̃m(Ḃ

d/p+2/m−3
p,r ). Similarly, combining the facts that

(uεn) and (∇uεn) are bounded in L̃∞(Ḃ
d/p−1
p,r ) and L̃m(Ḃ

d/p+2/m−2
p,r ), respectively, we see that

(uεn · ∇uεn) is bounded in L̃m(Ḃ
d/p+2/m−3
p,r ), too. Computing ∂tPu

εn from (3.43), it is now

clear that (∂tPu
εn) is bounded in L̃m(Ḃ

d/p+2/m−3
p,r ). Hence (Puεn − Puεn0 ) is bounded in

C1−1/m(R+; Ḃ
d/p+2/m−3
p,r ). As Puεn is also bounded in C̃b(R+; Ḃ

d/p−1
p,r ), and as the embedding

of Ḃ
d/p−1
p,1 in Ḃ

d/p+2/m−3
p,1 is locally compact (see e.g. [2], page 108), we conclude by means of

Ascoli theorem that, up to a new extraction, for all φ ∈ S(Rd) and T > 0,

(3.46) φPuεn −→ φPu in C([0, T ]; Ḃ
d/p+2/m−3
p,1 ).

Interpolating with the uniform in Cb(R+; Ḃ
d/p−1
p,r ), we can upgrade the strong convergence in

(3.46) to the space C([0, T ]; Ḃ
d/p−1−α
p,1 ) for all small enough α > 0, and all T > 0. Combining

with the properties of weak convergence for ∇uεn to ∇u, and Quεn to 0 that may be deduced
from the uniform bounds on uεn , it is now easy to conclude to (3.45).
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4. The incompressible limit: strong convergence in the whole space case

In this section, we combine Strichartz estimates for the following acoustic wave equations

(4.47)





∂ta
ε +

divuε

ε
= F ε,

∂tu
ε +

∇aε

ε
= Gε

(t, x) ∈ R+ × R
d

associated to (0.1), with the uniform bounds (1.9) for the constructed solution (aε, uε) so as
to establish the strong convergence for uε to the solution v of (1.10) in a proper function
space. Recall that in a different context (that of global weak solutions), the idea of taking
advantage of Strichartz estimates for investigating the incompressible limit goes back to the
work of B. Desjardins and E. Grenier in [16].

Throughout the proof, we assume the viscosity coefficients to be constant, for simplicity.
Recall that Cε,ν

0 denotes the l.h.s. of (1.8).
We first consider the case d ≥ 3 which is slightly easier than the two-dimensional case,

owing to more available Strichartz estimates.

The case d ≥ 3. Let us assume that ε = ν = 1 for a while. Then the solution (a, u) to (0.1)

satisfies (4.47) with F = −div (au) and G = ∆Qu−Q(u · ∇u)−Q(J(a)Ãu) + k(a)∇a, and
Proposition 2.2 in [11] ensures that for all q ∈ [2,∞), we have

‖(a,Qu)‖ℓ
L̃2q/(q−2)(Ḃ

(d−1)/q−1/2
q,1 )

. ‖(a0,Qu0)‖
ℓ

Ḃ
d/2−1
2,1

+ ‖(F,G)‖ℓ
L1(Ḃ

d/2−1
2,1 )

.

Following the proof of (2.34) to bound F and G, we eventually get

‖(a,Qu)‖ℓ
L̃2q/(q−2)(Ḃ

(d−1)/q−1/2
q,1 )

. C1,1
0 .

As we also have
‖(a,Qu)‖ℓ

L1(Ḃ
d/2+1
2,1 )

. C1,1
0 ,

we conclude by using the following complex interpolation result

[L1(Ḃ
d/2+1
2,1 ), L̃2q/(q−2)(Ḃ

(d−1)/q−1/2
q,1 )]q/(q+2) = L̃2(Ḃ

(d+1)/p−1/2
p,1 ) with p = (q + 2)/2,

that

‖(a,Qu)‖ℓ
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

. C1,1
0 for all p ∈ [2,+∞).

Back to the original variables in (2.11), we deduce that for all positive ε and ν,

ν1/2‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

. ε̃1/2−1/p Cε,ν
0 .

Of course, for the above inequality to be true, we need in addition that the index p fulfills the
assumptions in Theorem 1.1. Now, taking advantage of the high-frequency cut-off (second
line below) and (1.9) (third line), we get

‖(aε,Quε)‖
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

. ‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

+ ‖(aε,Quε)‖h,ε̃
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

. ‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

+ε̃ 1/2−1/p‖(aε,Quε)‖h,ε̃
L̃2(Ḃ

d/p
p,1 )

. ν−1/2 ε̃ 1/2−1/p Cε,ν
0 ,

which yields the strong convergence of (aε,Quε) to 0 in L̃2(Ḃ
(d+1)/p−1/2
p,1 ), with an explicit

rate.
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Let us now go to the proof of the convergence of Puε. Setting δuε := Puε − u, we see that

∂tδu
ε − µ∆δuε + P(Puε · ∇δuε + δuε · ∇u) = −P

(
uε · ∇Quε +Quε · ∇Puε + J(εaε)Auε

)
·

In what follows, we aim at estimating δuε in the space L̃∞(Ḃ
(d+1)/p−3/2
p,r ) ∩ L̃1(Ḃ

(d+1)/p+1/2
p,r ).

First, applying (0.4) and the fact that P is a self-map in any homogeneous Besov space gives

δU ε := ‖δuε‖
L̃∞(Ḃ

(d+1)/p−3/2
p,r )

+ µ‖δuε‖
L̃1(Ḃ

(d+1)/p+1/2
p,r )

. ‖δuε0‖Ḃ(d+1)/p−3/2
p,r

+ ‖Puε · ∇δuε + δuε · ∇u‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

+‖uε · ∇Quε +Quε · ∇Puε + J(εaε)Auε‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

.

Next, product and composition estimates in the spirit of those of the previous sections
(where we use repeatedly that (d+ 1)/p − 1/2 ≤ d/p and (d+ 1)/p − 3/2 + d/p > 0) yield:

‖Puε · ∇δuε‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

. ‖Puε‖
L̃∞(Ḃ

d/p−1
p,r )

‖∇δuε‖
L̃1(Ḃ

(d+1)/p−1/2
p,r )

+‖Puε‖
L̃1(Ḃ

d/p+1
p,r )

‖∇δuε‖
L̃∞(Ḃ

(d+1)/p−5/2
p,r )

,

‖δuε · ∇u‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

. ‖∇u‖
L̃∞(Ḃ

d/p−2
p,r )

‖δuε‖
L̃1(Ḃ

(d+1)/p+1/2
p,r )

+‖∇u‖
L̃1(Ḃ

d/p
p,r )

‖δuε‖
L̃∞(Ḃ

(d+1)/p−3/2
p,r )

,

and also

‖uε · ∇Quε‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

. ‖∇Quε‖
L̃2(Ḃ

(d+1)/p−3/2
p,1 )

‖uε‖
L̃2(Ḃ

d/p
p,r ∩Ḃ0

∞,1)
,

‖Quε · ∇Puε‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

. ‖Quε‖
L̃2(Ḃ

(d+1)/p−1/2
p,1 )

‖∇Puε‖
L̃2(Ḃ

d/p−1
p,r )

,

‖J(εaε)Auε‖
L̃1(Ḃ

(d+1)/p−3/2
p,r )

. ‖J(εaε)‖
L̃∞(Ḃ

(d+1)/p−1/2
p,1 )

‖Auε‖
L̃1(Ḃ

d/p−1
p,r )

. (1 + ‖εaε‖
L̃∞(Ḃ

d/p
p,1 )

)‖εaε‖
L̃∞(Ḃ

(d+1)/p−1/2
p,1 )

‖uε‖
L1(Ḃ

d/p+1
p,r )

.

Let us observe that

‖εaε‖
L̃∞(Ḃ

(d+1)/p−1/2
p,1 )

. ‖εaε‖ℓ,ε̃
L̃∞(Ḃ

(d+1)/p−1/2
p,1 )

+ ‖εaε‖h,ε̃
L̃∞(Ḃ

(d+1)/p−1/2
p,1 )

. ν−1ε̃ 1/2−1/p‖aε‖ℓ,ε̃
L̃∞(Ḃ

d/2−1
2,1 )

+ ε̃1/2−1/p‖εaε‖h,ε̃
L̃∞(Ḃ

d/p
p,1 )

. ν−1ε̃ 1/2−1/pCε,ν
0 .(4.48)

Therefore, putting together all the above estimates and using (1.9), we get

δU ε . ‖δuε0‖Ḃ(d+1)/p−3/2
p,r

+µ−1
(
‖u‖

L̃∞(Ḃ
d/p−1
p,r )

+ µ‖u‖
L̃1(Ḃ

d/p+1
p,r )

)
δU ε + ν−1ε̃ 1/2−1/p(1 + ν−1Cε,ν

0 )(Cε,ν
0 )2.

Note that Theorem 0.1 implies that as v0 is small compared to µ (a consequence of smallness
condition (1.8)) then the solution u to (1.10) with data v0 exists globally and satisfies (0.5).
We thus get

δU ε . ‖δuε0‖Ḃ(d+1)/p−3/2
p,r

+ ε̃ 1/2−1/pCε,ν
0 ,

which completes the proof of convergence in R
d if d ≥ 3.
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The case d = 2. Applying Proposition 2.2 in [11] to (4.47) in the case d = 2, and using the

bounds of the previous section to bound the r.h.s. in L1(Ḃ0
2,1), we now get if ε = ν = 1,

‖(a,Qu)‖ℓ
L̃r(Ḃ

2/q−1+1/r
q,1 )

. C1,1
0 whenever 2/r ≤ 1/2 − 1/q.

Let us emphasize that in contrast with the high-dimensional case, we cannot have r smaller
than 4. In what follows, we set 1/r = c(1/2 − 1/q) with c ∈ [0, 1/2] to be fixed later on.
Observing that (1.9) implies that

‖(a,Qu)‖ℓ
L1(Ḃ2

2,1)
. C1,1

0

and adapting the interpolation argument used in the previous paragraph, we get

‖(a,Qu)‖ℓ
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

. C1,1
0 ,

where p, c and q are interrelated through

p =
4q + (4− 2q)c

q + 2 + (2− q)c
·

Note that as c ∈ [0, 1/2] and q ∈ [2,+∞], one can achieve any p ∈ [2, 6], which is a weaker
condition than that which is imposed for p in the statement of Theorem 1.1.

For general ε and ν, the above inequality recasts in

ν1/2‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

. ε̃ c(1/2−1/p)Cε,ν
0 .

Arguing as in the high-dimensional case, one can get a similar inequality for the high fre-
quencies of (aε,Quε), namely

‖(aε,Quε)‖
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

. ‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

+ ‖(aε,Quε)‖h,ε̃
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

. ‖(aε,Quε)‖ℓ,ε̃
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

+ ε̃ c(1/2−1/p)‖(aε,Quε)‖h,ε̃
L̃2(Ḃ

2/p
p,1 )

. ν−1/2ε̃ c(1/2−1/p)Cε,ν
0 .

Let us finally prove the convergence of Puε to u in L̃∞(Ḃ
(c+2)/p−c/2−1
p,r )∩ L̃1(Ḃ

(c+2)/p−c/2+1
p,r ).

Again, we apply Inequality (0.4) to the equation fulfilled by δuε, and get

δU ε := ‖δuε‖
L̃∞(Ḃ

(c+2)/p−c/2−1
p,r )

+ ‖δuε‖
L̃1(Ḃ

(c+2)/p−c/2+1
p,r )

. ‖δuε0‖Ḃ(c+2)/p−c/2−1
p,r

+‖Puε · ∇δuε + δuε · ∇u‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

+‖uε · ∇Quε +Quε · ∇Puε + J(εaε)Auε‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

.

In order to bound the nonlinear terms, we use standard continuity results for the product
or paraproduct, and also (repeatedly) the fact that the condition on c in Theorem 1.1 is
equivalent to (c+ 2)/p − c/2− 1 + 2/p > 0. Then we get

‖Puε · ∇δuε‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

. ‖Puε‖
L̃∞(Ḃ

2/p−1
p,r )

‖∇δuε‖
L̃1(Ḃ

(c+2)/p−c/2
p,r )

+‖Puε‖
L̃1(Ḃ

2/p+1
p,r )

‖∇δuε‖
L∞(Ḃ

(c+2)/p−c/2−2
p,r )

,

‖δuε · ∇u‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

. ‖∇u‖
L̃∞(Ḃ

2/p−2
p,r )

‖δuε‖
L̃1(Ḃ

(c+2)/p−c/2+1
p,r )

+‖∇u‖
L̃1(Ḃ

2/p
p,r )

‖δuε‖
L̃∞(Ḃ

(c+2)/p−c/2−1
p,r )

,
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and also

‖uε · ∇Quε‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

. ‖∇Quε‖
L̃2(Ḃ

(c+2)/p−c/2−1
p,1 )

‖uε‖
L̃2(Ḃ

2/p
p,r ∩Ḃ0

∞,1)
,

‖Quε · ∇Puε‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

. ‖Quε‖
L̃2(Ḃ

(c+2)/p−c/2
p,1 )

‖∇Puε‖
L̃2(Ḃ

2/p−1
p,r )

,

‖J(εaε)Auε‖
L̃1(Ḃ

(c+2)/p−c/2−1
p,r )

. (1 + ‖εaε‖
L̃∞(Ḃ

2/p
p,1 )

)‖εaε‖
L̃∞(Ḃ

(c+2)/p−c/2
p,1 )

‖uε‖
L̃1(Ḃ

2/p+1
p,r )

.

In order to bound εaε in L̃∞(Ḃ
(c+2)/p−c/2
p,1 ), one may argue exactly as in the case d ≥ 3:

‖εaε‖
L̃∞(Ḃ

(c+2)/p−c/2
p,1 )

. ‖εaε‖ℓ,ε̃
L̃∞(Ḃ

(c+2)/p−c/2
p,1 )

+ ‖εaε‖h,ε̃
L̃∞(Ḃ

(c+2)/p−c/2
p,1 )

. ν−1ε̃ c(1/2−1/p)‖aε‖ℓ,ε̃
L̃∞(Ḃ0

2,1)
+ ε̃ c(1/2−1/p)‖εaε‖h,ε̃

L̃∞(Ḃ
2/p
p,1 )

. ν−1ε̃ c(1/2−1/p)Cε,ν
0 .

So using Theorem 0.1 to bound the terms pertaining to u, it is now easy to conclude to the
last inequality of Theorem 1.1. �

5. The full Navier-Stokes-Fourier system

In this final section, we aim at extending the previous results to the more physically
relevant case of non-isothermal polytropic fluids. The corresponding governing equations, the
so-called Navier-Stokes-Fourier system, involves the density of the fluid ρε and its velocity uε.
To fully describe the fluid, we need to consider a third (real valued) unknown, for instance
the temperature θε.

For simplicity, we only consider the case of perfect heat conducting and viscous gases. We
set the reference density and temperature to be 1, and focus on ill-prepared data of the form
ρε0 = 1 + εaε0, u

ε
0 and θε0 = 1 + εϑε0 where (aε0, u

ε
0, ϑ

ε
0) are bounded in a sense that will be

specified later on5. Setting ρε = 1 + εaε and θε = 1 + εϑε, we get the following system for
(aε, uε, ϑε):

(5.49)





∂ta
ε +

divuε

ε
= −div (aεuε),

∂tu
ε + uε · ∇uε −

Auε

1 + εaε
+

∇(aε + ϑε + εaεϑε)

ε(1 + εaε)
= 0,

∂tϑ
ε +

divuε

ε
+ div (ϑεuε)− κ

∆ϑε

1 + εaε
=

ε

1 + εaε

(
2µ|Duε|2 + λ(div uε)2

)
·

We assume that the fluid is genuinely viscous and heat-conductive, that is to say

µ > 0, ν := λ+ 2µ > 0 and κ > 0.

Even though our results should hold for coefficients λ, µ and κ depending smoothly on the
density, we only consider the constant case, for simplicity.

Keeping in mind our results on the barotropic case, we want to consider families of small
data (aε0, u

ε
0, ϑ

ε
0) in the space Y p

0,ε,ν defined by (still setting ε̃ := εν):

• (aε0,Qu
ε
0, ϑ

ε
0)

ℓ,ε̃ ∈ Ḃ
d/2−1
2,1 ,

• (aε0)
h,ε̃ ∈ Ḃ

d/p
p,1 , (Quε0)

h,ε̃ ∈ Ḃ
d/p−1
p,1 , (ϑε0)

h,ε̃ ∈ Ḃ
d/p−2
p,1 ,

• Puε0 ∈ Ḃ
d/p−1
p,1 .

5The reader may refer to [18] for the construction and the low Mach asymptotic of the weak solutions to
the Navier-Stokes-Fourier equations, and to [1] for the case of smoother data with large entropy variations.



THE INCOMPRESSIBLE LIMIT IN Lp TYPE CRITICAL SPACES 19

The existence space Y p
ε,ν is the set of triplets (a, u, ϑ) so that

• (aℓ,ε̃,Quℓ,ε̃, ϑℓ,ε̃) ∈ Cb(R+; Ḃ
d/2−1
2,1 ) ∩ L1(R+; Ḃ

d/2+1
2,1 ),

• ah,ε̃ ∈ Cb(R+; Ḃ
d/p
p,1 ) ∩ L

1(R+; Ḃ
d/p
p,1 ),

• ϑh,ε̃ ∈ Cb(R+; Ḃ
d/p−2
p,1 ) ∩ L1(R+; Ḃ

d/p
p,1 ),

• Quh,ε̃ and Puε are in Cb(R+; Ḃ
d/p−1
p,1 ) ∩ L1(R+; Ḃ

d/p+1
p,1 ),

endowed with the norm:

‖(a, u, ϑ)‖Y p
ε,ν

:= ‖(a,Qu, ϑ)‖ℓ,ε̃
L∞(Ḃ

d/2−1
2,1 )

+ ‖(Pu,Quh,ε̃)‖
L∞(Ḃ

d/p−1
p,1 )

+ ε̃‖a‖h,ε̃
L∞(Ḃ

d/p
p,1 )

+ε̃−1‖ϑ‖h,ε̃
L∞(Ḃ

d/p−2
p,1 )

+ν‖(a,Qu, ϑ)‖ℓ,ε̃
L1(Ḃ

d/2+1
2,1 )

+ν‖(Pu,Quh,ε̃)‖
L1(Ḃ

d/p+1
p,1 )

+ε−1‖(a, ϑ)‖h,ε̃
L1(Ḃ

d/p
p,1 )

.

We also set

‖(a0, u0, ϑ0)‖Y p
0,ε,ν

:= ‖(a0,Qu0, ϑ0)‖
ℓ,ε̃

Ḃ
d/2−1
2,1

+‖(Pu0,Qu
h,ε̃
0 )‖

Ḃ
d/p−1
p,1

+ ε̃‖a0‖
h,ε̃

Ḃ
d/p
p,1

+ ε̃−1‖ϑ0‖
h,ε̃

Ḃ
d/p−2
p,1

.

Here the integer j0 appearing in the threshold between low and high frequencies depends only

on κ̃ := κ/ν, µ̃ := µ/ν and λ̃ := λ/ν with ν := λ+ 2µ.

In the case p = 2 and ε = 1, global existence for (5.49) in the above space and for small
data has been established in [10]. The main goal of this section is to extend the statement to
more general p’s, and to get estimates independent of ε and ν for the constructed solution.
Furthermore, in the Rd case, we establish a strong convergence result in the low Mach number
asymptotics, in the spirit of our recent work [15]. Here is the main result of this section:

Theorem 5.1. Assume that the fluid domain is either R
d or T

d with d ≥ 3, and that the
initial data (aε0, u

ε
0, ϑ

ε
0) are as above with 2 ≤ p < d and p ≤ 2d/(d − 2). There exists a

constant η independent of ε and of ν (but depending on κ/ν) such that if

(5.50) ‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
≤ ην,

then System (5.49) with initial data (aε0, u
ε
0, ϑ

ε
0) has a unique global solution (aε, uε, ϑε) in the

space Y p
ε,ν with, for some constant C independent of ε and ν,

(5.51) ‖(aε, uε, ϑε)‖Y p
ε,ν

≤ C‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
.

Furthermore, in the R
d case, if (aε0, u

ε
0, ϑ

ε
0) is a family of data fulfilling (5.50) with Puε0 → v0

and ϑε0 − aε0 → Θ0 for suitable norms, then we have

• (qε,Quε) → 0 with qε := ϑε + aε,
• Puε → u with u solution to (1.10),
• Θε → Θ with Θε := ϑε − aε and Θ satisfying

(5.52) ∂tΘ−
κ

2
∆Θ+ u · ∇Θ = 0, Θ|t=0 = Θ0.

More precisely, we have

(5.53) ‖(qε,Quε)‖ℓ,ε̃
L2(Ḃ

(d+1)/p−1/2
p,1 )

. ν−1/2ε̃ 1/2−1/p‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
,

(5.54) ‖Puε − u‖
L∞(Ḃ

(d+1)/p−3/2
p,1 )

+ µ‖Puε − u‖
L1(Ḃ

(d+1)/p+1/2
p,1

. ‖Puε0 − v0‖Ḃ(d+1)/p−3/2
p,1

+ ε̃ 1/2−1/p‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
,
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and

(5.55) ‖δΘε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 +Ḃ

d/p−2
p,1 )

+ ‖δΘε‖
L2(Ḃ

(d+1)/p−1/2
p,1 )+L1(Ḃ

d/p
p,1 )

. ‖Θε
0 −Θ0‖Ḃ(d+1)/p−3/2

2,1 +Ḃ
d/p−2
p,1

+ ε̃ 1/2−1/p‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
.

Remark 5.1. Regarding the global existence and convergence issues, we expect similar results
for slightly larger Besov spaces, as in the barotropic case. Here we only considered Besov
spaces with last index 1 for simplicity, in order to benefit from uniqueness (see [7]), an open

question otherwise, and also because it allows us to avoid resorting to L̃m(Ḃs
p,r) spaces and

complicated product estimates.

Proof. As in the barotropic case, performing a suitable change of unknowns reduces the proof
to the case ε = ν = 1, and coefficients µ̃, λ̃ and κ̃. More precisely, we set

(5.56) (a, u, ϑ)(t, x) = ε(aε, uε, ϑε)(ε2νt, ενx).

Thanks to (2.14), we notice that

(5.57) ν‖(a, u, ϑ)‖Y p
1,1

= ‖(aε, uε, ϑε)‖Y p
ε,ν

and ν‖(a0, u0, ϑ0)‖Y p
0,1,1

= ‖(aε0, u
ε
0, ϑ

ε
0)‖Y p

0,ε,ν
.

So we may assume from now on that ν = ε = 1, and thus omit the exponent ε.

Let us give the outline of the proof. The first six steps are dedicated to proving global-in-
time a priori estimates (namely (5.51)) for smooth solutions to (5.49), which is a rather easy
adaptation of what we did in the barotropic case. In Step 7, we sketch the proof of existence.
The last step is dedicated to the low Mach number asymptotics in the Rd case. Throughout,
we assume that (2.16) is satisfied, so that one may freely apply Proposition 6.1.

Step 1. Incompressible part of the velocity. Let Ã := A/ν. we have

∂tPu− µ̃∆Pu = −P(u · ∇u)− P(J(a)Ãu)− P(ϑ∇K(a)) with J(0) = K(0) = 0.

Hence heat estimates (0.4) yield

‖Pu‖
L∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

.‖Pu0‖Ḃd/p−1
p,1

+‖P(u·∇u)+P(J(a)Ãu)+P(ϑ∇(K(a)))‖
L1(Ḃ

d/p−1
p,1 )

.

Only the last term is new compared to the barotropic case. Decomposing it into

ϑ∇(K(a)) = ϑℓ∇(K(a)) + ϑh∇(K(a)),

we may write

(5.58) ‖P(ϑ∇(K(a)))‖
L1(Ḃ

d/p−1
p,1 )

. ‖∇(K(a))‖
L2(Ḃ

d/p−1
p,1 )

‖ϑℓ‖
L2(Ḃ

d/p
p,1 )

+ ‖∇(K(a))‖
L∞(Ḃ

d/p−1
p,1 )

‖ϑh‖
L1(Ḃ

d/p
p,1 )

.

So arguing as in the barotropic case and using (2.19), we eventually get

(5.59) ‖Pu‖
L∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖Pu0‖Ḃd/p−1
p,1

+ 2j0(1 + ‖a‖
L∞(Ḃ

d/p
p,1 )

)‖(a, u, ϑ)‖2Y p
1,1
.
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Step 2. Low frequencies. Applying Projector Q to the velocity equation, we see that (a,Qu, ϑ)
fulfills




∂ta+ divQu = −div (au),

∂tQu−∆Qu+∇(a+ ϑ) = Q
(
−u · ∇u− J(a)Ãu+ (a− ϑ)∇(K(a))

)
,

∂tϑ− κ̃∆ϑ+ divQu = −div (ϑu)− κ̃J(a)∆ϑ+
1

1 + a

(
2µ̃|Du|2 + λ̃(divu)2

)
·

The results of [10] guarantee that

(5.60) ‖(a,Qu, ϑ)‖ℓ
L∞(Ḃ

d/2−1
2,1 )∩L1(Ḃ

d/2+1
2,1 )

. ‖(a0,Qu0, ϑ0)‖
ℓ

Ḃ
d/2−1
2,1

+ ‖r.h.s.‖ℓ
L1(Ḃ

d/2−1
2,1 )

.

Compared to the barotropic case, we have to bound in L1(Ḃ
d/2−1
2,1 ) the low frequencies of the

following additional terms:

(5.61) ϑ∇(K(a)), div (ϑu), κ̃J(a)∆ϑ and
1

1 + a

(
2µ̃|Du|2 + λ̃(divu)2

)
·

To handle the first term, we start with the observation that

(5.62) ‖∇(K(a))‖ℓ
Ḃ

d/2−1
2,1

.
(
1 + ‖a‖

Ḃ
d/p
p,1

)(
‖a‖ℓ

Ḃ
d/2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
+ 2j0‖a‖

Ḃ
d/p−1
p,1

‖a‖h
Ḃ

d/p
p,1

.

Indeed, because ∇((K(a)) = K ′(0)∇a + K̃(a)∇a for some smooth function K̃ vanishing at
zero, it suffices to prove that6

‖K̃(a)∇a‖ℓ
Ḃ

d/2−1
2,1

. ‖a‖
Ḃ

d/p
p,1

(
‖∇a‖ℓ

Ḃ
d/2−1
2,1

+ ‖∇a‖
Ḃ

d/p∗−1
p∗,1

)
+ 2j0‖a‖

Ḃ
d/p−1
p,1

‖∇a‖h
Ḃ

d/p−1
p,1

.

To this end, we use Bony’s decomposition restricted to low frequencies:

(K̃(a)∇a)ℓ = (T∇aK̃(a))ℓ + (R(∇a, K̃(a)))ℓ + T
(K̃(a))ℓ

∇aℓ + (Ṡj0K̃(a)∆̇j0+1∇a)
ℓ.

To deal with the first two terms, we just use (2.30). For the third one, we use that T :

L∞ × Ḃ
d/2−1
2,1 → Ḃ

d/2−1
2,1 and the embedding Ḃ

d/p
p,1 →֒ L∞. For the last one, we argue as

follows:

2j0(d/2−1)‖Ṡj0K̃(a)∆̇j0+1∇a‖L2 ≤ 2j0 2j0(d/p
∗−1)‖Ṡj0K̃(a)‖Lp∗ 2j0(d/p−1)‖∆̇j0+1∇a‖Lp .

Putting all those inequalities together, and using also composition estimates and the fact
that d/p∗ − 1 ≤ 0 eventually leads to the desired inequality.

Let us now bound (ϑ∇(K(a)))ℓ in L1(Ḃ
d/2−1
2,1 ). We start again from Bony’s decomposition:

(5.63) (ϑ∇(K(a)))ℓ = (T∇(K(a))ϑ)
ℓ + (R(∇(K(a)), ϑ))ℓ

+ Tϑℓ∇(K(a))ℓ + (Ṡj0ϑ∆̇j0+1∇K(a))ℓ.

The first two terms may be bounded by splitting ϑ into ϑℓ + ϑh, using the continuity of R

and T from Ḃ
d/p−1
p,1 × Ḃ

d/p
p,1 to Ḃ

d/2−1
2,1 . We end up with

‖(T∇(K(a))ϑ)
ℓ‖

L1(Ḃ
d/2−1
2,1 )

. ‖∇(K(a))‖
L2(Ḃ

d/p−1
p,1 )

(
‖ϑℓ‖

L2(Ḃ
d/p
p,1 )

+ 2j0‖ϑh‖
L2(Ḃ

d/p−1
p,1 )

)
.

and

‖(R(∇(K(a)), ϑ))ℓ‖
L1(Ḃ

d/2−1
2,1 )

. ‖∇(K(a))‖
L∞(Ḃ

d/p−1
p,1 )

‖ϑh‖
L1(Ḃ

d/p
p,1 )

+‖∇(K(a))‖
L2(Ḃ

d/p−1
p,1 )

‖ϑℓ‖
L2(Ḃ

d/p
p,1 )

.

6For p∗, we keep the definition 1/p+ 1/p∗ = 1/2.
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For the third term in (5.63), by virtue of (5.62), we write

‖Tϑℓ∇(K(a))ℓ‖
L1(Ḃ

d/2−1
2,1 )

. ‖ϑℓ‖L2(L∞)‖∇(K(a))ℓ‖
Ḃ

d/2−1
2,1

. ‖ϑℓ‖
L2(Ḃ

d/2
2,1 )

(
1 + 2j0‖aℓ‖

L∞(Ḃ
d/2−1
2,1 )

+‖ah‖
L∞(Ḃ

d/p
p,1 )

)(
‖a‖ℓ

L2(Ḃ
d/2
2,1 )

+ ‖a‖h
L2(Ḃ

d/p
p,1 )

)
.

Finally,

2j0(d/2−1)‖Ṡj0ϑ∆̇j0+1∇K(a))‖L2 ≤ 2j0(d/p
∗−1)‖Ṡj0ϑ‖Lp∗ 2j0d/p‖∆̇j0+1∇(K(a))‖Lp .

Hence

‖Ṡj0ϑ∆̇j0+1∇(K(a))‖
L1(Ḃ

d/2−1
2,1 )

. 2j0‖ϑℓ‖
L∞(Ḃ

d/p∗−1
p∗,1

)
‖K(a)‖h

L1(Ḃ
d/p
p,1 )

.

That the last term does belong to L1(Ḃ
d/p
p,1 ) may be seen by writing

K(a) = K ′(0) a + K̃(a) a with K̃(0) = 0,

which ensures, using composition estimates in Ḃ
d/p
p,1 ,

(5.64) ‖K(a)‖h
L1(Ḃ

d/p
p,1 ))

. ‖a‖h
L1(Ḃ

d/p
p,1 )

+ ‖a‖2
L2(Ḃ

d/p
p,1 )

.

Resuming to (5.63), we conclude that

(5.65) ‖(ϑ∇(K(a)))ℓ‖
L1(Ḃ

d/2−1
2,1 )

. 2j0‖ϑℓ‖
L∞(Ḃ

d/2−1
2,1 )

(
‖ah‖

L1(Ḃ
d/p
p,1 )

+ ‖a‖2
L2(Ḃ

d/p
p,1 )

)

+
(
1 + 2j0‖aℓ‖

L∞(Ḃ
d/2−1
2,1 )

+ ‖ah‖
L∞(Ḃ

d/p−1
p,1 )

)(
‖ϑℓ‖

L2(Ḃ
d/2
2,1 )

+ 2j0‖ϑh‖
L2(Ḃ

d/p−1
p,1 )

+ ‖ϑh‖
L1(Ḃ

d/p
p,1 )

)(
‖a‖ℓ

L2(Ḃ
d/2
2,1 )

+ ‖a‖h
L2(Ḃ

d/p
p,1 )

)
.

To handle div (ϑu), we decompose ϑ into low and high frequencies. To deal with both parts,
we resort again to Bony’s decomposition and continuity results for R and T. We end up with

‖ϑℓu‖
Ḃ

d/2
2,1

. ‖ϑℓ‖
Ḃ

d/p∗−1
p∗,1

‖u‖
Ḃ

d/p+1
p,1

+ ‖u‖L∞‖ϑℓ‖
Ḃ

d/2
2,1
,(5.66)

‖ϑhu‖
Ḃ

d/2−1
2,1

. ‖ϑh‖
Ḃ

d/p−1
p,1

‖u‖
Ḃ

d/p
p,1

+ ‖u‖
Ḃ

d/p∗−1
p∗,1

‖ϑh‖
Ḃ

d/p
p,1

.(5.67)

Therefore, taking advantage of the low frequency cut-off and of Bernstein inequality yields

(5.68) ‖(div (ϑu))ℓ‖
L1(Ḃ

d/2−1
2,1 )

. ‖ϑℓ‖
L∞(Ḃ

d/2−1
2,1 )

‖u‖
L1(Ḃ

d/p+1
p,1 )

+
(
‖ϑℓ‖

L2(Ḃ
d/2
2,1 )

+ 2j0‖ϑh‖
L2(Ḃ

d/p−1
p,1 )

)
‖u‖

L2(Ḃ
d/p
p,1 )

+ 2j0‖u‖
L∞(Ḃ

d/p−1
p,1 )

‖ϑh‖
L1(Ḃ

d/p
p,1 )

.

For the next term, we use

J(a)∆ϑ = J(a)∆ϑℓ + J(a)∆ϑh

and Bony’s decomposition. For the first term, we easily get

‖J(a)∆ϑℓ‖
L1(Ḃ

d/2−1
2,1 )

. ‖∆ϑℓ‖
L1(Ḃ

d/2−1
2,1 )

‖a‖
L∞(Ḃ

d/p
p,1 )

.

For the second one, we use that R and T map Ḃ
d/p−2
p,1 × Ḃ

d/p
p,1 to Ḃ

d/2−2
2,1 , if p < d and d ≥ 3,

and that

‖(TJ(a)∆ϑ
h +R(J(a),∆ϑh))ℓ‖

Ḃ
d/2−2
2,1

. ‖J(a)‖
Ḃ

d/p
p,1

‖∆ϑh‖
Ḃ

d/p−2
p,1

.
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Hence, combining with Bernstein inequality,

‖(J(a)∆ϑ)ℓ‖
L1(Ḃ

d/2−1
2,1 )

. 2j0
(
‖a‖

L∞(Ḃ
d/p
p,1 )

+ 2j0‖a‖
L∞(Ḃ

d/p−1
p,1 )

)(
‖∆ϑℓ‖

L1(Ḃ
d/2−1
2,1 )

+ ‖∆ϑh‖
L1(Ḃ

d/p−2
p,1 )

)
.

To handle the last term in (5.61), we use the fact that

‖TJ(a)Du⊗Du‖
Ḃ

d/2−2
2,1

. ‖J(a)‖L∞‖Du⊗Du‖
Ḃ

d/2−2
2,1

‖R(J(a),Du ⊗Du)‖
Ḃ

d/2−2
2,1

. ‖J(a)‖
Ḃ

d/p
p,1

‖Du⊗Du‖
Ḃ

d/2−2
2,1

‖TDu⊗DuJ(a)‖Ḃd/2−2
2,1

. ‖Du⊗Du‖
Ḃ

d/p∗−2
p∗,1

‖J(a)‖
Ḃ

d/p
p,1
.

At this point, we notice that, under assumption 2 ≤ p ≤ 2d/(d − 2), p < d and d ≥ 3, the

usual product maps Ḃ
d/p−1
p,1 × Ḃ

d/p−1
p,1 to Ḃ

d/2−2
2,1 . Therefore

(5.69)
∥∥∥

1

1 + a
Du⊗Du

∥∥∥
L1(Ḃ

d/2−2
2,1 )

.
(
1 + ‖a‖

L∞(Ḃ
d/p
p,1 )

)
‖Du‖2

L2(Ḃ
d/p−1
p,1 )

.

Inserting all the above inequalities in (5.60) and using (2.19), we thus end up with

(5.70) ‖(a,Qu, ϑ)‖ℓ
L∞(Ḃ

d/2−1
2,1 )∩L1(Ḃ

d/2+1
2,1 )

. ‖(a0,Qu0, ϑ0)‖
ℓ

Ḃ
d/2−1
2,1

+ 22j0(1 + ‖(a, u, ϑ)‖Y p
1,1

)‖(a, u, ϑ)‖2Y p
1,1
.

Step 3. High frequencies: the effective velocity. Let w := Qu+ (−∆)−1∇a. We have

∂tw−∆w = −Q(u·∇u)+Q(J(a)Ãu)−Q(ϑ∇K(a))+a∇K(a)+Q(au)−∇ϑ+w−(−∆)−1∇a.

By virtue of (0.4), we have

‖w‖h
L∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖w0‖
h

Ḃ
d/p−1
p,1

+ ‖r.h.s.‖h
L1(Ḃ

d/p−1
p,1 )

.

Compared to the barotropic case, two new terms have to be handled : Q(ϑ∇(K(a))) and ∇ϑ.
The first one has been estimated in (5.58), and the second one is just linear. We eventually
get if j0 is large enough:

(5.71) ‖w‖h
L∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖w0‖
h

Ḃ
d/p−1
p,1

+ 2j0‖(a, u, ϑ)‖2Y p
1,1

+ ‖∇ϑ‖h
L1(Ḃ

d/p−1
p,1 )

+ 2−2j0‖a‖h
L1(Ḃ

d/p
p,1 )

.

Step 4. High frequencies: the temperature. Applying (0.4) to the heat equation

∂tϑ− κ̃∆ϑ = −a− divw − div (ϑu)− κ̃J(a)∆ϑ +
1

1 + a

(
2µ̃|Du|2 + λ̃(divu)2

)

yields

‖ϑ‖h
L∞(Ḃ

d/p−2
p,1 )∩L1(Ḃ

d/p
p,1 )

. ‖ϑ0‖
h

Ḃ
d/p−2
p,1

+ ‖r.h.s.‖h
L1(Ḃ

d/p−2
p,1 )

.

The term div (ϑu) can be bounded according to (5.66) and (5.67), using obvious embedding.
For the other nonlinear terms, we observe that under condition p < d, we have

‖J(a)∆ϑh‖
L1(Ḃ

d/p−2
p,1 )

. ‖a‖
L∞(Ḃ

d/p
p,1 )

‖∆ϑh‖
L1(Ḃ

d/p−2
p,1 )

,

‖J(a)∆ϑℓ‖h
L1(Ḃ

d/p−2
p,1 )

. 2−j0‖J(a)∆ϑℓ‖h
L1(Ḃ

d/p−1
p,1 )

. 2−j0‖a‖
L∞(Ḃ

d/p
p,1 )

‖∆ϑℓ‖
L1(Ḃ

d/2−1
2,1 )

,
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∥∥∥
1

1 + a

(
2µ|Du|2+λ(divu)2

)∥∥∥
L1(Ḃ

d/p−2
p,1 )

. (1 + ‖a‖
L∞(Ḃ

d/p
p,1 )

)‖∇u‖2
L2(Ḃ

d/p−1
p,1 )

,

whence

(5.72) ‖ϑ‖h
L∞(Ḃ

d/p−2
p,1 )∩L1(Ḃ

d/p
p,1 )

. ‖ϑ0‖
h

Ḃ
d/p−2
p,1

+ 2−2j0‖a+ divw‖h
L1(Ḃ

d/p
p,1 )

+ 2j0(1 + ‖(a, u, ϑ)‖Y p
1,1

)‖(a, u, ϑ)‖2Y p
1,1
.

Step 5. High frequencies: the density. Exactly as in the barotropic case, Inequality (2.37) is
fulfilled.

Step 6. Closure of the estimates. Inserting (5.72) in (5.71), we get for large enough j0

‖w‖h
L∞(Ḃ

d/p−1
p,1 )∩L1(Ḃ

d/p+1
p,1 )

. ‖w0‖
h

Ḃ
d/p−1
p,1

+ ‖ϑ0‖
h

Ḃ
d/p−2
p,1

+2j0(1 + ‖(a, u, ϑ)‖Y p
1,1
)‖(a, u, ϑ)‖2Y p

1,1
+ 2−2j0‖a‖h

L1(Ḃ
d/p
p,1 )

.

Next, plugging that latter inequality in (2.37), we get for large enough j0,

‖a‖h
L1∩L∞(Ḃ

d/p
p,1 )

. ‖a0‖
h

Ḃ
d/p
p,1

+ ‖w0‖
h

Ḃ
d/p−1
p,1

+ ‖ϑ0‖
h

Ḃ
d/p−2
p,1

+ 2j0(1 + ‖(a, u, ϑ)‖Y p
1,1

)‖(a, u, ϑ)‖2Y p
1,1
.

Resuming to (5.59) and (5.70), it is now easy to conclude that

‖(a, u, ϑ)‖Y p
1,1

. ‖(a0, u0, ϑ0)‖Y p
0,1,1

+ 22j0(1 + ‖(a, u, ϑ)‖Y p
1,1

)‖(a, u, ϑ)‖2Y p
1,1
,

from which it is clear that we may get (5.51) if ‖(a0, u0, ϑ0)‖Y p
0,1,1

is small enough.

Step 7. The proof of global existence and uniqueness. Uniqueness up to p < d is just a
consequence of the recent paper [7]. Local-in-time existence of a solution (a, u, ϑ) to (5.49)

with a ∈ C([0, T ]; Ḃ
d/p
p,1 ), u ∈ C([0, T ]; Ḃ

d/p−1
p,1 )∩L1(0, T ; Ḃ

d/p+1
p,1 ) and ϑ ∈ C([0, T ]; Ḃ

d/p−2
p,1 ) ∩

L1(0, T ; Ḃ
d/p
p,1 ) has been established in [8]. That the additional low frequency L2 type regu-

larity is preserved during the evolution is a consequence of the computations that have been
carried out in Step 2.

Finally, by slight modifications of the blow-up criterion of Prop. 10.10 of [2], one can show
that if

‖∇u‖L1
T (L∞) + ‖a‖

L∞

T (Ḃ
d/p
p,1 )

+ ‖ϑ‖
L1
T (Ḃ

d/p
p,1 )

<∞

then the solution may be continued beyond T. As the norm in the space Y p
1,1 (restricted to

[0, T )) clearly controls the above l.h.s., Inequality (5.51) implies the global existence.

Step 8. Low Mach number limit : strong convergence in the whole space case. As in our
recent work [15] dedicated to the Oberbeck-Boussinesq approximation, the proof of strong
convergence relies on the dispersive properties of the system fulfilled by qε := ϑε + aε and
Quε, namely




∂tq
ε +

2

ε
divQuε = −div (uεqε) + κ∆ϑε + κJ(εaε)∆ϑε +

ε

1+εaε
(
2µ|Duε|2 + λ(div uε)2

)
,

∂tQu
ε +

1

ε
∇qε = ν∆Quε −Q(uε · ∇uε)−Q(J(εaε)Auε) +Q

(
(aε − ϑε)

∇aε

1+εaε

)
·

Remembering that the low frequencies of the r.h.s. have been bounded in L1(R+; Ḃ
d/2−1
2,1 ) by

Cε,ν
0 := ‖(aε0, u

ε
0, ϑ

ε
0)‖Y p

0,ε,ν
(see Step 2), one can mimic the proof of the strong convergence
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for the barotropic case in the case d ≥ 3 (see the beginning of Section 4) and easily conclude
that (5.53) is satisfied.

The high frequencies of aε and Quε may be bounded as in (5.53) (argue as in the barotropic
case) but not (ϑε)h,ε̃ which is one derivative less regular than (aε)h,ε̃.

Let us now study the strong convergence of Puε to u. To this end, we observe that δuε :=
Puε − u fulfills

(5.73) ∂tδu
ε − µ∆δuε + P(Puε ·∇δuε + δuε ·∇u) + P

(
uε ·∇Quε +Quε ·∇Puε) + J(εaε)Auε

)

= P

(
1

1 + εaε

(
∇(qε)ℓ,ε̃aε +∇(aε)h,ε̃aε +∇(ϑε)h,ε̃aε

)
+ J(εaε)∇(aεϑε)

)
·

The first line may be handled as in the barotropic case : we get

‖P(Puε · ∇δuε + δuε · ∇u)‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖Puε‖
L∞(Ḃ

d/p−1
p,1 )

‖∇δuε‖
L1(Ḃ

(d+1)/p−1/2
p,1 )

+‖δuε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 )

‖∇u‖
L1(Ḃ

d/p
p,1 )

,

‖P
(
uε ·∇Quε+Quε ·∇Puε)+J(εaε)Auε

)
‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ν−1ε 1/2−1/p(1+ν−1Cε,ν
0 )(Cε,ν

0 )2.

In order to bound the terms of the second line of (5.73), we shall use repeatedly the fact that
for any smooth function K vanishing at 0, we have, by virtue of Proposition 6.1,

(5.74) ‖K(εaε)‖
L∞(Ḃ

d/p
p,1 )

. ν−1
(
‖aε‖ℓ,ε̃

L∞(Ḃ
d/p−1
p,1 )

+ ε̃‖aε‖h,ε̃
L∞(Ḃ

d/p
p,1 )

)
. ν−1Cε,ν

0 .

On the one hand, using product laws in Besov spaces yields

‖∇(qε)ℓ,ε̃aε‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖(qε)ℓ,ε̃‖
L2(Ḃ

(d+1)/p−1/2
p,1 )

‖aε‖
L2(Ḃ

d/p
p,1 )

,

‖∇(aε)h,ε̃aε‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖(aε)h,ε̃‖
L2(Ḃ

(d+1)/p−1/2
p,1 )

‖aε‖
L2(Ḃ

d/p
p,1 )

,

‖∇(ϑε)h,ε̃aε‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖(ϑε)h,ε̃‖
L1(Ḃ

d/p
p,1 )

‖aε‖
L∞(Ḃ

(d+1)/p−1/2
p,1 )

‖J(εaε)∇(aεϑε)‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖εaε‖
L∞(Ḃ

(d+1)/p−1/2
p,1 )

(‖(ϑε)h,ε̃‖
L1(Ḃ

d/p
p,1 )

‖aε‖
L∞(Ḃ

d/p
p,1 )

+‖(ϑε)l,ε̃‖
L2(Ḃ

d/p
p,1 )

‖aε‖
L2(Ḃ

d/p
p,1 )

).

Hence using (4.48), (5.53), (5.51) and (5.74),
∥∥∥P

( 1

1 + εa

(
∇(qε)ℓ,ε̃aε +∇(aε)h,ε̃aε +∇(ϑε)h,ε̃aε

)
+ J(εaε)∇(aεϑε)

)∥∥∥
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ν−1(1 + ν−1Cε,ν
0 )(Cε,ν

0 )2.

Putting together all the above inequalities and the uniform estimate (5.51), we end up with

δU ε := ‖δuε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 )

+ µ‖δuε‖
L1(Ḃ

(d+1)/p+1/2
p,1 )

. ‖Puε0 − v0‖Ḃ(d+1)/p−3/2
p,1

+ ν−1Cε,ν
0 δU ε + ν−1ε̃ 1/2−1/p(1 + ν−1Cε,ν

0 )(Cε,ν
0 )2,

which obviously implies (5.54), owing to the smallness condition satisfied by Cε,ν
0 .

Let us finally study the strong convergence of Θε := ϑε − aε to the solution Θ of (5.52).
Given the uniform bounds for (ϑε0) and for (aε0), it is natural to assume that the limit Θ0

belongs to Ḃ
d/2−1
2,1 (as a matter of fact Ḃ

d/p−1
p,1 is enough for what follows). Likewise, as (Puε0)

is bounded in Ḃ
d/p−1
p,1 , one may assume that its weak limit v0 belongs to Ḃ

d/p−1
p,1 . Hence the

corresponding solution u to (1.10) is in C(R+; Ḃ
d/p−1
p,1 ) ∩ L1(R+; Ḃ

d/p+1
p,1 ), and using the fact
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that div (uΘ) = u · ∇Θ, it is easy to prove that the linear equation (5.52) admits a unique

solution Θ ∈ Cb(R+; Ḃ
d/2−1
2,1 ) ∩ L1(R+; Ḃ

d/2+1
2,1 ).

Next, from (5.52), observing that ∆ϑε = 1
2∆Θε+ 1

2∆q
ε, we readily get that δΘε := Θε−Θ

satisfies

(5.75) ∂tδΘ
ε −

κ

2
∆δΘε = −Puε · ∇δΘε − δuε · ∇Θ− div (QuεΘε)

−
κ

2
∆qε − κJ(εaε)∆ϑε +

ε

1 + εaε
(
2µ|Duε|2 + λ(divuε)2

)
.

The level of regularity on which estimates for δΘε may be proved, is essentially given by the
available estimates for δuε, through the term δuε ·∇Θ = div (δuεΘ), by the fact that decay esti-

mates are available for the low frequencies of the term ∆qε in the space L2(R+; Ḃ
(d+1)/p−5/2
p,1 )

only through (5.53), and by observing that the high frequencies of ∆qε (and more precisely

of ∆ϑε) are at most in the space L1(Ḃ
d/p−2
p,1 ), but have decay ε.

As regards δuε · ∇Θ, product laws in Besov spaces give the following bound:

‖δuε · ∇Θ‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖δuε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 )

‖Θ‖
L1(Ḃ

d/2+1
2,1 )

.

Note that only an L2-in-time estimate is available for (∆qε)ℓ,ε̃, through (5.53). However, a
small variation on (0.4) (see e.g. [2]) ensures that the solution to

∂tz − κ∆z = −
κ

2
(∆qε)ℓ,ε̃, z|t=0 = 0

belongs to Cb(R+; Ḃ
(d+1)/p−3/2
p,1 ) ∩ L2(R+; Ḃ

(d+1)/p−1/2
p,1 ) and satisfies

‖z‖
L2(Ḃ

(d+1)/p−1/2
p,1 )

+ ‖z‖
L∞(Ḃ

(d+1)/p−3/2
p,1 )

. ‖∆qε‖ℓ,ε̃
L2(Ḃ

(d+1)/p−5/2
p,1 )

.

So in short we expect to be able to bound δΘε in

L∞(R+; Ḃ
(d+1)/p−3/2
p,1 + Ḃ

d/p−2
p,1 ) ∩

(
L2(R+; Ḃ

(d+1)/p−1/2
p,1 ) + L1(R+; Ḃ

d/p
p,1 )

)
.

Let us now look at the other terms in the r.h.s. of (5.75). It is clear that (∆aε)h,ε̃ may be
bounded exactly as (∆qε)ℓ,ε̃. Next, product laws easily give that

‖Puε · ∇δΘε‖
L1(Ḃ

(d+1)/p−3/2
p,1 +Ḃ

d/p−2
p,1 )

. ‖Puε‖
L2(Ḃ

d/p
p,1 )

‖δΘε‖
L2(Ḃ

(d+1)/p−1/2
p,1 +Ḃ

d/p−1
p,1 )

,

‖div (QuεΘε)‖
L1(Ḃ

(d+1)/p−3/2
p,1 +Ḃ

d/p−2
p,1 )

. ‖Quε‖
L2(Ḃ

(d+1)/p−1/2
p,1 )

(
‖Θε‖ℓ,ε̃

L2(Ḃ
d/2
2,1 )

+ ‖aε‖h,ε̃
L2(Ḃ

d/p
p,1 )

)

+‖Quε‖
L2(Ḃ

d/p
p,1 )

‖ϑε‖h,ε̃
L2(Ḃ

d/p−1
p,1 )

,

‖J(εaε)∆(ϑε)ℓ,ε̃‖
L1(Ḃ

(d+1)/p−3/2
p,1 )

. ‖εaε‖
L∞(Ḃ

(d+1)/p−1/2
p,1 )

‖∆ϑε‖ℓ,ε̃
L1(Ḃ

d/2−1
2,1 )

,

‖J(εaε)∆(ϑε)h,ε̃‖
L1(Ḃ

d/p−2
p,1 )

. ‖εaε‖
L∞(Ḃ

d/p
p,1 )

‖∆ϑε‖h,ε̃
L1(Ḃ

d/p−2
p,1 )

,
∥∥ ε
1+εaε

(
2µ|Duε|2+λ(divuε)2

)
‖
L1(Ḃ

d/p−2
p,1 )

. ε(1+‖εa‖
L∞(Ḃ

d/p
p,1 )

)‖Duε‖2
L2(Ḃ

d/p−1
p,1 )

.

Putting all the above inequalities together, remembering of (5.51) and (5.53), and setting

δXε := ‖δΘε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 +Ḃ

d/p−2
p,1 )

+ ‖δΘε‖
L2(Ḃ

(d+1)/p−1/2
p,1 )+L1(Ḃ

d/p
p,1 )

,
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we eventually get

δXε . ‖Θε
0 −Θ0‖Ḃ(d+1)/p−3/2

2,1 +Ḃ
d/p−2
p,1

+ ε̃ Cε,ν
0 + ν−1(1 + ν−1Cε,ν

0 )ε̃ 1/2−1/p(Cε,ν
0 )2

+‖δuε‖
L∞(Ḃ

(d+1)/p−3/2
p,1 +Ḃ

d/p−2
p,1 )

‖∇Θ‖
L1(Ḃ

d/p
p,1 )

+ ν−1Cε,ν
0 δXε,

which allows to conclude to (5.55). �

6. Appendix

In this short appendix, we recall the definition of paraproduct and remainder operators,
and give some technical estimates that have been used throughout in the paper.

To start with, let us recall that, in the homogeneous setting, the paraproduct and remainder
operators T and R are formally defined as follows:

Tuv :=
∑

j∈Z

Ṡj−1u ∆̇jv and R(u, v) :=
∑

j∈Z

∆̇ju
(
∆̇j−1+∆̇j+∆̇j+1

)
v

where Ṡk stands for the low-frequency cut-off operator defined by Ṡk := χ(2−kD).

The fundamental observation is that the general term of Tuv is spectrally localized in the
annulus

{
ξ ∈ R

d , 1/12 ≤ 2−j|ξ| ≤ 10/3
}
, and that the general term of R(u, v) is localized in

the ball B(0, 2j .20/3) (of course the values 1/12, 10/3 and 20/3 do not matter).

The main interest of the above definition lies in the following Bony’s decomposition (first
introduced in [3]):

uv = Tuv +R(u, v) + Tvu,

that has been used repeatedly in the present paper.

The following lemma has been used to get appropriate estimates of the solution both in
the barotropic and in the polytropic cases:

Lemma 6.1. Let A(D) be a 0-order Fourier multiplier, and j0 ∈ Z. Let s < 1, σ ∈ R and
1 ≤ p, p1, p2 ≤ ∞ with 1/p = 1/p1 + 1/p2. Then there exists a constant C depending only on
j0 and on the regularity parameters such that

‖[Ṡj0A(D), Ta]b‖Ḃσ+s
p,1

≤ C‖∇a‖Ḃs−1
p1,1

‖b‖Ḃσ
p2,∞

.

In the limit case s = 1, we have

‖[Ṡj0A(D), Ta]b‖Ḃσ+1
p,1

≤ C‖∇a‖Lp1‖b‖Ḃσ
p2,1

.

Proof. We just treat the case s < 1. By the definition of paraproduct, we have

[Ṡj0A(D), Ta]b =
∑

j∈Z

[Ṡj0A(D), Ṡj−1a]∆̇jb.

Using that A(D) is homogeneous of degree 0 and the properties of localization of operators

Ṡk and ∆̇k, we get for some smooth function φ̃ and for j ≤ j0 − 4,

[Ṡj0A(D), Ṡj−1a]∆̇jb =
∑

k≤j−2

[φ̃(2−jD), ∆̇ka]∆̇jb.

Applying Lemma 2.97 of [2] yields

(6.76) ‖[φ̃(2−jD), ∆̇ka]∆̇jb‖Lp . 2−j‖∆̇ka‖Lp1‖∆̇jb‖Lp2 .
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In the case where j is close to j0 (say |j − j0| ≤ 4), one may still find some smooth function
ψ supported in an annulus, and such that

[Ṡj0A(D), Ṡj−1a]∆̇jb = [ψ(2−j0D), Ṡj−1a]∆̇jb,

which allows to get again (6.76). Summing up over j and k, and using convolution inequalities
for series, it is easy to conclude to the desired inequality. �

Finally, we recall the following composition result.

Proposition 6.1. Let G be a smooth function defined on some open interval I of R contain-
ing 0. Assume that G(0) = 0. Then for all s > 0, bounded interval J ⊂ I, 1 ≤ m ≤ ∞, and
function a valued in J, the following estimates hold true:

‖G(a)‖Ḃs
p,1

≤ C‖a‖Ḃs
p,1

and ‖G(a)‖
L̃m(Ḃs

p,1)
≤ C‖a‖

L̃m(Ḃs
p,1)
.
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[18] E. Feireisl and A. Novotný: Singular limits in thermodynamics of viscous fluids, Advances in Mathematical

Fluid Mechanics, Birkhäuser Verlag, Basel (2009).
[19] H. Fujita and T. Kato: On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and

Analysis, 16, 269-315 (1964).



THE INCOMPRESSIBLE LIMIT IN Lp TYPE CRITICAL SPACES 29

[20] T. Hagstrom and J. Lorenz: All-time existence of classical solutions for slightly compressible flows, SIAM

J. Math. Anal., 29, pages 652–672 (1998).
[21] B. Haspot: Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch.

Ration. Mech. Anal., 202(2), pages 427–460 (2011).
[22] B. Haspot: Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces,

Journal of Differential Equations, 251(8), pages 2262–2295 (2011).
[23] B. Haspot: Global existence of strong solution for shallow water system with large initial data on the

irrotational part, arXiv:1201.5456.
[24] D. Hoff: The zero-Mach limit of compressible flows, Comm. Math. Phys., 192(3), pages 543–554 (1998).
[25] S. Klainerman and A. Majda: Compressible and incompressible fluids, Comm. Pure Appl. Math., 35,

pages 629–651 (1982).
[26] R. Klein: Multiple spatial scales in engineering and atmospheric low Mach number flows. M2AN Math.

Model. Numer. Anal., 39(3) pages 537–559 (2005).
[27] H. Kozono and M. Yamazaki: Semilinear heat equations and the Navier-Stokes equations with distribu-

tions in new function spaces as initial data, Communications in Partial Differential Equations, 19, pages
959–1014 (1994).

[28] H.-O. Kreiss, J. Lorenz and M.J. Naughton: Convergence of the solutions of the compressible to the
solutions of the incompressible Navier-Stokes equations, Adv. Appl. Math., 12, pages 187]–214 (1991).

[29] P.-L. Lions: Mathematical Topics in Fluid Mechanics, Oxford Science Publications, Vol. 2, Compressible
models, The Clarendon Press, Oxford University Press, New-York (1998).

[30] P.-L. Lions and N. Masmoudi: Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris
Sér. I Math., 329(5), pages 387–392 (1999).
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