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Introduction

Turing machines can be classified according to their numbers of states and symbols. It is known (see [START_REF] Woods | The complexity of small universal Turing machines: a survey[END_REF] for a survey) that there are universal Turing machines in the following sets (number of states × number of symbols): 2 × 18, 3 × 9, 4 × 6, 5 × 5, 6 × 4, 9 × 3, 18 × 2.

On the other hand, all the Turing machines in the following sets are decidable:

1 × n, 2 × 3, 3 × 2, n × 1.
In order to refine the classification of Turing machines between universal and decidable classes, properties in connection with the 3x + 1 function have been considered. The 3x+1 function is also called the Collatz function, and Collatz-like functions are functions on integers with a definition of the following form: there exist integers d ≥ 2, a i , b i , 0 ≤ i ≤ d -1, such that, for all integers x,

f (x) = a i x + b i d if x ≡ i (mod d).
With these definitions, we can state the following properties of Turing machines, that have been used to refine the classification according to the numbers of states and symbols (see [START_REF] Michel | Generalized 3x+1 functions and the theory of computation[END_REF] for a survey).

• Turing machines that simulate the iteration of the 3x + 1 function and never halt. It is known that there are such machines in the sets

2 × 8, 3 × 5, 4 × 4, 5 × 3, 10 × 2.
We improve these results by giving a 3 × 4 Turing machine.

• Turing machines that simulate the iteration of the 3x + 1 function and halt when the loop 2 → 1 → 2 is reached. It is known that there is such a machine in the set 6 × 3.

In this article, we give four new Turing machines, in the classes 3 × 10, 4 × 6, 5 × 4 and 13 × 2.

• Turing machine that simulate the iteration of a Collatz-like function. It is known that there are such machines in the sets 2 × 4, 3 × 3, 5 × 2.

Preliminaries: Turing machines

The Turing machines we use have

• one tape, infinite on both sides, made of cells containing symbols,

• one reading and writing head, [START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF][START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF], Ba = Baiocchi [START_REF] Baiocchi | 3N+1, UTM e Tag-systems[END_REF], M i 1 = Michel [START_REF] Michel | Busy beaver competition and Collatz-like problems[END_REF], M i 2 = Michel (this paper). In roman boldface, halting machines.

• a set Q = {A, B, . . .}
• a set Σ = {b, 0, 1, . . .} of symbols, where b is the blank symbol (or Σ = {0, 1}, when 0 is the blank symbol),

• a next move function

δ : Q × Σ → Σ × {L, R} × (Q ∪ {H}).
If δ(p, a) = (b, D, q), then the Turing machine, reading symbol a in state p, replaces a by b, moves in the direction D ∈ {L, R} (L for Left, R for Right), and comes into state q. On an input x k . . . x 0 ∈ Σ k+1 , the initial configuration is ω b(Ax k ) . . . x 0 b ω . This means that the word x k . . . x 0 is written on the tape between two infinite strings of blank symbols, and the machine is reading symbol x k in state A.

The known Turing machines

Let us give some more precisions about the Turing machines that simulate the 3x+1 function.

The following results are displayed in Table 1.

Michel [START_REF] Michel | Busy beaver competition and Collatz-like problems[END_REF] gave a 6×4 Turing machine that halts when number 1 is reached. This machine works on numbers written in binary. Division by 2 of even integers is easy and multiplication by 3 is done by the usual multiplication algorithm.

Margenstern [START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF][START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF] gave never halting 5 × 3 and 11 × 2 Turing machines in binary, and never halting 2 × 10, 3 × 6, 4 × 4 Turing machines in unary, that is working on numbers n written as strings of n 1s.

Baiocchi [START_REF] Baiocchi | 3N+1, UTM e Tag-systems[END_REF] gave five never halting Turing machines in unary, including 2 × 8, 3 × 5 and 10 × 2 machines that improved Margenstern's results.

In this article, we give a never halting 3 × 4 Turing machine that works on numbers written in base 3. Multiplication by 3 is easy and division by 2 is done by the usual division algorithm. Note that Baiocchi and Margenstern [START_REF] Baiocchi | Cellular automata about the 3x + 1 problem[END_REF] already used numbers written in base 3 to define cellular automata that simulate the 3x + 1 function.

By adding two states to this 3 × 4 Turing machine, we derive a 5 × 4 Turing machine that halts when number 1 is reached.

We also give three other Turing machines that halt when number 1 is reached:

• A 3 × 10 Turing machine obtained by adding one state to the 2 × 10 Turing machine of Margenstern [START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF][START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF].

• A 4 × 6 Turing machine obtained by adding one state to the 3 × 6 Turing machine of Margenstern [START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF][START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF].

• A 13 × 2 Turing machine obtained by adding two states to the 11 × 2 Turing machine of Margenstern [START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF][START_REF] Margenstern | Frontier between decidability and undecidability: a survey[END_REF].

A never halting 3 × Turing machine

This Turing machine M 1 is defined as follows:

M 1 b 0 1 2 A bLC 0RA 0RB 1RA B 2LC 1RB 2RA 2RB C bRA 0LC 1LC 2LC
The idea is simple. A positive integer is written on the tape, in base 3, in the usual order. Initially, in state A, the head reads the most significant digit, at the left end of the number. The initial configuration on input x = k i=0 x i 3 i is ω b(Ax k ) . . . x 0 b ω . Then the machine performs the division by 2, using the usual division algorithm. Partial quotients are written on the tape. Partial remainders are stored in the states: 0 in state A, 1 in state B. When the head passes the right end of the number, reading a b, then

• if the remainder is 0, nothing is done: 2n → n,

• if the remainder is 1, a 2 is concatenated to the number: 2n + 1 → n → 3n + 2.

Then the head comes back, in state C, to the left end of the number and is ready to perform a new division by 2.

We have the following theorem.

Theorem 4.1 The 3x + 1 conjecture is true iff, for all positive integer x = x k . . . x 0 written in base 3, there exists an integer n ≥ 0 such that, on input x k . . . x 0 , the Turing machine M 1 eventually reaches the configuration ω b0 n (A1)b ω .

5 Turing machines that halts on the final loop 

A 5 × 4 Turing machine

This Turing machine M 6 is defined as follows.

M 6 b 0 1 2 A bLC 0RA 0RB 1RA B 2LE 1RB 2RA 2RB C bRD 0LC 1LC 2LC D bRA bRB 1RA E bRH 0LC 1LC 2LC
Turing machine M 6 is obtained from Turing machine M 1 by adding a state D that wipes out the useless 0s, and a state E that detects the partial configuration b(Bb).

We have the following theorem.

Theorem 5.3 The 3x + 1 conjecture is true iff Turing machine M 6 halts on all input x = x k . . . x 0 representing a positive integer written in base 3.

A 13 × 2 Turing machine

Margenstern [5, Fig. 8] gave the following never halting 11 × 2 Turing machine M 7 (in this table, H is not a halting state).

M 7 0 1 A 1RI 0RB B 0RA 0RG C 0RA 1RD D 0RC 1RE E 1RI 1RF F 1RC 0RG G 1RC 1RH H 0RE 1RG I 1LJ J 0RB 1LK K 0LJ 1LJ
This machine works on numbers written in binary, with the least significant bit at the left end of the number, and digits 0 and 1 coded by 10 and 11, so that the initial configuration on number n = x k . . . x 0 = k i=0 x i 2 i is ω 0(A1)x 0 1x 1 . . . 1x k 0 ω . Division by 2 of even integers is easy, and multiplication by 3 is done by the usual algorithm.

By adding two new states L and M , we can detect the partial configuration (A1)10, and we obtain the following 13 × 2 Turing machine M 8 , where Z is the halting state.

M 8 0 1 A 1RI 0RL B 0RA 0RG C 0RA 1RD D 0RC 1RE E 1RI 1RF F 1RC 0RG G 1RC 1RH H 0RE 1RG I 1LJ J 0RB 1LK K 0LJ 1LJ L 0RA 0RM M 0LZ 1RH
We have the following theorem.

Theorem 5.4 The 3x + 1 conjecture is true iff, for all positive number n = x k . . . x 0 = k i=0 x i 2 i , Turing machine M 8 halts on the initial configuration ω 0(A1)x 0 1x 1 . . . 1x k 0 ω .

Conclusion

We have given a new 3 × 4 never halting Turing machine that simulates the iteration of the 3x + 1 function. It seems that it will be hard to improve the known results on never halting machines.

On the other hand, for Turing machines that halt on the conjectured final loop of the 3x + 1 function, more researches are still to be done.

5. 1 A 3 ×

 13 10 Turing machine Margenstern [5, Fig. 11] gave the folowing never halting 2 × 10 Turing machine M 2 . kRB xRA xRA rLA rLA yRA B zLB uRB xRB yRB vLB uRA tLB 1LA xRB bRB Turing machine M 2 works on numbers written in unary, so that the initial configuration on number n ≥ 1 is ω b(A1)1 n-1 b ω . By adding a new state C, we can detect the partial configuration (A1)b, and we obtain the following 3 × 10 Turing machine M 3 . kRB xRA xRA rLA rLA yRA B zLB uRB xRB yRB vLB uRA tLB 1LA xRB bRB C bLH uRB yRB We have the following theorem Theorem 5.1 The 3x + 1 conjecture is true iff, for all positive integers n, Turing machine M 3 halts on the initial configuration ω b(A1)1 n-1 b ω . 5.2 A 4 × 6 Turing machine Margenstern [5, Fig. 10] gave the folowing never halting 3 × 6 Turing machine M 4 (Note that transition (1, z) → (xR2) in this figure should be (1, z) → (rR2)).

Theorem 5 . 2

 52 1LA rRB B 1LB aRC 1LB 1LA xRB bRA C zLC xRC 1LC aRA rRC zLC Turing machine M 4 works on numbers written in unary, with initial configuration ω b(A1)1 n-1 b ω . By adding a new state D, we can detect the partial configuration (A1)b, and we obtain the following 4 × 6 Turing machine M 5 . 1LA 1LA rRB B 1LB aRC 1LB 1LA xRB bRA C zLC xRC 1LC aRA rRC zLC D bLH aRC xRB We have the following theorem. The 3x + 1 conjecture is true iff, for all positive integers n, Turing machine M 5 halts on the initial configuration ω b(A1)1 n-1 b ω .

Table 1 :

 1 Turing machines simulating the 3x + 1 function: M a = Margenstern

	of states, plus a halting state H (or Z),