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Abstract

(MSC=11D04) In this document, we deal with the concept of prime num-
ber together with the Legendre conjecture.
Keywords : Primes ; Legendre ; Conjecture.

Defintion

The prime numbers are called primes because they are the bricks of the
numbers : Each number n can be written as n = pn1

1 pn2

2 ...pni

i when pj are
primes and nj are integers.
This writing is called the decomposition in prime factors of the number n.
In fact, this definition is a very particular case of a much more general one.
Indeed, if nj are rationals, everything changes.
Considering that the decomposition in prime factors of an integer n when
nj are rationals n = pn1

1 pn2

2 ...pni

i . In this writing which is unique for each n,
then, the pj have no reason to be the same than before and they become
a convention. For example, if we decide that 16 is conventionally prime,

we have 2 = 16
1

4 and each number can be written according to 16 and its
rational exponent instead of 2.
If we decide conventionally that Fn = 22

n

+ 1 is prime ∀n ≥ 0, and it is
possible by the fact that GCD(Fn, Fm) = 1 when n 6= m, then each new
prime (new primes=bricks with rational exponents in the writing) replaces
anther one in the list of the old primes (old primes=bricks with integral ex-
ponents in the writing).
Example : If by convention, F5 = 22

5

+ 1 = 4294967297 = 641.6700417 is
prime, we can decide that it replaces 641 = F5.6700417

−1 which becomes
compound and 6700417 is prime or 641 is prime and 67004147 = F5.641

−1

is compound.
In all cases, the advantage is that we have a formula which gives for each
n a prime. And we can see the the primes are infinite.
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There is a result which is enough interesting : Let Ulam spiral. The Fermat
numbers are all situated in the same line.
Let us apply it to the real numbers !
The following numbers can be called bricks or elements, because they
constitute the bricks of the numbers. They exist, of course, and we pre-
fer to call them prime numbers because they really generalize the concept
of primes. Let us see this : A real number is compound if it is equal to
±pn1

1 ...pni

i where pj are prime numbers and nj are rationals. We define
other real prime numbers which can not be expressed like this : π, e, ln (2).

Thus q
√
p = p

1

q for example is compound.
We can notice that such numbers really generalize the concept of prime, as
they can be written only as p = p.1
Furthermore n

√
p+1 is conventionally prime, with p prime, hence

√
p−1 =

(p− 1)(
√
p+ 1)−1 is compound !

And
2
i√
p− 1 = (p− 1)( 2

i√
p + 1)−1( 2

i−1
√
p+ 1)−1...(

√
p+ 1)−1

And, conventionally, π and e are primes instead of πn0 and em0 with (n0 −
1)(m0 − 1) 6= 0 which are compound.
We define the GCD of two numbers as following : If p1 and p2 are prime
real numbers

p1 6= p2 ⇒ GCD(p1, p2) = 1

n1n2 < 0 ⇒ GCD(pn1

1 , pn2

1 ) = 1

n1n2 > 0;n1 > 0 ⇒ GCd(pn1

1 , pn2

1 ) = p
min(n1,n2)
1

n1n2 > 0;n1 < 0 ⇒ GCd(pn1

1 , pn2

1 ) = p
max(n1,n2)
1

GCD(pn1

1 pn2

2 ...pni

i , p1
′n′

1p2
′n′

2...pj
′n′

j ) =
∏

i,j

(GCD(pni

i , p
′n′

j

j ))

And if x = pn1

1 pn2

2 ...pni

i and y = p
ml1

l1
...p

mlj

li
then y divises x if GCD(x, y) = y.

Thus 3
2

does not divide the prime 3, for example.

The Legendre conjecture

The Legendre conjecture states that there is always a prime number bet-
ween the squares of two consecutive integers. What does it become with
our new definition ? It remains true ! Effectively :
Proof :
We always have

(2n)2 < 4n2 + 1 < (2n+ 1)2 < 4n2 + 8n + 1 < (2(n+ 1))2

Let us prove that (CD=common divisor)

CD(4n2 + 1, 4p2 + 1) = 5; p 6= n
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CD(4n2 + 8n+ 1, 4p2 + 8p+ 1) = 3, p 6= n

GCD(4n2 + 1; 4p2 + 8p+ 1) = 1

We have

d|4n2 + 1; d|4p2 + 8p+ 1

⇒ d|4(p2 − n2) + 8p

And 4n2 + 1 is odd then d is odd and

d|p2 − n2 + 2p

But
d|4n2 + 4p2 + 8p+ 2 ⇒ d|2(n+ p)2 − 4np+ 4p+ 1

Thus
d|2(p− n)(p+ n)2 + 4p(n+ p)

And
d|2(p− n)(p+ n)2 + p− n+ 4np(n− p) + 4p(p− n)

Hence

d|p− n+ 4np(n− p) = p− n+ 4pn2 − 4np2 − 8np+ 8np

Or
d|8np ⇒ d|np

Thus
d|p− n ⇒ d|n ⇒ d = 1

Also
n = 5(k + k′)± 1; p = 5(k − k′)± 1 6= n

⇒ 5|4n2 + 1; 5|4p2 + 1

And
n = 3(k + k′) + 2; p = 3(k − k′) + 2 6= n

⇒ 3|4n2 + 8n+ 1; 3|4p2 + 8p+ 1

And 4m2 + 1 and 4p2 + 8p + 1 can be taken primes simultaneously by
the new definition of the primes. Here is how : the first 4m2 + 1 divisible
by 5 is for m = 4 and then 4m2 + 1 = 65 = 13.5. We consider 65 prime
and then 5 = 65.13−1 is not a prime. The second 4m2 + 1 divisible by
5 is for m = 6 and then 4m2 + 1 = 145 = 29.5, 145 is now prime and
29 = 145.5−1 = 145.65−1.13 is not a prime. All this because there is only
one decomposition in prime factors. Etc...
Now by the same way, the first 4m2 + 8m + 1 divisible by 3 is for m = 2
and then 4m2+8m+1 = 33 = 11.3 is prime and 3 = 33.11−1 is not a prime,
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etc...
By this definition of the primes, as

(2n)2 < 4n2 + 1 < (2n+ 1)2 < 4n2 + 8n + 1 < (2(n+ 1))2

Means that between all x2 and (x+ 1)2 there is a prime ∀x ∈ N.

Turn back to the old primes

There is always a new prime p between the square of two consecutive
integers p = ux2 + (1− u)(x+ 1)2 ; 0 < u < 1)
Let us suppose Legendre flase for the old primes. There exists x for which
for which there exists b 6= 0 verifying p′ − ux2 − (1− u)(x+ 1)2 = b, ∀p′ old
prime).
True for new primes

p− ux2 − (1− u)(x+ 1)2 = 0

And false for old

p′ − u′′x2 − (1− u′′)(x+ 1)2 = b

But for a 6= 0

a2p− u(ax)2 − (1− u)(a(1 + x))2 = 0 = q − u′(ax)2 − (1− u′)(a(x+ 1))2

Because there is a new prime q betaween (ax)2 and a2(x+ 1)2. And

a2p′−u′′(ax)2−(1−u′′)(a(x+1)2) = a2b = a2p′−q+a2(u′−u′′)(x2−(x+1)2)

But
− q

a2
= b− p′ + (u′′ − u′)(x2 − (x+ 1)2) ∈ Z

∀a. Particularly a = q and then q = 1 : impossible ! It means that the hypo-
thesis is false, so for all x, there exists p old prime for which b = 0.

Conclusion

We del with the concept of prime number and gave a new definition of
primes. It allowed to prove the Legendre conjecture for the new definition
of primes and to transpose the proof to the old one.
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