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Abstract

In this work, we are interested in blind identification of sparse single-input multpe-output (SIMO)

systems. First, we present a modified cross-relations (CR) technique combined with a `p norm, which

is considered as a good sparsity measure. Then, A maximum a posteriori approach is considered using

generalized Laplacian distribution for the channel coefficients. This leads to a cost function given by the

deterministic maximum likelihood (ML) criterion penalized by ‘a sparsity measure’ term expressed by

the `p norm of the channel coefficient vector. A simple but efficient optimization algorithm using gradient

technique with optimal step-size is proposed. The simulations show that the proposed method outperforms

the ML technique in terms of estimation error and is robust against channel order overestimation errors.

Index Terms

Blind system identification, SIMO, Sparse.

I. INTRODUCTION

Blind system identification (BSI) is a fundamental signal processing technology aimed at retrieving

a system’s unknown information from its outputs only. This problem has received a lot of attention in
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the signal processing literature and a plethora of methods and techniques have been proposed to solve

the BSI over the last two decades [1]–[3]. Techniques for BSI can generally be classified into two main

classes (i) higher order statistical (HOS) and (ii) second order statistical (SOS) methods. Although HOS

methods [1] were proposed for BSI due to the rich information, large number of observation samples

are required. As a result, SOS methods such as [4] have become more popular. Comparison between

SOS and HOS methods have been presented in [3]. Unfortunately, these methods have demonstrated

their limitation when channel impulse response is very long and sparse (e.g. HF communication, echo

cancelation, etc).

Estimation of sparse long channels (i.e. channels with small number of nonzero coefficients but a large

span of delays) is considered in this paper. Such sparse channels are encountered in many communication

applications: High-Definition television (HDTV) channels are hundreds of data symbols long but there

are only a few nonzero taps [5]. Hilly terrain delay profile has a small number of multipath in the

broadband wireless communication [6] and underwater acoustic channels are also known to be sparse

[7]–[9]. As such, underwater acoustic channels typically exhibit significant delay spreads, but with very

few dominant multipath components [10]–[12].

In this paper we propose, to exploit the sparse nature of the channel impulse response via a maximum a

posteriori (MAP) approach using a Generalized Gaussian Distribution to model the sparse channel type.

As will be shown in the sequel, the MAP criterion combines the maximum-likelihood (ML) cost function

with the `p norm constraint (0 ≤ p ≤ 1) of the channel impulse response, which is considered by many

authors as a good sparsity measure, e.g. [13], [14].

In the following section, we discuss the data model that formulates our problem. Next, we review the

cross-relations (CR), deterministic ML and channel subspace (CS) methods for blind SIMO channel

identification before using it to introduce the Iterative Sparse Blind System Identification (ISBSI) and

MAP solutions. In Section VI, some simulations are undertaken to validate our algorithm and illustrate
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its robustness against channel overestimation errors and to compare its performance to other existing BSI

techniques.

II. PROBLEM FORMULATION

The problem addressed in this paper is to determine the sparse impulse response of a SIMO system in

a blind way, i.e. only the observed system outputs are available and used without assuming knowledge

of the specific input signal.

Consider a mathematical model where the input and the output are discrete, the system is driven by a

single-input sequence s(n) and yields M output sequences x1(n), . . . , xM (n), and the system has finite

impulse responses (FIR’s) hi(n) 6= 0, for n = 0, . . . , L and i = 1, . . . ,M . Such a system model can be

described as follows : 

x1(n) = s(n) ∗ h1(n) + w1(n)

x2(n) = s(n) ∗ h2(n) + w2(n)

...

xM (n) = s(n) ∗ hM (n) + wM (n)

(1)

where ∗ denotes linear convolution and w(n) = [w1(n), . . . , wM (n)]T is an additive spatial white noise,

i.e. E[w(n)w(n)H ] = σ2IM where (·)T and (·)H denote the transpose and the conjugate transpose,

respectively and IM is a M ×M identity matrix. In vector form, equation (1) can be expressed as :

x(n) =

L∑
k=0

h(k)s(n− k) + w(n) ,

where h(z) =
∑L

k=0 h(k)z−k is an unknown causal FIR M×1 transfer function satisfying h(z) 6= 0, ∀z.

Given a finite set of observation vectors x(1), . . . ,x(T ) and based on the channel entries co-primness (i.e.

h(z) 6= 0 ∀z), the objective here is to estimate the channel coefficients vector h = [h(0)T , · · · ,h(L)T ]T

up to a scalar constant (this is an inherent indeterminacy of the blind system identification problem as

shown in [4]).
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III. IDENTIFICATION SIMO SYSTEMS

In this section, we introduce a new methods for blind SIMO systems identification based on sparse

assumption of channel impulse response. Therefore, we start this section by a brief overview of well known

maximum-likelihood (ML) method [2], in order to facilitate the introduction of the sparsity assumption

based approach via maximum a posteriori (MAP) probability method and its variants.

A. Maximum Likelihood Method

maximum-likelihood (ML) is a classic approach applicable to any parameter estimation problem where

the probability density function (PDF) of the available data is known. Assuming that the system output

vector is corrupted by additive white Gaussian noise vector, the system output vector can be rewrite as

x = HMs + w (2)

and the PDF of x is given by

f(x|h) =
1

(2π)
T

2 σT
exp

(
− 1

2σ2
‖x−HMs‖22

)

where σ2 is the variance of each element of w. The ML estimates of HM and s are given by those

arguments that maximize the PDF f(x)

(HM , s) = arg max
HM ,s

f(x|h) (3)

= arg min
HM ,s

{
‖x−HMs‖22

}
(4)

where proper constraints on HM and s are imposed. Note that such ML criterion is equivalent to the

least-square (LS) criterion, for which the knowledge of the PDF of x is not necessary. For any given

HM , the ML estimate of that minimizes the quadratic function ‖x−HMs‖22 is known to be

ŝ =
(
HH
MHM

)−1HH
Mx
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(Under the necessary identifiability condition, the matrix HM is known to have full column rank [15].)

Using this estimate in equation (4) yields

ĤM = arg min
HM

{
‖(IM −PH)x‖22

}
(5)

where PH is the orthogonal projection matrix onto the range of HM , i.e.

PH = HM

(
HH
MHM

)−1HH
M

Although the minimization in (5) is computationally much more efficient than that in (4), it is still highly

nonlinear. Therefore, the computation of (5) has to be iterative in nature. Many iterative optimization

approaches such as [16], [17] can be applied to compute (5). In this paper, we have chosen to use the

two-step ML (TSML) approach presented in [2]. In this case the channel estimation is given by (for more

details see [2]):

ĥ = arg min
h

{
hHXH

M

(
GHMGM

)#XMh
}

(6)

where the superscript (·)# denotes a Moore-Penrose pseudoinverse operator, XM is defined by:

X 2 = [X2, −X1] (7)

and

X l =



X l−1 0

Xl 0 −X1

. . .
...

0 Xl −Xl−1


(8)

with l = 3, . . . ,M and :

Xl =



xl(L) . . . xl(0)

...
...

xl(T − 1) . . . xl(T − L− 1)


. (9)
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and GM is defined by:

GH2 =
[
−H1, H2

]
(10)

and

GHq =



GHq−1 0

−Hq 0 H1

. . .
...

0 −Hq Hq−1


(11)

where q = 3, . . . ,M and Hq is the top-left (T − L)× T submatrix of Hq.

The expression (6) suggests the following TSML method.

• Step 1 : ĥc = arg min
‖h‖2=1

{
hHXH

MXMh
}

• Step 2 : ĥe = arg min
‖h‖2=1

{
hHXH

M

(
GHc Gc

)#XMh
}

, where Gc is GM constructed from ĥc according

to equations (10) and (11)

The first step comes from (6) by setting the weighting matrix
(
GHMGM

)#
to an identity matrix. It can

be shown that Step 1 of the algorithm yields the exact estimate of h in the absence of noise (or when

the noise is white and the data length is infinite) and that Step 2 of the algorithm yields the optimum

(ML) estimate of h at a relatively high signal-to-noise ratio (SNR).

B. Maximum a Posteriori Method

In this section, we introduce a Maximum a Posteriori (MAP) probability method which estimates the

probability distribution of h as follows

ĥMAP = arg max
h

{
f(x|h)g(h)∫
f(x|h′)g(h′)dh′

}
(12)

= arg max
h
{f(x|h)g(h)} (13)
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To approximate the channel distribution in (13), we adopt the Generalized Gaussian Distribution (GGD)

model, which can be mathematically represented under the assumption that all the component of h are

i.i.d, as follows :

g(h) =

 p

2β Γ
(
1
p

)
−M(L+1)

exp

(
−‖h‖

p
p

βp

)
(14)

where β > 0 is a scale parameter, 0 < p ≤ 1 and Γ(z) =
∫∞
0 tz−1e−tdt, z > 0, is the Gamma function.

The new prior distribution gives more weight to values that are close to zero, thereby encouraging

the model to set many latent variables to (or close to) zero. This makes it ideal for learning sparse

representations.

The combination to equations (13) and (14) leads to the following objective function :

J (h) = hHXH
M

(
GHc Gc

)#XMh + λ‖h‖pp (15)

where λ = 2σ2

βp is a weighting parameter which controls the trade-off between approximation error and

sparsity. The first term is the ML criterion and the second term is the penalty term, which minimizes the

`p norm of the channel impulse response h.

Therefor, the desired solution of h is determined by minimizing the cost function J (h) under the unit

norm constraint ‖h‖2 = 1 :

ĥ = arg min
‖h‖2=1

{
hHXH

M

(
GHc Gc

)#XMh + λ‖h‖pp
}

(16)

C. Sparse Cross-Relations Method

In order to simplify the optimization of the cost function given by (16), we propose to setting the

weighting matrix
(
GHMGM

)#
to an identity matrix. This approximation is equivalent to the first step of

the TSML method which yields the exact estimate of h in the absence of noise (or when the noise is

white and the data length is infinite). Therefore, the desired solution of h is determined by minimizing
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the cost function J (h) under the unit norm constraint ‖h‖2 = 1 :

ĥ = arg min
‖h‖2=1

{
hHXH

MXMh + λ‖h‖pp
}
. (17)

where the first term of equation (17) is equivalent to a cross-relations (CR) criterion [2], [4], [18], and

the second term is the penalty term which minimizes the `p norm of the channel impulse response h.

IV. IMPLEMENTATION

A. Gradient optimization

Direct minimization of the cost function given by (17) is computationally intensive and may be even

intractable when the channel impulse response is long and when the number of channels is large. Here, a

stochastic gradient technique is proposed to solve this minimization problem efficiently, and the solution

is compute iteratively by :

hk+1 = hk − µ∇J (hk) , (18)

where µ is a small positive step size and ∇ is a gradient operator. The gradient of J (h) is given by :

∇J (h) =
∂J (h)

∂h
= 2 QMh + λ h̃ , (19)

where

h̃(i) = p sign (h(i)) |h(i)|p−1 for i = 1, . . . ,M(L+ 1) , (20)

and QM = XH
MXM .

The unit norm constraint is to ensure that the iterative algorithm do not converge to a trivial solution

with all zero elements. However, we observe that the gradient of the `p norm (20) may diverge if |h(i)|

is close to zero and 0 < p < 1. Therefore, to avoid this problem, we introduce the parameter ε > 0 in

order to provide stability and to ensure that a zero-valued component in hk does not strictly prohibit a

nonzero estimate at the next step

h̃ε(i) = p sign (h(i)) (|h(i)|+ ε)p−1 for i = 1, . . . ,M(L+ 1) , (21)
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Therefore, the update equation is given by :

hk+1 =
hk − µ

(
2 QMhk + λ h̃εk

)
∥∥∥hk − µ(2 QMhk + λ h̃εk

)∥∥∥
2

.

B. Optimal step size

In order to avoid divergence, a conservatively small µ is usually used, which inevitably sacrifies the

convergence speed of the algorithm. In this section, we will derive an optimal step size for the gradient

optimization method and hence propose a variable step size algorithm.

To find an optimal step size µ for each iteration we propose to use a line search method. More precisely,

we choose a line search, in which µ is chosen to minimize J

µ = arg min
µ
{J (h− µ∇J (h))} . (22)

The criterion in the (k + 1)th iteration is written as follow :

J (hk+1) = ‖XMhk+1‖22 + λ‖hk+1‖pp (23)

by replacing hk+1 by (18) we rewrite equation (23) as :

J (hk+1) = ‖XM (hk − µ∇J (hk))‖22 + λ ‖hk − µ∇J (hk)‖pp

we take a derivative of J (hk+1) with respect to µ :

∂J (hk+1)

∂µ
= F(µ) =

[
µ(2∇J (hk)

HQM − λ r̃Hk )− 2hHk QM

]
∇J (hk) ,

where

r̃(i) = p sign (h(i)− µ∇J (h)(i)) |h(i)− µ∇J (h)(i)|p−1 for i = 1, . . . ,M(L+ 1) .

Therefore, the optimal step size in each iteration is obtained in the form :

µk = µk−1 −F(µk−1)
µk−1 − µk−2

F(µk−1)−F(µk−2)
,

where we use an approximate Newton approach for solving (22).
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C. Newton Optimization

In the previous section, an implementation based on stochastic gradient technique has been presented.

While the algorithm has been shown to converge in the mean to the desired channel impulse responses,

one of the difficulties in the design and implementation of the stochastic gradient is the selection of the

step size µ. Aiming to achieve a good balance of design objectives, we present here a Newton method

with variable step size during iteration.

Newton method is an efficient tool of optimization. It often converges fast and provides quadratic rate

of convergence. However, its iteration may be costly, because of the necessity to compute the Hessian

matrix and solve the corresponding system of equations.

hk+1 = hk − [∇2J (hk)]
−1∇J (hk) ,

where ∇2J (h) is the Hessian matrix of J (h) with respect to h. To compute the Hessian matrix we

need the derivative of the sign(·) function. Because sign(·) have a discontinuity in the derivative at zero,

we use a follows approximation :

sign(x) ≈ tanh(θ x) .

For large θ this approximates the true Generalized Gaussian prior while staying smooth around zero.

Now, taking derivative of (19) with respect to h and tacking into the regularization parameter, we obtain

the following expression of the Hessian matrix :

∇2J (hk) = 2 QM + λ diag(h
ε
k) , (24)

where

h
ε
k(i) = p (θ cosh−2(θ hk(i)) |hk(i) + ε|p−1 + (p− 1) |hk(i) + ε|p−2) for i = 1, . . . ,M(L+ 1) .
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With the unit norm constraint, the update equation is given by :

hk+1 =
hk −

(
2 QM + λ diag(h

ε
k)
)−1 (

2 QMhk + λ h̃εk

)
∥∥∥∥hk − (2 QM + λ diag(h

ε
k)
)−1 (

2 QMhk + λ h̃εk

)∥∥∥∥
2

.

D. Weighting parameter λ optimization

In order to optimize the weighting parameter λ, we propose to exploit the theoretical interpretation

of this parameter given by the MAP approach. Indeed, by observing equation (15), we note that the

weighting parameter λ is equal to the variance ration of the noise and the channel vector h:

λ =
2σ2

βp
.

Therefore, we can estimate the parameter λ by estimating the variance σ2 and β. For the noise variance

estimation, we exploit the spatio-temporal diversity of SIMO system by using Akaike’s information

criterion (AIC) [19]. Let define the spatio-temporal vector:

xd(n) = [xT (n) . . .xT (n− d+ 1)]T = Hsd(n) + wd(t) (25)

where H is block-Sylvester matrix of size M d× (d+L+ 1) and sd(t)
def
= [s(n) . . . s(n−L− 1− d)]T ,

where d is a chosen processing window size. Under the data model assumption and for large window

sizes (see [19] for more details), matrix H are full column rank. Hence, in the noiseless case, the rank

of the data covariance matrix Rx
def
= E

[
xd(n)xHd (n)

]
is equal to d + L + 1 which corresponds to the

dimension of the signal subspace.

Therefor, our approach consists in estimating the rank of the sample3 averaged covariance matrix Rx

in order to estimate the dimension of the signal subspace and estimating the noise variance by meaning

the eigenvalues of the averaged covariance matrix corresponding to the noise subspace. The estimation

of the rank value is done here by Akaike’s criterion [19] according to:

r = arg min
k

−2 log


Md∏

i=k+1

γ
1/(Md−k)
i

1
Md−k

Md∑
i=k+1

γi


(Md−k)T

+ 2k(2Md− k)

 (26)
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where γ1 ≥ . . . ≥ γMd represent the eigenvalues of Rx. Note that it is not necessary at this stage, to

know exactly the channel degree L as long as d > (L+ 1) (i.e. an over-estimation of the channel degree

is sufficient). Finally, the noise variance is estimating as follows:

σ̂2 =
1

Md− r

Md∑
k=r+1

γk .

Now, for the parameter λ optimization, we propose an iterative procedure, where the λ is compute at

each iteration by:

λk =
2 σ̂2

β̂pk
(27)

where β̂k is estimated at each iteration as the empirical standard deviation of the vector hk:

β̂k =

√√√√ Γ(1p)

Γ(3p)M (L+ 1)

M(L+1)∑
i=1

|hk(i)|2

E. Discussion

In this section, we discuss about the choice of the parameter p and his impact on the optimization

strategy. We observe from (17) that the parameter p express the sparsity degree of the desired vector

h. In other words, when p → 0 the criterion optimization will be equivalent to solving a combinatorial

problem associated to `0 norm which is a counting measure of the nonzero elements of the vector h.

Unfortunately, it must be noted that (17) is a non-convex optimization problem when 0 < p < 1 and

all of the algorithms considered her are only designed to produce local minimum. However, in what

follows we propose a kind of method based on the algorithms presented above to find a solution of the

non-convex criterion.

a) p = 1: In this case criterion (17) is convex. Therefor, the proposed algorithms may be used

without the regularization parameter (ε = 0).

b) p = 0: In this case the criterion will be convex if we introduce the regularization parameter

(ε > 0). This assertion is confirmed by Candes et al. work’s [20], where the case p = 0 with regularization
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parameter is equivalent to reweighted `1 criterion. In this particular case, we can exploit the ε optimization

solution proposed in [20]. The parameter ε is adapted at each iteration as a function of the vector hk.

Let |hk|(i) denote a reordering of |hk(i)| in decreasing order of magnitude. Then,

ε = max
{
|hk|(i0), 10−3

}
where i0 =

⌈
1
4

M(L+1)
log(T−L−1)−log(M(L+1))

⌉
c) 0 < p < 1: In this case the criterion (17) is non-convex. One kind of solution based on the

presented algorithms, consists on a two step optimization approach, described as follows:

Step 1: Perform an optimization with p = 1 or p = 0 to ensure the convexity of the criterion and

apply the presented optimization algorithms. An alternative solution is to find the eigenvector

associated to the smallest eigenvalue of the matrix Q (the solution without the `p penalty term).

Step 2: Select p in the range ]0, 1[ and initialize the optimization algorithm by the solution found in

step 1. Thus, we expect that the initialization will be nearest to the global minimum and then

avoid the local minima problem.

An alternative procedure is to use Mosek-based interior-point linear programming solver or any other

efficient linear programming solver.

V. ADAPTIVE IMPLEMENTATION

For blind channel identification to be practically useful in real-time applications, it is imperative that

the algorithm should be computationally simple and can be adaptively implemented. In this section, we

present an adaptive implementation of the CR and penalized CR algorithms with least mean square (LMS),

normalized least mean square (NLMS) and proportional normalized least square (PNLMS) approaches.

A. Adaptive CR implementation

In the same way that in the block approach, the cross-relations between the sensor outputs can be

exploited to estimate the channel impulse responses. In this case, we can rewrite the CR criterion as
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follows:

J (h) = hHQ(n)h , (28)

where

Q(n) = γQ(n− 1) + XH
M (n)XM (n) ,

with XM (n) given computed by using equations (7), (8) and

X 2(n) = [x2(n), −x1(n)] (29)

and

X l(n) =



X l−1(n) 0

xl(n) 0 −x1(n)

. . .
...

0 xl(n) −xl−1(n)


(30)

with l = 3, . . . ,M and :

xl(n) =

[
xl(n) . . . xl(n− L)

]
. (31)

Therefore, the desired solution for h is determined by minimizing the mean value of the cost function

J (h):

ĥ = arg min
‖h‖2=1

E
[
hHQ(n)h

]
Here, an LMS algorithm is proposed to solve this minimization problem efficiently. Then, the filter

coefficient vector is then update by:

hn+1 =
hn − 2µQ(n)hn

‖hn − 2µQ(n)hn‖2
.

However, the LMS algorithm suffers from slow and data-dependent convergence behavior. The normalized

LMS (NLMS) [21], an equally simple, but more robust variant of the LMS algorithm, exhibits a better
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balance between simplicity and performance than the LMS algorithm. Therefore, we present in what

follow, a NLMS approach to optimize the CR criterion. One easy way to find adaptive algorithms that

adjust the new channel vector hn+1 from the old one hn is to minimize the following function [21]:

L [hn+1] = d [hn+1,hn] + µhHn+1Q(n)hn+1

where d [hn+1,hn] is a measure of distance from the old to the new channel vector and η is a positive

constant. The magnitude of represents the importance of correctiveness compared to the importance of

conservativeness [3]. To minimize L [hn+1], we need to set its derivative ∂L[hn+1]
∂hn+1

to zero. Hence, the

solution will be found by solving the equation:

d [hn+1,hn]

∂hn+1
+ 2µQ(n)hn+1 = 0 (32)

The LMS algorithm is easily obtained from (32) by using the squared Euclidean distance

d [hn+1,hn] = ‖hn+1 − hn‖22 (33)

so that and from equation (32), we obtain that:

hn+1 =

(
I + µQ(n)

)−1
hn , (34)

but, according to the constraint:

hHn

(
I + µQ(n)

)−1
Q(n)

(
I + µQ(n)

)−1
hn = 0 . (35)

By using the first order approximation of the inverse matrix, the equation (42) will be:

hHn

(
I − µQ(n)

)
Q(n)

(
I − µQ(n)

)
hn = 0 . (36)

Therefor, the optimal step size µ is determined as a positive solution of the second order equation:

µ2 − 2aµ+ b = 0

where

a =
hHn Q(n)2hn

hHn Q(n)3hn
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and

b =
hHn Q(n)hn

hHn Q(n)3hn

B. Adaptive sparse CR implementation

In the same way that in the adaptive standard CR implementation, the rewriting of the sparse CR

criterion in adaptive case, leads to the following criterion:

J (h) = hHQ(n)h + λ‖h‖pp , (37)

Therefore, the desired solution for h is determined by minimizing the mean value of this cost function

and the LMS solution is given by the following adaptive solution:

hn+1 =
hn − µ

(
2Q(n)hn + λ h̃εn

)
∥∥∥hn − µ(2Q(n)hn + λ h̃εn

)∥∥∥
2

. (38)

where

h̃εn(i) = sign (hn(i)) (|hn(i)|+ ε)p−1 for i = 1, . . . ,M(L+ 1) , (39)

In this paper we consider only the case where (p, ε) ∈
{

(1, 0), (0, ε0)

}
to avoid the non-convexity

problem of the proposed criterion.

For the NLMS approach in the case of sparse CR criterion, we assume the same development as in

section V-A . By tackint into a count the sparsity penalty term, the new cost function can be express as:

L [hn+1] = d [hn+1,hn] + µhHn+1Q(n)hn+1 + λ‖hn+1‖pp

In the same way that shown is section V-A , in order to minimize L [hn+1] in the case squared Euclidean

distance, we need to set its derivative ∂L[hn+1]
∂hn+1

to zero. Hence, the solution will be found by solving the

equation

2 (hn+1 − hn) + 2µQ(n)hn+1) + λh̃n+1 = 0 (40)
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To avoid the divergence problem of the derivative of the `p norm, we replace the h̃n+1 by h̃εn+1 such as is

define by equation (), and by using the following approximation h̃εn+1 ≈ h̃εn for (p, ε) ∈
{

(1, 0), (0, ε0)

}
, we obtain that:

hn+1 =

(
I + µQ(n)

)−1 (
hn −

λ

2
h̃εn

)
, (41)

and according to the CR constraint ;(
hn −

λ

2
h̃εn

)H (
I + µQ(n)

)−1
Q(n)

(
I + µQ(n)

)−1(
hn −

λ

2
h̃εn

)
= 0 . (42)

and we can find easely from the previous section that the optimal step size µ is a solution of

µ2 − 2ãµ+ b̃ = 0

where

ã =

(
hn − λ

2 h̃
ε
n

)H
Q(n)2

(
hn − λ

2 h̃
ε
n

)
(
hn − λ

2 h̃
ε
n

)H
Q(n)3

(
hn − λ

2 h̃
ε
n

)
and

b̃ =

(
hn − λ

2 h̃
ε
n

)H
Q(n)

(
hn − λ

2 h̃
ε
n

)
(
hn − λ

2 h̃
ε
n

)H
Q(n)3

(
hn − λ

2 h̃
ε
n

)
VI. SIMULATION

We present here some numerical simulations to assess the performance of the proposed algorithm.

We consider a SIMO system with M = 3 outputs represented by polynomial transfer function of degree

L = 256. The channel impulse response is a sparse sequence of random variables with Bernoulli-Gaussian

distribution [13] :

f(hi) = piδ(hi) + (1− pi)
1√

2πσ2i
exp

(
−h2i /2σ2i

)
generated by the MATLAB function SPRANDN. We used the parameters pi = 0.5 and σi = 1. The input

signal is a 4-QAM i.i.d. sequence of length T = 1024. The observation is corrupted by addition white

Gaussian noise with a variance σ2 chosen such that the SNR = ‖h‖2
σ2 varies in the range [5, 50] dB. The
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weighting parameter for the algorithm ISBSI is chosen as λ = 1. Statistics are evaluated over Nr = 200

Monte-Carlo runs and estimation performance are given by the normalized mean-square error criterion :

NMSE =
1

Nr

Nr∑
r=1

min
α

(
‖αĥr − h‖2

‖h‖2

)

=
1

Nr

Nr∑
r=1

1−

(
ĥHr h

‖ĥr‖‖h‖

)2

,

where ĥr denotes the estimated channel coefficient vector at the rth Monte-Carlo run and α is a scalar

factor that compensates for the scale indeterminacy of the BSI problem.
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Fig. 1. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 3 sensors: comparison between CR and

the proposed ISBSI algorithm.

In figures 1 and 2, the normalized mean-square error is plotted versus the SNR for the proposed ISBSI

algorithm and the CR and CS algorithms respectively. It is clearly shown that our algorithm (ISBSI)

performs better in terms of the normalized mean-square error especially for moderate and high SNR.

In figure 3, the normalized mean-square error is plotted versus the SNR for the proposed MAP algorithm

and the ML algorithm. We observe a same conclusion as in the previous figure.
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Fig. 2. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 3 sensors: comparison between CS and

the proposed ISBSI algorithm.
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Fig. 3. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 3 sensors: comparison between ML

and the proposed MAP algorithm.
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Fig. 4. Evolution of the cost function in dB as a function of the iteration number for SIMO system with 3 sensors.

In figures 4 and 5, we represent the evolution of the cost function in dB as a function of the iteration

number for the gradient with fixed and optimal step size and Newton techniques. It is shown that the

Newton technique converges much faster than the optimal and fixed step size one.

In figure 6, we represent the evolution of the NMSE in dB as a function of the overestimated channel

order for the ISBSI algorithm. This figure illustrates the robustness of our algorithm against channel

order overestimation errors.

In figure 7, we represent the NMSE as a function of the SNR for different values of the weighting

parameter λ. We observe that, for large SNRs, small λ values are preferred, while for low SNRs, the

large λ values are those leading to the best channel estimation accuracy. From this observation we plan

for our futur works to study the optimization of the parameter λ in the ISBSI algorithm.

The plot in figure 8 presents the identification performance (NMSE) as function of the SNR for CR

algorithm, ISBSI algorithm with λ = 1 and ISBSI algorithm with weighting parameter λ optimization

technique. We observe that we increase the identification performance especially at low and moderate
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Fig. 5. Evolution of the cost function in dB as a function of the iteration number for SIMO system with 3 sensors.
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Fig. 6. Normalized mean-square error (NMSE) versus the overestimated channel order for SIMO system with 3 sensors and

for different value of the SNR.

SNRs values by using the weighting parameter optimization.

In figure 9, we represent the identification performance of CR and ISBSI algorithms for reel channel
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Fig. 7. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 3 sensors: performance of our ISBSI

algorithm for different value of the regularization parameter λ.
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Fig. 8. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 3 sensors: comparison between CR

algorithm, ISBSI algorithm and ISBSI algorithm with λ optimization.
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Fig. 9. Normalized mean-square error (NMSE) versus the SNR for SIMO system with 4 sensors with reel channel impulse

response : comparison between CR and the proposed ISBSI algorithm.

impulse response. This impulse response has been measured between an Autonomous Underwater Vehicle

(AUV) and 4 sensors placed on a ship. The ship is adrift. The AUV transmit to the ship and the AUV is

diving of 15 m. The distance between the AUV And the ship is about 400 m. The acoustic signal used

to the measure was at frequency 6.9 KHz with carrier frequency 35.4 KHz.

VII. CONCLUSION

This paper introduces an ISBSI algorithm and generalized version of the ML method for the blind

estimation of sparse and long SIMO channel impulse responses. In the proposed methods, we use a

channel sparsity measure together with the classical BSI criterion to improve the estimation quality and

to take into account the sparsity of the channel. A gradient type technique with optimized step size

and Newton technique has been considered for the optimization of the proposed cost function. Besides

its improved performance, the new BSI method is robust against channel order overestimation errors.
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