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Abstract: 

In this paper, the linear vibrations of thermally prestressed beams are studied including 

the effects of predisplacement due to prebending and initial imperfections. Only low 

prestressed states far from the buckling stage are considered, one of the motivations of 

this paper being the issue of taking into account climatic temperature effects in damage 

detection based on modal techniques. A brief general review is first presented in order 

to give some theoretical and physical insights upon structural vibrations superimposed 

on an initial static state. Both the total Lagrangian and the updated Lagrangian 

formulations are applied to a planar Euler-Bernoulli beam under the assumption of 

small prestrains and large predisplacements. The governing equilibrium equations are 

solved using a finite element method. Some illustrative numerical results are given. The 

model is then validated through experiments inside a climatic chamber. It is concluded 

that in addition to the axial prestress, the presence of prebending is also likely to have a 

significant effect upon some eigenfrequencies, even in the case of rather small 

predisplacements. 

 

 

Keywords: vibration, prestress, prebending, temperature, finite element, climatic 

chamber 
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1. INTRODUCTION 

 

For thin structures such as beams, plates or shells, the effects of prestress are 

enhanced by the slenderness ratio. They are thus likely to have a significant impact 

upon dynamics, even for relatively low prestressed states far from the buckling stage. In 

the context of linear dynamics, the presence of prestress acts upon modal parameters, 

with a stronger shifting effect for lower eigenfrequencies in practice. 

 

As far as beams are concerned, the natural frequencies of flexural vibration increase 

(resp. decrease) when the axial load is tensile (resp. compressive). The eigenfrequencies 

of Euler-Bernoulli axially prestressed beams have been analytically studied with various 

boundary conditions [1]. Some experimental/numerical comparisons have also been 

done including non-linear effects [2]. Mead [3] has used a semi-analytical method to 

analyze some self-strained planar frames. Law et al. [4] have numerically shown some 

effects of axial prestressing upon time responses. Some other studies focused upon 

prestressed concrete bridges [5][6]. Timoshenko beams, including transverse shear 

strains, have also been analyzed with analytical methods [7][8][9]. Yokoyama [10] 

compared the experimental eigenfrequencies of self-weighted beams (under gravity) 

with those obtained from a finite-element model. Naguleswaran [11] considered beams 

subject to linearly varying axial force. Ganesan et al. [12] used a finite element method 

to analyze the in-plane prestressed vibration as well as the linear buckling of 
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sandwiches beams under thermal environments with temperature dependent material 

properties. 

 

Axially prestressed beams have obviously received much attention in the literature, 

and the references cited above are far from being exhaustive. Nevertheless, the effects 

of predisplacement, which may be due to prebending or initial imperfections, are hardly 

considered although some early works have analytically and experimentally 

demonstrated its potential effect upon vibration [13][14][15][16][17]. 

 

As far as static stability is concerned, the non-negligible effect of initial 

displacement is rather well-known in non-linear buckling analysis and has been the 

subject of much research. More scarcely, some authors extended their analyses to the 

effect upon dynamics. For instance, Perkins [18] investigated the linear vibrations of a 

simply supported arch with initial curvature effects for a wide range of post-buckling 

loads. The author used a Galerkin method and made a comparison with experimental 

measurements. Nayfeh et al. [19] analytically and experimentally studied the natural 

frequencies and mode shapes of buckled beams (with the first buckling mode) for 

hinged and clamped boundary conditions. Chen et al. [20] employed a Galerkin method 

to study the vibration and buckling of circular arches under uniform initial bending 

stress, but its influence remained obscure. For the design of microelectromechanical 

systems, Paul et al. [21] made an analytical and experimental study of buckling and 

vibration of thin film sandwiches taking into account static predeflection. Teng et al. 
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[22] chose a numerical shooting method to analyze the vibration of thermally post-

buckled beams. Addessi et al. [23] proposed a Galerkin method to investigate the 

sensitivity of the modal properties in the vicinity of the first buckling Euler load. 

 

In fact to the author’s knowledge, results available in the literature including 

predisplacement effects on structural dynamics are generally focused on post-buckling 

configurations, for which some static deflection always exists even for straight beams. 

Surprisingly, prebending effects upon vibrations are hardly outlined for low non-

buckled prestressed states (and often neglected), particularly for thermally prestressed 

beams. Based on a general finite element procedure, the goal of this paper is to highlight 

the influence of predisplacement upon the modal parameters of planar beams subject to 

moderate thermal prestress. 

 

This study is motivated by the need of adequate numerical models for thermally 

prestressed dynamics, which is of great importance within the framework of robust 

vibration control [24][25][26] or efficient structural health monitoring based on modal 

diagnosis [27][28][29] with thermal compensation. Typical applications in civil 

engineering are a bridge or a building subjected to climatic thermal variations 

[30][31][32] (for such structures, the daily variation of natural frequency may reach 

several percent). 
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In this paper, a brief theoretical review is first given in order to clarify the general 

equilibrium equations of structural vibrations superimposed on an arbitrary initial static 

state. In order to simply illustrate the influence of prebending, the theory is applied to 

planar beams subjected to prestressed states of small strain and large displacement. The 

equilibrium equations, which take into account the presence of predeformation in 

addition to the classical axial prestress, are solved using a finite element (FE) method. A 

brief numerical example is studied in order to highlight some prebending effects 

induced by a thermal gradient through the thickness. Finally, a laboratory test-case is 

driven inside a climatic chamber. Experimental and FE results are compared. Initial 

imperfections, inevitably occurring in real-life structures, are included in the whole 

analysis. 

 

2. GENERAL EQUATIONS 

In prestressed dynamics, three configurations must be distinguished: the reference 

configuration (undeformed and unprestressed), the predeformed configuration 

(corresponding to the prestressed state), and the total configuration (including 

superimposed dynamical deformations). Quantities referring to these configurations will 

respectively be denoted with a subscript ref, a subscript 0 and a tilde. The absence of 

symbol will be left for superimposed dynamical quantities. In this paper, the reference 

configuration represents the ideal geometry without initial imperfections, which are 

denoted by the subscript i. Figure 1 illustrates these geometrical configurations for a 

vibrating straight ideal beam subjected to prebending. 
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We restrict our study to conservative systems, linear thermoelastic constitutive 

laws, static (or quasi-static) prestressed states, and small superimposed vibrations. The 

prestress/predeformation effects are viewed by dynamics through the geometric 

nonlinearities of the prestressed state, possibly in large prestrain. Furthermore, the 

hypothesis of a weak coupling between temperature and mechanical deformation is 

made, in the sense that mechanically induced heating is neglected. The period of 

vibrational displacements is supposed to be far smaller than temperature fluctuations in 

time, meaning that thermally induced vibrations are not considered: 0T T  (temperature 

acts upon dynamics only through the prestressed state). 

 

This section briefly reviews the formulations of governing equilibrium equations. 

Further theoretical details will be found in Refs. [33][34][35] for instance. 

 

2.1. Total configuration equilibrium 

The mechanical model requires at the beginning of the analysis the consideration of 

the large deformations of the system. Based on a Lagrangian formulation, Hamilton’s 

principle for the total configuration writes: 

      
2

1
1 20    with  0  and u

ref

t

ext
t

T V V dt t t  


      u u u u  (1) 

where T  is the total kinetic energy, V  is the total strain energy and extV  is the external 

energy, given by: 
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1 1
; : ;

2 2 T
ref ref ref ref

ref ext refT d V d V d d 
   

             u u E S u f u T  (2) 

ref  corresponds to the geometry of the ideal and undeformed structure. 
u

ref  and 
T

ref  

are its associated boundaries (  T u

ref ref ref     ) and respectively denote surfaces 

associated with essential (prescribed displacement) and natural (prescribed stress) 

boundary conditions. Within the scope of linear thermoelasticity, the stress-strain 

relationships are 0:  S Λ E κ . u  is the total displacement. E  and S  are respectively 

the total non-linear Green-Lagrange strain tensor and the second Piola-Kirchoff stress 

tensor. 0  is equal to 0 refT T , the temperature difference with respect to the reference 

temperature (i.e. for which there is no thermal stresses). f  is the total external body 

force per unit mass. ref  denotes the reference material density and  respectively 

denote the tensors of elasticity and thermal material properties. In the presence of initial 

imperfections ui (which are supposed to be known), the Green-Lagrange strain tensor 

must include some additional terms (see Refs. [36] or [37] for instance): 

  
1

2

T T T T

i i        E u u u u u u u u  (3) 

This expression derives from the fact that initial imperfections are defined as static 

deformations without stress or strain (Si=Ei=0). 

 

Because a Lagrangian formulation has been used, it should be outlined that all 

quantities and derivatives in the above equations are written in terms of material 

coordinates in the reference configuration. 
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2.2. Linearized total and updated Lagrangian formulations 

Now, the total displacement vector is decomposed as a sum of two components, 

one corresponding to the prestressed state, and the other corresponding to small 

superimposed non-stationary perturbations (see Fig. 1): 0 u u u . The prestressed 

state variables are assumed to verify Hamilton’s principle (1) for the static case. 

Keeping only quadratic terms in u (for the purpose of linearization), the following 

Hamilton’s principle holds for the superimposed dynamic state with the following 

energy expressions: 

 

 0

1 1 1
; : tr

2 2 2

T

T

ext

T d V d d

V d d





  

 

        

     

  

 

u u e σ u σ u

u f u T
 (4) 

The definitions of notations involved in the above expressions are summarized in Table 

1 and depend on the choice of the formulation, namely the linearized total Lagrangian 

formulation or the linearized updated Lagrangian formulation (for further details, see for 

example Refs. [33][34]). The former is obtained from a direct linearization of the 

formulation exposed in Section 2.1. The latter can be obtained by applying a 

transformation from Lagrange to Euler variables. The second term in the expression of 

V is the so-called geometric stiffness energy. For thin structures, it corresponds to the 

effect of in-plane prestress (axial prestress for beams). 
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What should be understood with the updated Lagrangian formulation is that every 

quantity (u, f, the operator (.),...) is written in terms of the Eulerian coordinates in the 

predeformed configuration. 
0  corresponds to the geometry of the prestressed structure 

(i.e. in its predeformed configuration, including initial imperfections). In the context of 

FE methods, this means that the meshing should be done over the predeformed 

geometry. It should also be noted that the coefficients of the constitutive tensors  and 

C used in the total and updated Lagrangian formulations are rigorously not identical. To 

be more precise, as shown in Ref. [33], using the same coefficients for both incremental 

laws can lead to significant differences in the case of large strain. However, under the 

conditions of small strain – which will be the hypothesis adopted in the remaining of 

this paper – the use of identical material coefficients yields practically the same results 

for both formulations. 

 

3. APPLICATION TO PLANAR BEAMS 

In this section, the equations governing the dynamic equilibrium of a planar Euler-

Bernoulli beam are derived from a total Lagrangian formulation. Based on a Von 

Karman approximation, small prestrain, moderate prerotation and large predisplacement 

are assumed. This kind of model is one of the simplest geometrically non-linear models 

but its degree of non-linearity will be high enough given our interest in moderate 

prestress states in this paper. A FE method is chosen to solve the equations. The updated 
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Lagrangian formulation is also considered by approximating the predeformed geometry 

as a composition of straight beam segments. 

3.1. Basic assumptions and total configuration equilibrium 

The beam axis, denoted x, is not necessarily a neutral axis. The axis corresponding 

to the direction of transverse displacements is denoted z, as shown in Fig. 1. For an 

Euler-Bernoulli beam, the kinematical hypotheses are: 

      
     

   

,,
, , , with: 

,

xU x z u x zw x
x z U x z W x z

W x z w x

  
  


x z

u e e  (5) 

The total axial displacement on the reference axis, u , and the transverse displacement, 

w , only depend upon x. In the remainder of this paper, x derivatives will be denoted by 

(.),x. The kinematical assumption (5) implies that 0xzE   (no shear strains). Besides, the 

assumption of plane stress yields: 

 0yy zz xy yzS S S S     (6) 

Assuming a linearly elastic isotropic material, we have: 

  0xx xxS E E    (7) 

E and  are respectively the Young’s modulus and the coefficient of thermal expansion. 

Then, under the assumption of small strain and large displacement, the terms 
2

,xU  and 

, ,x i xU U  are commonly regarded as higher order effects, and thus neglected in Eq. (3) to 

finally give the following Von Karman axial strain: 

   2

, , , ,,

1

2
xx x x i x xx

E u zw w w w     (8) 
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Now, it can be shown that the application of Hamilton’s principle of Section 2.1 

yields the equilibrium equations: 

 
  

, ,

, , ,
,

x x m mf x

x x i x z m
x

N t u w

Q w w N t w

 



   



   

 (9) 

with the following natural or essential boundary conditions at x=0, L: 

  , ,

,

or

or at  0,

or

x

A

x i x z

A

x x

A

N T dA u u

Q w w N T dA w w x L

M zT dA w 


 




    



  








 (10) 

N , M  and Q  respectively denote the axial force, the moment and the transverse force 

resultants, given by: 

 

2

, , , , ,

2

, , , , ,

, ,

1

2

1

2

xx m x x x i x mf xx T

A

xx mf x x x i x f xx T

A

x mf f x

N S dA H u w w w H w N

M zS dA H u w w w H w M

Q M m u w 

  
      

 
  

       
 

    





  (11) 

The following notations have been used: 

           2 2

0, , 1, ,   ,  , , 1, ,   ,  , 1, ,

  ,    ,  

m mf f m mf f ref T T

A A A

x ref x x z ref z z ref x x

A A A A A A

H H H E z z dA z z dA N M E z dA

t f dA T ds t f dA T ds m f zdA T zds

    

  
  

  

     

  

     
 (12) 

A denotes the cross-sectional area in the reference configuration, and A is its contour. 

The prestressed state verifies Eqs. (9)–(12) for the static case. 
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3.2. Prestressed dynamics (total Lagrangian formulation) 

From Section 2.2, the total displacement components are decomposed as 

0 0 and u u u w w w    . The expression of Table 1 for the total Lagrangian 

incremental strain yields the linearized incremental Green-Lagrange axial strain, which 

writes after neglecting terms 0, ,x xU U  and , ,i x xU U , of higher order effects: 

  , 0, ,,xx x x xx
e u zw w w    (13) 

It can be verified that the above expression can also be obtained from a direct 

linearization of Eq. (8). 

 

Now, we have: 

    
2

0 , 0 , , 0 ,: ; tr
xx xx

T

xx xx xx x x x x x xe E e u u w w        e σ u σ u  (14) 

The first term of the right member of the second equality also involves terms of higher 

order effects and can be neglected (physically, this means that the effect of axial 

prestress is supposed negligible on the superimposed axial displacement). Using Eqs. 

(13) and (14) in (4), the following expressions of energies are finally obtained: 
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 2 2 2

, ,

0 0 0

, ,

0 0 0 0

2 2 2

, , , , 0 ,

0 0 0 0

, 0,

1 1

2 2

1 1 1
  

2 2 2

         

L L L

m f x mf x

L
L L L

ext x z x x z x x

A A A

L L L L

m x f xx x mf xx x

x m x i

T u w dx w dx u w dx

V ut dx wt dx w mdx u T dA w T dA w zT dA

V H u dx H w dx u H w dx N w dx

u H w w

     

 
       

 

   

 

  

     

   

     
2 2

, , , 0, , , 0, , ,

0 0 0

1

2

L L L

x x x mf x i x xx m x i x xw dx w H w w w dx H w w w dx













   


  

 (15) 

The application of Hamilton’s principle gives the equilibrium equations for prestressed 

dynamics. These equations are not shown here for conciseness, but it can be verified 

that they exactly correspond to a direct linearization of Eqs. (9)–(12). 

 

The incremental strain energy V is dependent on two prestress variables: the 

“classical” axial preload N0, and the predisplacement derivative w0,x+wi,x. Hence for 

dynamics, the predisplacement due to prebending is summed with that due to initial 

imperfections. The above expression of V shows that the presence of predisplacement 

induces some coupling between the axial and transverse superimposed displacements, 

and that its effect will be completely characterised by the product  0, , ,x i x xw w w . This 

means that how a given mode will be affected by predisplacement will depend on how 

its own shape will be related to the shape of the predeformed geometry. 
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3.3. Numerical method 

3.3.1. FE interpolation 

The above equations are solved using a FE method. In a conventional manner, a 

linear interpolation is chosen for the axial displacement u as well as the geometry. 

Hermitian interpolation functions are used for approximating the transverse 

displacement w. Then, on a reference element, u and w are discretized as follows: 

 ;e e e e

u wu w N u N w  (16) 

with: 

             

1 2 1 1, 2 2,

2 22 2

1 1
; ;

2 2

1 1
1 2 1 1 1 2 1 1

4 8 4 8

e eT e e eT e e e e

u x x

e e
e

w

u u w w w w

L L

 

       

 
    

           

N u w

N

 (17) 

 is the reference coordinate varying from 1 to +1. The subscripts i (i=1,2) denote the 

local node number. Le
 is the element length. Elements have three degrees of freedom 

per node associated to u, w, w,x. Obviously, the same choice of interpolating functions 

is made in the prestressed state analysis, for u0 and w0. 

3.3.2. Prestressed state computation 

The prestressed state is obtained by solving the static non-linear system (9), 

denoted as 0 0 0K U F  after FE discretization.  0 0 0K K U  is dependent on 0U . 

However, this system may be efficiently solved with an iterative algorithm of Newton-

Raphson type [38][39], by computing successive incremental displacement given by: 
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 0 0 R U U  where 
0 0 0 R F K U  is the residue. A first order Taylor expansion of 

R leads to the following system: 

 1 1j j

T  K U R  (18) 

where TK  is the tangential stiffness matrix, defined by 

 0 0 0 0 0 0T       K K U U K K U . The superscript j1 denotes the step number in 

the iterative process and indicates that 1j

T


K  and 1j

R  are calculated from the solution 

1

0

j
U  of the previous step. The next step j is given by 1

0 0

j j  U U U . 

3.3.3. Dynamics 

After discretizing expressions (15) and assembling, the application of Hamilton’s 

principle yields the algebraic system: 

  MU KU F  (19) 

K and M are symmetric matrices. U is the vector of unknown degrees of freedom. F is 

the vector of external loads. In this paper, we will focus on eigenmodes, given by 

 2 K M U 0 . 

 

For clarity, K is dependent on N0 and w0+wi and may be decomposed as 

     0 0 0 0, i lin L iN w w N w w    K K K K , defined as follows: 

 

     

2 2 2

, , , , 0 ,

0 0 0 0

2 2

, 0, , , , 0, , , 0, , ,

0 0 0

1 1 1 1 1
;

2 2 2 2 2

1 1

2 2

L L L L

T T

m x f xx x mf xx L x

L L L

T

x m x i x x x mf x i x xx m x i x x L

H u dx H w dx u H w dx N w dx

u H w w w dx w H w w w dx H w w w dx

   

     

   

  

U K U U K U

U K U

 (20) 
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Klin represents the small displacement stiffness matrix, usual in linear analysis. K is the 

geometric stiffness matrix, dependent on the axial prestress level. KL is a matrix due to 

the presence of predisplacement. The whole matrix K may be not definite positive when 

buckling occurs but as stated earlier, we are interested in low prestressed states far from 

the buckling stage. 

 

In fact, the above matrix K may be directly obtained from the prestressed state 

computation because it exactly corresponds to the tangential stiffness matrix, previously 

defined. The procedure described in Section 3.3.2 is strictly equivalent to a linearization 

process around the step j1, which means that 1j

T


K  is constructed in the same way as 

K :    1 1 1

0 0

j j j

T lin L iN w w

     K K K K . In other terms, the stiffness matrix K  

involved in (19) is equal to the tangential stiffness matrix 
J

TK  of the final step J, when 

convergence is reached: 
J

TK K . 

3.4. Note upon the updated Lagrangian formulation 

In the presence of prebending, deriving the equilibrium equations from an updated 

Lagrangian formulation would require the theory of curved beams. For the sake of 

simplicity in this paper, the predeformed beam will be considered as a composition of 

straight beam elements (a proof of convergence when the number of elements tends to 

infinity can be found for the static case in Ref. [33]). Because we are interested in small 

prestrain states far from buckling situations, it is expected that relatively few elements 

will be required for a good convergence. 
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Let a straight beam element have a local axis x. This element is oriented in the 

global plane denoted (X,Z). The local elementary degrees of freedom U
e
 are related to 

the global ones through the transformation matrix T
e
 defined by: 

 

cos sin 0

; ; sin cos 0 ; 0

0 0 1

e e e e

g X x

 

  

 
   

       
    

q 0
U T U T q

0 q
 (21) 

No predisplacement terms appear in the updated Lagrangian formulation (see Table 1) 

because the predeformation is implicitly taken into account through the geometry 

meshed in its prestressed state. Hence, what has been presented in Section 3.3.3 can 

easily be extended to obtain the updated formulation, whose elementary matrices are 

now given by: 

  ; ;
T T Te e e e e e e e e e e e

g g lin g   M T M T K T K K T F T F  (22) 

where , , ,e e e e

lin M K K F  have already been defined. The matrix 
e

LK , due to the presence of 

predisplacement in the total Lagrangian formulation, must not be taken into account in 

the updated stiffness matrix. The geometric stiffness matrix 
e

K  remains because it 

corresponds to the effect of axial prestress, as shown in Eqs. (4). In the updated matrices 

defined by Eqs. (22), we have assumed that the changes in cross-section and density 

between the reference state and the predeformed state were negligible ( 0dA dA  and 

0 ref  ), which is an acceptable approximation due to the small strain hypothesis. 

After assembling, the system to be solved is finally: g g g g g M U K U F . 
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The updated Lagrangian formulation might yield some better convergence 

properties for general non-linear analyses [33], may be computationally more effective 

[40] and simpler to implement in a finite element code [34] because the terms in u0+ui 

do not appear any more (the predeformation being implicitly included through the 

consideration of the predeformed geometry). Nevertheless in the present study, we are 

not interested in solving highly non-linear problems and one advantage of the total 

Lagrangian formulation may be that the predeformation effects appear explicitly 

through terms in u0+ui, which leads to somewhat more physical insight. 

 

4. A NUMERICAL EXAMPLE 

A simple but illustrative example of a beam subjected to some significant thermal 

prebending is given. One considers a straight beam with neutral axis x (Hmf=mf=0) and 

constant properties Hm, Hf, m and f  along x. It is assumed that no initial imperfections 

are present (wi=0). The horizontal beam is simply supported at both extremities: the 

transverse displacement and the moment are equal to zero at x=0 and x=L, as well as the 

axial displacement. 

 

The static preload considered is a vertical thermal gradient along the beam 

thickness such that 0TN   and 0TM  , i.e. the thermal force and the thermal moment 

defined by Eqs. (12) are respectively zero and non-zero. For instance, such a case 
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occurs with a temperature varying linearly from +0/2 at the top (z=+h/2) to –0/2 at the 

bottom face (z=h/2) (E and  being constant). From Eqs. (9)–(11), it can be seen that 

this choice of thermal load should mainly produce prebending because the axial 

prestress only results from the non-linear coupling between the axial and transverse 

predisplacements. 

 

The beam has been discretized with 100 elements in order to ensure convergence 

(though less is needed). The numerical procedure is as follows. First, the static 

prestressed state is computed from the non-linear model presented in Section 3.1 using 

the method in Section 3.3.2. Second, the eigenproblem of Section 3.3.3 is solved based 

on the computed prestressed state. 

 

x and w  are respectively nondimensionalized with respect to L and r, where r is the 

radius of gyration defined by 
2

f mr H H . The resulting non-dimensional parameters of 

the problem can then be given by   2 2

0 0max , , f T fw r N L H M L rH . In this particular 

example, the beam predeflection greatly looks like a shape of sin x L  type (  0max w r  

is thus given by the predeflection at center) so that an approximate solution found by 

Kim et al. [16] may hold for the nth
 eigenfrequency: 

 

22
2

0 20
12 2

1 1
1

2

Ln
n

ref f

wf N L

f n H r




  
       

   

 (23) 
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where reff  denotes the nth
 eigenfrequency without preload ( 0TM  ) and  is the 

Kronecker symbol. 

 

Figure 2 shows the nondimensional axial prestress and vertical predisplacement at 

center versus the thermal moment parameter 
2

T fM L rH  ranging from 0 to 6. The 

displacement remains less than 70% of the radius of gyration, which is small compared 

to the length L (less than 0.5%). This prestressed state is rather badly approximated by a 

linear state of small strain and small displacement (dashed line in Fig. 2). Though the 

difference in w0 is rather small between the linear and nonlinear theories (difference due 

to a stiffening effect, well-known in non-linear mechanics), the non-linear axial 

prestress N0 is not negligible for prestressed dynamics, as shown further. Note that if a 

linear theory is used, there is strictly no axial prestress. 

 

Figure 3 plots the change in the first eigenfrequency versus 
2

T fM L rH . The 

eigenfrequency based on the complete non-linear prestressed state (including N0 and w0) 

is compared with the same state but with w0=0, arbitrarily neglected, in order to 

demonstrate the effect of prebending. It can be observed that the presence of prebending 

has a stiffening effect, significantly increasing the first eigenfrequency (+10% for 

2 6T fM L rH  ). 
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The eigenfrequencies based on a linear prestressed state (N0=0 in this example), 

also shown in Fig. 3, may lead to noticeable errors (2%). In the worst situation, the 

prestressed state would be computed with a linear theory (giving N0=0 here) and the 

eigenfrequencies would be computed without prebending, so that no change in 

eigenfrequencies could numerically be observed in that example. In that case, the error 

incurred on the first frequency would reach 16%. 

 

The curve obtained with the updated formulation presented in Section 3.4 is also 

plotted on Fig. 3 (based on the complete non-linear prestressed state). The meshed 

geometry corresponds now to the predeformed beam. Results exhibits a perfect 

agreement with the total Lagrangian formulation, which validates the prebending effects 

observed above. Besides, these results are in good agreement with the analytical results 

obtained from Eq. (23) (dashed-dot line in Fig. 3). 

 

The eigenfrequencies of modes 2 and 3 are given in Fig. 4. Neglecting non-

linearities of the prestressed state still leads to errors, smaller as the order of modes 

increases (1.5% and 0.7% for modes 2 and 3 respectively). However, prebending effects 

upon these modes are quite negligible. This insensitiveness to predisplacement is 

confirmed by the analytical formula (23) and was also observed in Refs. [18][19] when 

investigating the natural frequencies of simply supported buckled beams. 
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It must be outlined that modal shapes are not shown here for conciseness because 

they are standard for a simply supported beam (of sin n x L  type) and negligibly 

affected by prestress and prebending (at least, for the loading range considered here).  

 

5. EXPERIMENTAL VALIDATION 

In this section, a laboratory test-case for the study of flexural modes of a clamped 

planar beam thermally prestressed is presented. In a previous work [41], the 

experimental setup was satisfactorily tested on an axially prestressed straight beam, but 

with negligible predisplacement effects on modes. In this paper, a beam sensitive to the 

effect of prebending is considered. Experimental and FE eigenfrequencies are 

compared. 

 

5.1. Experimental setup 

The experimental device is depicted in Fig. 5. A vertical test beam is clamped at 

both ends on a workbench made of four vertical thick columns and two horizontal 

decks. This workbench is made of steel, whereas the beam is made of aluminium. The 

whole apparatus is set inside a climatic chamber with controlled ambient temperature. 

 

Because steel and aluminium do not have the same coefficient of thermal expansion 

(1.17e5 and 2.30e5 K
1

 respectively), a temperature change will naturally induce a 

significant axial prestress inside the beam. Because no external axial body force neither 
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axial surface traction are present during the experiments (gravity effects are shown to be 

negligible), this quasi-static prestress N0 is constant along the beam – see Eq.(9) – even 

though a temperature gradient might exist along the beam. 

 

One considers a beam of length L=1 m and 0.03 m depth (the length L is given 

without the additional ends, 5 cm each, used for clamping). As sketched in Fig.5, the 

beam profile is circular on one face (straight on the other), so that no straight neutral 

axis exists (Hmf0 and mf0). The thickness varies from 0.03 m at extremities to 0.01 m 

at center. The cross-section is rectangular. The material properties are E=7.24e+10 Pa, 

=2790 kg/m
3
, =2.30e5 K

1
 (aluminium 2017). 

 

Those characteristics have been experimentally checked with some static bending 

tests (not shown for conciseness) and by comparing FE and experimental free-free 

eigenfrequencies, given in Table 2. The clamped-free frequencies have also been 

studied in order to characterise the experimental clamped boundary condition, 

imperfectly obtained with tightening jaws. This explains some slight differences 

between the experimental and numerical clamped-free eigenfrequencies (see Table 2). 

A torsional spring may be used in the model to approximate the real boundary condition 

as M=C(w,x). A good match is found with a value of C=3e5 N.m. 

 

As depicted in Fig. 5, the test beam has been instrumented with one accelerometer, 

located at a node of the fourth flexural eigenmode in order to avoid nodes of modes 1 to 
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3. A pair of aluminium strain gages with thermal compensation has also been bonded to 

the beam center. Under the assumption of small strain, those gages provide a measure of 

the compensate strains 0 0xxE        at the upper (+) and lower () sides. Some 

temperature sensors have helped checking that gage measurements were closely related 

to thermal variations. 

 

It must be outlined that for the experiment, the uniformity of temperature on the 

cross-section of the beam can be assumed. In thermal engineering, the validity of this 

assumption may be evaluated by a Biot number less than 0.1: Bi=he/k<0.1 (h: heat 

exchange coefficient, e: beam thickness, k: thermal conductivity – k=134 W.m


.K


). 

Though h is not known in the experiment, its value should be greater than 450 

W.m


.K


 (with e=emax=0.03 m) in order to have Bi>0.1, which exceeds with no doubt 

the actual value of h, given the weak convection inside the climatic chamber. 

 

Then, under the assumption that the product 0 is constant on the cross-section, it 

can be shown that the curvature and the axial prestress are respectively obtained from 

the difference and the half sum of strains: 

 0, 0;
2

xx mw N H
e

       
   (24) 

where e is the beam thickness at the measuring point. N0 can thus be experimentally 

obtained without requiring any temperature sensor. Besides, only one measure at a 

given point is necessary, because it remains axially constant as stated earlier. 
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Tests are carried out inside the climatic chamber, first by stabilising the ambient 

temperature for 3 hours, and then by heating for 27 hours with a slope of +1°C per hour. 

The beam is acoustically excited by a loudspeaker with a white noise input. Strain and 

temperature measurements are saved every one second. Acceleration measurements are 

automatically triggered every thirty minutes, for 250 seconds with a 1280Hz sampling 

frequency, which is sufficient for the analysis of modes 1 to 3 (the eigenfrequency of 

the third mode is below 500 Hz). 

 

Some experimental results are given in Fig. 6. They clearly show that the first 

eigenfrequency decreases as the average temperature increases versus time, whereas the 

axial prestress and the curvature decrease (note that the prestress is taken negative when 

compressive). 

 

5.2. Results 

5.2.1. Prestressed state 

The knowledge of N0 and w0(x)+wi(x) is a crucial step. First, the initial 

imperfections wi(x) must be measured. This has been done with an optical displacement 

sensor. The measured profile is depicted in Fig. 7. The initial imperfection between both 

ends is about 5.5 mm. Measurements have been fitted with a polynomial (of degree 3), 

as shown in Fig. 7, and then derived and interpolated on each node. 
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The computation of the prestressed state would a priori require the knowledge of 

the complete temperature field inside the beam, which is a problem beyond the scope of 

this paper. However, in the test-case considered, there is no prebending load (i.e. no 

load for the equilibrium equation governing the transverse displacement). In particular, 

the thermal moment MT  is zero because the temperature is cross-sectionally constant as 

stated earlier. This means that the knowledge of N0 is sufficient to determine the whole 

predeformed state, because the problem can be understood as a beam subjected to an 

axial preload enforced as a boundary condition at one extremity (x=L for instance). 

 

Realistic boundary conditions should take into account the fact that: (i) the clamped 

boundary condition is not perfect ; (ii) tightening jaws are not perfectly perpendicular to 

the beam and make some angles with respect to the beam axis, denoted 1 2 and    at 

x=0 and L respectively ; (iii) an additional displacement w  may be induced because of 

an alignment defect of the jaws. Finally, some adequate boundary conditions used for 

the prestressed state computation may be given by: 

 
 

 

0 0 0 0, , 1

0 0 0 0, , 2

0 and         at  0

  ,   and at  

x i x

x i x

u w M C w w x

N N w w M C w w x L





        


       

 (25) 

N  is the axial prestress measurement obtained from strain gages. w  is set to zero 

because the jaws position has been carefully adjusted to the imperfect beam in the 

experiment. C is the torsional stiffness already defined above. It should be noted that 

numerical tests have shown that a value of C=3e5 N.m produces a negligible change of 
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the prestressed state compared to a perfect clamping (C), but has been kept for a 

certain consistency with dynamics. 

 

Now, the determination of 1 2 and    requires the measurement of the predeformed 

beam in its clamped-clamped configuration. This has been realised with the 

displacement sensor for two thermal states : one at the beginning, for N0=0.40 kN and 

w0,xx(L/2)=+2.81e2 m
1

, and another nearly at the end of the test for N0=7.66 kN and 

w0,xx(L/2)=2.82e2 m
1

. The predeformed profiles are given in Fig. 8. Values of 

1 =0.5e-3 rad and 2 =1.5e-3 rad were shown to give a good agreement of the FE 

model with the experimental data, as shown in Fig. 8. This agreement is further 

confirmed by Fig. 8, which also provides a comparison of the evolutions of 

experimental and FE curvatures at center throughout the test (evolutions being given 

with respect to the axial prestress instead of time). 

5.2.2. Eigenfrequencies 

In this test-case, the sensitivity of modal shapes with the prestressed states in the FE 

model was found to be quite negligible. Hence, we will exclusively focus on 

eigenfrequencies. For the computations, the following boundary conditions are applied: 

  ,0 and         at  0,xu w M C w x L       (26) 

Some numerical tests have been realised in order to verify the influence of the torsional 

spring. Those tests demonstrate that there is no difference, with (C=3e5 N.m) or without 

(C) spring, in the relative change f/fref discussed later. The only effect of the spring 
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in FE computations is a constant offset from the no spring case. This offset just enables 

a better match of numerical frequencies with the experiment, as already shown in Table 

2. 

 

Figure 9 depicts the change in the first eigenfrequency with the axial prestress 

during the test. In the experiment, a decrease from 127.5 Hz to 119.5 Hz is observed. 

The comparison between experimental and numerical results clearly demonstrates the 

stiffening influence of prebending: if only the axial prestress is considered in the 

computation of this eigenfrequency, a significant difference with experiment is found. If 

prebending is correctly included, the agreement becomes quite good. The relative 

change in frequency with respect to the reference frequency (corresponding to the 

beginning of the test) decreases to 6% at the end of the experiment, which is also 

found with the FE model based on a complete prestressed state. Without prebending, the 

numerical results give an erroneous change of about 11%. 

 

The evolutions of eigenfrequencies of modes 2 and 3 are given in Fig. 10. The 

mode 2 (resp. 3) varies from 264.7 Hz (resp. 467.8 Hz) to 245.0 Hz (resp. 445.3 Hz), 

yielding a relative change of 7.3% (4.8%) at the end of the experiment. Even if 

prebending is neglected in the FE model, there is still a good agreement of numerical 

results with the experimental relative change f/fref. This indicates that those modes are 

not very sensitive to prebending. A slight deviation can yet be observed for the 

eigenfrequency of mode 2 without prebending. For mode 3, the FE eigenfrequencies 
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exhibit a small offset, less than 1%, due to the approximation of the boundary condition. 

But as far as the relative change is concerned, the agreement between the experiment 

and the model is satisfactory. 

 

For the thermal loads considered in this experiment, the influence of 

predisplacement is thus only significant for the first mode. This is explained by the fact 

the sensitiveness to predisplacement of a given eigenfrequency depends on how its 

associated mode shape compares to the predeflection shape, combined with a stronger 

prestressing effect for lower eigenfrequencies. This phenomenon is coherent with 

results already observed, numerically or computationally, for vibrating buckled beams 

[16][17][18][19]. 

 

6. CONCLUSIONS 

 

In the context of damage detection and structural health monitoring with thermal 

compensation, very small changes in modal parameters are sufficient to mask the 

presence of a disorder (or, inversely, to make a false detection). This motivates the need 

of accurate models for prestressed dynamics. Based on a general theory, this paper 

proposes a numerical procedure that seems to be satisfying for beams. In the approach 

developed, the initial imperfections, prebending and geometrical non-linearities of the 

prestressed state must all be included in the analysis, because they are shown to have a 

non-negligible impact upon eigenfrequencies. Those requirements are also likely to 
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apply in the general framework of prestressed dynamics, concerning more complex 

structures such as frames or plates. This paper gives a background for further studies 

dealing with such structures. 

 

From the numerical and experimental results above, when the beam predeformation 

is neglected, the axial prestress has a stronger shifting effect for lower eigenfrequencies. 

Nevertheless, this statement might not be true anymore in the presence of significant 

predisplacement, which tends to modify the shifting effects of axial prestress upon some 

isolated modes (the first one in the cases presented) due to a stiffening effect. In 

practice, neglecting predeflection and initial imperfections in eigenfrequency 

computations may lead to errors of several percents, even when the predisplacement 

remains relatively small compared to the beam length (always less than 0.5% in the 

examples of this paper). 
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FIGURE/TABLE CAPTIONS: 

 

FIG.1. (a) Reference ref (straight bold line), predeformed 0 (bold dashed), total  

(dashed) and imperfect i (thin line) configurations for an idealised straight beam. (b) 

Zoom of the gray zone with the particle displacement decomposition. 

 

FIG.2. (a) non-dimensional predisplacement at center and (b) axial prestress versus 

thermal moment parameter. Solid lines: non-linear computation, dashed lines: linear. 

 

FIG.3. First eigenfrequency ratio versus thermal moment parameter, obtained from a 

non-linear prestressed state including (solid line) and neglecting (points) prebending, 

and from a linear prestressed state (dashed line). x-mark: results obtained from the 

updated formulation, dashed-dot line: analytical formula of Ref. [16]. 

 

FIG.4. (a) Second and (b) third eigenfrequencies ratios versus thermal moment 

parameter. The legend is the same as in Fig. 3. 

 

FIG.5. (a) Workbench and (b) instrumented test beam. 

 

FIG.6. Experimental results vs. time: (a) averaged beam temperature (solid line) and 1st 

eigenfrequency (x-mark), (b) axial prestress (solid line) and center curvature (dashed 

line). 
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FIG.7. Measured (x) and fitted (solid line) initial imperfections. 

 

FIG.8. (a) Predisplacement profiles of the clamped-clamped beam, measured (x) and 

computed (solid line) at the beginning of the experiment, measured (+) and computed 

(dashed line) at the end. (b) Experimental (solid line) and computed (dashed line) 

curvatures at center. 

 

FIG.9. (a) 1st eigenfrequency versus axial prestress: experimental (x), computed with 

prebending (solid line) and without (dashed line). (b) Relative change f/fref versus axial 

prestress (same legend). 

 

FIG.10. (a) 2nd eigenfrequency and (b) its relative change versus axial prestress. (c) 3rd 

eigenfrequency and (d) its relative change. The legend is the same as in Fig. 9. 

 

TABLE 1. Definitions of notations involved in Eqs. (4). 

 

TABLE 2. Experimental and numerical free-free eigenfrequencies. Clamped-free 

eigenfrequencies: experimental, numerical with a perfect clamping, and numerical with 

an adjusted torsional spring (C=3e5 N.m). 
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FIG.7 
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FIG.8 
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FIG.10 
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formulation ,,  ,  u T    e (incremental strain) 
σ (inc. 

stress) 
 0σ  

total 
,,  ,  u T

ref ref ref        0 0
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TT T

i i
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stress 
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Fabien Treyssède 

Journal of Sound and Vibration 

 

 

 

 

 free-free clamped-free 

whole step 
mode exp. num. exp. num. num. C=3e5 

1 40.3 39.9 (1,0%) 9.4 9.3 (1.1%) 9.3 (1.1%) 

2 152.2 150.9 (0.9%) 72.1 73.1 (1.4%) 72.3 (0.3%) 

3 341.3 342.3 (0.3%) 208.4 213.0 (2.2%) 209.2(0.4%) 

 

 

 

 

 


