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Motivation

Background and Motivation

Background

Problem of rigid image registration is usually formulated in
the continuous domain, in the context of optimisation.

This often requires re-digitizing results after transformation,
and sometimes causes unwanted artifacts.

Motivation and clues

Is it possible to avoid this re-digitization ?

Yes, a fully discrete approach allows to
transform images pixel by pixel.

How to explore efficiently such a discrete parameter space ?
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Rigid transformation in Z2

Rigid transformation on R2

Definition (Rigid transformation T : R2 → R2)

A rigid transformation is a bijection defined for any
x = (x , y) ∈ R2 as

T (x) =
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a1
a2

)

with a1, a2 ∈ R and θ ∈ [0, 2π[.

T (x)

x
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Rigid transformation in Z2

Rigid transformation on Z2

Definition (Digital rigid transformation T : Z2 → Z2)

A digital rigid transformation on Z2 is defined for any
p = (p, q) ∈ Z2 as

T (p) = D ◦ T (p) =
(

[p cos θ − q sin θ + a1]
[p sin θ + q cos θ + a2]

)

where D : R2 → Z2 is a digitization (a rounding function).

p T(p)
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Rigid transformation in Z2

Discontinuities of rigid transformations in Z2

Discontinuities of rigid transformations on Z2

T (p) = D ◦ T (p) =
(

[p cos θ − q sin θ + a1]
[p sin θ + q cos θ + a2]
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Rigid transformation in Z2

Discrete rigid transformation

Definition
A discrete rigid transformation (DRT) is the set of all the rigid
transformations that generate a same image.

The parameter space (a1, a2, θ) is partitioned by the disjoint set of DRTs.
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Rigid transformation in Z2
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Rigid transformation in Z2

Critical rigid transformations

Definition
A critical rigid transformation moves at least one point of Z2 to
a point on the vertical or horizontal half-grid.
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Parameter space subdivision

Tipping surfaces

Definition
The tipping surfaces are the surfaces associated to critical
transformations in the parameter space (a1, a2, θ) :

a1 = k +
1
2 + q sin θ − p cos θ, (vertical)

a2 = l + 1
2 − p sin θ − q cos θ, (horizontal)

for p, q, k, l ∈ Z.

Each tipping surface
is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),
indicates that the pixel (p, q) in a transformed image changes its
value from the one at (k, ∗) (resp. (∗, l)) in an original image to the
one at (k + 1, ∗) (resp. (∗, l + 1)).
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Parameter space subdivision

Example of tipping surfaces

a1 a2 a2a1

Vertical surfaces Φpqk and horizontal ones Ψpql for p, q ∈ [0, 2] and k, l ∈ [0, 3].
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Discrete rigid transformation graph

Graph of discrete rigid transformations

Definition
A graph of discrete rigid transformations (DRT graph) is a
graph G = (V ,E ) such that :

each vertex v ∈ V corresponds to a DRT,
each edge e ∈ E connects two DRTs sharing a tipping surface.

a2

a1
a1

a2
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Discrete rigid transformation graph

Properties of discrete rigid transformation graph

Advantages

Discrete rigid transformations are computed in a fully
discrete process.

Their combinatorial structure is represented by a DRT
graph G whose complexity is O(N9) for images of size N ×N.
G models all the discrete rigid transformations with their
topological information such that :

a vertex corresponds to a different transformed image,
an edge corresponds to one pixel change, i.e. a tipping surface,
(each edge possesses such a pixel transition information).

It enables to generate exhaustively and incrementally all
the transformed images in linear time.
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Discrete rigid transformation graph search

Registration as a combinatorial optimisation problem

Problem formulation
Given two images A and B of size N × N, image registration consists of
finding a DRT such that

v∗ = arg min
v∈V

d(A,Tv (B))

where Tv is the digital rigid transformation of a DRT v , and d is a given
distance between two images.

We have a choice for d ; here we use signed distance. (Boykov et al., 2006)

Disadvantage
Exhaustive search on DRT graph costs O(N9) in complexity.

Advantage
A local search on DRT graph can determine a local optimum.
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Discrete rigid transformation graph search

Local search on discrete rigid transformation graph

Local search

Input : An initial DRT v0 ∈ V .

Output : A local optimum v̂ ∈ V .

Approach : Gradient descent : find a better solution in neighbours.

DRT graph provides
neighbourhood structure
efficient computation of d
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Local search on discrete rigid transformation graph

Local search

Input : An initial DRT v0 ∈ V .

Output : A local optimum v̂ ∈ V .

Approach : Gradient descent : find a better solution in neighbours.

DRT graph provides
neighbourhood structure Nk(v) = Nk−1(v) ∪

⋃
u∈Nk−1(v) N(u)

efficient computation of d
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Discrete rigid transformation graph search

k-neighbourhood construction in a DRT graph
Around a DRT v , we can consider 4N2 inequalities :

p′i −
1
2 < pi cos θ − qi sin θ + a1 < p′i +

1
2

q′i −
1
2 < pi sin θ + qi cos θ + a2 < q′i +

1
2

due to the pixel correspondence between (pi , qi) in the transformed
image and (p′i , q′i ) in the original image.
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k-neighbourhood construction in a DRT graph

Around a DRT v , we can consider 4N2 inequalities :

p′i −
1
2 < pi cos θ − qi sin θ + a1 < p′i +

1
2

q′i −
1
2 < pi sin θ + qi cos θ + a2 < q′i +

1
2

due to the pixel correspondence between (pi , qi) in the transformed
image and (p′i , q′i ) in the original image.

k-neighbourhood construction problem

Input : 4N2 tipping surfaces around v
Output : Nk(v) = Nk−1(v) ∪

⋃
u∈Nk−1(v) N(u)

Previous time complexity O(mkN2) is improved to O(mkN2)
where m is vertex degree.
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Discrete rigid transformation graph search

Sweeping plane algorithm for DRT sub-graph construction

DRT sub-graph construction by sweeping plane algorithm, with 2
vertical and 2 horizontal tipping surfaces.

θ 

a1

a2

(a) 3× 3 cells generated by tipping sur-
faces in each plane

θ 

a1

a2

(b) Associated DRT graph in each plane
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Discrete rigid transformation graph search

k-neighbourhood construction algorithm

Algorithm (k-neighbourhood construction (in left-hand side of θ-axis))

Input : a DRT v and its initial position θv .
Output : The k-neighbours of v

1 Set θprev = θv .

2 Find 4(k + 1) closest tipping surfaces around v.

O(N2)

3 Sort and put them in an ordered set S.

O(k log k)

4 Find the interval [θprev , θnext ] where S is not changed.

O(N2)

5 Sweep the plane from θprev to θnext .

O(k2)

6 If the neighbourhood depth of each generated vertex is not
more than k, update S and go back to Step 4.

O(1)

Estimated number of iterations (Steps 4-6) : m(2k + 1)
Total complexity : O(mkN2)
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Discrete rigid transformation graph search

Average vertex degree of DRT graphs

Let v , e and f be the numbers of vertices, edges and cells of the 2D DRT
graph, which is the projected DRT graph onto the (ai , θ) plane, i = 1, 2.

From

the Euler formula : v − e + f = 2,
the DRT graph property : 4f ≤ 2e,

we have the average degree

2e
v ≤ 4− 8

v < 4

as v � 8 in the 2D DRT graph, and thus

Property
The average vertex degree of DRT graphs is lower than 8.
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Discrete rigid transformation graph search

Average vertex degrees of 2D DRT graphs in practice
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Experiments

Experiment on binary images

(a) reference image (b) target image (c) initial solution (d) solution : k = 1

(e) k = 3 (f) k = 5 (g) k = 10 (h) k = 15
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Experiments

Experiment on binary images : distance evolutions

(a) Distance evolutions

1-neighbours
3-neighbours
5-neighbours
10-neighbours
15-neighbours

(b) Transformation sequences
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Experiments

Experiment on binary images : runtime complexity
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Experiments

Experiment on binary images : image sequences for k = 15
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Experiments

Experiment on gray images

(a) reference image (b) target image (c) initial solution (d) solution : k = 1

(e) k = 3 (f) k = 5 (g) k = 10 (h) k = 15
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Experiments

Experiment on gray images : distance evolutions
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Conclusion

Conclusion and perspectives

Conclusion

A purely discrete framework for 2D image registration under rigid
transformation was proposed, based on DRT graph.

A gradient descent procedure constructs the exact k-neighbourhood
at each step with a O(mkN2) time complexity.

The average vertex degree m is less than 8.

An efficient algorithm for computing the k-neighbours for the local
search was proposed with linear time complexity.

Perspectives

Combine our proposed method with other combinatorial approaches.

Extend to higher dimensions, and gray-level or labelled images.
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