
HAL Id: hal-01067501
https://hal.science/hal-01067501

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Shape derivative of the Cheeger constant
Enea Parini, Nicolas Saintier

To cite this version:
Enea Parini, Nicolas Saintier. Shape derivative of the Cheeger constant. ESAIM: Control, Optimisa-
tion and Calculus of Variations, 2014, 21 (2), pp.348-358. �10.1051/cocv/2014018�. �hal-01067501�

https://hal.science/hal-01067501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SHAPE DERIVATIVE OF THE CHEEGER CONSTANT

ENEA PARINI AND NICOLAS SAINTIER

ABSTRACT. This paper deals with the existence of the shape derivative of the Cheeger
constant h1(Ω) of a bounded domain Ω. We prove that if Ω admits a unique Cheeger set,
then the shape derivative of h1(Ω) exists, and we provide an explicit formula. A counter-
example shows that the shape derivative may not exist without the uniqueness assumption.

1. INTRODUCTION

Let Ω ⊂ R
n be a bounded domain. The Cheeger constant of Ω is defined as

h1(Ω) := inf
E⊂Ω

P(E;Rn)

|E| .

Here P(E;Rn) is the distributional perimeter of E measured with respect to R
n, while |E| is

the n−dimensional Lebesgue measure of E. A set C ⊂ Ω for which the infimum is attained
is called a Cheeger set.

The problem of finding a Cheeger set for a given domain Ω has extensively received
attention in the last decades, starting from the original work of Jeff Cheeger [5]. For an
introductory survey on the Cheeger problem we refer to [18]; here we recall that for every
bounded domain Ω with Lipschitz boundary there exists at least one Cheeger set. Unique-
ness does not hold in general, but it is guaranteed if we assume Ω to be convex; in this case
the Cheeger set turns out to be convex and of class C1,1 (see [1]). The Cheeger constant
can be obtained as the limit for p → 1 of the first eigenvalue λp(Ω) of the p−Laplacian
under Dirichlet boundary conditions (see [12]), and corresponds to the first eigenvalue of
the 1−Laplacian (see [14]).

Shape analysis roughly consists in studying the regularity and the optimisation of a
functional J : Ω ∈ A → J(Ω) ∈ R defined over some class A of subsets Ω ⊂ R

n. Due to
its physical relevance, a particularly important class of functionals are the ones defined in
terms of the eigenvalues of some operator. A lot of works have been dedicated for instance
to the study of the dependence of the eigenvalues of the Laplacian as functions of the
domain under various boundary conditions. We refer for example to the monograph [11]
for an introduction to the field of shape analysis.

In order to optimize J over A it is important to determine how sensitive is J under
perturbation of a given set Ω. Given a smooth vector field V ∈ C∞

c (R
n;Rn), define Ft :

R
n →R

n as Ft(x) = (Id+ tV )(x). We then perturb Ω in the direction V by considering the
sets Ωt = Ft(Ω). The shape derivative of J in the direction V at Ω is then defined as

J(Ω,V )′ := lim
t→0

J(Ωt)− J(Ω)

t
.
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For instance the shape derivative of the first eigenvalue λ (Ω) of the Laplacian with Dirich-
let boundary condition is

λ (Ω,V )′ =−
∫

∂Ω

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

2

〈V,ν〉dH
n−1,

where u is the unique positive normalized eigenfunction in Ω and ν is the unit exterior
normal to ∂Ω. This formula has been generalized in [8, 16] to the first eigenvalue λp(Ω)
of the p-Laplacian (p > 1):

(1) λp(Ω,V )′ =−(p−1)
∫

∂Ω

∣

∣

∣

∣

∂up

∂ν

∣

∣

∣

∣

p

〈V,ν〉dH
n−1,

where up is the unique positive normalized eigenfunction in Ω.

General results about the stability of the Cheeger constant h1(Ω) as a function of Ω

have been obtained in [10]. In particular the shape derivative was computed but only in
the case V (x) = λx, λ ∈ R. The main purpose of this paper is to provide a formula for
the shape derivative of h1(Ω) in the case of an arbitrary deformation field V . Notice that
setting p = 1 formally in (1) does not give any meaningful information. Indeed it is known
that characteristic functions of Cheeger sets are, up to a multiplicative constant, normalized
first eigenfunctions of the 1-Laplacian and they are obtained as limit of eigenfunctions of
the p-Laplacian as p goes to 1 (see Section 2). Therefore, if C is a Cheeger set, the normal
derivative should be thought as equal to −∞ on ∂Ω∩∂C, so that the integral in (1) would be
infinite. This kind of problem has also been considered in [20] where the shape derivative
of the best Sobolev constant for the embedding of BV (Ω) into L1(∂Ω) was computed. Let
us mention finally that the other extreme case p =+∞ corresponding to the first eigenvalue
of the ∞-Laplacian has been recently studied in [17], [7] and [19] for Dirichlet, Steklov and
Neumann boundary condition respectively.

The main result of our paper is the following.

Theorem 1.1. Let Ω be a bounded Lipschitz domain. Let V ∈ C∞
c (R

n;Rn), and let Ft :
R

n →R
n be the one-parameter family of diffeomorphisms defined by Ft(x) = (Id+ tV )(x).

Set Ωt = Ft(Ω). Then

lim
t→0

h1(Ωt) = h1(Ω).

If moreover Ω admits a unique Cheeger set C then the shape derivative

h1(Ω,V )′ = lim
t→0

h1(Ωt)−h1(Ω)

t

exists and is given by

h1(Ω,V )′ =
1
|C|

∫

∂ ∗C
(div∂C V −h1(Ω)〈V,ν〉)dH

n−1,(2)

where ∂ ∗C is the reduced boundary of C, ν is the unit exterior normal vector on ∂ ∗C, and

div∂Ω V (x) = divV (x)− (ν(x),DV (x)ν(x)), x ∈ ∂ ∗
Ω, is the tangential divergence of V on

∂Ω.

In the case where ∂C is of class C1,1, this formula can be simplified:

Corollary 1.2. If Ω admits a unique Cheeger set C and ∂C is of class C1,1, then the shape

derivative of h1(Ω) is given by the formula

(3) h1(Ω,V )′ =
1
|C|

∫

∂C∩∂Ω

(κ −h1(Ω))〈V,ν〉dH
n−1,
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where κ(x) = div ν is the sum of the principal curvatures of ∂Ω at the point x (i.e. (n−1)
times the mean curvature), and ν is the unit exterior normal to ∂Ω.

The assumption in the Corollary is in particular satisfied for every dimension n when Ω

is convex (see [1]), or in dimension n ≤ 7 when ∂Ω is of class C1,1 and admits a unique
Cheeger set C (see [4]). We point out that the uniqueness hypothesis is necessary. Indeed,
at the end of this paper we provide a counterexample of a domain admitting more than
one Cheeger set, which is not shape differentiable for some choice of V . However, it is
interesting to observe that the bounded domains Ω admitting a unique Cheeger set (and
hence shape differentiable) are dense in the L1 topology (see [4]).

2. DEFINITIONS AND PRELIMINARY RESULTS

Let Ω ⊂ R
n be an open set. The total variation in Ω of a function u ∈ L1(Ω) is defined

as

|Du|(Ω) := sup

{

∫

Ω

udivϕ

∣

∣

∣

∣

ϕ ∈C1
c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}

.

A function u such that |Du|(Ω) < +∞ is said to be of bounded variation. The space of
the functions of bounded variation will be denoted by BV (Ω). It can be easily proved
that the total variation is lower semicontinuous with respect to the L1-convergence (see
[9]). Moreover, the following holds true. Suppose that Ω is a Lipschitz domain, and let
u ∈ BV (Ω); if we denote by u the extension of u by zero outside Ω, then u ∈ BV (Rn), and

|Du|(Rn) = |Du|(Ω)+
∫

∂Ω

|u|dH
n−1,

where H n−1 is the (n−1)-dimensional Hausdorff measure on ∂Ω.
The perimeter of a set E ⊂ Ω (measured with respect to R

n) is defined as

P(E;Rn) := |DχE |(Rn),

where χE is the characteristic function of E. The Cheeger constant of Ω is

h1(Ω) := inf
E⊂Ω

P(E;Rn)

|E| ,

where |E| stands for the n-dimensional Lebesgue measure of E. A Cheeger set is a set
C ⊂ Ω such that

P(C;Rn)

|C| = h1(Ω).

The existence of a Cheeger set for every bounded Lipschitz domain Ω is proved via the
direct method of the Calculus of Variations. Uniqueness does not hold in general; however,
any convex body has a unique Cheeger set (see [1]). If C is a Cheeger set for Ω, then ∂C∩Ω

is analytic, up to a closed singular set of Hausdorff dimension n−8; at the regular points
of ∂C∩Ω, the mean curvature is equal to h1(Ω)

n−1 (see e.g. [18, Proposition 4.2]). Morever,
if ∂Ω is of class C1,1, then also ∂C enjoys the same regularity (see [4]); the same result
holds if Ω is convex, as a consequence of the results in [21].

As an application of the coarea formula, h1(Ω) can also be obtained as

h1(Ω) = inf
u∈BV (Ω)\{0}

|Du|(Rn)

‖u‖1

or equivalently
h1(Ω) = inf{|Du|(Rn) |u ∈ BV (Ω), ‖u‖1 = 1} .
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Therefore, h1(Ω) can be seen as the first eigenvalue of the 1-Laplacian with Dirichlet
boundary condition, which is defined formally as

∆1u = div

(

∇u

|∇u|

)

,

and the characteristic functions of Cheeger sets are corresponding eigenfunctions. We refer
to [14] for a thorough analysis of this problem. Here we observe that if Ω admits a unique
Cheeger set C, then u = 1

|C|χC is the unique nonnegative normalized eigenfunction of the
1-Laplacian, since every level set of a first eigenfunction is a Cheeger set (see [3, Theorem
2]).

3. PROOF OF THE MAIN RESULTS

Recall that we are given a Lipschitz domain Ω ⊂ R
n that we perturb in the direction of

a smooth vector field V ∈C∞
c (R

n;Rn) in the sense that we consider the perturbed domains

Ωt = Ft(Ω) with Ft(x) = (Id + tV )(x).

We let h = h1(Ω) and ht = h1(Ωt). We also assume that any function u defined in Ω (resp.
Ωt ) is extended by 0 to R

n\Ω (resp. Rn\Ωt ). With the notation of the previous section this
means that u = ū.

We recall the change of variable formula for BV functions (see [9, Lemma 10.1]). Let
Gt be the inverse of Ft (which exists for small t). For an arbitrary function u ∈ BV (Ω), if
we denote by v the function of BV (Ωt) defined by v(x) = u(Gt(x)) we have the relations

∫

Ωt

v(x)dx =
∫

Ω

u(y)|det DFt(y)|dy

and

|Dv|(Rn) =
∫

Rn
|(DGt)

T σ | · |det DFt |d|Du|,

where σ comes from the polar decomposition Du = σ |Du|.

Proof of Theorem 1.1. Let u ∈ BV (Ω) be a nonnegative eigenfunction for h such that
‖u‖1 = 1 in the sense that u is an extremal in (2) (which is known to exist). Consider
the function wt ∈ BV (Ωt) defined as wt = u◦Gt . Then

|Dwt |(Rn) =
∫

Rn
|(DGt)

T σ | · |det DFt |d|Du|,

where σ comes from the polar decomposition Du = σ |Du|. Since |σ | = 1 |∇u|-a.e., and
DFt → Id uniformly as t → 0, so that |det DFt | → 1 uniformly, we have using (2) and the
above change of variable formula that

ht ≤
|Dwt |(Rn)
∫

Ωt

wt

=

∫

Rn
|(DGt)

T | · |det DFt |d|Du|
∫

Ω

u(y)|det DFt(y)|dy

= (1+o(1))

∫

Rn
d|Du|

∫

Ω

u(y)dy

.

It follows that

limsup
t→0

ht ≤ h
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Let ut ∈ BV (Ωt) be a nonnegative extremal for ht such that ‖ut‖1 = 1. Consider the
function vt ∈ BV (Ω) defined as vt = ut ◦Ft . Then

|Dvt |(Rn) =
∫

Rn
|(DFt)

T σt | · |det DGt |d|Dut | ≤ (1+o(1))
∫

Rn
d|Dut |

= (1+o(1))ht

≤ h+o(1),

(4)

and

(5)
∫

Ω

vt dx =
∫

Ωt

ut |det DF−1
t |dx = 1+o(1).

Therefore (vt) is bounded in BV (Rn). Since the embedding of BV (Rn) into L1
loc(R

n) is
compact, it follows that there exists a function v ∈ BV (Rn) such that (up to a subsequence),
vt → v a.e.. We deduce first that v = 0 in R

n\Ω, then, using (5), that
∫

Ω

vdx = lim
t→0

∫

Ω

vt dx = 1,

and eventually according to (4), that

|Dv|(Rn)≤ liminf
t→0

|Dvt |(Rn)≤ h.

Letting v = v|Ω, it follows that
∫

Ω
vdx = 1, and

h ≤ |Dv|(Rn)≤ liminf
t→0

|Dvt |(Rn) = h.

It follows that
lim
t→0

ht = h,

and that v is an extremal for h.

We assume from now on that Ω admits a unique Cheeger set C ⊂ Ω. As a consequence,
the only nonnegative normalized extremal for h is |C|−1χC; this follows from the fact
that every level set of an extremal is a Cheeger set (see [3, Theorem 2]). In particular
u = v = |C|−1χC. Therefore vt → u in L1(Ω) and

lim
t→0

|Dvt |(Rn) = |Du|(Rn).

By [2, Proposition 3.13], this implies that

lim
t→0

∫

Rn
φ d|Dvt |=

∫

Rn
φ d|Du|

for any φ ∈Cc(R
n).

Let us prove the differentiability. Using wt = u◦Gt as a test-function for ht , we obtain

ht −h ≤

∫

Rn
|(DGt)

T σ | · |det DFt |d|Du|
∫

Ω

u(y)|det DFt(y)|dy

−h.

Observe that
|det DFt(y)|= 1+ t.div V (y)+o(t),

and
|(DGt(y))

T σ(y)|= |σ(y)|− t〈σ(y),DV (y).σ(y)〉+o(t),
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where o(t) is uniform in y. Therefore

ht −h ≤
h+ t

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|+o(t)

1+ t

∫

Ω

udiv V +o(t)
−h

=

t

(

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

udiv V

)

1+ t

∫

Ω

udiv V +o(t)
.

We used the fact that |σ |= 1 |Du|-a.e. and u is a normalized extremal for h. It follows that

limsup
t→0+

ht −h

t
≤

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

udiv V,

and

liminf
t→0−

ht −h

t
≥

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

udiv V.

Let us now prove the opposite inequality. We use vt as a test-function for h, and we
obtain

ht −h =
∫

Rn
d|Dut |−h ≥

∫

Rn
|(DGt)

T σt | · |det DFt |d|Dvt |−
∫

Rn d|Dvt |
∫

Ω
vt

,

where σt is such that Dut = σt |Dut |. We can also write

ht −h ≥
∫

Rn
d|Dvt |+ t

∫

Rn
(div V −〈σt ,DV σt〉)d|Dvt |−

∫

Rn d|Dvt |
∫

Ω
vt

+o(t).

Since div V ∈Cc(R
n), we have

lim
t→0

∫

Rn
div V d|Dvt |=

∫

Rn
div V d|Du|.

Observe also that
∫

Ω

vt = 1− t

∫

Rn
ut div V +o(t) = 1− t

∫

Rn
u div V +o(t).

so that
∫

Rn d|Dvt |
∫

Ω
vt

=
∫

Rn
d|Dvt |+ t

(

∫

Rn
d|Dvt |

)(

∫

Ω

u div V

)

+o(t)

=
∫

Rn
d|Dvt |+ th

∫

Ω

u div V +o(t),

where we used the fact that |Dvt |(Rn) = h+o(1). Hence,

ht −h ≥ t

(

∫

Rn
div V d|Du|−h

∫

Ω

u div V −
∫

Rn
〈σt ,DV σt〉d|Dvt |

)

+o(t)

Since Dvt ⇀
∗ Du and |Dvt |(Rn)→|Du|(Rn), we have, according to Reshetnyak’s Theorem

(see [2, Theorem 2.39]), that

lim
t→0

∫

Rn
f (x,σt(x))d|Dvt |=

∫

Rn
f (x,σ(x))d|Du| for any f ∈Cb(R

n ×Sn−1).

It follows in particular that

lim
t→0

∫

Rn
〈σt ,DV σt〉d|Dvt |=

∫

Rn
〈σ ,DV σ〉d|Du|.
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We thus obtain

limsup
t→0+

ht −h

t
≥

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

u div V

and

liminf
t→0−

ht −h

t
≤

∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

u div V.

Therefore

h1(Ω,V )′ = lim
t→0+

ht −h

t

exists, and

h1(Ω,V )′ =
∫

Rn
(div V −〈σ ,DV σ〉)d|Du|−h

∫

Ω

udiv V.

Since u = |C|−1χC, we have that |Du|= |C|−1H n−1
|∂ ∗C

as a measure. We can thus rewrite the
previous formula as

h1(Ω,V )′ =
1
|C|

(

∫

∂ ∗C
(div V −〈σ ,DV σ〉)dH

n−1 −h

∫

C
div V

)

=
1
|C|

∫

∂ ∗C
(div V −〈σ ,DV σ〉−h〈V,ν〉)dH

n−1,

where ν is the unit exterior normal to ∂ ∗C, and σ is given by Du = σ |Du|. We observe
that σ =−ν H n−1 - a.e. on ∂ ∗C. Recall that

divV (x)− (ν(x),DV (x)ν(x)) = div∂C V (x), x ∈ ∂ ∗C,

is the tangential divergence of V on ∂ ∗C (see e.g. [11, Definition 5.4.6]). We thus obtain
that

(6) h1(Ω,V )′ =
1
|C|

∫

∂ ∗C
(div∂C V −h〈V,ν〉)dH

n−1

which ends the proof of Theorem 1.1. �

Proof of Corollary 1.2. Suppose that Ω admits a unique Cheeger set C which is C1,1. The
unit exterior normal vector ν to ∂C is thus defined at every point and is Lipschitz continu-
ous. Its components are thus differentiable at H n−1 almost every point of ∂C; moreover,
the quantity κ := div∂Cν belongs to L∞(∂C) and it can be seen as the distributional curva-
ture of ∂C. Indeed one can easily adapt [11, Section 5.4.3] to the case of C1,1 domains to
obtain

div∂C V = div∂C V∂C +κ(V,ν) H
n−1 −a.e.,

where V∂C =V − (V,ν)ν is the tangential part of V , and
∫

∂C
div∂C V∂C dH

n−1 = 0.

Therefore it holds
∫

∂C
div∂C V =

∫

∂C
κ〈V,ν〉
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and we can rewrite (6) as

h1(Ω,V )′ =
1
|C|

∫

∂C
(div∂C V −h1(Ω)〈V,ν〉)dH

n−1

=
1
|C|

∫

∂C
(κ −h1(Ω))〈V,ν〉dH

n−1

=
1
|C|

∫

∂C∩∂Ω

(κ −h1(Ω))〈V,ν〉dH
n−1

since κ = h1(Ω) in ∂C∩Ω. We then deduce (3). �

We complete this section providing some explicit examples of computation of shape
derivatives.

Example 3.1 (The ball). Let Ω = BR be the ball of radius R, and V is a vector field such
that V (x) = ν(x) on ∂BR, we have that dht

dt
(0) =

[

d
dr

h1(Br)
]

(R). Since h1(Br) =
n
r
, we

obtain using (3) that

h1(Ω,V )′ =
nωnRn−1

ωnRn
·
(

n−1
R

− n

R

)

=− n

R2

as expected. Now let V be a volume-preserving perturbation; formula (3) becomes

h1(Ω,V )′ =− 1
|Ω|

∫

∂Ω

〈V,ν〉dH
n−1 =− 1

|Ω|

∫

Ω

div V = 0

in accordance with the well-known fact that the ball minimizes h1(Ω) among all bounded
domains with fixed volume.

Example 3.2 (The annulus). As another simple example take Ω = Ar,R = BR\B̄r, the an-
nulus {r < |x|< R}, r < R. According to [6] and [13], Ar,R coincides with its Cheeger set
so that

h1(Ar,R) =
|∂Ar,R|
|Ar,R|

= n
Rn−1 + rn−1

Rn − rn
.

Taking V (x) = ν(x), we have by direct computation that

d

dt
h1(Ar−t,R+t)|t=0

= n
−R2n−2 − r2n−2 − (n−1)rn−2Rn − (n−1)Rn−2rn −2n(rR)n−1

(Rn − rn)2 ,

which coincides with formula (3):

h1(Ω,V )′ =
(n−1

R
−h1(Ar,R)

) |∂BR|
|Ar,R|

−
(n−1

r
+h1(Ar,R)

) |∂Br|
|Ar,R|

.

In dimension 2 this example can be generalized to curved annulus:

Example 3.3 (Curved annulus in the plane). Let Γ be a smooth planar closed curve with
no self-intersection, and Ω = ΣΓ,a = {x ∈ R

2, dist(x,Γ) < a} its tubular neighborhood of
width a. We take a so small that Ω has no self-intersection. According to [15], h1(Ω) = 1

a

and Ω itself is the unique Cheeger set. We take V = ν . Then Ωt = ΣΓ,a+t and h(Ω,V )′ =
− 1

a2 =−h1(Ω)2 which coincides with formula (3):

h1(Ω,V )′ =
1
|Ω|

∫

∂Ω

(κ −h1(Ω))dH
n−1

since
∫

∂Ω
κ = 2πχ(Ω) = 0 according to the Gauss-Bonnet formula.
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Example 3.4 (The square). We eventually provide an example where the Cheeger set is
a proper subset of Ω. According to [13] a rectangle Ra,b ⊂ R

2 of edges 2a and 2b has a
unique Cheeger set C with

(7) h1(Ra,b) =
4−π

2(a+b)−2
√

(a−b)2 +πab

(see e.g. one of the two squares in figure 4). We take Ω = [0,1]× [0,1] = R1/2,1/2 and
V (x,y) = (η(x),0) with η : R→ [0,1] smooth with compact support in (1− δ ,1+ δ ), δ
small, and η(x) = 1 for x ∈ (1−δ/2,1+δ/2). Then Ωt = (0,1+t)×(0,1) for sufficiently
small t. It follows by direct computations from (7) that

h1(Ω,V )′ =−1
2

h1(Ω).

Since ∂C∩Ω is made of arc of circle of radius 1/h1(Ω), it is easily seen that

|C|= 1− 4−π

h1(Ω)2 =
4
√

π −2π

4−π
,

H
1(∂C∩S) = 1− 2

h1(Ω)
=

2
√

π −π

4−π
,

where S := {1}× [0,1]. It follows that

h1(Ω,V )′ =−h1(Ω)
H 1(∂C∩S)

|C| ,

which is formula (3) since κ = 0 on ∂C∩∂Ω, 〈V,ν〉= 1 on S and 〈V,ν〉= 0 on ∂Ω\S.

4. A COUNTER-EXAMPLE TO THE DIFFERENTIABILITY OF h1(Ω)

If Ω does not admit a unique Cheeger set, then h1(Ω) is in general not differentiable.
As a counterexample, we consider the “barbell domain”, made of two equal rectangles R1

and R2 linked by a thin strip (see Figure 4), defined as

Ω = ([0,1]× [0,1])∪ ([1,2]× [0,ε])∪ ([2,3]× [0,1]),

where ε > 0 is sufficiently small. Let V be a smooth vector field such that:

• V is supported in [3−δ ,3+δ ]× [−δ ,1+δ ] for some small δ ;
• V (x,y) = f (x,y)−→e1 for some smooth nonnegative function f satisfying f (3,y) = 1

for y ∈ [0,1].

In other words, V shifts the far right edge of Ω to the right. For small positive values
of t, h1(Ωt) behaves like the Cheeger constant of a rectangle obtained by enlarging R2.
Recalling formula (7) which gives the Cheeger constant of a rectangle Ra,b of edges 2a and
2b, we see that ∂

∂b
h1(Ra,b)< 0. Therefore

lim
t→0+

h1(Ωt)−h1(Ω)

t
< 0.

For small negative values of t, h1(Ωt) = h1(R1) = h1(Ω) so that

lim
t→0−

h1(Ωt)−h1(Ω)

t
= 0.

It follows that h1(Ω) is not differentiable at t = 0.
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C1

l1 l2

C2

FIGURE 1. If l1 = l2, the Cheeger sets are given by C1, C2 and C1 ∪C2.

C1

l1 l2

FIGURE 2. If l1 > l2, the only Cheeger set is given by C1.

C2

l1 l2

FIGURE 3. If l2 > l1, the only Cheeger set is given by C2.
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