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Abstract

In this paper, we propose a new pruning algorithm to obtain the optimal number of hidden units of a single layer

of a fully connected neural network. The technique relies on a global sensitivity analysis of model output (SAMO).

The relevance of the hidden nodes is determined by analysing the Fourierdecomposition of the variance of the

model output. Each hidden unit is assigned a ratio (the fraction of variance which the unit accounts for) that allows

their ranking. This quantitative information therefore leads to a suggestionof the most favourable units to eliminate.

Experimental results suggest that the method can be seen as an effective tool available to the user in controlling the

complexity in neural networks.
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A node pruning algorithm based on a Fourier

amplitude sensitivity test method

I. I NTRODUCTION

According to Bishop [1] , a central issue in the application of feed-forward neural networks is the determination

of the appropriate level of complexity. The latter is governed by the number of coefficients or weights of the neural

network. This search of the optimal model is of vital importance for the generalization property of the neural network

(NN). The main techniques used to control this complexity are [1]–[3]: architecture selection, regularization, early

stopping and training with noise, the last three being closely related. Bishop [1] argues that for most applications,

techniques based on regularization should be preferred. One of the most popular regularization terms is the so-

called weight decay term that consists in the sum of the squares of the parameters. Unfortunately, the simple weight

decay term is inconsistent with known scaling properties ofnetwork mappings (see [4] for details). A consistent

regularizer can be obtained by assigning separate regularizers to the first-layer weights and to the second-layer

weights.The optimal weight decay term (the one that gives the best trade-off between bias and variance) can be

determined through cross-validation. However, this procedure would be computationally expensive, especially if

regularization schemes with multiple weight decay terms are to be considered. The bayesian approach [5] allows

the values of regularization coefficients to be automatically tuned during the training process without the need to use

cross-validation. Nonetheless, bayesian techniques are based on some simplifying assumptions. The most important

one is that a gaussian approximation of the posterior distribution of the weights is needed in order to make the

integrations over the weight space analytically tractable. Indeed, this approximation does not take into account the

problem of multiple minima of the error function (although some techniques tend to moderate this statement [6]).

As for the technique of architecture selection, one of the simplest ways involves the use of networks with a

single hidden layer, in which the number of free parameters is controlled by adjusting the number of hidden units.

Practically, a set of networks ranging from1 to p hidden units is trained. The performance of the networks is

evaluated on a test set. The network that exhibits the best generalization performance is selected. However, this

technique is computationally demanding and therefore usually restricted to networks having a single hidden layer.

Other approaches consist in growing or pruning the network structure during the training process. The approach

taken by the pruning methods is to start with a relatively large network and gradually remove either connections or

complete units [4]. Nonetheless, one may notice that network architecture selection changes the actual number of

adaptative parameters in the NN while regularization controls the effective number of parameters. Different methods

to pruning have been developped. For a review covering the pruning methods, see [3]. The most popular ones of

these are Optimal Brain Damage (OBD) [7] and Optimal Brain Surgeon OBS [8]. There exists an extension of

OBD for pruning irrelevant hidden units and input units called Optimal Cell Damage (OCD) [9].

By considering the change in the error function due to small changes in the values of the weights, a measure of
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the relative importance of the different weights or saliency can be computed. The weights with low saliencies are

deleted. More precisely, both methods (OBD and OBS) use a second order Taylor expansion of the error function to

estimate how the training error will change as the weights are perturbed. These methods are based on assumptions

in order to reduce complexity in calculating the weights saliencies [4], [7], [8], [10]. First, both methods make

the assumption that the pruning will be performed after training has converged to a minimum i.e. the gradient is

zero (”extremal” assumption). Second, they assume that theerror function is nearly quadratic in order to neglect

the last term of the Taylor expansion (”quadratic” approximation). The OBD method additionally assumes that the

off-diagonal terms of the Hessian matrix are zero.

Engelbrecht [10] proposed a new pruning algorithm based on output sensitivity analysis that consists in a first-

order Taylor expansion of the NN output function. He showed that OBD (which is an objective function sensitivity

analysis) and output sensitivity analysis are conceptually the same under the assumptions of OBD. The method

is based on variance analysis of sensitivity information given by the derivatives of the NN output with respect to

the parameters. It is quite a powerful method since the neural structure inherently contains all the information to

compute efficiently these derivatives [11]. The basic idea of the technique is that a parameter with a low average

sensitivity and with a variance in sensitivity which is not significantly different from zero over all patterns has

little or no effect on the output of the NN considered. The method called Variance Nullity Pruning (VNP) [11] is

not based on any assumptions to reduce the complexity in calculating the saliencies of the parameter. However,

since the sensitivity information is given by the derivatives of the NN output with respect to the parameters, the

network should be well trained to accurately approximate the true derivatives [10]. Indeed, it has been proven that

as the NN converges to the underlying function so all derivatives also converge to the true derivatives [12]. The

VNP algorithm has been also used to prune irrelevant input units. Prior to the VNP algorithm, Zurada [13] used a

perturbation-based sensitivity method for inputs’ pruning.

The above approaches are derivative-based methods. The output sensitivity analysis developed by Engelbrecht

[10] can be grouped in the so-calledlocal methodsof sensitivity analysis of model output (SAMO) [14]. But the

analysis remains inherently local. Small variations in theparameter values do not change the local sensitivities but

a significantly different parameter set may result in a completely different sensitivity pattern. Moreover, the quality

and reliability of the results of this type of analysis depends on how well the Taylor expansion approximates the

original model.

There exists a second sensitivity analysis (SA) school, theglobal sensitivity analysis of model output, which is

more ambitious in two aspects: first, the space of the parameters (also calledfactors or input factors in the SA

terminology) is explored within a finite region and, second,the variation of the output induced by a factor is taken

globally - that is averaged over the variation of all the factors [14].

In this paper, we propose a new technique to obtain the optimal number of hidden units of a single layer of a

fully connected network. This technique relies on a global Sensitivity Analysis of Model Output (SAMO). A global

SA method, the EFAST method [15] (which stands for Extended Fourier Amplitude Sensitivity Test), is used to

quantify the relevance of the hidden units. Thus, in our study, the output of hidden units are the factors of interest.
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Sensitivity analysis of large dimensional overtrained neural networks are conducted in order to assess the relative

importance of each hidden unit on the NN output. This is made possible by computing the contribution of each

hidden unit on the NN output.

EFAST is an extension of the FAST method [14], [16]. The key idea of FAST is that all the factors are oscillated

around their nominal value from one simulation run to another. The importance of a factor is determined by

analysing the Fourier decomposition of the model response.The FAST method computes a ratio, which is called

the main effect or first-order sensitivity index(Sh), that ranks quantitatively the different input factors. The FAST

method is independent of any assumptions about the model andworks for monotonic and non-monotonic models.

Developments and improvements of the FAST derivative methods are recent. Saltelli [15] extended the classical

approach (thus giving the EFAST method) to perform the totalsensitivity index(STh). The term ”total” here means

that the factor’s main effect, as well as all the interactions involving that factor, are included in the ratio. In this

paper, we will use this method. The ranking of the hidden units could lead to a suggestion of the most favourable

ones to eliminate.

Section II proposes a brief introduction to SAMO. In sectionIII, we will describe the FAST and the EFAST

methods. Section IV illustrates the application of the EFAST method to the area of NN. Section V describes the

experimental setup while section VI reports the results. The performance of the method has been evaluated (through

extensive experimentation) on nine real-world problems issued mainly from the international benchmark Proben1

[17]. Section VII will draw the conclusions.

II. I NTRODUCTION TOSAMO

According to Saltelli [14], in the context of numerical modelling, SA means very different things to different

people. Helton [18] proposed a review of the different techniques. But all these approaches have in common the

aim to investigate how a given computational model respondsto variation in its input factors. The terminput factor

must be interpreted in a very broad sense: a factor is a quantity that can be changed in the specification of the

model prior to its execution. A factor can be an initial condition, a parameter, etc . . . . By considering, without

loss of generality, a modelf(•) such thatY = f(Z1, Z2, . . . , Zp), SA estimates the effects of thep input factors

Z1, Z2, . . . , Zp on the outputY . The effect of a factor is the change in the response obtainedby changing the value

assumed by that factor.

Different types of analysis are possible with SA. The interested reader may refer to Saltelli [14] for more details.

For instance, modellers may conduct SA in order to determineinsignificant model parameters which can thus be

eliminated, in other words parameters not affecting the variation of the output. In this way, irrelevant parts of the

model can be dropped, or a simpler model can be built or extracted from a more complex one (model lumping).

The purpose of SA is manifold. SA either local or global have been used in numerous fields:

1) as a tool to understand mechanisms in complex chemical kinetics reaction schemes [19]

2) as a means to analyse fish population dynamics [20]

3) investigating the structure of an environmental numerical model related to climatic change studies [21]
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4) analyzing a complex geological waste disposal system [18], etc.

A. How to perform SA

There are several procedures to conduct sensitivity analysis. The most common SA is sampling-based. Fig. 1

represents a sampling-based sensitivity analysis in whichthe model is executed repeatedly for combinations of

values sampled from the distribution (assumed known) of theinput factors. The following steps can be identified

[14]:

1) define the model; its input factors and output variable(s)

2) assign probability density functions or ranges of variation to each input factor

3) generate an input matrix through sampling design

4) evaluate the output

5) assess the influences or relative importance of each inputfactor on the output variable

At step 4, an empirical probability distribution for the output can be created which may lead to a first step

of uncertainty analysis. Mean, standard deviation, confidence bounds etc. can be estimated. After quantifying the

variation of the output, the next step, sensitivity analysis, consists in apportioning the variance of the output according

to the input factors. A possible representation of the results can be a pie chart that decomposes the variance(Dy)

of the output into the percentages that each factor is accounting for. So, the variance decomposition may allow the

identification of the most influential factors.

Fig. 1: General scheme of a quantitative Sensitivity Analysis method. The total variance is apportioned to the

various input factors, as shown by the pie diagram.

B. Different sensitivity indices

There are different methods to perform sensitivity analysis of model output [14]. They all rely on the estimation

of a sensitivity index. Consider again ap−factor modelY = f(Z1, Z2, . . . , Zp).

In the following, let us denote byzi the standardized factor (mean 0 and variance 1) relative toZi. To introduce

the different sensitivity indices, it is convenient to consider, without loss of generality, that the model response

under interest can be expressed in the form of the following polynomial expansion :

Y = Y0 +

p
∑

i=1

βizi +

p
∑

i=1

p
∑

j=1

βij zizj +

p
∑

i=1

p
∑

j=1

p
∑

k=1

βijkzizjzk + . . . , (1)

where,

Y is the model response,

the βi’s are the first order regression coefficients,

the βij ’s are the second order regression coefficients, and so on . . ..

zizj represents the first-order interaction between the factorsi and j. . . .

Quantitative SA methods are usually based on the estimationof one of the three following sensitivity indices:
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• the linear effect, a sensitivity index based on theβi’s alone

• the main effect, a sensitivity index based on theβi’s (linear effect),βii’s (quadratic effect),βiii’s (cubic effect)

and so on . . .

• the total effect which is based on theβi’s, βij ’s, βijk ’s . . . for a giveni and all(j, k, . . .) i.e. all the coefficients

involving the factorZi

Generally, the contribution of an interaction to the response variation is less than a least-order interaction and

linear effect. However, the entire non-linear effects may have an important contribution to the model response

variation. If we develop (1) up to anM -order polynomial (therefore we expect the high-order coefficients to have

a negligible influence on the variation of the output), we canwrite, that

Y = Y0 +

p
∑

i1=1

βi1zi1 +

p
∑

i1=1

p
∑

i2=1

βi1i2zi1zi2 + . . . +

p
∑

i1=1

p
∑

i2=1

. . .

p
∑

iM=1

βi1i2...iM
zi1zi2 . . . ziM

+ ε (2)

M is called the interference factor (usually set to4 or 6 in the SA community) andε is the error term.

On one hand, if the model is non-linear but the factors are varied in a small range, the first-order regression

coefficients is an adequate index for SA because non-linearities can be neglected. In that case, the method employed

to estimate theβi’s belongs to the local SA methods. On the other hand, when factors are strongly varied over

order of magnitude, then, the entire non-linearities cannot be neglected anymore and must be accounted for into

the sensitivity index. For this purpose, a global SA variance-based method is employed.

C. Variance based-methods

Among the global methods, one may distinguish two variance-based methods: the Sobol’ method [22] and the

FAST method. Variance-based methods aim to estimate the quantity

Sh =
V arZh

[E (Y |Zh = zh)]

V ar(Y )
=

Amount of the model response variance due to factor Zh only

The model response variance
(3)

whereZh denotes an input factor,Y the model response,E(Y |Zh = zh) the expectation ofY conditional on a

fixed value ofZh and the varianceV arZh
is taken over all the possible values ofZh. This ratio (Sh) represents

the main effect. It is called the first-order index in the SA terminology. Thus, the main effect of a factor represents

the average effect of that factor on the response or conversely these methods allow the computation of that fraction

of the variance of a given model output which is due to each input factor.

In addition to the computation of the first-order indices, Sobol’ method as well as the Extended FAST (EFAST)

method also provide an estimation of the total sensitivity index(STh). The total effect includes the main effect as

well as all the interaction terms involving that factor. Thetotal effect is defined by :

STh =
Amount of the model response involving factor Zh

The model response variance
(4)
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A model is said additive when the response is non-linear but interactions are negligible. In that case, the main

effects are the suitable indices for SAMO because
p
∑

h=1

Sh ≈ 1. Otherwise, the total effects are the appropriate

indices to rank the factors by order of importance and
p
∑

h=1

STh > 1 that is
p
∑

h=1

Sh < 1.

Sobol’ method is a Monte-Carlo based method that consists onperforming multiple model evaluations with

randomly selected input factors. FAST is based on the Fourier decomposition of the variance in the frequency

domain. Both methods are especially suited for a quantitative model-independent global sensitivity analysis. The

computational cost of these methods is the number of models evaluations required and is a function of the number

of input factors and the complexity of the model. The ever-increasing power of computers tend to make these global

methods affordable for a large class of models.

III. VARIANCE-BASED METHODS IN THE SPECTRAL DOMAIN: THE FAST AND EFAST METHODS

A. Introduction

To introduce the FAST and EFAST methods, we consider again the polynomial expansion.

Let [ah, bh] be the range of variation of the factorZh. Let us suppose thatN simulation runs are performed

by varying each factor as follows:Z(n)
h = bh+ah

2 + bh−ah

2 sin
(

ωhs(n)
)

with s(n) = 2πn/N, ωh the (integer)

frequency assigned to factorZh andn the simulation number.

It is straightforward to note thatz(n)
h = sin

(

ωhs(n)
)

and that (1) becomes :

Y (n) = Y0 +

p
∑

i=1

βi sin
(

ωis
(n)

)

+

p
∑

i=1

p
∑

j=1

βij sin
(

ωis
(n)

)

sin
(

ωjs
(n)

)

(5)

+

p
∑

i=1

p
∑

j=1

p
∑

k=1

βijk sin
(

ωis
(n)

)

sin
(

ωjs
(n)

)

sin
(

ωks(n)
)

+ . . .

The previous relationship leads to the following conclusions :

• the linear effect ofZh corresponds to the Fourier amplitude at the fundamental frequencyωh.

• Sh is obtained by considering the Fourier amplitudes at the fundamental frequencyωh (linear effect), the first

harmonic (quadratic effect), the second harmonic (cubic effect) and so on . . . . This is the basic idea of the

FAST method.

• Interactions induce new frequencies that are linear combinations of interacting factors’ frequencies. Conse-

quently,STh can be computed by considering all the Fourier amplitudes involving Zh. One way to isolate these

frequencies in the spectral domain, is to chooseωh very high as compared to the other frequencies (denoted

by ω∼h) so that all the spectral components involvingZh do not overlap in the low frequency region (where

the spectral components do not concernZh). Such an approach reminds the frequency modulation technique

and is called the EFAST method in SA (Extended FAST).
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B. The FAST method

FAST enables the estimation of the total output variance(Dy) and the contribution of individual input factors to

this variance, that is, the first order sensitivity indices.In FAST, each input factorZh is related to a frequencyωh

and a set of suitably defined parametric equations

Zh(s) = Gh(sin(ωhs)) ∀ h = 1, 2, . . . , p (6)

allows each factor to vary in range, as the new parameters is varied (wheres is a scalar variable varying in the

range−∞ < s < ∞) . The parametric equations define a curve that systematically explores the input factors’ space.

As s varies, all the factors oscillates at the corresponding driving frequencyωh and their range is systematically

explored.

Different transformation functions have been proposed [15], [16]. For the FAST method (and EFAST method),

a parametric representation of the form

Zh(s) =
1

2
+

1

π
arcsin (sin (ωhs)) (7)

is often used. This transformation allows a better coverageof the factors’ space since it generates samples that

are uniformly distributed in the range[0, 1] (see Fig. 2).

Fig. 2 : Plot of the transformations function (defined by (7))and its respective empirical distribution.

Notice however that, if[ah, bh] is the range of variation of the factorZh, each factor oscillates in the range

[ah, bh] along the curve defined by,

Zh(s) =
bh + ah

2
+

bh − ah

π
arcsin (sin (ωhs)) (8)

In the present application, the output of the hidden nodes will be varied according (8).

As each factorZh oscillates periodically between[ah, bh] at the corresponding frequencyωh, the model output

Y exhibits different periodicities that result from the combination of the different frequenciesωi=1,··· ,p, whatever

the modelf is. As stated by [15], if thehth factor has strong influence on the output, the oscillations of Y at

frequencyωh shall be of high amplitude. This is a basis for computing a sensitivity measure for the factorZh

based on the evaluation of the Fourier amplitudes at the corresponding frequencyωh and its harmonics. In other

words, large Fourier amplitudes at the fundamental frequency ωh and and its harmonics indicates that the output

is sensitive to the input factorZh.

Cukier [16] showed that, if an appropriate set of integer frequenciesωi=1,...,p is chosen, then

f(s) = f(Z1(s), Z2(s), . . . , Zh(s), . . . , Zp(s))

is 2π-periodic (−π < s < π). So, f(s) may be expanded in a Fourier series of the form:
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f (s) =

+∞
∑

j=−∞

(Aj cos ωjs + Bj sin ωjs) (9)

where the Fourier coefficients are defined as

Aj =
1

2π

∫ π

−π

f(s) cos(ωjs)ds (10)

Bj =
1

2π

∫ π

−π

f(s) sin(ωjs)ds (11)

and−π < s < π.

So, N equally spaced sample points are required to perform the Fourier analysis.N represents the sample size

and coincides with the number of model evaluations (that is the number of simulation runs).

One major advantage in shifting the analysis into the frequency domain is that the spectral decomposition is

equivalent to a variance decomposition. An analysis of variance is possible because Parseval’s theorem states that

Dy = V ar(Y ) = 2

+∞
∑

k=1

(

A2
k + B2

k

)

(12)

The portion of the variance ofY explained byZh alone is

Dh = V ar
Zh

[E (Y |Zh)] = 2

+∞
∑

k=1

(

A2
kωh

+ B2
kωh

)

(13)

whereAkωh
and Bkωh

denote the Fourier coefficients for the fundamental frequency and its higher harmonics

kωh. Consequently, the expansion of the main effect is given by

Sh =
Dh

Dy
=

V ar
Zh

[E (Y |Zh)]

V ar (Y )
=

2
+∞
∑

k=1

A2
kωh

+ B2
kωh

V ar (Y )
(14)

We stated above that in order to evaluate the main effect ofZh, one must calculate the Fourier coefficients at

the fundamental frequencyωh and all the harmonics. As mentioned earlier (see section II.B and (2)) , only the

first (M − 1) harmonics are considered so that the first-order sensitivity index is approximated by :

Sh =
V ar

Xh
[E (Y |Xh)]

V ar (Y )
≃

2
M
∑

k=1

A2
kωh

+ B2
kωh

V ar(Y )
(15)

whereM is called the interference factor (usually set to4 or 6 in the SA community).

In the FAST approach, the number of simulation runs represents the sampling frequency and, to satisfy the

Nyquist criterion, must be equal (at least) toN = 2Mωmax + 1 whereωmax = max
i∈[1,p]

(ωi) .

Notice that the varianceV ar(Y ) can be evaluated in the frequency domain through the following relationship:

V ar(Y ) = 2

(N−1)/2
∑

ω=1

A2
ω + B2

ω, (16)
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whereAω andBω denote the Fourier coefficients at frequencyω.

Thus, to estimate the main effects,N model evaluations are required. At this point, some comments must be

made. First, the set of integer frequenciesωi=1,··· ,p must be properly chosen in order to avoid interferences up to

orderM. Let us recall that the Fourier coefficients evaluated at the input frequencyωh and its multipleskωh give

the sensitivity of the output to thehth factor. If interferences occur at a given frequency, then the analysis becomes

irrelevant by overestimating the main effect. Put differently, the difficulty with such an approach is to choose the

frequency set so that the frequencies generated by theM th− order non-linearities do not equalnωi, n = 1, . . . ,M

and i = 1, . . . , p. Second,N is also constrained by the numberp of inputs factors, given that, as the number of

factors increases, it is necessary to choose higherωmax in order to obtain a set of frequencies free of interferences.

Thus, even for a relatively small number of parameters (say20), the choice of the set of frequencies will not be

easy. This fact may render the method difficult to use in practice.

C. The EFAST method

Saltelli [15] proposed an extension of the FAST method that allows to cope more easily with this problem

of interferences. Moreover, the new method computes both the main effect(Sh)and total effect(STh) using the

same set of models evaluations. This is made possible by assigning the factor of interesth a ”high” value for its

frequencyωh and a set of ”low” frequency values to the remaining set of factors Z∼h (in the following, we set

Z∼h = Z1, Z2, . . . , Zh−1, Zh+1, . . . , Zp, i.e. all the factors except thehth factor). More precisely, the spectrum of

a model response is divided into two areas (see Fig. 3).

Indeed, if we setωh = 2M max(ω∼h) wheremax(ω∼h) is the highest frequency assigned to the set of factors

Z∼h, then it will ensure that the frequencies generated by theM−order interactions involvingZh will not interfere

with the frequencies induced by theM−order non-linearities involvingZ∼h. Then, the estimation of the total

sensitivity index by the EFAST approach can be expressed as follows :

STh ≃

(N−1)/2
∑

ω=Mmax(ω
∼h)+1

(

A2
ω + B2

ω

)

(N−1)/2
∑

ω=1
(A2

ω + B2
ω)

(17)

with N = 2Mωh + 1 asωh is the highest frequency assigned.

Conversely, the first orderSh is obtained as in classical FAST (see (15)).

One may see that the problem of interference is easier to manage than in the classical FAST since it may be

easier to find a couple of frequencies (ωh and max (ω∼h) ) that do not interfere up to an arbitrary highM.

Interferences are avoided as long asωh ≥ 2M max (ω∼h) .

Saltelli [15] proposed an algorithm to selectωh (consequentlymax (ω∼h)) and the frequencies in the comple-

mentary set[1, max (ω∼h)] for a given number of simulation runsN (see section IV.B). In order to obtain a better

coverage of the input factors’ space, one must assign distinct frequencies to the factors of the complementary set.

However, to limit the number of model evaluations, it is possible (to some extent) to assign the same frequency to
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two (or more) different factors of the complementary set.

Fig. 3 : The spectrum of a model response using the EFAST approach . The spectrum is divided into two regions:

the first region
[

1, ωh

2 = Mmax(ω∼h)
]

contains the frequencies involving all the factors except those of factor

Zh and the second region[Mmax(ω∼h) + 1, (N − 1)/2] contains the effects of factorZh located in the high

frequencies.

As stated above, the total number of simulation runs required to compute the total effect of factorZh alone is

2Mωh +1 ash is the highest frequency assigned. To estimate the sensitivity index for another factor, a permutation

of the frequencies is necessary, because the ”high” frequency must be assigned to the factor of interest. Hence, to

compute the entirep total sensitivity indicesp(2Mωh + 1) simulation runs are necessary.

Among the SA methods, the total sensitivity index is undoubtedly the best guide to rank quantitatively the factors

by order of importance. Indeed, even if this occurs rarely, interaction effects on a model response may be more

predominant than the main effects. So, whether the interaction effects are taken into account or not, the analysis

may result in a different ranking of the factors’ importance.

The results of the analysis can be displayed in an intuitive graphical way by normalizing eachSTh by the sum of

STi, i = 1, . . . , p. The normalized indices (Sn) can be plotted in the form of a pie chart, hence showing the fraction

of variance which the factor accounts for. However, when dealing with complex models with a large number of

parameters and for which the cost of one model evaluation is high, estimation of the total sensitivity indices may

require a very high computational effort.

IV. U SING THE EFAST METHOD TO OBTAIN THE OPTIMAL ARCHITECTURE

A. The Method

Regarding the intrinsic structure of an single output NN, one may decompose it into two sub-models. The first

one (SM1) is the multi-response relationship between the inputs of the NN(x) and the output of the hidden units

(Z). The second sub-model (SM2) is the single response relationship between the output of the hidden units(Z)

and the output of the NN(Y ). We state that the relevance of a hidden unit is related to its influence on the NN

response. This is the key idea of the method proposed in this paper to determine the optimal architecture of an NN.

In our approach, the model is SM2 and the factors are the output of the hidden units(Z).

The different steps of the proposed approach are :

1) Train a ”reasonably large” network for some epochs

2) For each factorZh (output of the hidden nodeh), retain its minimal and maximal valuesah andbh respectively

3) Set the interference factor toM = 4 and choose the number of simulation runsN

4) Given M and N , compute the frequencyωh = (N − 1)/2M to be assigned to the factorZh and the

frequencies assigned to the other factors in order to perform the EFAST method

5) For each factorZh,
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• Assign the frequencyωh to the factorZh

• By only considering the SM2 model, performN simulation runs. The factors are varied according to the

curve defined by (8), compute the total effect(STh) of the factorZh using (17)

6) Given all the total effects(STi(i = 1, 2, . . . , p), compute the percentage contribution (i.e. the normalized

indicesSn = STh

/

p
∑

i=1

STi

)

of each hidden unit to the variation of the output

7) Delete the hidden units that accounts for less of 5% of the output variance

Fig. 4 : The EFAST method applied to pruning of hidden units. Each output of the hidden units constitutes an

input factor. All input factors oscillates (each with its ownfrequencyωi) according to the curve defined by (8).N

samples of the output are evaluated that enable the computation of the percentage contribution of each hidden unit

(through the Fourier decomposition of the variance of the output).

At this stage, two points have to be highlighted. First, usually, pruning occurs when the NN has been trained

into a minimum of the error function [7], [8] or when overfitting begins (a pruning indicator is detected through

the monitoring of the error on a validation set) [10] [23]. Itwill be shown that for the EFAST pruning method

these pre-requisites are not necessary. In other words, in the EFAST method, pruning starts when the NN has been

trained for some epochs (and this latter parameter has not tobe carefully tuned).

Second, it is also important to note that step 6 of the above procedure exhibits in a quantitative way the relevant

units; those that accounts for at least 5% of the variation ofthe output. Indeed, it will be shown that the EFAST

pruning method answers quite satisfactorily to the question of ”how much to prune”.

B. Parameters of the EFAST pruning algorithm

For a given number of hidden units, the parameters of the EFAST pruning algorithm are:N the number of models

evaluations,M the interference factor and the set of frequencies assignedto the hidden units (factors). Actually,

the choice ofM andN determines the set of frequencies assigned to the factors.

First, we setM = 4. As discussed earlier, it is common practice in the SA community to setM to 4 or 6.

Indeed, the spectral information rapidly decreases when frequency increases. Notice that experiments have been

conducted withM = 6. But, even if the estimates of the partial variances were moreaccurate, this setting had no

influence on the experimental results.

Second, the choice ofN is dictated by the following consideration. As mentioned above, in order to have a

better coverage of the factors’ space, the frequencies of the complementary set must be distinct from each other.

For instance, for a NN with32 hidden units, it is recommended to choose (at least)N = 2049 then leading to

ωh = 256, max (ω∼h) = 32 and the resulting complementary set of frequenciesω∼h = [1, 2, 3, · · · , 31, 32] . So,

each factor is assigned a distinct frequency. In the same way, for a NN with 128 hidden nodes, we have (at least)

N = 8193 (leading toωh = 1024, max (ω∼h) = 128 and ω∼h = [1, 2, 3 · · · , 127, 128] for the complementary

set).
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However, other values forN are allowed. We choseN = 1025 in order to obtain a good trade-off between between

computational cost and accuracy of the method.1025 model evaluations lead toωh = 128, max (ω∼h) = 16 and

the resulting set of frequencies assigned to the other factors ω∼h = [1, 2, · · · , 15, 16, · · · · · · 1, 2, · · · , 15, 16]. The

pattern [1, 2, · · · , 15, 16] is duplicated in order to cover the whole range of factors. So, the same frequency is

assigned to two (or more) different factors but experiments(see section VI.A.3) show that this choice ofN = 1025

appears to be consistent when pruning NN having128 or 32 hidden units.

Table I illustrates the different possibilities given the number of hidden units and the number of simulations runs

when the assumed factor of interest is the third.

Table I Frequencies assigned to the input factors given the number of factors and number of simulation runs

(the third factor is the factor of interest).

C. The computational cost of the method

For p hidden units, the NN output is given by the following equation: Y = f(
p
∑

j=1

wjzj). A single evaluation of

the output of the NN output requiresO(p) operations: each term in the sum necessitates one multiplication and one

addition while the evaluation of the output activation function represents a small overhead. Thus, the computational

cost of the EFAST pruning method isN ×p×O(p) with N the number of simulations runs required by the EFAST

method.

V. EXPERIMENTAL SETUP

A. Datasets

Extensive benchmark experiments have been made on nine real-world problems. All these datasets (except EES

dataset [24]) are part of Proben1 [17]. The Proben1 benchmark set is a collection of classification and function

approximation problems. The latter have between8 and 120 inputs and between303 and 7200 examples. The

data in Proben1 are encoded for direct neural network use. Three suggested partitioning of the data into training,

validation and test sets are given in Proben1. We chose the first pre-partitioning as it is. Table II lists the datasets.

Table II: The datasets, where the type is either c (classification) or a (approximation)

We used only a single output for classification problems while for approximation ones with more than one output

(e.g. building), we handled separately each output with a single output NN. For further information on the Proben1

datasets, the interested reader should consult [17].

B. Pruning algorithms

SNNS [25] (Stuttgart Neural Network Simulator) is a simulator for neural networks developed at the Institute for

Parallel and Distributed High Performance Systems at the University of Stuttgart. The simulator offers a flexible
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and open environment for developing applications on neuralnetworks. This open feature allowed us to implement

the EFAST pruning method in SNNS.

Furthermore, five pruning functions are available in SNNS: Optimal Brain Surgeon (OBS), Optimal Brain Damage

(OBD), Magnitude Based Pruning (MBP) [26], Skeletonization (SKEL) [27] and Non-Contributing units (NC) [28].

OBS, OBD and MBP are weight pruning methods whereas SKEL and NC are node pruning algorithms. .

Rigorously, when pruning hidden units, we cannot compare the weight-oriented pruning methods (OBS, OBD

and MBP) with the node pruning algorithms (SKEL, NC and EFAST). However, we have followed the same

approach proposed by Engelbrecht [10] who compared its VNP pruning algorithm with MAG, OBS and OBD.

For the weight-oriented pruning methods (OBS, OBD and MBP),an hidden unit is deleted if all incoming or all

outgoing links to that unit are removed. Obviously, these methods necessitate more pruning steps (than the node

pruning algorithms ) as one link is deleted per pruning step.This specific treatment led to the computation of an

effective number of pruning steps1 (see formula below). The CPU time is also updated in the same way.

These standard algorithms computes the relevance of each element in order to prune the one with the smallest

saliency.

Among these methods, MBP is the simplest one. The saliency ofa weight is given by its absolute value and the

algorithm eliminates the weight that has the smallest magnitude.

OBD estimates the change in the error function when pruning acertain weight. The saliency of a weight is given

by si = 1
2hiiw

2
i wherehii is the ith element of the hessian matrix (second derivatives of each parameter) andw2

i

the value of the weight at the minimum of the error function.

For OBS, the saliency of the weight is the quantitysi = 1
2

w2

i

[H−1]
ii

whereH−1 is the inverted Hessian. OBS also

computes a correction to the remaining weights after the deletion of a parameter in order to minimize the increase

in error.

As mentioned above, the popular methods OBD and OBS are basedon some assumptions (training to the error

minimum, quadratic approximation, zero off-diagonal elements for OBD).

SKEL prunes units by estimating the change of the error function E when the unit is removed. The saliency of

a unit is given bysj = − ∂E
∂αj

∣

∣

∣

αj=1
whereαj is called the attentional strength (see [25] and [27] for details).

The NC method uses statistical means to find units that do not contribute to the net’s behavior. The output of

each unit is observed for the whole pattern set. The units that are removed are the ones that don’t vary their output,

always show the same output as another unit or always show theopposite output of another unit.

Notice that these methods do not really answer to the question ’how much to prune’. For instance, the authors

of OBD suggest to prune ’some’ low saliencies. So, these methods operate in a somewhat conservative way in the

sense that only one parameter is removed per pruning step. This is the main drawback of these methods. In order

to speed up the pruning process, one could remove parametersthat are below a given threshold. But the latter must

be chosen in an ad hoc fashion or set by some specific rules of thumb.

1Effective number of (node) pruning steps = actual number of (weight) pruning steps∗ # of units removed

# of weights deleted
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C. Training algorithm

All runs were performed using the RPROP algorithm [29] available in SNNS. The three RPROP parameters are

set to the following values:0.1, 0.1 and50 (See [29] for the meaning of these parameters).

D. The NN architectures

All the experiments were made with networks with one hidden layer of hyperbolic tangent (tanh) activation

function. The activation function for the NN output was set to the standard sigmoid for classification problems and

to the identity function for approximation problems. The pruning methods were compared on NN having32 and

128 hidden nodes.

For the additive procedure (see section VI B), seven sizes ofhidden layer were used:2, 4, 8, 16, 32, 64, 128 hidden

units.

E. The benchmark procedure

For benchmarking comparisons purpose2, we have evaluated the performance of the different pruningmethods

by using the following procedure:

1) Choose a ”reasonably large” NN architecture.

Some tools are proposed in [30] that may help to shed some light on the term ”reasonably large” .

2) Train the NN for some epochs (100, 500, 1000)

3) Apply the pruning method e.g.:

a) For MAG, OBS, OBD, SKEL and NC : compute the saliency of eachelement and delete the element

with the smallest saliency.

b) For EFAST : delete the units that account for less of 5% of the variation of the NN output

4) Retrain the NN for 10% of the first amount of training epochs(e.g.10, 50, 100 epochs)

5) Test the reduced NN on a validation set.

If the validation error deteriorates by more than 10% from the previous iteration or no more hidden units can

be deleted at the end of three (unsuccessful) pruning process, go to step 6 otherwise iterate to step 3

6) Test the NN on a test set

7) End of benchmarking procedure

VI. EXPERIMENTAL RESULTS

A. Results and discussion for the cancer problem

1) Pruning results: The pruning methods have been compared extensively on the cancer problem [31]. The

pruning procedure depends on two parameters. The first one isthe number of training epochs which governs

2The benchmark procedure has been implemented on a IBM eServer p690 : A computer having 32 processors Power 4+ 1,7 Ghz and

developing a computing power of 220 Giga flops
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the start of the pruning process. This is an important element especially for the above standard methods (MAG,

OBD, OBS, SKEL, NC) as the NN needs to be ”well-trained”. The second one is the overall stopping criterion

of the pruning process. Usually, this stopping criterion isnot precisely defined (see [7] or [8] for instance) or

vary according the different implementation of the pruningschemes. For our benchmark experiments, this stopping

criterion is reached when the error on a validation set deteriorates by more than 10%. So, the behavior of the

algorithms was assessed for three training epochs (100, 500and 1000 epochs) and for two validation sets (by

exchanging the original validation and test sets proposed in Proben1). Comparisons for NN having 32 and 128

hidden units were made according to the CPU time, the mean squared error (mse) obtained on the test set and the

remaining number of hidden nodes.

Tables III to VI and Fig. 5 to 7 give the results of the benchmark procedure. For convenience, we named the

validation set and the test set (provided by Proben1) respectively cancer1vl.patandcancer1ts.pat.

Table III : Pruning results obtained from an original NN of 32hidden units. The validation-set used to stop

the pruning procedure is:cancer1vl.pat. Note that the pruning steps computed for MAG, OBS and OBD arethe

number of effective pruning steps (see footnote in section V.B)

Table IV : Pruning results obtained from an original NN of32 hidden units. The validation-set used to stop the

pruning procedure is:cancer1ts.pat.

We remind that the number of pruning steps computed for MAG, OBS and OBD are the number of effective

(node) pruning steps (see footnote in section V.B).

The results of table III and IV are presented in a more synthetic way through the Fig. 5 to 7.

Fig. 5 : Remaining number of hidden units obtained from an original NN of 32 hidden units. The validation-set

used to stop the pruning procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

Fig. 6 : Test mean squared error obtained from an original NN of 32 hidden units. The validation-set used to

stop the pruning procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

Fig. 7 : CPU Time when pruning an original NN of32 hidden units. The validation-set used to stop the pruning

procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

Table V : Pruning results obtained from an original NN of128 hidden units. The validation-set used to stop the

pruning procedure is:cancer1vl.pat

Table VI : Pruning results obtained from an original NN of128 hidden units. The validation-set used to stop



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 17

the pruning procedure is:cancer1ts.pat

Fig. 8 to 10 display the results of tables V and VI.

Fig. 8 : Remaining number of hidden units obtained from an original NN of 128hidden units. The validation-set

used to stop the pruning procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

Fig. 9 : Test mean squared error obtained from an original NN of 128 hidden units. The validation-set used to

stop the pruning procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

Fig. 10 : CPU Time when pruning an original NN of128 hidden units. The validation-set used to stop the

pruning procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).

The following remarks can be made :

1) Under the different pruning conditions (i.e. training epochs and validation set used to stop the procedure),

the EFAST pruning method exhibits globally a better mean squared error (apart two exceptions, see Fig. 9a).

Furthermore, the mse performance is quite stable whatever the pruning conditions.

2) When using the EFAST approach, the number of hidden units remains practically the same whatever the

pruning conditions. It is not the case for the standard pruning methods. Indeed, they show quite a fluctuating

performance. Moreover, these algorithms experience difficulties when pruning the NN with 128 hidden units.

For instance, methods like MAG, OBS and OBD do not even prune the NN.

3) The EFAST CPU time is of the same order of magnitude or sometimes better than the other pruning methods.

When dealing with the standard methods, the above results show how it is important to correctly answer the

question ”when should the pruning process start”. Clearly,the standard methods behave differently under different

learning conditions (i.e given here by the number of training epochs). This behavior may question the results

obtained with the methods that require specific conditions before pruning occurs. For instance, popular methods

such as OBD or OBS require training to the (absolute) error minimum. For the cancer problem, it is supposed that

this criterion is reached for 1000 epochs.

But, as also pointed out by [23], this introduces massive overfitting which cannot be repaired by subsequent

pruning. This phenomenon is reinforced when pruning the NN with 128 nodes. To prevent this overfitting, one

can use a pruning indicator through the monitoring of the error on a validation-set to trigger the pruning session.

Nonetheless, starting the pruning process before a minimumis reached on the training set may be questionable for

methods like OBS and OBD (since the results of the methods arevalid provided an absolute minimum is reached).

In conclusion, the standard methods are highly sensitive tochanges in the learning and pruning parameters.

Therefore, the parameters of a pruning process for the standard methods must be carefully tuned.

As shown by the previous results, the EFAST pruning method isless or not sensible to these pruning parameters.
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Actually, the EFAST algorithm relies only on information obtained during the training phase i.e. the variation of

the output of the hidden nodeZh between its minimal and maximal valuesah and bh. Consequently, the pruning

process may occur when the NN has been trained for some epochs. This latter parameter has not to be carefully

tuned. Thus, pruning with the EFAST method is possible before a minimum of the training error has been reached.

One another interesting feature of the EFAST algorithm is its stability when pruning NN of different original

size of hidden layer. Indeed, whatever the original number of hidden nodes (32 or 128 units), the method leads

practically to same number of hidden units.

Last but not least, the CPU time appears to be not a constraintas the EFAST method exhibits in a quantitative

way the relevant units in a very few pruning steps.

2) Development of the validation error during the pruning process: Fig. 11 to 13 plot the evolution of the

validation error during the benchmark procedure when pruning the original NN of 32 hidden units for 1000 epochs.

For the EFAST method, the number of hidden nodes removed at each pruning step is displayed. Notice that (when

using the EFAST method), the benchmark procedure always stops at the end of three unsuccessful pruning iterations

(since there is no more units to be deleted).

Fig. 11: Evolution of the training and validation error during the benchmark experiment for (a) EFAST

As stated above, unlike the standard algorithms that deleteone parameter per pruning step, the EFAST method

yields the relevant units in a very few pruning step (practically, two or three pruning steps are necessary) and

therefore answers quite satisfactorily to the question ”how much to prune”.

Fig. 11: Evolution of the training and validation error during the benchmark experiment for (b) MAG

Fig. 12: Evolution of the training and validation error during the benchmark experiment for (a) OBS and (b) OBD

Fig. 13: Evolution of the training and validation error during the benchmark experiment for (a) NC end (b) SKEL

3) Evaluation of the EFAST method for different number of simulation runs: Table VII lists illustrates section

IV.B and concerns the effect of assigning the same frequencyto more than one factor in the complementary set of

frequencies. The following results have been obtained whenpruning the NN for 1000 epochs.

Table VII : Influence of the number of simulation runs. The NN are trained for 1000 epochs.

As shown by table VII, regarding the number of remaining units, there is no difference when pruning the NN

with 32 units. Therefore, assigning the same frequency to two factors has no effect on the pruning results. A

difference of two units is observed when pruning the NN with 128 nodes but the better accuracy obtained with
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8193 model evaluations is counterbalanced by the higher computational cost. Moreover, a difference of two units

have practically no influence on the generalization performance of the NN.

B. Architecture selection by increasing the number of hidden nodes

Experiments with the standard technique of selecting the number of hidden units using a validation set (provided

by Proben1) were performed. The selection of the model was based on the performance measure estimated by

the mean squared error (mse) on the validation set (hold-outmethod)3. In order to obtain a better estimation of

this measure, the NN were trained five times using different initializations and the mean of the mse was used as

estimator.

Again, we evaluate the technique for two validation data sets (by exchanging the validation and test sets proposed

by Proben1). The following procedure was used:

1) Start with a NN with one hidden unit

2) Train 5 times the NN for 1000 epochs using different initializations

3) Compute the mean of the mse on a validation set

If the validation error deteriorates by more than 10% from the previous iteration, go to step 5 otherwise go

to step 4

4) Increase (using a non linear scale : 1, 2, 4, 8, 16 , . . . ) the number of hidden units and proceed to step 2

5) end of procedure

Fig. 14 and table VIII show the results :

When the validation set iscancer1vl.pat, the procedure stops when the NN has a layer of 32 hidden unitswhereas

with cancer1ts.pat, it stops when there are 2 hidden nodes. It can be seen (table VIII and Fig. 17) that this additive

procedure nor is faster nor is better than the EFAST method (see table III) . For selecting the number of hidden

nodes, such experiment seems to be useless as it uses a noisy performance measure (i.e. the validation error) and

is validation-set dependent.

Furthermore, it has been shown that cross-validation scores are biaseds and do not lead to the optimal model [32].

Table VIII : Results for the growing phase

Fig. 14: Results obtained for the additive (or growing phase)

C. Other experimental results

We also evaluate the performance of the pruning methods overthe range of significant datasets provided by

Proben1 [17] . The experiments deal with the pruning of two original NN (128 and 32 nodes). For these problems,

3If there is not enough data and the whole data is used for training, one could perform a ten-fold or leave-one-out (computationally demanding)

cross-validation experiments
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we have not shown the results obtained with the additive phase as the same conclusion drawn in the previous

section remains unchanged. Fig. 15 to 24 show the results:

Fig. 15: Card (mse, hidden units and cpu time)

Fig. 16: Diabetes (mse, hidden units and cpu time)

Fig. 17: Horse (mse, hidden units and cpu time)

Fig. 18: Thyroid (mse, hidden units and cpu time)

Fig. 19: Building1 (mse, hidden units and cpu time)

Fig. 20: Building2 (mse, hidden units and cpu time)

Fig. 21: Flare1 (mse, hidden units and cpu time)

Fig. 22: Flare2 (mse, hidden units and cpu time)

Fig. 23: Heart (mse, hidden units and cpu time)

Fig. 24: EES (mse, hidden units and cpu time)

Notice for the Card, Horse, Thyroid and EES problems, OBS failed (and exited with an error message of

insufficient memory) when pruning the original NN with 128 nodes.

The results confirm that the EFAST method outperforms the other pruning algorithms when focusing on the

couple mean squared error and number of remaining units i.e.the NN obtained with the EFAST algorithm are more

parsimonious while yielding a test mse which is of the same order of magnitude. Indeed, even if in some cases, the

EFAST mse is not the best, it is close to the best. Consideringthe remaining number of hidden units, the EFAST

method always lands practically on the same number whateverthe original NN. Again, the CPU time appears to

be very affordable.

VII. C ONCLUSION

In this paper, we have proposed a new method to prune hidden units of oversized neural networks. The procedure

is based on the EFAST method, a quantitative model-independent method for global sensitivity of model output.

The method delivers quantitative information about the relative importance of the hidden units.



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 21

The new pruning algorithm offers several advantages:

1) It is a robust, stable and consistent method that exhibitsgood performance whatever the original structure.

2) The method exhibits in a quantitative way the relevant units and therefore answers quite satisfactorily to the

question ”how much to prune”.

3) The method does not necessitate a fine-tuning of the learning parameters.

4) Consequently, as convergence to a minimum of the criterion is not a prerequisite, it is possible to prune before

the network is at the minimum of the cost function.

5) The results obtained with the EFAST method is only dependent on the training phase. This feature is very

appealing when dealing with finite dataset. So, in practice,additional data such as a validation set is useless.

In other words, the method is able to deal with the problem of model complexity without the need of cross-

validation or the need to optimally tune a specific parameterduring the pruning process.

6) Moreover, the CPU time is not a constraint as the method prunes several units per pruning step.

Experiments that consist in selecting the number of hidden nodes using a validation set seem to be inappropriate

as the performance measure is highly biased and validation set dependent. This standard technique is also not faster

nor as efficient as the proposed one.

Finally, on the basis of the results, we feel that the EFAST algorithm provide a useful and efficient method to

prune hidden nodes of relatively large NN and we propose the following EFAST pruning recipe:

1) Train a NN that is larger than necessary

2) Apply the EFAST pruning algorithm for two or three steps.

3) Train the NN with the number of hidden nodes identified withthe EFAST method

4) Test the NN

Application of the EFAST pruning method to NN having more than one layer of hidden nodes will be straightfor-

ward. Future work will aim to apply this new technique to pruning of inputs of the NN. It would be also interesting

to examine the behavior of the method on recurrent networks or Elman networks where possibly some outputs of

hidden units are fed back as inputs to the network. Would thismethod exhibit the effect of interactions?
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TABLE I

FREQUENCIES ASSIGNED TO THE INPUT FACTORS GIVEN THE NUMBER OFFACTORS AND NUMBER OF SIMULATION RUNS(THE THIRD

FACTOR IS THE FACTOR OF INTEREST)

Number of
N ωh max(ω

∼h) Set of frequencies assigned to the factors
hidden units

32 1025 128 16 [1,2,128,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

32 2049 256 32 [1,2,256,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]

128 1025 128 16 [1,2,128,4,5,6,7,8,9,10,11,12,13,14,15,16,1, 2,. . . ,15,16,1,2, . . . ,15,16]

128 8193 1024 128 [1,2,1024,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,. . . ,127,128]

TABLE II

THE DATASETS, WHERE THE TYPE IS EITHER C(CLASSIFICATION) OR A (APPROXIMATION)

Dataset Description Type Inputs Outputs
Number of examples

training validation test total

Cancer Diagnosis of breast cancer c 9 2 350 175 174 699

Card Predict the approval or non-approval of credit card to a customer c 51 2 345 173 172 690

Diabetes Diagnosis of diabetes c 8 2 384 192 192 768

Horse Predict the fate the horse has a colic c 58 3 182 91 91 364

Thyroid Diagnose thyroid hyper or hypofunction c 21 3 3600 1800 1800 7200

Building Prediction of energy consumption in a building a 14 3 2104 1052 1052 4208

Flare Prediction of solar flares a 24 3 533 267 266 1066

Heart Predict heart disease a 35 1 152 76 75 303

EES Predict deformation energy in a frontal car crash a 90 1 1150 100 500 1750
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TABLE III

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 32 HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS: cancer1vl.pat. NOTE THAT THE PRUNING STEPS COMPUTED FORMAG, OBS AND OBD ARE THE NUMBER OF EFFECTIVE

PRUNING STEPS(SEE FOOTNOTE IN SECTIONV.B)

100 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 23 7 3 1 1 10

mse 0,019772 0,052966 0,022105 0,015224 0,02005 0,016157

CPU Time (s) 0,25 2,79 0,64 8,39 1,26 1,42

Pruning Steps 6 18 15 31 31 7

500 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 20 11 8 8 13 7

mse 0,033348 0,036446 0,03063 0,018723 0,012128 0,014704

CPU Time (s) 1,53 4,62 2,51 12,53 5,18 3,18

Pruning Steps 7 15 13 24 19 5

1000 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 13 13 12 7 23 10

mse 0,030137 0,039323 0,030228 0,037333 0,033272 0,017552

CPU Time (s) 4,85 6,94 4,32 18,21 7,75 5,8

Pruning Steps 14 16 11 25 9 4

TABLE IV

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 32 HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS: cancer1ts.pat.

100 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 20 19 3 2 1 10

mse 0,032293 0,029819 0,024007 0,019215 0,025124 0,019227

CPU time (s) 0,32 1,73 0,65 8,37 1,25 1,41

Pruning steps 9 9 15 30 31 7

500 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 30 30 32 12 12 7

mse 0,030459 0,030226 0,022761 0,031213 0,027922 0,017189

CPU time (s) 0,34 0,7 9,12 11,82 5,28 3,18

Pruning steps 1 1 0 20 20 5

1000 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 32 32 32 25 26 10

mse 0,030478 0,03046 0,021553 0,028668 0,030621 0,021684

CPU time (s) 6,99 9,28 9,22 10,45 6,73 5,8

Pruning steps 0 0 0 7 6 4
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TABLE V

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 128HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS: cancer1vl.pat

100 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 110 110 128 22 3 9

mse 0,014326 0,017414 0,020443 0,027227 0,020272 0,014135

CPU Time (s) 1,6 135,21 39,6 351,54 14,61 6,83

Pruning Steps 9 9 0 106 125 5

500 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 126 126 128 104 107 6

mse 0,014416 0,018459 0,036799 0,03136 0,03406 0,031294

CPU Time (s) 1,41 24,49 39,68 180,31 25,76 13,68

Pruning Steps 2 1 0 24 21 7

1000 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 128 128 128 125 125 7

mse 0,020574 0,020719 0,017379 0,020584 0,020731 0,02671

CPU Time (s) 22,42 90,26 29,46 44,78 22,42 22,28

Pruning Steps 0 0 0 3 3 3

TABLE VI

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 128HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS: cancer1ts.pat

100 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 110 110 128 63 18 9

mse 0,033361 0,024712 0,021125 0,02166 0,017033 0,017802

CPU Time (s) 1,61 149,86 33,99 305,85 14,34 6,83

Pruning steps 9 14 0 65 110 5

500 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 126 126 128 104 107 8

mse 0,021172 0,025816 0,033185 0,033621 0,037907 0,017743

CPU Time (s) 1,42 25,16 39,74 180,19 25,76 13,29

Pruning steps 1 1 0 24 21 3

1000 epochs MAG OBS OBD NC SKEL EFAST

Remaining units 127 127 128 120 120 7

mse 0,037512 0,037809 0,018697 0,03437 0,033327 0,021557

CPU Time (s) 1,82 11,71 29,49 88,14 30,76 22,24

Pruning steps 1 1 0 8 8 3
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TABLE VII

INFLUENCE OF THE NUMBER OF SIMULATION RUNS. THE NN ARE TRAINED FOR1000EPOCHS

Original NN 32 32 128 128

# model evaluations 2049 1025 8193 1025

Remaining units 10 10 9 7

Test mse 0,017646 0,017552 0,026478 0,02671

CPU Time (s) 7,43 5,77 97,07 22,23

TABLE VIII

RESULTS FOR THE GROWING PHASE

Validation Set cancer1vl.pat cancer1ts.pat

# of hidden units 32 2

CPU Time (s) 91,28 7,66

Test mse 0,028859 0,028384
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Fig. 1. General scheme of a quantitative Sensitivity Analysis method. The total variance is apportioned to the various input factors, as shown

by the pie diagram.
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(a) (b)

Fig. 2. (a) Plot of the transformations function (defined by (7)) and (b) its respective empirical distribution

Fig. 3. The spectrum of a model response using the EFAST approach . The spectrum is divided into two regions: the first

region
[

1, ωh

2
= Mmax(ω

∼h)
]

contains the frequencies involving all the factors except those of factorZh and the second region

[Mmax(ω
∼h) + 1, (N − 1)/2] contains the effects of factorZh located in the high frequencies.
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Fig. 4. The EFAST method applied to pruning of hidden units. Each output of the hidden units constitutes an input factor. All input factors

oscillates (each with its own frequencyωi) according to the curve defined by (8).N samples of the output are evaluated that enable the

computation of the percentage contribution of each hidden unit (through the Fourier decomposition of the variance of the output).
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(a)

(b)

Fig. 5. Remaining number of hidden units obtained from an original NN of 32 hidden units. The validation-set used to stop the pruning

procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).
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(a)

(b)

Fig. 6. Test mean squared error obtained from an original NN of32 hidden units. The validation-set used to stop the pruning procedure is:

cancer1vl.pat(a) or cancer1ts.pat(b).
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(a)

(b)

Fig. 7. CPU Time when pruning an original NN of32 hidden units. The validation-set used to stop the pruning procedure is:cancer1vl.pat

(a) or cancer1ts.pat(b).
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(a)

(b)

Fig. 8. Remaining number of hidden units obtained from an original NN of 128 hidden units. The validation-set used to stop the pruning

procedure is:cancer1vl.pat(a) or cancer1ts.pat(b).
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(a)

(b)

Fig. 9. Test mean squared error obtained from an original NN of128 hidden units. The validation-set used to stop the pruning procedure is:

cancer1vl.pat(a) or cancer1ts.pat(b).
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(a)

(b)

Fig. 10. CPU Time when pruning an original NN of128 hidden units. The validation-set used to stop the pruning procedure is:cancer1vl.pat

(a) or cancer1ts.pat(b).
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Fig. 11. Evolution of the training and validation error during the benchmark experiment for (a) EFAST and (b) MAG

Fig. 12. Evolution of the training and validation error during the benchmark experiment for (a) OBS and (b) OBD

Fig. 13. Evolution of the training and validation error during the benchmark experiment for (a) NC and (b) SKEL
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Fig. 14. Results obtained for the additive (or growing phase)
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(a)

(b)

(c)

Fig. 15. Card: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 16. Diabetes: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 17. Horse: (a) mse, (b) hidden units and (c) cpu time



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 44

(a)

(b)

(c)

Fig. 18. Thyroid: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 19. Building1: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 20. Building2: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 21. Flare1: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 22. Flare2: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 23. Heart: (a) mse, (b) hidden units and (c) cpu time
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(a)

(b)

(c)

Fig. 24. EES: (a) mse, (b) hidden units and (c) cpu time


