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Abstract

In this paper, we propose a new pruning algorithm to obtain the optimal euofthidden units of a single layer
of a fully connected neural network. The technique relies on a globaitsety analysis of model output (SAMO).
The relevance of the hidden nodes is determined by analysing the Fdedemposition of the variance of the
model output. Each hidden unit is assigned a ratio (the fraction of variatich the unit accounts for) that allows
their ranking. This quantitative information therefore leads to a suggesfitiee most favourable units to eliminate.
Experimental results suggest that the method can be seen as arveffeotiavailable to the user in controlling the
complexity in neural networks.

Index Terms

Pruning, Global sensitivity analysis, Variance decomposition, Fourielysis, Feedforward neural networks

Manuscript received April 15, 2003

Philippe Lauret and Thierry Alex Mara are Assistant Prafes&t the University of La Reunion and researchers in thadmidl Engineering
Laboratory

Eric Fock is a PhD Candidate in the same laboratory

Corresponding Author: eric.fock@univ-reunion.fr



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 2

A node pruning algorithm based on a Fourier

amplitude sensitivity test method

I. INTRODUCTION

According to Bishop [1] , a central issue in the applicatidrfeed-forward neural networks is the determination
of the appropriate level of complexity. The latter is gowstrby the number of coefficients or weights of the neural
network. This search of the optimal model is of vital impaoxa for the generalization property of the neural network
(NN). The main techniques used to control this complexiy [dj—[3]: architecture selection, regularization, early
stopping and training with noise, the last three being d¢joeslated. Bishop [1] argues that for most applications,
techniques based on regularization should be preferred. @rhe most popular regularization terms is the so-
called weight decay term that consists in the sum of the sguafrthe parameters. Unfortunately, the simple weight
decay term is inconsistent with known scaling propertiesi@fvork mappings (see [4] for details). A consistent
regularizer can be obtained by assigning separate repetario the first-layer weights and to the second-layer
weights.The optimal weight decay term (the one that giveshist trade-off between bias and variance) can be
determined through cross-validation. However, this pdoce would be computationally expensive, especially if
regularization schemes with multiple weight decay termestarbe considered. The bayesian approach [5] allows
the values of regularization coefficients to be automdyidahed during the training process without the need to use
cross-validation. Nonetheless, bayesian techniquesam®dbon some simplifying assumptions. The most important
one is that a gaussian approximation of the posterior digion of the weights is needed in order to make the
integrations over the weight space analytically tractalideed, this approximation does not take into account the
problem of multiple minima of the error function (althougbnse techniques tend to moderate this statement [6]).

As for the technique of architecture selection, one of tmepest ways involves the use of networks with a
single hidden layer, in which the number of free parameteintrolled by adjusting the number of hidden units.
Practically, a set of networks ranging frointo p hidden units is trained. The performance of the networks is
evaluated on a test set. The network that exhibits the bewstrgkzation performance is selected. However, this
technique is computationally demanding and therefore llystestricted to networks having a single hidden layer.
Other approaches consist in growing or pruning the netwitnkctire during the training process. The approach
taken by the pruning methods is to start with a relativelgéanetwork and gradually remove either connections or
complete units [4]. Nonetheless, one may notice that nétwsochitecture selection changes the actual number of
adaptative parameters in the NN while regularization adsitthe effective number of parameters. Different methods
to pruning have been developped. For a review covering theipg methods, see [3]. The most popular ones of
these are Optimal Brain Damage (OBD) [7] and Optimal Braimg8an OBS [8]. There exists an extension of
OBD for pruning irrelevant hidden units and input units edllOptimal Cell Damage (OCD) [9].

By considering the change in the error function due to snfainges in the values of the weights, a measure of
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the relative importance of the different weights or salienan be computed. The weights with low saliencies are
deleted. More precisely, both methods (OBD and OBS) use@searder Taylor expansion of the error function to
estimate how the training error will change as the weighésparturbed. These methods are based on assumptions
in order to reduce complexity in calculating the weightsesadies [4], [7], [8], [10]. First, both methods make
the assumption that the pruning will be performed aftemirag has converged to a minimum i.e. the gradient is
zero ("extremal” assumption). Second, they assume thaettee function is nearly quadratic in order to neglect
the last term of the Taylor expansion ("quadratic” appraadion). The OBD method additionally assumes that the
off-diagonal terms of the Hessian matrix are zero.

Engelbrecht [10] proposed a new pruning algorithm basedutpub sensitivity analysis that consists in a first-
order Taylor expansion of the NN output function. He showwat OBD (which is an objective function sensitivity
analysis) and output sensitivity analysis are conceptuhk same under the assumptions of OBD. The method
is based on variance analysis of sensitivity informatioregiby the derivatives of the NN output with respect to
the parameters. It is quite a powerful method since the hetmacture inherently contains all the information to
compute efficiently these derivatives [11]. The basic ide#he technique is that a parameter with a low average
sensitivity and with a variance in sensitivity which is nagrgficantly different from zero over all patterns has
little or no effect on the output of the NN considered. The et called Variance Nullity Pruning (VNP) [11] is
not based on any assumptions to reduce the complexity iulasileg the saliencies of the parameter. However,
since the sensitivity information is given by the derivativof the NN output with respect to the parameters, the
network should be well trained to accurately approximatetthe derivatives [10]. Indeed, it has been proven that
as the NN converges to the underlying function so all dexigatalso converge to the true derivatives [12]. The
VNP algorithm has been also used to prune irrelevant inpits.uRrior to the VNP algorithm, Zurada [13] used a
perturbation-based sensitivity method for inputs’ prgnin

The above approaches are derivative-based methods. Thet aansitivity analysis developed by Engelbrecht
[10] can be grouped in the so-callémtal methodsof sensitivity analysis of model output (SAMO) [14]. But the
analysis remains inherently local. Small variations in plaeameter values do not change the local sensitivities but
a significantly different parameter set may result in a catgdy different sensitivity pattern. Moreover, the qualit
and reliability of the results of this type of analysis degieron how well the Taylor expansion approximates the
original model.

There exists a second sensitivity analysis (SA) schoolgtbbal sensitivity analysis of model output, which is
more ambitious in two aspects: first, the space of the pamméalso calledactors or input factorsin the SA
terminology) is explored within a finite region and, secotia variation of the output induced by a factor is taken
globally - that is averaged over the variation of all the dast[14].

In this paper, we propose a new technique to obtain the optiom@ber of hidden units of a single layer of a
fully connected network. This technique relies on a globadsitivity Analysis of Model Output (SAMO). A global
SA method, the EFAST method [15] (which stands for Extendedrier Amplitude Sensitivity Test), is used to

guantify the relevance of the hidden units. Thus, in ourgttite output of hidden units are the factors of interest.
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Sensitivity analysis of large dimensional overtrainedrabuetworks are conducted in order to assess the relative
importance of each hidden unit on the NN output. This is maglesible by computing the contribution of each
hidden unit on the NN output.

EFAST is an extension of the FAST method [14], [16]. The kesaidf FAST is that all the factors are oscillated
around their nominal value from one simulation run to anotfAde importance of a factor is determined by
analysing the Fourier decomposition of the model respofbe. FAST method computes a ratio, which is called
the main effect or first-order sensitivity indé$},), that ranks quantitatively the different input factors eTFAST
method is independent of any assumptions about the modelvarids for monotonic and non-monotonic models.

Developments and improvements of the FAST derivative mittare recent. Saltelli [15] extended the classical
approach (thus giving the EFAST method) to perform the t¢alsitivity index(ST},). The term "total” here means
that the factor’'s main effect, as well as all the interactioamvolving that factor, are included in the ratio. In this
paper, we will use this method. The ranking of the hiddensuodtuld lead to a suggestion of the most favourable
ones to eliminate.

Section Il proposes a brief introduction to SAMO. In sectitin we will describe the FAST and the EFAST
methods. Section IV illustrates the application of the EFA8ethod to the area of NN. Section V describes the
experimental setup while section VI reports the result® pérformance of the method has been evaluated (through
extensive experimentation) on nine real-world problenssiesl mainly from the international benchmark Probenl

[17]. Section VII will draw the conclusions.

I[I. INTRODUCTION TOSAMO

According to Saltelli [14], in the context of numerical mdide, SA means very different things to different
people. Helton [18] proposed a review of the different téghes. But all these approaches have in common the
aim to investigate how a given computational model respéadsgriation in its input factors. The terinput factor
must be interpreted in a very broad sense: a factor is a dquahtt can be changed in the specification of the
model prior to its execution. A factor can be an initial cdiai, a parameter, etc .... By considering, without
loss of generality, a modef(e) such thaty” = f(Z1,Z,,...,Z,), SA estimates the effects of theinput factors
Z1,2s,...,Z, on the outpuly”. The effect of a factor is the change in the response obtdigeshanging the value
assumed by that factor.

Different types of analysis are possible with SA. The intézd reader may refer to Saltelli [14] for more details.
For instance, modellers may conduct SA in order to deterrimsignificant model parameters which can thus be
eliminated, in other words parameters not affecting théatian of the output. In this way, irrelevant parts of the
model can be dropped, or a simpler model can be built or exflaitom a more complex one (model lumping).

The purpose of SA is manifold. SA either local or global haeet used in numerous fields:

1) as a tool to understand mechanisms in complex chemiceatiksreaction schemes [19]

2) as a means to analyse fish population dynamics [20]

3) investigating the structure of an environmental nuna¢nnodel related to climatic change studies [21]
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4) analyzing a complex geological waste disposal systerf) Et8.

A. How to perform SA

There are several procedures to conduct sensitivity aisalybe most common SA is sampling-based. Fig. 1
represents a sampling-based sensitivity analysis in wtiiehmodel is executed repeatedly for combinations of
values sampled from the distribution (assumed known) ofirtpet factors. The following steps can be identified
[14]:

1) define the model; its input factors and output variable(s)

2) assign probability density functions or ranges of vaiato each input factor

3) generate an input matrix through sampling design

4) evaluate the output

5) assess the influences or relative importance of each faptdr on the output variable

At step 4, an empirical probability distribution for the output cae breated which may lead to a first step
of uncertainty analysis. Mean, standard deviation, confidebounds etc. can be estimated. After quantifying the
variation of the output, the next step, sensitivity anaysonsists in apportioning the variance of the output atingr
to the input factors. A possible representation of the testdn be a pie chart that decomposes the variahgg
of the output into the percentages that each factor is a¢icmufor. So, the variance decomposition may allow the

identification of the most influential factors.

Fig. 1: General scheme of a quantitative Sensitivity Analysethod. The total variance is apportioned to the

various input factors, as shown by the pie diagram.

B. Different sensitivity indices

There are different methods to perform sensitivity analydimodel output [14]. They all rely on the estimation
of a sensitivity index. Consider againpa-factor modelY = f(Z1, Zs, ..., Z,).

In the following, let us denote by; the standardized factor (mean 0 and variance 1) relativg tdo introduce
the different sensitivity indices, it is convenient to cifes, without loss of generality, that the model response
under interest can be expressed in the form of the followinlgnmmial expansion :

p P p p p p
Y:Y()-FZ@'ZFFZZ@]' ZiZj"f-ZZZﬁijk2i2j2k+~u7 1)
i=1 i=1 j=1 i=1 j=1 k=1

where,

Y is the model response,

the 3;'s are the first order regression coefficients,

the ,;'s are the second order regression coefficients, and so on ...

z;zj represents the first-order interaction between the factarsd j. ...

Quantitative SA methods are usually based on the estimafiame of the three following sensitivity indices:
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o the linear effect, a sensitivity index based on th& alone
e the main effect, a sensitivity index based on this (linear effect),5;;’s (quadratic effect);;;’s (cubic effect)
andsoon ...
o the total effect which is based on tiggs, 5;;'s, 8i;'s ... for a giveni and all(j, k, .. .) i.e. all the coefficients
involving the factorZ;
Generally, the contribution of an interaction to the regmwmariation is less than a least-order interaction and
linear effect. However, the entire non-linear effects mayehan important contribution to the model response
variation. If we develop (1) up to af/-order polynomial (therefore we expect the high-order ficiehts to have

a negligible influence on the variation of the output), we wvaite, that

p 14 14 14 14 p
Y:YO—FZﬂ“Z“-FZ 2’87‘”22“212—’——’_2 Z Z 6i1i2.“iMZilzi2~~ZiM+E (2)
i1=11=1 ip=1

i1=1 i1=112=1

M is called the interference factor (usually setdtor 6 in the SA community) and is the error term.

On one hand, if the model is non-linear but the factors aréegiain a small range, the first-order regression
coefficients is an adequate index for SA because non-liesdan be neglected. In that case, the method employed
to estimate thes;’s belongs to the local SA methods. On the other hand, whetorg@re strongly varied over
order of magnitude, then, the entire non-linearities cartm@neglected anymore and must be accounted for into

the sensitivity index. For this purpose, a global SA vareahased method is employed.

C. Variance based-methods

Among the global methods, one may distinguish two varidreeeed methods: the Sobol’ method [22] and the

FAST method. Variance-based methods aim to estimate thetigua

g — Varz, [E(Y|Zy, = z)]  Amount of the model response variance due to factor Zy, only 3)
b Var(Y) N The model response variance

where Z;, denotes an input factol, the model responsd;(Y'|Z;, = z,) the expectation ol conditional on a
fixed value ofZ, and the variancé ary, is taken over all the possible values &jf,. This ratio (S},) represents
the main effect. It is called the first-order index in the SAm#ology. Thus, the main effect of a factor represents
the average effect of that factor on the response or coryetssse methods allow the computation of that fraction
of the variance of a given model output which is due to eachtif@ctor.

In addition to the computation of the first-order indicesh&bmethod as well as the Extended FAST (EFAST)
method also provide an estimation of the total sensitivigex (S7},). The total effect includes the main effect as
well as all the interaction terms involving that factor. Tiotal effect is defined by :

Amount of the model response involving factor Zy

ST), = (4)

The model response variance



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 7

A model is said additive when the response is non-linear maractions are negligible. In that case, the main

p
effects are the suitable indices for SAMO because S, ~ 1. Otherwise, the total effects are the appropriate
h_l

indices to rank the factors by order of importance an STy, > 1 that is Z S < 1.

Sobol' method is a Monte-Carlo based method that conssts&uformmg multiple model evaluations with
randomly selected input factors. FAST is based on the Foadeeomposition of the variance in the frequency
domain. Both methods are especially suited for a quamiatiodel-independent global sensitivity analysis. The
computational cost of these methods is the nhumber of modalsaions required and is a function of the number
of input factors and the complexity of the model. The everdéasing power of computers tend to make these global

methods affordable for a large class of models.

Ill. VARIANCE-BASED METHODS IN THE SPECTRAL DOMAIN: THE FAST AND EFASTMETHODS
A. Introduction

To introduce the FAST and EFAST methods, we consider aga&irpdtynomial expansion.

Let [ap,by] be the range of variation of the factdf,. Let us suppose tha¥V simulation runs are performed
by varying each factor as followsz(™ = bnfan 4 buzan gin (wys™) with s(n) = 27n/N, wj, the (integer)
frequency assigned to factdf, andn the simulation number.

It is straightforward to note that(") = sin (wy,s™) and that (1) becomes :

ym = Yo+ i B; sin <wis(”)) + i i Bij sin (wis(”)) sin (sz(”)) (5)
i=1

i=1j=1
p P

P
+ E E g Bijk sin (wis(")) sin (sz(”)) sin (wks(”)) +...
e £ .

i=1 j=1k=

The previous relationship leads to the following conclasio

e the linear effect ofZ;, corresponds to the Fourier amplitude at the fundamentguéecywy,.

e S} is obtained by considering the Fourier amplitudes at theldnmental frequencyy, (linear effect), the first
harmonic (quadratic effect), the second harmonic (cubiecéf and so on .... This is the basic idea of the
FAST method.

e Interactions induce new frequencies that are linear coatioins of interacting factors’ frequencies. Conse-
quently, ST}, can be computed by considering all the Fourier amplitudesiing Z;,. One way to isolate these
frequencies in the spectral domain, is to choegevery high as compared to the other frequencies (denoted
by w.p) so that all the spectral components involvidg do not overlap in the low frequency region (where
the spectral components do not concefif). Such an approach reminds the frequency modulation tqabni
and is called the EFAST method in SA (Extended FAST).



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 8

B. The FAST method

FAST enables the estimation of the total output variafidg) and the contribution of individual input factors to
this variance, that is, the first order sensitivity indicksFAST, each input factoZ,, is related to a frequenayy,

and a set of suitably defined parametric equations

Z(s) = Gp(sin(wps)) Vh=1,2,...,p (6)

allows each factor to vary in range, as the new parametewvaried (wheres is a scalar variable varying in the
range—oo < s < oo) . The parametric equations define a curve that systemigtegblores the input factors’ space.
As s varies, all the factors oscillates at the correspondingirayi frequencyw; and their range is systematically
explored.

Different transformation functions have been proposeqd, [[i%]. For the FAST method (and EFAST method),
a parametric representation of the form

Zy(s) = % + %arcsin (sin (wp$)) @)

is often used. This transformation allows a better covedgiie factors’ space since it generates samples that

are uniformly distributed in the randé, 1] (see Fig. 2).
Fig. 2 : Plot of the transformations function (defined by (&hd its respective empirical distribution.

Notice however that, ifan,bs] is the range of variation of the factdf;,, each factor oscillates in the range

[an,by] along the curve defined by,

:bh+ah+bh—ah

Z,(s) B

arcsin (sin (wp s)) (8)

In the present application, the output of the hidden noddisbeivaried according (8).

As each factorZ,, oscillates periodically betweefa,, b,] at the corresponding frequency,, the model output
Y exhibits different periodicities that result from the cdmdtion of the different frequencies;—; ... ,, whatever
the modelf is. As stated by [15], if thex*" factor has strong influence on the output, the oscillatiohd” cat
frequencyw,, shall be of high amplitude. This is a basis for computing assigity measure for the factog;,
based on the evaluation of the Fourier amplitudes at theesponding frequency;, and its harmonics. In other
words, large Fourier amplitudes at the fundamental frequen, and and its harmonics indicates that the output
is sensitive to the input factdp,.

Cukier [16] showed that, if an appropriate set of integequienciesv;—,,... , is chosen, then

.....

f(s) = [(Z1(s), Z2(5), -+, Zn(5), -+ Zp(s))

is 2m-periodic (—7 < s < ). S0, f(s) may be expanded in a Fourier series of the form:
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+oo
f(s)= Z (Aj cosw;s + Bjsinw;s) 9

j=—00

where the Fourier coefficients are defined as

A, = % Trf(s)cos(sz)ds (20)
B; = ;ﬂ f( ) sin(w;s)ds (11)

and—7 < s < 7.

So, N equally spaced sample points are required to perform theidrcanalysis.N represents the sample size
and coincides with the number of model evaluations (thahésrtumber of simulation runs).

One major advantage in shifting the analysis into the fraguedomain is that the spectral decomposition is

equivalent to a variance decomposition. An analysis ofavare is possible because Parseval’s theorem states that

D, = Var(Y _22 (AR + BY) (12)

The portion of the variance df explained byZ,, alone is

Dy, = Var,, [E(Y|2)] = 22 AR, +BL,) (13)

where 4, and By, denote the Fourier coefficients for the fundamental frequeand its higher harmonics

kwp. Consequently, the expansion of the main effect is given by

2> AR, + B}
g — Dn Varzh [E(YZ)) B Z kewn, o ”
"=D,T Var(y)  Var(Y)

We stated above that in order to evaluate the main effec;9fone must calculate the Fourier coefficients at

the fundamental frequenay, and all the harmonics. As mentioned earlier (see sectioB &nd (2)) , only the

first (M — 1) harmonics are considered so that the first-order sengifivitex is approximated by :

Varg (P02 A +BL
Var (Y) a Var(Y)

where M is called the interference factor (usually setdtor 6 in the SA community).

Sp = (15)

In the FAST approach, the number of simulation runs reptsstre sampling frequency and, to satisfy the

Nyquist criterion, must be equal (at least) 3= 2Mwy,.x + 1 Wherew,,,x = m[aX] (wy) -
i€[1l,p

Notice that the varianc& ar(Y') can be evaluated in the frequency domain through the fatigwelationship:

(N-1)/2
Var(Y) =2 Z A2 4 B2, (16)
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where A, and B,, denote the Fourier coefficients at frequency

Thus, to estimate the main effectd, model evaluations are required. At this point, some comsemist be
made. First, the set of integer frequencigs, ... , must be properly chosen in order to avoid interferences up to
order M. Let us recall that the Fourier coefficients evaluated at tipaiti frequencyw;, and its multipleskw;, give
the sensitivity of the output to thig?" factor. If interferences occur at a given frequency, thenahalysis becomes
irrelevant by overestimating the main effect. Put diffeélgrthe difficulty with such an approach is to choose the
frequency set so that the frequencies generated byte- order non-linearities do not equaly;,n = 1,..., M
andi = 1,...,p. Second,N is also constrained by the numbgrof inputs factors, given that, as the number of
factors increases, it is necessary to choose highgt in order to obtain a set of frequencies free of interferences
Thus, even for a relatively small number of parameters &gy the choice of the set of frequencies will not be

easy. This fact may render the method difficult to use in jract

C. The EFAST method

Saltelli [15] proposed an extension of the FAST method tHEtwa to cope more easily with this problem
of interferences. Moreover, the new method computes bathnihin effect(S;)and total effedtST},) using the
same set of models evaluations. This is made possible bgrasgithe factor of interest a "high” value for its
frequencyw;, and a set of "low” frequency values to the remaining set ofdiexZ.;, (in the following, we set
Zeh =2Z1,%2,...,2Zn-1,Zn41,- .., Zp, i.€. all the factors except thi,, factor). More precisely, the spectrum of
a model response is divided into two areas (see Fig. 3).

Indeed, if we setvy, = 2M maz(w~p) Wheremaz(w.y) is the highest frequency assigned to the set of factors
Z..n, then it will ensure that the frequencies generated byMheorder interactions involvingZ;, will not interfere
with the frequencies induced by the —order non-linearities involvingZ..;,. Then, the estimation of the total
sensitivity index by the EFAST approach can be expressedlasvs :

(N—-1)/2
(A% + B2)
w=Mmaz(w~p)+1
(N-1)/2

> (A +BD)

w=1

with N = 2Mw;, + 1 aswy, is the highest frequency assigned.

ST}L ~

17)

Conversely, the first orde$), is obtained as in classical FAST (see (15)).

One may see that the problem of interference is easier to geatiean in the classical FAST since it may be
easier to find a couple of frequencies,(and maz (w~j) ) that do not interfere up to an arbitrary high.
Interferences are avoided as longuas> 2M max (w.p,) -

Saltelli [15] proposed an algorithm to select (consequentlynax (w~,)) and the frequencies in the comple-
mentary sefl, max (w~)] for a given number of simulation run¥ (see section I1V.B). In order to obtain a better
coverage of the input factors’ space, one must assign distiequencies to the factors of the complementary set.

However, to limit the number of model evaluations, it is pbles(to some extent) to assign the same frequency to



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 11

two (or more) different factors of the complementary set.

Fig. 3 : The spectrum of a model response using the EFAST apiproThe spectrum is divided into two regions:

the first region [1, “ho= Mmaw(th)] contains the frequencies involving all the factors excéyptsé of factor
Zy, and the second regiolV/max(w~p) + 1, (N — 1)/2] contains the effects of factd?;, located in the high

frequencies.

As stated above, the total number of simulation runs reduioecompute the total effect of factdf;, alone is
2Mwy +1 ash is the highest frequency assigned. To estimate the satysitidex for another factor, a permutation
of the frequencies is necessary, because the "high” freqyustust be assigned to the factor of interest. Hence, to
compute the entire total sensitivity indicep(2Mwy, 4+ 1) simulation runs are necessary.

Among the SA methods, the total sensitivity index is undedhyt the best guide to rank quantitatively the factors
by order of importance. Indeed, even if this occurs rareiteraction effects on a model response may be more
predominant than the main effects. So, whether the interaeffects are taken into account or not, the analysis
may result in a different ranking of the factors’ importance

The results of the analysis can be displayed in an intuitreglgical way by normalizing eac$il;, by the sum of
ST;, i =1,...,p. The normalized indicesS(,) can be plotted in the form of a pie chart, hence showing taetifsn
of variance which the factor accounts for. However, whenlidgavith complex models with a large number of
parameters and for which the cost of one model evaluationgis, lestimation of the total sensitivity indices may

require a very high computational effort.

IV. USING THEEFASTMETHOD TO OBTAIN THE OPTIMAL ARCHITECTURE
A. The Method

Regarding the intrinsic structure of an single output NNe amay decompose it into two sub-models. The first
one (SM1) is the multi-response relationship between tpatmof the NN(x) and the output of the hidden units
(Z). The second sub-model (SM2) is the single response relhijphetween the output of the hidden un(ts)
and the output of the NNY'). We state that the relevance of a hidden unit is related tanftaence on the NN
response. This is the key idea of the method proposed in #usrpo determine the optimal architecture of an NN.
In our approach, the model is SM2 and the factors are the bofpilhe hidden unitg 7).

The different steps of the proposed approach are :

1) Train a "reasonably large” network for some epochs

2) For each factoZ;, (output of the hidden nodk), retain its minimal and maximal valueg andb;, respectively

3) Set the interference factor ff = 4 and choose the number of simulation ruNs

4) Given M and N, compute the frequency, = (N —1)/2M to be assigned to the factdf, and the

frequencies assigned to the other factors in order to pertbe EFAST method

5) For each factotZ;,,
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« Assign the frequency;, to the factorz,,
« By only considering the SM2 model, perforii simulation runs. The factors are varied according to the

curve defined by (8), compute the total efféstT},) of the factorZ, using (17)

6) Given all the total effect§ST;(i = 1,2,...,p), compute the percentage contribution (i.e. the normalized
p
indices S,, = ST, / > STZ-> of each hidden unit to the variation of the output

=1
7) Delete the hidden units that accounts for less of 5% of titpud variance

Fig. 4 : The EFAST method applied to pruning of hidden uni@chEoutput of the hidden units constitutes an
input factor. All input factors oscillates (each with its oirequencyw,) according to the curve defined by (8Y.
samples of the output are evaluated that enable the comeputaf the percentage contribution of each hidden unit

(through the Fourier decomposition of the variance of thépat).

At this stage, two points have to be highlighted. First, llgugaruning occurs when the NN has been trained
into a minimum of the error function [7], [8] or when overfitj begins (a pruning indicator is detected through
the monitoring of the error on a validation set) [10] [23].wtll be shown that for the EFAST pruning method
these pre-requisites are not necessary. In other wordegiEFAST method, pruning starts when the NN has been
trained for some epochs (and this latter parameter has rim tarefully tuned).

Second, it is also important to note that step 6 of the abowegaiure exhibits in a quantitative way the relevant
units; those that accounts for at least 5% of the variatiothefoutput. Indeed, it will be shown that the EFAST

pruning method answers quite satisfactorily to the quastio’how much to prune”.

B. Parameters of the EFAST pruning algorithm

For a given number of hidden units, the parameters of the BER#8ning algorithm arelN the number of models
evaluations,M the interference factor and the set of frequencies assigmélge hidden units (factors). Actually,
the choice ofM and N determines the set of frequencies assigned to the factors.

First, we setM = 4. As discussed earlier, it is common practice in the SA comigutai set M to 4 or 6.
Indeed, the spectral information rapidly decreases whequincy increases. Notice that experiments have been
conducted withM = 6. But, even if the estimates of the partial variances were racmeirate, this setting had no
influence on the experimental results.

Second, the choice aV is dictated by the following consideration. As mentioned\ah) in order to have a
better coverage of the factors’ space, the frequencieseottimplementary set must be distinct from each other.
For instance, for a NN witl82 hidden units, it is recommended to choose (at ledsty= 2049 then leading to
wp, = 256, maz (w~p) = 32 and the resulting complementary set of frequencies = [1,2,3,---,31,32]. So,
each factor is assigned a distinct frequency. In the same feaya NN with 128 hidden nodes, we have (at least)
N = 8193 (leading tow;, = 1024, max (w~p) = 128 andw.~, = [1,2,3---,127,128] for the complementary

set).
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However, other values fav are allowed. We chos® = 1025 in order to obtain a good trade-off between between
computational cost and accuracy of the methti®5 model evaluations lead to;, = 128, maz (w.) = 16 and
the resulting set of frequencies assigned to the otherracto, = [1,2,---,15,16, ------ 1,2,---,15,16]. The
pattern[1,2,---,15,16] is duplicated in order to cover the whole range of factors, the same frequency is
assigned to two (or more) different factors but experimésee section VI.A.3) show that this choice Bf= 1025
appears to be consistent when pruning NN haviag or 32 hidden units.

Table I illustrates the different possibilities given thenmber of hidden units and the number of simulations runs

when the assumed factor of interest is the third.

Table | Frequencies assigned to the input factors given tinaber of factors and number of simulation runs

(the third factor is the factor of interest).

C. The computational cost of the method

For p hidden units, the NN output is given by the following equati®” = f(zp: w;z;j). A single evaluation of
the output of the NN output requir€3(p) operations: each term in the sum négéssitates one mutiplicand one
addition while the evaluation of the output activation ftioo represents a small overhead. Thus, the computational
cost of the EFAST pruning method i€ x p x O(p) with N the number of simulations runs required by the EFAST

method.

V. EXPERIMENTAL SETUP
A. Datasets
Extensive benchmark experiments have been made on ninevoddl problems. All these datasets (except EES
dataset [24]) are part of Probenl [17]. The Probenl bendhsetris a collection of classification and function
approximation problems. The latter have betw&eand 120 inputs and betweeB03 and 7200 examples. The
data in Probenl are encoded for direct neural network useeT$uggested partitioning of the data into training,

validation and test sets are given in Probenl. We chose 8tepfie-partitioning as it is. Table Il lists the datasets.
Table II: The datasets, where the type is either c (clasgifioh or a (approximation)

We used only a single output for classification problems @fol approximation ones with more than one output
(e.g. building), we handled separately each output wittmglsioutput NN. For further information on the Probenl

datasets, the interested reader should consult [17].

B. Pruning algorithms

SNNS [25] (Stuttgart Neural Network Simulator) is a simatafior neural networks developed at the Institute for

Parallel and Distributed High Performance Systems at thigddsity of Stuttgart. The simulator offers a flexible



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 14

and open environment for developing applications on nenetorks. This open feature allowed us to implement
the EFAST pruning method in SNNS.

Furthermore, five pruning functions are available in SNN§ti®al Brain Surgeon (OBS), Optimal Brain Damage
(OBD), Magnitude Based Pruning (MBP) [26], Skeletonizat{&8KEL) [27] and Non-Contributing units (NC) [28].

OBS, OBD and MBP are weight pruning methods whereas SKEL a@dake node pruning algorithms. .
Rigorously, when pruning hidden units, we cannot compage Weight-oriented pruning methods (OBS, OBD
and MBP) with the node pruning algorithms (SKEL, NC and EFASHiowever, we have followed the same
approach proposed by Engelbrecht [10] who compared its VNiRipg algorithm with MAG, OBS and OBD.
For the weight-oriented pruning methods (OBS, OBD and MEiR)hidden unit is deleted if all incoming or all
outgoing links to that unit are removed. Obviously, thesd¢hwds necessitate more pruning steps (than the node
pruning algorithms ) as one link is deleted per pruning stéps specific treatment led to the computation of an
effective number of pruning stepgsee formula below). The CPU time is also updated in the same w

These standard algorithms computes the relevance of eaoiest in order to prune the one with the smallest
saliency.

Among these methods, MBP is the simplest one. The salieneyvadight is given by its absolute value and the
algorithm eliminates the weight that has the smallest ntagai

OBD estimates the change in the error function when pruniogriin weight. The saliency of a weight is given
by s; = %hiiwf whereh;; is thei" element of the hessian matrix (second derivatives of eacnpeter) ando?
the value of the weight at the minimum of the error function.

For OBS, the saliency of the weight is the quantity= %% where H~! is the inverted Hessian. OBS also
computes a correction to the remaining weights after thetidel of a parameter in order to minimize the increase
in error.

As mentioned above, the popular methods OBD and OBS are lmsedme assumptions (training to the error
minimum, quadratic approximation, zero off-diagonal etents for OBD).

SKEL prunes units by estimating the change of the error fancE when the unit is removed. The saliency of
a unit is given bys; = _8%' oot whereq; is called the attentional strength (see [25] and [27] foadigk

The NC method uses statistical means to find units that do owtribute to the net’s behavior. The output of
each unit is observed for the whole pattern set. The unitsattearemoved are the ones that don’t vary their output,
always show the same output as another unit or always showpesite output of another unit.

Notice that these methods do not really answer to the questmv much to prune’. For instance, the authors
of OBD suggest to prune 'some’ low saliencies. So, these odstloperate in a somewhat conservative way in the
sense that only one parameter is removed per pruning stép.isTthe main drawback of these methods. In order
to speed up the pruning process, one could remove parantiet¢rare below a given threshold. But the latter must

be chosen in an ad hoc fashion or set by some specific rulesuoflih

# of units removed

1Ef fective number of (node) pruning steps = actual number of (weight) pruning stepsx o Fwoiohts doloted
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C. Training algorithm

All runs were performed using the RPROP algorithm [29] alalé in SNNS. The three RPROP parameters are

set to the following valuedd.1, 0.1 and 50 (See [29] for the meaning of these parameters).

D. The NN architectures

All the experiments were made with networks with one hiddayet of hyperbolic tangenttgnh) activation
function. The activation function for the NN output was sethie standard sigmoid for classification problems and
to the identity function for approximation problems. Theauping methods were compared on NN haviyand
128 hidden nodes.

For the additive procedure (see section VI B), seven sizégoen layer were used; 4,8, 16, 32,64, 128 hidden

units.

E. The benchmark procedure

For benchmarking comparisons purpgsee have evaluated the performance of the different prunieghods
by using the following procedure:
1) Choose a "reasonably large” NN architecture.
Some tools are proposed in [30] that may help to shed somediglthe term "reasonably large” .
2) Train the NN for some epoch&(0, 500, 1000)
3) Apply the pruning method e.g.:
a) For MAG, OBS, OBD, SKEL and NC : compute the saliency of ealiment and delete the element
with the smallest saliency.
b) For EFAST : delete the units that account for less of 5% efwuariation of the NN output
4) Retrain the NN for 10% of the first amount of training epo¢bsg. 10, 50, 100 epochs)
5) Test the reduced NN on a validation set.
If the validation error deteriorates by more than 10% froma pinevious iteration or no more hidden units can
be deleted at the end of three (unsuccessful) pruning ppgesto step 6 otherwise iterate to step 3
6) Test the NN on a test set

7) End of benchmarking procedure

VI. EXPERIMENTAL RESULTS
A. Results and discussion for the cancer problem

1) Pruning results: The pruning methods have been compared extensively on theeicg@roblem [31]. The

pruning procedure depends on two parameters. The first otleeisiumber of training epochs which governs

2The benchmark procedure has been implemented on a IBM eSer9ér:pA& computer having 32 processors Power 4+ 1,7 Ghz and
developing a computing power of 220 Giga flops
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the start of the pruning process. This is an important elé¢raspecially for the above standard methods (MAG,
OBD, OBS, SKEL, NC) as the NN needs to be "well-trained”. Te@d one is the overall stopping criterion
of the pruning process. Usually, this stopping criteriom@ precisely defined (see [7] or [8] for instance) or
vary according the different implementation of the prungmpemes. For our benchmark experiments, this stopping
criterion is reached when the error on a validation set awtes by more than 10%. So, the behavior of the
algorithms was assessed for three training epochs (100,a6601000 epochs) and for two validation sets (by
exchanging the original validation and test sets proposeBrobenl). Comparisons for NN having 32 and 128
hidden units were made according to the CPU time, the meaaragerror (mse) obtained on the test set and the
remaining number of hidden nodes.

Tables Ill to VI and Fig. 5 to 7 give the results of the benchiknarocedure. For convenience, we named the

validation set and the test set (provided by Probenl) réispccancerlvl.patand cancerlts.pat

Table Il : Pruning results obtained from an original NN of 3fdden units. The validation-set used to stop
the pruning procedure iscancerlvl.patNote that the pruning steps computed for MAG, OBS and OBDiteze

number of effective pruning steps (see footnote in sectiBh V

Table IV : Pruning results obtained from an original NN 82 hidden units. The validation-set used to stop the

pruning procedure iscancerlts.pat
We remind that the number of pruning steps computed for MAGSQGIBd OBD are the number of effective
(node) pruning steps (see footnote in section V.B).

The results of table Il and IV are presented in a more syithedy through the Fig. 5 to 7.

Fig. 5 : Remaining number of hidden units obtained from amjioal NN of 32 hidden units. The validation-set

used to stop the pruning procedure ancerlvl.pafa) or cancerlts.path).

Fig. 6 : Test mean squared error obtained from an original NN32 hidden units. The validation-set used to

stop the pruning procedure isancerlvl.pafa) or cancerlts.patb).

Fig. 7 : CPU Time when pruning an original NN &2 hidden units. The validation-set used to stop the pruning

procedure is:cancerlvl.pafa) or cancerlts.path).

Table V : Pruning results obtained from an original NN ©28 hidden units. The validation-set used to stop the

pruning procedure iscancerlvl.pat

Table VI : Pruning results obtained from an original NN @P8 hidden units. The validation-set used to stop
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the pruning procedure iscancerlts.pat

Fig. 8 to 10 display the results of tables V and VI.

Fig. 8 : Remaining number of hidden units obtained from amgioal NN of 128 hidden units. The validation-set

used to stop the pruning procedure ancerlvl.pafa) or cancerlts.path).

Fig. 9 : Test mean squared error obtained from an original NIN1@8 hidden units. The validation-set used to

stop the pruning procedure igancerlvl.pata) or cancerlts.patb).

Fig. 10 : CPU Time when pruning an original NN df28 hidden units. The validation-set used to stop the

pruning procedure iscancerlvl.pa(a) or cancerlts.path).

The following remarks can be made :

1) Under the different pruning conditions (i.e. trainingoeps and validation set used to stop the procedure),
the EFAST pruning method exhibits globally a better mearaseg error (apart two exceptions, see Fig. 9a).
Furthermore, the mse performance is quite stable whateeepituning conditions.

2) When using the EFAST approach, the number of hidden unitsires practically the same whatever the
pruning conditions. It is not the case for the standard prgimhethods. Indeed, they show quite a fluctuating
performance. Moreover, these algorithms experience difies when pruning the NN with 128 hidden units.
For instance, methods like MAG, OBS and OBD do not even praeeNN.

3) The EFAST CPU time is of the same order of magnitude or somestbetter than the other pruning methods.
When dealing with the standard methods, the above results kb it is important to correctly answer the
guestion "when should the pruning process start”. Cledhly,standard methods behave differently under different
learning conditions (i.e given here by the number of trajngpochs). This behavior may question the results
obtained with the methods that require specific conditioefore pruning occurs. For instance, popular methods
such as OBD or OBS require training to the (absolute) erraimmim. For the cancer problem, it is supposed that

this criterion is reached for 1000 epochs.

But, as also pointed out by [23], this introduces massivefiting which cannot be repaired by subsequent
pruning. This phenomenon is reinforced when pruning the Ntth W28 nodes. To prevent this overfitting, one
can use a pruning indicator through the monitoring of thereon a validation-set to trigger the pruning session.
Nonetheless, starting the pruning process before a minimsueached on the training set may be questionable for
methods like OBS and OBD (since the results of the methodsaie provided an absolute minimum is reached).

In conclusion, the standard methods are highly sensitivehmges in the learning and pruning parameters.
Therefore, the parameters of a pruning process for the atdndethods must be carefully tuned.

As shown by the previous results, the EFAST pruning methdelsis or not sensible to these pruning parameters.
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Actually, the EFAST algorithm relies only on informationtamed during the training phase i.e. the variation of
the output of the hidden nodg;, between its minimal and maximal valueg andb,. Consequently, the pruning
process may occur when the NN has been trained for some epbiisslatter parameter has not to be carefully
tuned. Thus, pruning with the EFAST method is possible Befominimum of the training error has been reached.

One another interesting feature of the EFAST algorithm dsstability when pruning NN of different original
size of hidden layer. Indeed, whatever the original numidenidden nodes (32 or 128 units), the method leads
practically to same number of hidden units.

Last but not least, the CPU time appears to be not a constaitiite EFAST method exhibits in a quantitative
way the relevant units in a very few pruning steps.

2) Development of the validation error during the pruningogess: Fig. 11 to 13 plot the evolution of the
validation error during the benchmark procedure when pigitihe original NN of 32 hidden units for 1000 epochs.
For the EFAST method, the number of hidden nodes removedcat maning step is displayed. Notice that (when
using the EFAST method), the benchmark procedure always stiothe end of three unsuccessful pruning iterations

(since there is no more units to be deleted).

Fig. 11: Evolution of the training and validation error dumy the benchmark experiment for (a) EFAST

As stated above, unlike the standard algorithms that dele¢eparameter per pruning step, the EFAST method
yields the relevant units in a very few pruning step (pradljc two or three pruning steps are necessary) and
therefore answers quite satisfactorily to the questiorw’lmouch to prune”.

Fig. 11: Evolution of the training and validation error dung the benchmark experiment for (b) MAG

Fig. 12: Evolution of the training and validation error dung the benchmark experiment for (a) OBS and (b) OBD

Fig. 13: Evolution of the training and validation error dungy the benchmark experiment for (a) NC end (b) SKEL

3) Evaluation of the EFAST method for different number of Etan runs: Table VII lists illustrates section
IV.B and concerns the effect of assigning the same frequémaoyore than one factor in the complementary set of
frequencies. The following results have been obtained wiraning the NN for 1000 epochs.

Table VII : Influence of the number of simulation runs. The N&lteained for 1000 epochs.

As shown by table VII, regarding the number of remaining sinihere is no difference when pruning the NN

with 32 units. Therefore, assigning the same frequency  factors has no effect on the pruning results. A

difference of two units is observed when pruning the NN wift8 lnodes but the better accuracy obtained with
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8193 model evaluations is counterbalanced by the highepuatational cost. Moreover, a difference of two units

have practically no influence on the generalization perforoe of the NN.

B. Architecture selection by increasing the number of hiddedes

Experiments with the standard technique of selecting thebau of hidden units using a validation set (provided
by Probenl) were performed. The selection of the model wasdan the performance measure estimated by
the mean squared error (mse) on the validation set (holdvmihod§. In order to obtain a better estimation of
this measure, the NN were trained five times using differaiitalizations and the mean of the mse was used as
estimator.

Again, we evaluate the technique for two validation data fgy exchanging the validation and test sets proposed
by Probenl). The following procedure was used:

1) Start with a NN with one hidden unit

2) Train 5 times the NN for 1000 epochs using different itiz&tions

3) Compute the mean of the mse on a validation set

If the validation error deteriorates by more than 10% from pinevious iteration, go to step 5 otherwise go
to step 4
4) Increase (using a non linear scale : 1, 2, 4, 8, 16, ...) tmeber of hidden units and proceed to step 2

5) end of procedure

Fig. 14 and table VIII show the results :

When the validation set isancerlvl.patthe procedure stops when the NN has a layer of 32 hiddenwh#seas
with cancerlts.patit stops when there are 2 hidden nodes. It can be seen (tdblar Fig. 17) that this additive
procedure nor is faster nor is better than the EFAST methed {@ble Ill) . For selecting the number of hidden
nodes, such experiment seems to be useless as it uses a ed@ynance measure (i.e. the validation error) and
is validation-set dependent.

Furthermore, it has been shown that cross-validation s@mebiaseds and do not lead to the optimal model [32].

Table VIII : Results for the growing phase

Fig. 14: Results obtained for the additive (or growing phase

C. Other experimental results

We also evaluate the performance of the pruning methods tbierange of significant datasets provided by

Probenl [17] . The experiments deal with the pruning of twiginal NN (128 and 32 nodes). For these problems,

3|f there is not enough data and the whole data is used forimigione could perform a ten-fold or leave-one-out (componaily demanding)
cross-validation experiments
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we have not shown the results obtained with the additive ela@sthe same conclusion drawn in the previous

section remains unchanged. Fig. 15 to 24 show the results:

Fig. 15: Card (mse, hidden units and cpu time)

Fig. 16: Diabetes (mse, hidden units and cpu time)

Fig. 17: Horse (mse, hidden units and cpu time)

Fig. 18: Thyroid (mse, hidden units and cpu time)

Fig. 19: Buildingl (mse, hidden units and cpu time)

Fig. 20: Building2 (mse, hidden units and cpu time)

Fig. 21: Flarel (mse, hidden units and cpu time)

Fig. 22: Flare2 (mse, hidden units and cpu time)

Fig. 23: Heart (mse, hidden units and cpu time)

Fig. 24: EES (mse, hidden units and cpu time)

Notice for the Card, Horse, Thyroid and EES problems, OB&da{and exited with an error message of

insufficient memory) when pruning the original NN with 128des.

The results confirm that the EFAST method outperforms therogmuning algorithms when focusing on the

couple mean squared error and number of remaining unithee\NN obtained with the EFAST algorithm are more

parsimonious while yielding a test mse which is of the santkeioof magnitude. Indeed, even if in some cases, the

EFAST mse is not the best, it is close to the best. Considaghiagemaining number of hidden units, the EFAST

method always lands practically on the same number whatbeeoriginal NN. Again, the CPU time appears to

be very affordable.

VIl. CONCLUSION

In this paper, we have proposed a new method to prune hiddenafroversized neural networks. The procedure
is based on the EFAST method, a quantitative model-indepenahethod for global sensitivity of model output.

The method delivers quantitative information about thatire® importance of the hidden units.
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The new pruning algorithm offers several advantages:
1) It is a robust, stable and consistent method that exhiuitsl performance whatever the original structure.
2) The method exhibits in a quantitative way the relevantsuand therefore answers quite satisfactorily to the
guestion "how much to prune”.
3) The method does not necessitate a fine-tuning of the feguparameters.
4) Consequently, as convergence to a minimum of the critésmot a prerequisite, it is possible to prune before
the network is at the minimum of the cost function.
5) The results obtained with the EFAST method is only dependa the training phase. This feature is very
appealing when dealing with finite dataset. So, in practckljtional data such as a validation set is useless.
In other words, the method is able to deal with the problem ofleh complexity without the need of cross-
validation or the need to optimally tune a specific paraméteging the pruning process.
6) Moreover, the CPU time is not a constraint as the methodgwseveral units per pruning step.
Experiments that consist in selecting the number of hiddmtes using a validation set seem to be inappropriate
as the performance measure is highly biased and validatibdependent. This standard technique is also not faster
nor as efficient as the proposed one.
Finally, on the basis of the results, we feel that the EFASjordtihm provide a useful and efficient method to
prune hidden nodes of relatively large NN and we propose dhewiing EFAST pruning recipe:
1) Train a NN that is larger than necessary
2) Apply the EFAST pruning algorithm for two or three steps.
3) Train the NN with the number of hidden nodes identified viite EFAST method
4) Test the NN
Application of the EFAST pruning method to NN having morerttume layer of hidden nodes will be straightfor-
ward. Future work will aim to apply this new technique to gngof inputs of the NN. It would be also interesting
to examine the behavior of the method on recurrent network&lman networks where possibly some outputs of

hidden units are fed back as inputs to the network. Would iieshod exhibit the effect of interactions?
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TABLE |
FREQUENCIES ASSIGNED TO THE INPUT FACTORS GIVEN THE NUMBER CRACTORS AND NUMBER OF SIMULATION RUNS(THE THIRD

FACTOR IS THE FACTOR OF INTERESY

Number of N wh, mazx(w~p) Set of frequencies assigned to the factors
hidden units
32 1025 | 128 16 [1,2,128,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,91,12,13,14,15,16]
32 2049 | 256 32 [1,2,256,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22324,25,26,27,28,29,30,31,32]
128 1025 | 128 16 [1,2,128,4,5,6,7,8,9,10,11,12,13,14,15,16,1, 2,...,15,16,1,215,16]
128 8193 | 1024 128 [1,2,1024,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22324,25,26,27,28,29,30,31,32,33,...,127,1
TABLE I
THE DATASETS, WHERE THE TYPE IS EITHER Q(CLASSIFICATION) OR A (APPROXIMATION)
Dataset Description Type | Inputs | Outputs Number of examples
training | validation | test | total
Cancer Diagnosis of breast cancer c 9 2 350 175 174 699
Card Predict the approval or non-approval of credit card to aaust c 51 2 345 173 172 690
Diabetes Diagnosis of diabetes c 8 2 384 192 192 768
Horse Predict the fate the horse has a colic c 58 3 182 91 91 364
Thyroid Diagnose thyroid hyper or hypofunction c 21 3 3600 1800 1800 | 7200
Building Prediction of energy consumption in a building a 14 3 2104 1052 1052 | 4208
Flare Prediction of solar flares a 24 3 533 267 266 | 1066
Heart Predict heart disease a 35 1 152 76 75 303
EES Predict deformation energy in a frontal car crash a 90 1 1150 100 500 | 1750
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TABLE Il
PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 32 HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING
PROCEDURE IS cancerlvl.patNOTE THAT THE PRUNING STEPS COMPUTED FORMAG, OBS AND OBD ARE THE NUMBER OF EFFECTIVE

PRUNING STEPY(SEE FOOTNOTE IN SECTION.B)

100 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 23 7 3 1 1 10
mse 0,019772| 0,052966| 0,022105| 0,015224| 0,02005 | 0,016157
CPU Time (s) 0,25 2,79 0,64 8,39 1,26 1,42
Pruning Steps 6 18 15 31 31 7
500 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 20 11 8 8 13 7
mse 0,033348| 0,036446| 0,03063 | 0,018723| 0,012128| 0,014704
CPU Time (s) 1,53 4,62 2,51 12,53 5,18 3,18
Pruning Steps 7 15 13 24 19 5
1000 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 13 13 12 7 23 10
mse 0,030137| 0,039323| 0,030228| 0,037333| 0,033272| 0,017552
CPU Time (s 4,85 6,94 4,32 18,21 7,75 5,8
Pruning Steps 14 16 11 25 9 4
TABLE IV

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 32HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS cancerlts.pat

100 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 20 19 3 2 1 10
mse 0,032293| 0,029819| 0,024007| 0,019215| 0,025124| 0,019227
CPU time (9) 0,32 1,73 0,65 8,37 1,25 1,41
Pruning steps 9 9 15 30 31 7
500 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 30 30 32 12 12 7
mse 0,030459| 0,030226| 0,022761| 0,031213| 0,027922| 0,017189
CPU time (9) 0,34 0,7 9,12 11,82 5,28 3,18
Pruning steps 1 1 0 20 20 5
1000 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 32 32 32 25 26 10
mse 0,030478| 0,03046 | 0,021553| 0,028668| 0,030621| 0,021684
CPU time (9 6,99 9,28 9,22 10,45 6,73 5,8
Pruning steps 0 0 0 7 6 4




JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS

TABLE V
PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 128 HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS cancerlvl.pat

100 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 110 110 128 22 3 9
mse 0,014326 | 0,017414| 0,020443| 0,027227| 0,020272| 0,014135
CPU Time (9 1,6 135,21 39,6 351,54 14,61 6,83
Pruning Steps 9 9 0 106 125 5
500 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 126 126 128 104 107 6
mse 0,014416 | 0,018459| 0,036799| 0,03136 | 0,03406 | 0,031294
CPU Time () 1,41 24,49 39,68 180,31 25,76 13,68
Pruning Steps 2 1 0 24 21 7
1000 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 128 128 128 125 125 7
mse 0,020574| 0,020719| 0,017379| 0,020584| 0,020731| 0,02671
CPU Time (s) 22,42 90,26 29,46 44,78 22,42 22,28
Pruning Steps 0 0 0 3 3 3
TABLE VI

PRUNING RESULTS OBTAINED FROM AN ORIGINALNN OF 128 HIDDEN UNITS. THE VALIDATION -SET USED TO STOP THE PRUNING

PROCEDURE IS cancerlts.pat

100 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 110 110 128 63 18 9
mse 0,033361| 0,024712| 0,021125| 0,02166 | 0,017033| 0,017802
CPU Time () 1,61 149,86 33,99 305,85 14,34 6,83
Pruning steps 9 14 0 65 110 5
500 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 126 126 128 104 107 8
mse 0,021172| 0,025816| 0,033185| 0,033621| 0,037907| 0,017743
CPU Time () 1,42 25,16 39,74 180,19 25,76 13,29
Pruning steps 1 1 0 24 21 3
1000 epochs MAG OBS OBD NC SKEL EFAST
Remaining units 127 127 128 120 120 7
mse 0,037512| 0,037809| 0,018697| 0,03437 | 0,033327| 0,021557
CPU Time (s) 1,82 11,71 29,49 88,14 30,76 22,24
Pruning steps 1 1 0 8 8 3
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TABLE VII

INFLUENCE OF THE NUMBER OF SIMULATION RUNS THE NN ARE TRAINED FOR1000EPOCHS

Original NN 32 32 128 128
# model evaluations 2049 1025 8193 1025
Remaining units 10 10 9 7
Test mse 0,017646| 0,017552| 0,026478| 0,02671
CPU Time (9 7,43 5,77 97,07 22,23
TABLE VIl

RESULTS FOR THE GROWING PHASE

Validation Set cancerlvl.pat | cancerlts.pat
# of hidden units 32 2
CPU Time (s) 91,28 7,66
Test mse 0,028859 0,028384
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Fig. 1. General scheme of a quantitative Sensitivity Analysethod. The total variance is apportioned to the varioustifgetors, as shown
by the pie diagram.



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 31

0.8f

0.6

0.4

0.2f

0 05 1 0 05 1
@ (b)

Fig. 2. (a) Plot of the transformations function (defined by) @hd (b) its respective empirical distribution

)
=
=
=t
=
o
3
=
o
L
il
WHE (0} oy,
1 v | (v-1)
Frequencies 2
Fig. 3. The spectrum of a model response using the EFAST agproaThe spectrum is divided into two regions: the first

region [1,“’—2’1 = Mma:p(th)} contains the frequencies involving all the factors excdmisé of factorZ, and the second region

[Mmaz(w~p) + 1, (N — 1) /2] contains the effects of factdf;, located in the high frequencies.



JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS 32

T output

p hidden units

T output

¥

Fig. 4. The EFAST method applied to pruning of hidden unitsctEautput of the hidden units constitutes an input factot.idput factors
oscillates (each with its own frequency;) according to the curve defined by (8V samples of the output are evaluated that enable the
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Fig. 6. Test mean squared error obtained from an original NIS2ofiidden units. The validation-set used to stop the prunirugguture is:
cancerlvl.pat(a) or cancerlts.patb).



35

JOURNAL OF IEEE TRANSACTIONS IN NEURAL NETWORKS

CPU Time (s)

CPU Time - The validation-set is cancerivl.pat

OBD NC SKEL EFAST

| & 100 epochs 500 epochs @ 1000 epochs ‘

=
:P [N
0 BN
AREAREmEEREN
Q
w©
)]

@

CPU Time - The validation-set is cancerlits.pat

CPU Time (s)

OBS OBD NC SKEL EFAST

| & 100 epochs 500 epochs @ 1000 epochs |

(b)

Fig. 7. CPU Time when pruning an original NN 82 hidden units. The validation-set used to stop the prunirgeuture iscancerlvl.pat

(a) or cancerlts.patb).
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Fig. 9. Test mean squared error obtained from an original NN2&hidden units. The validation-set used to stop the prunimgeniure is:

cancerlvl.pat(a) or cancerlts.patb).
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Fig. 10. CPU Time when pruning an original NN ®28 hidden units. The validation-set used to stop the pruningeuture iscancerlvl.pat

(a) or cancerlts.patb).
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Fig. 16. Diabetes: (a) mse, (b) hidden units and (c) cpu time
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