
HAL Id: hal-01067303
https://hal.science/hal-01067303

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperation Patterns and Adaptation Patterns for
Service-Based Inter-Organizational Workflows

Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila
Tamzalit

To cite this version:
Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila Tamzalit. Cooperation
Patterns and Adaptation Patterns for Service-Based Inter-Organizational Workflows. Uncovering
Essential Software Artifacts through Business Process Archeology, Ricardo Perez-Castillo, pp.250-
283, 2013, �10.4018/978-1-4666-4667-4.ch010�. �hal-01067303�

https://hal.science/hal-01067303
https://hal.archives-ouvertes.fr

Cooperation Patterns and Adaptation
Patterns for Service-Based Inter-

organizational Workflows

Boukhedouma S.(1,2), Oussalah M. (2), Alimazighi Z. (1), Tamzalit D. (2)
(1) USTHB- FEI- Department of Computer Science- LSI Laboratory – ISI Team

 : El Alia BP n°32, Bab Ezzouar, Algiers, Algeria.
{sboukhedouma; zalimazighi}@usthb.dz ;

(2) University of Nantes - LINA Laboratory – MODAL Team

 : 2, Rue de la Houssinière, BP 92208, 44322 – Nantes, cedex 3- France
{mourad.oussalah; dalila.tamzalit}@univ-nantes.fr;

ABSTRACT
Modernization is an effective approach to making existing mainframe and distributed systems more
responsive to business needs. SOA (service-oriented architecture) is an adequate paradigm that allows
companies to tap into the business value in their current systems and position IT for rapid future changes
to the business model. In our research works, we focus on the use of SOA to implement Inter-
Organizational WorkFlows (IOWF). The goal is to take benefits from the advantages offered by the SOA
paradigm like interoperability, reusability and flexibility in order to deal with workflow models easily
adaptable, evolvable and reusable. This paper focuses on two specific architectures of IOWF which are
the “chained execution” and the “subcontracting”; the first issue of this work is to define Service-Based
Cooperation Patterns (SBCP) suitable to the two architectures considered. A SBCP is based on SOA; it is
defined through three main dimensions: the distribution of services among the partner’s sites, the control
of instance execution and the structure of interaction between the workflows involved in the cooperation.
The second issue of the paper consists of adaptation and evolution of IOWF process models obeying to
the defined SBCP. Then, we state the main operations of adaptation that can be applied on these models;
we focus on adaptation at process and interactional levels. Conformably to the three dimensions of SBCP,
we define three classes of adaptation patterns: “service adaptation”, “control flow adaptation” and
“interaction adaptation” patterns. Also, we particularly distinguish some operations of adaptation called
evolution of process models based on two perspectives: the expansion of the global functionality of the
process and the expansion of the cooperation; we show that some evolutions are realized by reuse of
existing IOWF models. For implementation, we consider IOWF process models specified with BPEL.

KEY WORDS
IOWF, Service, Structured cooperation, Cooperation pattern, Flexibility, Adaptation pattern, Evolution,
Chained Execution, Subcontracting.

 2

1. INTRODUCTION
SOA is a paradigm that supports software modernization (Rotibi & al, 2012) by providing flexible

distributed and collaborative applications easily adaptable and reactive to changes. All companies that
aim to stay competitive in their field of activity should increase their production and must be quickly
responsive to change in order to best satisfy their potential customers. For that, they transform their
legacy information systems into business processes based on SOA by rebuilding them or by using
techniques of business process archeology (Pérez-Castillo & al, 2011). In our research works, we focus on
flexibility of business to business (B2B) processes based on SOA.

Since many years, B2B applications has been promoted with the appearance of business oriented
technologies such as workflow (WF) (Van Der Aalst, 2002) and web services (Alonso & al, 2004)
supported by service oriented architectures (SOA) (Papazoglou & al, 2007). We are interested with
structured cooperation (Eder & al, 2002) supported by the concept of inter-organizational workflow
(IOWF), allowing a cooperation among several business processes attached to business partners, in order
to reach a common objective according to a “winner-winner” policy.

In (Van Der Aalst, 99) and (Van Der Aalst, 2000), generic architectures of IOWF have been defined in
order to support structured cooperation. These architectures are the capacity sharing, the chained
execution, the subcontracting, the case transfer, the extended case transfer and the loosely coupled WF.
These architectures implement different schemas of cooperation that can link business partners in B2B
relationship and cover a large number of existing processes in several domains. In our works, we consider
these generic architectures as basic patterns of structured cooperation; however in their initial form, these
architectures were subject to criticisms because of their rigidity and the difficulty to adapt to changes
(Chebbi, 2007).

Also, in a context of a dynamic and unstable environment, businesses are often faced with stressful
situations like a breach of contract with a partner, a failure of the business process and the need of
additional resources. Faced with these situations and others, companies must review their systems, their
business processes and their cooperation with other business partners in order to make the required
changes. Consequently, the WF process and the system implementing it must be flexible enough to
support the necessary adjustments. These adjustments can cover four complementary aspects of IOWF
process definition: data, process, interaction and organization. Here, we focus on flexibility on process
and interaction aspects. Also, we define the flexibility of process models through three perspectives:
adaptability, evolutivity and reusability.

Consequently, we have to reach two objectives: the first one is to define cooperation patterns
supporting flexible models of IOWF corresponding to the basic architectures considered. The second
objective is to implement adaptation mechanisms dedicated to support changes on IOWF models obeying
to the cooperation patterns defined.

In order to deal with IOWF models flexible enough, we adopt an SOA-based approach to define a set
of service-based cooperation patterns (SBCP); each of which is suitable to a specific IOWF-architecture
among those considered. SOA allows organizations to overcome technical obstacles to change by
improving interaction with other platforms and simplifying application architectures, thanks to the
characteristics of services which are loosely coupled components, easily invoked through their interfaces,
business oriented and platform independent; also the SOA paradigm supports integration, reuse and
composition of services. We state that the basic IOWF-architectures considered can be implemented as
global orchestration or distributed local orchestrations of services, according to constraints relative to
each architecture. The current paper focuses on two specific IOWF-architectures which are the “chained
execution” and the “subcontracting” for which we define two service-based cooperation patterns: SBCP2
and SBCP3.

For the second issue of our work, we state and we implement usual operations of adaptation that can
be applied on IOWF process models obeying to the cooperation patterns defined. We particularly
distinguish some operations of adaptation that we qualify as evolution of process models according to two

 3

perspectives: the expansion of the overall functionality of the IOWF process and the expansion of the
cooperation. For this second perspective, we show that in some cases, an IOWF model can evolve
respecting the initial cooperation pattern and in other cases it can evolve and falls into the combination of
two different cooperation patterns. We illustrate these two kinds of evolution by describing evolution
patterns applied to IOWF models obeying to SBCP2 and SBCP3.

The rest of the paper is structured as follows: Section 2 explains the motivations of our research and
presents some related works attached on one hand, to IOWF approaches and on the other hand, to WF
adaptability approaches. Section 3 synthesizes the background necessary to understand the paper mainly
the IOWF process concepts and aspects of flexibility of IOWF models. Section 4 lays the basis of our
approach for WF interconnection using services; here, we explain the concepts of SBCP and orchestration
function. Section 5 describes the two cooperation patterns proposed SBCP2 and SBCP3 respectively
suitable to the “chained execution” and the “subcontracting” architectures. Section 6 describes the basic
adaptation patterns proposed. Section 7 describes evolution patterns applied to IOWF models obeying to
SBCP2 and SBCP3. Section 8 gives some implementation details and Section 9 summarizes the paper
and talks about future works.

2. RELATED WORKS AND MOTIVATIONS

With the emergence of SOA and web services standards, many research works deal with orchestration
and choreography of web services (Peltz, 2003), (Amireza, 2009), especially based on BPEL4WS (Jordan
& al, 2006) in order to build business processes by service composition. Other research works such as
(Leymann & al, 2002), (Gorton & al, 2009) show the interest of combining BPM (business process
management), workflow and SOA for the re-use of services to construct dynamic business processes. This
had a great impact in promoting B2B relationships since several approaches and platforms have been
developed to support B2B cooperation using WF and SOA. In structured cooperation for example, we
can cite some approaches like CoopFlow (Chebbi, 2007), CrossFlow (Grefen & al, 2001) CrossWork
(Mehanjiev & al, 2005), Pyros (Belhajjame & al,2005) and e-Flow (Casati & al, 2001).

Also, flexibility is an important propriety to be satisfied by business processes and their systems
allowing them to support changes. Even if some approaches like CoopFlow, Pyros and e-Flow provide
internal adaptation of workflows without compromising the coherence of the global process, a large
number of the proposed solutions are not flexible enough because they are closely coupled with the
platforms. So for any changes, they impose to re-adapt the interfaces and to newly build the structure of
interaction. Moreover, WF flexibility is perceived at two complementary levels: (1) at the system level,
the flexibility defines the ability of a WFMS (WF management system) to face unexpected and erroneous
situations (Sadiq & al, 2001), (Meng & al, 2006). (2) at the level of process models that defines the ability
of a process model to be adaptable, evolvable and reusable; many research works have been proposed
based on different techniques such as adaptation patterns (He & al, 2008), (Döhring & al, 2011), (Weber
& al, 2008), rule-based adaptation patterns (Muller & al, 2004), (Döhring & al, 2010) constraint-based
modeling (Pesic & al, 2007) and interactive adaptation (Dadam & al, 2009) to support flexibility of
process models. For example, in (Weber & al, 2008), the authors identify the most important process
change patterns and change features for PAIS (process aware information systems). In (Tragatschnig &
al, 2011), a framework was described using adaptation patterns and aspect–programming in order to
support process adaptation for BPEL engines.

In the current work, we introduce the concept of service-based cooperation pattern (SBCP) to define
an IOWF process model based on SOA paradigm where a central concept is a service; this allows a
preservation of autonomy and confidentiality between business partners since services are provided with a
certain degree of flexibility and published via their interfaces. The idea of using services to build
collaborative business applications is not new. The motivations behind this come from three main points:
(1) the relevance of service orientation, (2) the benefits of service orientation for the information system
and (3) the benefits of service orientation for the cooperation. For the first point, the concept of service

 4

(particularly web services) provides credible answers to constraints and problems attached to the
information system like the lack of flexibility, the reluctance to openness and those attached to the
cooperation like the need to preserve the autonomy and the confidentiality. For the second point, the
service-based approach provides a certain degree of flexibility to the information system by easing the
participation in new business opportunities and meeting new market demands. For the third point, the
cooperation between business partners is realized by service composition. Thus, SOA can help enterprises
liberate core business assets by making it easier to enrich, modernize, extend and reuse those assets well
beyond their original scope of design.

Regarding the choice of the basic IOWF-architectures, we have considered those proposed in (Van
Der Aalst, 99) and (Van Der Aalst, 2000) because they define different ways in which businesses can
cooperate together and cover a wide range of existing business processes. Then, our approach of WF
interconnection (respectively, adaptation and evolution) can be applied to a large number of existing
IOWF process models.

Also, for conceptual aspects of our solution, we adopt a pattern-based approach to define the different
schemas of WF interconnection and to define the different adaptations applied on these schemas. The
concept of pattern was initially used in software engineering as the abstraction from a concrete form
which keeps recurring in specific non-arbitrary context. In the workflow area, this concept has been
usually used for business process modeling (Van Der Aalst & al, 2003), business process improvement or
changes (Weber & al, 2008), (Tragatschnig & al, 2011) or exception handling (Russel & al, 2006).

Also, the pattern-based approach allows the enumeration of all recurrent and structurally well defined
situations that can occur repeatedly to interconnect and to adapt IOWF processes. From the
implementation perspective, the pattern-based approach allows modular and reusable implementation of
the proposed patterns starting with elementary patterns and going to more complex ones by reuse of the
first ones.

In the next section, we introduce the necessary definitions and concepts to ease the understanding of
the paper.

3. SYNTHESIS OF BACKGROUND

3.1. IOWF Definition and Dimensions

An IOWF can be defined as a manager of activities involving two or more workflows autonomous,
possibly heterogeneous and interoperable in order to achieve a common business goal.

In (Van Der Aalst, 99), generic architectures of IOWF have been defined in order to support structured
cooperation which must obey, depending on needs of partners, to a schema clearly defined. These
architectures are the capacity sharing, the chained execution, the subcontracting, the case transfer, the
extended case transfer and the loosely coupled WF. These architectures are characterized according to
two main dimensions: the partitioning of the process and the control of execution.
Regarding the first dimension, two types of partitioning are distinguished: process schema partitioning
and instance partitioning. Process schema partitioning means that the IOWF process model is
implemented as fragments of the global model at the partner’s sites. Instance partitioning means that the
execution of a process instance is distributed among the different sites in a disjoint manner (at each
moment, an instance is located at one site).

Since IOWF are distributed systems, the control of instance execution can be centralized,
decentralized, mixed or hierarchized. The control is centralized if the execution of process instances is
delegated to one system that also manages all interactions between the systems of partners; this is suitable
for the capacity sharing. The control is decentralized if the execution of instances is distributed among

 5

the systems of all partners and each system manages itself its interactions with the other systems, this is
appropriate for the chained execution, the loosely coupled and the (extended)case transfer architectures.
We say that a control is hierarchized if each system manages its own WF and there is one principal
system that controls interactions with one or more secondary systems, like in the subcontracting
architecture.

Let’s recall that in the current work, we deal with two specific IOWF-architectures: the “chained
execution” and the “subcontracting” that we describe in the following.

3.2. The chained Execution Architecture

The chained execution architecture supports a model of cooperation that connects two or more
business partners, each of which implements its own workflow process. Workflows implied in the
cooperation are executed in sequence. The results of execution of WFi are input data of WFi+1. In this
architecture, we have process schema partitioning since each partner implements a fragment of the global
WF and instance partitioning because at each moment a process instance is at one location; the control of
execution is decentralized. The UML activity diagram of Figure 1 shows an example of an IOWF process
obeying to the “chained execution” architecture that implies two partners in the design and the
implementation of integrated circuits (PCB). We suppose that partner 1 has competencies and resources
for the design of the PCB and partner 2 has competencies and resources to implement the PCB designed
by partner 1. The overall process is executed in sequence and each WF is composed by a set of activities.

Figure 1. Example of IOWF process “Realization of PCB”
according to the “chained execution” architecture

3.3. The Subcontracting Architecture

This architecture supports a model of cooperation that connects two or more business partners, each of
which implements its own workflow process. There is one main workflow attached to the main partner
which subcontracts some activities not implemented locally to one or more secondary workflows
implemented by other partners involved in the subcontracting relationship. The subcontracting
cooperation obeys to process schema partitioning and hierarchized control of execution.

 6

Figure 2. Example of IOWF process “Realization of PCB”
according to the “subcontracting” architecture

The UML activity diagram of Figure 2 describes an IOWF process related again to the design and
realization of integrated circuits (PCB) to potential customers, the process involves two partners (a main
partner and a secondary partner). When the customer’s order is received, the main partner studies the
schema of PCB, if it is a mono-layer PCB, it is entirely designed and implemented locally; otherwise in
case of multi-layer PCB, its design is subcontracted to an external (secondary) partner because the main
partner has not enough competencies and resources to design multi-layer PCB. The result of processing is
returned to the main partner. Let’s notice that we consider the same example as the first architecture in
order to show that for a given business process, we can define different schemas of cooperation
depending on the competencies of the partners involved in the cooperation, not on the process itself.

3.4. IOWF Meta-Model

In Figure 3, we propose a meta-model of IOWF process definition partially inspired from the meta-
model proposed by the WFMC1 for traditional workflow process definition.

Figure 3. Meta-model of IOWF process definition

1 WokFlow Management Coalition - www.wfmc.org

 7

We can see that an IOWF process model is defined by a set of WF (fragments of the global IOWF) and a
cooperation pattern. Each WF is attached to a partner, manipulates data and is submitted to a condition
of invocation. A given cooperation pattern is attached to a specific architecture of IOWF; it links two or
more workflows and is based on three main dimensions: the partitioning of the process, the control of
execution and the structure of interaction which is defined by a set of interaction points between WF
fragments; interaction between WF fragments obeys to an interaction pattern that can be synchronous,
asynchronous, one-a-way, etc. Intuitively a cooperation pattern defines the manner in which WF
fragments are distributed among the partner’s sites, how the execution of instances is managed and how
WF fragments interact together.

3.5. Flexibility of IOWF models

As already evoked in the introduction, the environment of businesses and the business processes
describing their behavior are naturally dynamic, because they are continually submitted to new market
constraints and unexpected events. Indeed, a business process is perpetually subject to changes affecting
its structure and its validity. So, a business process should be flexible enough in order to support these
changes.

 Through the concepts exhibited on the meta-model of Figure 3, we can see that an IOWF model
covers four main axes: process (concepts of IOWF, WF, condition and cooperation pattern), organization
(concept of partner), data and interaction (concepts of interaction structure and interaction point).
Consequently, we can affirm that the constraints of flexibility in a IOWF model are not limited to one
axis, but cover the four axes composing it. Also, we perceive the flexibility of process models through
three main perspectives: adaptability, evolutivity and reusability that we define as follows:

The adaptability of an IOWF process model defines its capacity to easily support changes while
maintaining the coherence of the process after changes, the overall functionality and the cooperation (the
set of partners). Hence, an IOWF model is adaptable if one or more of the entities (WF, condition, data,
interaction points) composing it can be modified without affecting the global functionality of the process
and the cooperation.

The evolutivity (called evolutive adaptability) of an IOWF process model is its capacity to accept
expansion of its global functionality and/or expansion of cooperation inducing additional business
partners and so additional WF fragments where maintaining the coherence of the process, we say that the
IOWF model is evolvable.

The reusability of a model defines its capacity to be easily integrated with another model in order to
build more and more complex models. Then, an IOWF model is reusable if it can be manipulated as a
separate entity (IOWF) and to be integrated to other models in order to build more complex IOWF
processes which cover more functionalities and services.

Let’s notice that in our work, we focus on flexibility reflected at process and interaction axes (although
it involves and also draws on other levels – data and organization) and in the current paper we mainly
exhibit two aspects of flexibility which are the adaptability and the evolutivity of process models obeying
to two specific IOWF-architectures.

4. OUR GLOBAL APPROACH FOR WF INTERCONNECTION

Regarding the issue of WF interconnection, we use a SOA-based approach as already evoked, our
main idea is to encapsulate each WF fragment into a single service or a set of services according to the
interaction points existing in the basic IOWF-architecture so as that interactions between WF fragments
turn to invocation of services.

 8

4.1. Encapsulation of a WF Process into Services
The encapsulation of a WF process (or a sub-process) into a service is possible due to conceptual and

technical similarities between the concept of WF and the concept of service. Figure 4 exhibits these
conceptual similarities.

- Conceptual Aspects
A WF process is attached to a business partner exactly as a business service. A service is eventually

composed by other services (components), in the same manner a WF process is eventually composed by
sub-processes having the same structure as the global WF. At the lower level of decomposition, a WF
process is hierarchized into activities; an activity uses/produces data, it is submitted to a transition
condition and can invoke external applications. Also, a service is hierarchized into operations (activities);
each operation uses/produces data, it is submitted to a pre-condition (analog to transition condition) and
can invoke external services (applications).

In addition, a WF process covers a global business functionality that can be decomposed into sub-
functionalities performed by sub-processes. Service in turn, has a global business functionality that can be
decomposed into sub-functionalities performed by the service components. Therefore, we can say that a
WF process is conceptually similar to a business oriented service.

Figure 4. Correspondence of Concepts – WF vs Service

- Technical Aspects

Technically, a service has an interface and a description allowing its invocation in accordance with
syntactic, semantic and QoS constraints. Similarly, a WF process has a description and an interface (set of
API) for its invocation from another WF through the interface 4 of the reference model proposed by the
WFMC coalition. Thus a WF process (or sub-process) can be considered as a business service performing
a well defined functionality and that should be invoked through an interface, under some constraints.
Hence the idea of encapsulating a WF process in a service which presents the advantages of a loosely
coupled, interoperable and platform independent component.

4.2. Structuring of the IOWF into Services

Globally, in order to structure an IOWF schema into services, our approach is to cut each WF process
provided by each partner into sub-processes that must be encapsulated into services. For that, we consider
interaction points between the workflows involved in the cooperation as markers allowing the cutting of
the process schema into sub-processes. A sub-process is composed of activities implementing part of the
process and covering a sub-functionality, it requires input data and produces output ones. According to
the interaction points in the IOWF, we can envisage two configurations: (1) the interaction points are
located only at the beginning and the end of the WF invoked; (2) the interaction points are located at
several points of the WF invoked. However, the two IOWF-architectures considered in this work (the
“chained execution” and the “subcontracting”) obey to the first configuration, then we propose to entirely

 9

encapsulate each WF invoked into a service in such a manner that all interactions between the workflows
implied in the cooperation turn into invocation of services (see Figure 5).

Figure 5. Generic schemas of IOWF

Depending on the IOWF architecture, the operations of invocation are interpreted differently. Indeed,
for a chained execution, invocation consists to forward the instance (partially performed by partner 1) to
partner 2 in order to complete its execution; for a subcontracting, the invocation consists to delegate part
(one activity or more) of a principal WF to a secondary WF.

Remarks

- On Figure 5, service S is not necessarily atomic; it can be composed by several services. But, even
if a service is composite, it seems to be atomic from outside since it requires a single interaction
point.

- In order to deal with IOWF models completely based on services, the WF of each partner can be
structured at internal level, as a set of services encapsulating activities or sub-processes and linked
with control flow operators. Also, activities that require human intervention can be abstracted into
specific services (for example, in Oracle-BPEL, these activities are implemented through the
concept of Task manager).

In the following section, we introduce the concept of SBCP that exhibits the characterization of

specific IOWF-architectures using SOA-based approach.

4.3. Service Based Cooperation Pattern (SBCP)
Figure 6 below describes the meta-model of SBCP definition.

Figure 6. Meta-model of a SBCP Definition

In addition to the cutting of the WF process into services, we should decide about the appropriate
mode of control of execution at runtime and the structure of interaction between services. This leads us to

 10

three main questions: (1) How to structure the WF process into services? (2) How to control the
execution of instances? (3) how to define interactions between services provided by different partners?
These three questions exhibit three main dimensions on which is based the concept of SBCP as shown on
figure 6. here, we define a sbcp in a generic manner (covering all the IOWF-architectures defined in (Van
Der Aalst, 99), (Van Der Aalst, 2000)). In section 5 below, we exhibit the specificities of the two SBCP
related to the IOWF-architectures considered in this work.

Regarding the first dimension which is the distribution of services among the partner’s sites, we
consider that each service encapsulates part or all of the WF process and is implemented at the partner’s
site that provides it. This dimension corresponds to the dimension Process partitioning which is defined
for the initial IOWF-architectures (see the meta-model of Figure 3). From the perspective of a given
partner, a service can be implemented locally (local service) or provided by an external partner (external
service).

The second dimension which is the control of execution (centralized, decentralized or hierarchized) is
expressed through the concept of orchestration function that abstracts the structure of the process in terms
of control flow and interactions between services composing the IOWF process. Hence, in case of
centralized control, there is one global orchestration function implemented at the site of one partner that
controls the execution of the whole IOWF. In contrast, in case of decentralized control, there is a set of
local orchestration functions. Each orchestration function is implemented at one partner site and allows
the control of the fragment implemented at the same partner site. In case of hierarchized control, there is
one global orchestration function that controls the invocation of internal and external services and a set of
local orchestration functions that control the execution of secondary workflows implied in the
“subcontracting” cooperation. The concept of orchestration function is defined and illustrated in Section
4.4 and Section 5 below.

The third dimension defines the interactions between services of several partners implied in the IOWF
process. This dimension is expressed via interactional activities (invoke-receive for asynchronous or one -
a- way communication and invoke-receive-reply for synchronous communication).

4.4. Orchestration Function and Control Flow

Like shown on the meta-model of Figure 6, the concept of orchestration function describes the control
flow between services composing the IOWF using basic control flow operators. On Figure 7, we
introduce these basic operators and we express them using a general notation independently from any
language or platform.

Figure 7. Basic control flow operators

 11

Remark - To describe multi-choice – respectively multi-parallel - (more than two edges), we can
decompose on several simple choices – respectively several simple parallel blocks. For example, Alt (S1,
S2, S3) is expressed as Alt (Alt (S1, S2), S3) or Alt (S1, Alt (S2, S3)).

In the following, we describe the two SBCP related to the “chained execution” and the
“subcontracting” architectures. For each cooperation pattern, we give some descriptive details (reference,
name, structure, control, type of interaction, use in practice), a generic schema and a meta-model. We
refer to the “chained execution” pattern and the “subcontracting” pattern by SBCP2 and SBCP3
respectively, in order to keep the same references as in our other works.

5. DESCRIPTION OF THE TWO SBCP

5.1. The “Chained Execution” Pattern –SBCP2
For the SBCP obeying to the chained execution architecture (SBCP2), the WF of each partner is entirely
encapsulated within a service that means service Si encapsulates WFi provided by partner i. Process
instances are executed according to the sequence of services implemented. The first service (S1) of the
sequence is triggered by an external event (the occurrence of a new instance), the other services of the
sequence, each of which is triggered by the service that precedes it in the sequence. In a general way, a
service Si+1 is invoked by service Si that precedes it once Si terminates its execution.

Figure 8. Description of the “Chained Execution” Pattern- SBCP2

In Figure 8, we give general characteristics of the pattern (reference, name, cooperation, control mode,
use in practice); we provide a generic schema and a meta-model of the pattern definition, the dotted arrow
on the schema indicates a facultative reply to the service invoker (for notification); at the bottom of the
same figure, we give the set of rules (R2.1, R2.2,…) that should be used in our framework of cooperation,
to implement an IOWF obeying to the SBCP2 pattern.

Pattern-Reference: SBCP2
Name: “Chained Execution” Pattern
Cooperation: Sequential execution of services implemented by a set of partners.
Control: Decentralized (a set of local orchestration functions)
Type of interaction: Synchronous or One-a-way
Use in practice: fairly common in the supply-chain management processes
Example: An IOWF process implying three partners in a production line: a supplier of raw
materials, a producer of semi-finished products and a producer of finished products.

Implementation Rules
R2.1: Encapsulate each WF into a service.
R2.2: Insert an activity “invoke” at the end of each WF in order to transmit data to the following
WF in the sequence.
R2.3: Insert an activity “receive” at the beginning of each WF in order to capture data sent from
the precedent WF.

 12

SBCP2 uses a decentralized control of execution; we implement it as a set of local orchestrations of
services (Boukhedouma & al, 2012a). At internal level, services Si can be implemented as composite
services since they respectively encapsulate the WF of each partner; each internal activity of WFi is
implemented as a local service Sij. Local services are orchestrated using a local orchestration function
implemented at each partner where maintaining a decentralized control of execution in the IOWF. The
local orchestrator (see Figure 9) of partner i has to receive input data from another orchestrator and to
invoke its local composite service (Si) with this input data and then to invoke service Sk of the next
partner by sending results (output) of its local service.

Figure 9. Illustration of local orchestrators

For this cooperation pattern (SBCP2), the interaction between services obeys to a “one-a-way”
interaction pattern if no reply (to the invoker) is necessary or a synchronous interaction pattern if we
consider a reply for notification. In a one-a-way interaction, or fire and forget, the client sends a message
to the service and does not wait for a response. In BPEL (Figure 10(a)), this interaction pattern is
implemented using an invoke activity from the client (WFi) and a receive activity at the service (WFi+1)
that becomes in turn a client when it invokes the next service (WFi+2). In a synchronous interaction
pattern, the client process invokes the service and waits for a reply in order to perform the execution of
the rest of the client process. In BPEL, this pattern is implemented using an invoke operation from the
client and a reply from the service (see Figure 10 (b)); of course, a receive activity is also implemented at
each partner.

Figure 10. Interaction patterns in BPEL

receive

(a) One-a-way interaction pattern

(b) Synchronous interaction pattern

 13

Figure 11 below illustrates the concept of orchestration function using our notation on an example of
IOWF model obeying to the SBCP2. The process schema describes an IOWF implying two partners,
partner 1 and partner 2 implementing their WFs as services S1 and S2 respectively. Partner 1 provides his
WF composed by internal services S11, S12, S13, S14, S15 and partner 2 provides his WF composed by
internal services S21, S22 and S23. For more readability and less complexity of the orchestration function,
we can structure the process fragments into blocks Bij of sequential, parallel or alternative services. In a
hierarchical manner, a block can be expressed using other blocks. Sout1 corresponds to an activity
“invoke” of service S2 and Sin2 corresponds to an activity “receive”.

Figure 11. Illustration of orchestration functions - SBCP2

5.2. The “Subcontracting” Pattern –SBCP3

To realize a service-based subcontracting pattern (SBCP3), we propose to entirely encapsulate each
secondary WF involved in the cooperation within a service (Boukhedouma & al, 2012b). On Figure 12,
partner 1 hosts the main WF and partner 2 provides his secondary WF as a global service S2 which can be
composite but from the perspective of the main partner, it is abstracted to a single entity; thus, partner 1
invokes the service of partner 2 for subcontracting. To obtain an IOWF entirely based on services, the
whole WF can be implemented as an orchestration of local services encapsulating sub-processes or
activities of the main WF and external services provided by secondary partners. In SBCP3, the control of
execution is hierarchized because the main WF manages the control of the whole process and controls
invocation of external services. SBCP3 is described through the meta-model of Figure 12. For this
pattern, the interaction between services is synchronous.

To illustrate the concept of orchestration function on SBCP3, we give a simple example of IOWF like
shown on Figure 13. The process schema describes an IOWF implying two partners, partner 1 and partner
2. Partner1 provides the main WF composed by internal services S11, S12, S13, S14 and an invocation of
S2 which is the external service provided by partner 2.

 14

Figure 12. Description of the “Subcontracting” pattern – SBCP3

Figure 13. Illustration of orchestration functions - SBCP3

In the next section, we focus on the second issue of our work which is the adaptability and the evolutivity
of IOWF models obeying to the SBCP previously described.

Pattern-Reference: SBCP3
Name: “Subcontracting” Pattern
Cooperation: Externalization of services to other partners
Structure: A set of internal and external services orchestrated by a global orchestration function
implemented at the main partner and a set of local orchestration functions, each of which
implemented at the corresponding secondary partner.
Control: Hierarchized
Type of interaction: Synchronous
Use in practice: Fairly common between business partners with complementary skills and
competencies.
Examples: Processes of pharmaceutical production, automotive processes, manufacturing and
assembly of integrated circuits.

Implementation Rules

R3.1: Encapsulate each secondary WF into a service.
R3.2: Insert an activity “invoke” into the main WF in order to invoke the service encapsulating the
secondary WF.
R3.3: Insert an activity “receive” at the beginning of the secondary process to be invoked, in order
to receive the input data sent by the main workflow.
R3.4: Insert an activity “reply” at the end of the secondary WF in order to return results to the
main WF.
R3.5: Insert an activity “receive” into the main workflow after the corresponding activity “invoke”
in order to receive results from the secondary WF.

 15

6. ADAPTABILITY OF IOWF MODELS
According to the previous descriptions and the meta-model of Figure 6, adaptation of process models

turns to modifications of the entities attached to the three dimensions defining a SBCP that means
services, orchestration functions and/or interactions. Consequently, we classify our adaptation patterns
into three main: Service adaptation patterns, Control Flow adaptation patterns and Interaction adaptation
patterns.

6.1. Service Adaptation Patterns
These patterns concern the modifications that can be applied on the services composing the IOWF

process; these modifications are typically adding, removing, replacing, merging two services (in a
sequential, parallel or alternative block) and decomposing a service into a block of two services
expressing sequential, parallel or alternative execution. An adaptation of a service usually induces
modification on the orchestration function using it or a modification of closely attached attributes like
condition or data.

6.1.1 Adding, Removing and Substituting Services

Adding a service is done in order to insert an additional step in the process. The reverse operation of
adding is the removing of services. For adding or removing services, it is to distinguish adding or
removing of a service on one edge composed by sequential services or in a block composed by two edges
expressing parallel or alternative execution. Table 1 describes the basic patterns of adding services
illustrated by generic process schemas and the corresponding orchestration functions. We can see that
there are elementary patterns named AP1.1, AP1.2, respectively for adding a new service before or after a
given service in the process, and there are more elaborated patterns like AP1.3, AP1.4 and AP1.5 which
are implemented using elementary patterns AP1.1 or AP1.2, depending on the location of the service to
add.

Table 1. Description of “Adding Service”Patterns

Table 2 shows typical operations of removing services (service S2 for example). Let’s notice that two

configurations are possible when removing a service S from a block with two edges: (1) service S is in
sequence with other services, (2) service S is alone on the edge; this results on two different scenarios of
adaptation. These two configurations are represented only for inclusive choice, but in our implementation,

 16

they are also considered for exclusive choice and parallel execution.For the removing patterns, we can see
that AP2.1 is an elementary pattern and AP2.2, AP2.3, AP2.4, AP2.5, etc. are implemented using AP2.1.

Another basic operation of adaptation concerns the substitution (replacing) of services. This is
typically a removing of the service to replace followed by an adding of the new service. Then, the pattern
AP3 (called “Service Substitution” Pattern) is implemented using patterns PA1.x and PA2.x for
respectively adding and removing, depending on the location in the process schema (in sequence, parallel
or alternative) of the service to be replaced.

Table 2. Description of “Service Removing” Patterns

6.1.2 Fusion and Decomposition of Services
The operation of fusion can concern two services linked by a sequence, an inclusive choice, an

exclusive choice or a parallel execution, in order to simplify the process model and to abstract several
services into one. Table 3 below describes these basic operations and the corresponding orchestration
functions modified after each operation for merging S2, S3 in a single service S’. We can state that since
services to merge are in the same block, they become easier to remove and to replace, because the block
(Alt (S2,S3), Par (S2,S3) or Exl (S2, S3)) is considered as a single composite service to be replaced. More
elaborated operations of fusion concern configurations such as services to merge are not in the same
block. For example in a model described by the orchestration function Seq(Seq(S1, Par(S2,S3)), S4), the
operation of merging S1 and S2 cannot be done directly since we must know if we maintain the
parallelism or we don’t maintain it; this information should be provided as additional parameter. In both
cases, this must be decomposed into elementary operations of removing and adding of single services or
blocks. Then, the fusion patterns are implemented using the adding and the removing patterns AP2.5 and
AP2.6 which are not represented on Table 2, correspond to removing a service from one edge with a
single service of parallel execution and of exclusive choice respectively.

The reverse operation of fusion is the decomposition of a service to obtain a block of two services that
can be sequential, parallel or alternative block. The decomposition of services can be done to improve the
parallelism in the process (parallel decomposition) or to add condition (alternative decomposition) due to
new constraints or to have more control on process execution (sequential decomposition).We can see on
Table 4 that the decomposition of a service consists to remove a single service (S2 for example) and to
add a block composed by two services (S’ and S”) linked by a sequence, an alternative or a parallel
operator. This explains the use of adding patterns AP1.x and removing Patterns AP2.x.

 17

Remark - For all the adaptation patterns proposed, the assignation of variables (inputs and outputs of
the injected services is done in a semi-automatic manner; a wizard that displays a set of variables is
proposed to the designer who selects the appropriate variables.

Table 3. Description of Fusion Patterns

Table 4. Description of Decomposition Patterns

6.2. Control Flow Adaptation Patterns
This category of patterns concerns modification of the control flow between services composing the

IOWF process, without affecting the services themselves. This is typically a replacing of an operator of
control flow by another; we can replace for example a sequence operator (seq) by parallel operator (par)
(parallelization of services) to improve the execution time of process instances, or vice versa
(sequentialization of services) if an execution of a service becomes dependant from another service (the

 18

order of services in the sequence should be provided as a parameter), or alternation of services if an
execution of a service depends from a given condition that should be specified.

Table 5. Description of “Control Flow” Adaptation Patterns

Even if there is no modification on services implied in the IOWF, the implementation of the control

flow patterns uses other patterns of adding and removing services (see Table 5) because we have to
update input and output data of services and also the conditions of invocation.

6.3. Interaction Adaptation Patterns

This category of patterns concerns modification of the interactions between services composing the
IOWF process and provided by different partners. Specifically, updating the structure of interaction is
done by adding, removing or updating interactional points (see Table 6).

Table 6. Description of “Interaction” Adaptation Patterns

7. EVOLUTIVITY OF IOWF MODELS
As already explained, the evolutivity (or evolutive adaptability) of IOWF process models is reflected at

two perspectives: the functionality and the cooperation of the IOWF. Hence, an IOWF model is evolvable
if it can be extended to additional functionalities or if it allows expansion of cooperation to involve more

 19

partners and more external services. The two perspectives are not exclusive; indeed expansion of the
cooperation can induce expansion of functionalities and vice versa.

7.1. Expanding Functionalities
Expansion of functionalities of the IOWF can be done by adding internal services Sij (respectively
blocks) with novel functionalities into the WF of one or more partner(s) or by replacing a service
(respectively block) by another that covers more functionalities. To do that, we can refer to operations
described in Section 6.1, the only difference is that the injected services implement additional
functionalities in the IOWF process. At external level, the expansion of functionalities can be realized by
replacing an external service Si encapsulating a WF fragment by another external service that covers more
functionality.

7.2. Expanding Cooperation

 According to the cooperation perspective, it is the capacity to open the IOWF to more partners. For
this perspective, the evolution patterns depend on the cooperation pattern defining the IOWF process.
For this second perspective, we show that in some cases, an IOWF model can evolve while maintaining
the initial cooperation pattern and in other cases it can evolve and fall into the combination of two
different cooperation patterns. To illustrate these two kinds of evolution, we describe evolution patterns
applied to the IOWF models obeying to SBCP2 and SBCP3.

7.2.1 Expanding the “Chained Execution”

An IOWF obeying to the chained execution pattern (SBCP2) can be extended according to one of these
two configurations:

(a) Adding a new external service encapsulating a WF provided by a new partner in order to extend
the functionalities of the initial IOWF or to add a new intermediary phase in the IOWF process.

(b) Replace a given service in the sequence of the IOWF model by an exclusive block of two services
provided by two different partners. In all cases, the process instances are exclusively executed
according to one sequential edge obeying to the chained execution pattern.

Figure 14. Expanding the chained execution

Starting with an IOWF model initially composed by a sequence of three services Sx, Sy and Sz
provided by partners x, y and z respectively, Figure 14 shows the possible configurations of evolution
previously described. In case of evolution (a), we have to add the orchestration function of service w and
to modify the interactional services Souty and Sinz insuring interaction with the novel service w. In
evolution (b), we have to add the orchestration functions of services r and w and to modify the
interactional services Soutx to implement the exclusive choice and Sinz insuring interaction with the

 20

novel service r or w. Let’s notice that the pattern SBCP2 is preserved since instances are executed
according to one path of sequential services (Sx, Sw, Sz) or (Sx, Sr, Sz).

7.2.2 Expanding the “Subcontracting”

Expansion of the subcontracting can occur when the main partner subcontracts other activities to

external partners or when a secondary partner in turn subcontracts part of its WF to other partners, this
results in what we call “multi-level subcontracting”.
Expansion of subcontracting can be done according to one of the configurations (a, b, c) shown on Figure
15. OP-Split means OR-Split, XOR-Split or AND-Split.

(a) Replacing an internal service of the main WF by an external service
(b) Replacing an external service by an alternative branch composed by two external services Sx and

Sy provided by two partners where for some cases (according to a condition) , Sx is invoked and
for other cases Sy is invoked

(c) Replacing an external service by a parallel branch composed by two external services Sx and Sy
provided by two partners; Sx and Sy are executed simultaneously.

Changes obviously described can be expressed through operations of substitution and decomposition
explained in Section 6. The only difference is that evolutivity concerns external services.

Figure 15. Expanding the subcontracting

The configuration of multi-level subcontracting is obtained when the main WF invokes a secondary

WF through the external service provided, and the secondary partner in turn operates changes to
subcontract part of its own WF to another partner; this is invisible from the perspective of the main WF
but the overall IOWF implies additional partners at different levels. Figure 16 shows a schema of this
configuration. Changes relative to this configuration are done at the secondary partner by substituting one
or more of its local services by external services.

 21

Figure 16. Multi-level subcontracting

7.2.3 Evolution by Combination of the SBCP2 and SBCP3

Describing the WFIO as a composite service using the concept of orchestration function allows the
combination of two IOWF obeying to the same or different SBCP. In fact, the IOWF is manipulated itself
as a composite service that can be added, removed or substituted with respect of the constraints relative of
each IOWF-architecture. In the following, we describe two IOWF evolution patterns based on the
combination of SBCP2 and SBCP3; this represents one aspect of reuse of IOWF models and in such
architectures, there is cooperation pattern which is predominant compared to the other. Then we talk
about a “chained execution in a subcontracting” or “a subcontracting in a chained execution” (SBCP2 in
SBCP3 or SBCP3 in SBCP2).

- A “chained execution” in a “subcontracting”

This configuration is obtained when the main partner subcontracts part of its WF to a group of partners
which are involved in the “chained execution” cooperation. In this case, the predominant pattern is
SBCP3 because the execution of the IOWF is controlled by the main partner that invokes the IOWF
obeying to the SBCP2 pattern provided by the group of partners. This last, once invoked is controlled by
the group of (secondary) partners. Also, this architecture requires a return of results in a reverse sequence
in the IOWF obeying to SBCP2 in order to communicate the results of subcontracting to the main partner.
This falls on IOWF-architecture with a mixed control “hierarchized/decentralized”. On Figure17, partner
1 subcontracts part of its WF to the group of partners x, y, z providing a WFIO composed by the sequence
of services (Sx, Sy, Sz). Partner 1 invokes the first service (Sx) of the sequence.

Figure 17. Combination of Cooperation Patterns – SBCP2 in SBCP3

 22

- A “subcontracting” in a “chained execution”

Figure 18. Combination of Cooperation Patterns – SBCP3 in SBCP2

This configuration can be used when a partner involved in an IOWF obeying to SBCP2 decides to
subcontract part of its local WF to an external partner. In this case, the predominant pattern is SBCP2 and
on a given fragment of the sequence, there is a subcontracting. The control of execution is mixed
decentralized/hierarchized. On Figure 18, Partner y subcontracts part of its WF to partner w; a
modification is done on the orchestration function of service y in order to invoke the external service Sw.

8. IMPLEMENTATION DETAILS

Since our work focuses on two main issues which are closely linked: (1) the service-based
cooperation patterns (SBCP) and (2) the adaptation (respectively evolution) patterns applied to process
models obeying to the SBCP defined, our implementation contains two main frameworks: (1) a
framework for cooperation that supports the generation of SBCP starting with service-based process
models provided by a set of partners, and (2) a framework for adaptation composed by a set of adaptation
(respectively evolution) patterns that support the adaptation (respectively evolution) of the generated
process models.
The implementation of our frameworks provides a set of wizard functions allowing the guidance of the
designer step by step in order to realize a specific IOWF-architecture according to a selected SBCP or a
specific operation of adaptation on a given IOWF model obeying to one of the SBCP defined.

For the deployment of the framework of cooperation, we suggest to install the applicative modules at a
tier structure accessing to abstracted definition of the WF of each partner that should be implied in the
cooperation. Once the IOWF model is realized (based on the implementation rules specified for each
SBCP and a control of coherence of the data flow when invoking services), its execution is triggered to
check the correct execution for instances conformably to the process model built.

For the deployment of the framework of adaptation, applicative modules can be accessed by all
partners for adaptations affecting the internal structure of the process. But, adaptations that affect the
cooperation pattern or interactional aspects cannot be done locally; these should be delegated to a tier
structure in order to guarantee the coherence of the global IOWF.

8.1. Development Tools
For the development of our frameworks, we have considered process models specified with BPEL and

interpreted by the WF engine OPEN ESB 2.2, we also used a plug-in SOA Netbeans. We have developed
our frameworks using the Java language and the IDE Netbeans, the application server used is GlassFish
server version 2. To implement the cooperation and the adaptation patterns, we have used the API jdom2
that eases the modification on the code BPEL specifying the WF processes since it is based on the XML

 23

language. For example, we simply use the class Element implemented in the API jdom to create a new
XML tag.

Our frameworks are as modular as possible since we implement a separate class for each elementary
operation to perform on process models. For example, for our framework of adaptation, we create a class
for adding a service after a given service in a sequential branch, another class for adding a service before
a given service in a sequential branch, another class for adding a service in an alternative block, etc. This
eases the reuse of existing classes to implement other ones; thus, the operations of substitution, fusion and
decomposition are implemented using elementary operations of adding and removing of services (see
Tables 3, 4). For the application of the adaptation patterns, after each operation of adaptation, we run the
adapted process in order to check that the adaptation has been successfully done. In the following, we
illustrate the implementation of the adaptation patterns AP1.2 and AP4.4.

8.2. Examples of Implementation

- The AP1.2 Pattern
Figure 19 below shows the interface related to implementation of AP1.1 or AP1.2 patterns (add a service
in sequence). Once the WF process to adapt is selected, the designer has to introduce some parameters
like the name of the service (for example “NewService”) to add, the inputs and outputs, the location
(before or after what service). At the right side of Figure 19, we show the code java corresponding to the
implementation of the pattern AP1.2 “add in sequence after…”

Figure 19. Interface “Adding a service” and Part of the corresponding java code

- The AP4.4 Pattern

Figure 20 shows the interface of fusion and part of the code java corresponding to the
implementation of the pattern AP4.4 “Parallel Fusion of services”.

- Update Variables and Conditions
In order to maintain the coherence of the process after realizing a cooperation pattern or an adaptation,

our applications provide an interface allowing the update of the data flow in the process. It is to select a
service and all input/output variables are displayed to the designer who selects the appropriate
input/output variables.
Also, when the adaptation concerns alternative blocks, we have to generate the correct conditions of
choice, then our application provides a simple graphical wizard allowing the generation of simple or
composite conditions.

 24

Figure 20. Interface and part of the java code corresponding the implementation of the AP4.4 pattern

9. CONCLUSION

The current paper focuses on two main issues which are the WF cooperation and the WF adaptation.
So, we exhibit two main contributions closely linked. First, in order to deal with IOWF process models
flexible enough, we have proposed cooperation patterns based on SOA paradigm called service-based
cooperation patterns (SBCP) in order to implement specific IOWF-architectures (here we deal with the
“chained execution” and the “subcontracting” architectures). Depending on the IOWF-architecture, we
express the process model using a global orchestration function or a set of local orchestration functions.

For the second issue that concerns the adaptation of process models obeying to the SBCP defined, we
classify our adaptation patterns in three categories according to the three dimensions (services, control
flow and interaction) on which we define the concept of SBCP. Specific operations of adaptation called
evolutions affect the global functionality of the IOWF model and/or the cooperation and depend on the
SBCP on which the IOWF model is based. Regarding the cooperation perspective, we show that in some
cases, an IOWF model can evolve while maintaining the initial cooperation pattern and in other cases it
can evolve and fall into the combination of two different cooperation patterns. We have illustrated these
two kinds of evolutions on IOWF models obeying to SBCP2 and SBCP3. For the implementation of the
proposed patterns, we have considered process models specified with BPEL.

Let’s notice that the adaptation patterns can be applied at build time by a designer of the process or at
runtime combined with a technique (such as rule-based technique) of dynamic adaptation. At this stage of
our work, we have only simulated dynamic adaptation by suspending process instances, applying
adaptation and resuming the execution of the suspended instances. Furthermore, with the proposed
approach, we can deal with reusability (well supported by SOA) of IOWF process models which is
another aspect of flexibility allowing the combination of several IOWF obeying to the same or different
architectures, in order to build more complex business processes based on existing ones. This aspect has
been briefly illustrated, for example, by the two scenarios of evolution (SBCP2 in SBCP3 and SBCP3 in
SBCP2).

We are currently working on the implementation of cooperation patterns suitable to other IOWF-
architectures that means the “case transfer” that we have already considered in our previous works
(Boukhedouma & al, 2011), (Boukhedouma & al, 2012c) and the “loosely coupled” architecture.
Furthermore, we intend to complete our framework of adaptation by implementing adaptation and
evolution patterns suitable to these architectures.

 25

ACKNOWLEDGMENT
We would like to thank our students Djamel-Eddine Khelladi, Younes Asma, Ait Belkacem Lyes and Si-
Mohamed Mehdi for their participation in the implementation of the frameworks.

REFERENCES
Alonso G., Casati F., & Kuno H., (2004), Web services: concepts, architectures and applications. Heidelberg,
Germany, Springer Verlag.

Amireza T., (2009), Web Service Composition Based Interorganizational Workflows, Sudwestdeutscher Verlag fur
Hochschulschriften (Ed.), ISBN 9783838106700.

Belhajjame K., Vargas-Solar G., & Collet C., (2005), Pyros - an environment for building and orchestrating open
services. In Proceedings of the IEEE International Conference on Services Computing, 155–164.

Boukhedouma S., Alimazighi Z., Oussalah M., & Tamzalit D., (2011), Une approche basée SOA pour
l'interconnexion de workflows : application au « transfert de cas ». In proceedings of INFORSID’ 2011, 43-58.

Boukhedouma S., Alimazighi Z., Oussalah M., & Tamzalit D., (2012 a), Adaptability of service based workflow
models : the chained execution architecture. In proceedings of BIS’2012, Lithuania, 21-23 may. W. Abramowicz et
al. (Eds.), LNBIP 117, Springer-Verlag Berlin Heidelberg.

Boukhedouma S., Oussalah M., Alimazighi Z., & Tamzalit D., (2012b), SOA Based Approach for Adaptability of
Workflow Models: The subcontracting architecture. In proceedings of ICEIS’2012, 224-23.1

Boukhedouma S., Alimazighi Z., Oussalah M., & Tamzalit D., (2012c), Interconnecting workflows using services:
an approach for case transfer with centralized control. In proceedings of ICISTM’2012, S. Dua et al. (Eds.): CCIS
285, 396–401, Springer-Verlag Berlin Heidelberg.

Casati F. & Shan M., (2001), Dynamic and adaptive composition of e-services. Information Systems, 26(3),143–163.

Chebbi I., (2007), CoopFlow : an approach for ascendant cooperation of workflows in virtual enterprises. Phd
Thesis, National Institute of Telecom, France.

Dadam, P., & Reichert, M. (2009). The ADEPT project: a decade of research and development for robust and
flexible process support. Computer Science-Research and Development, 23(2), 81-97.

Döhring M., ZimmermaSnn B., Godehardt E., (2010), Extended workflow flexibility using rule-based adapatation
patterns with eventing semantics. In proceedings of INFORMATIK’10, 216-226.

Döhring M., Zimmermann B., & Karg L., (2011), Flexible Workows at design and Runtime using BPMN2
Adaptation Patterns. In proceedings of BIS’2011- Springer Verlag.

Eder J., & Gruber W., (2002), A meta model for structured workflows supporting workflow transformations. In
Proceedings of the Sixth East European Conference on Advances in Databases and Information Systems (ADBIS
2002). 326 –339Papazoglou M. P., & Van Den Heuvel W.J., (2007), Service Oriented Architectures : approaches,
technologies and research issues. The VLDB Journal, 16, 389-415.

Gorton S., Montangero C., Reiff-Marganiec S., & Semini L., StPowla, (2009), SOA, Policies and Workflows,
ICSOC workshops, LNCS 4907, 351-362.

Grefen P., Aberer K., Hoffer Y., & Ludwig H., (2001), CrossFlow: Cross-organizational workflow management for
service outsourcing in dynamic virtual enterprise. IEEE Data Engineering Bulletin, 24(1), 52–57.

He Q., Yan Y., & Jin H., (2008), Adaptation of web service composition based on WF patterns. In proceedings of
Service Oriented Computing, ICSOC.

Jordan D., & Evdemon J., (2006), Web services business process execution language V.2.0, W3C.

Leymann F., Roller D., & Schmidt M.-T., (2002), Web Services and Business Process Management. IBM Systems
Journal 41(2).

 26

Mehandjiev N., Stalker I., Fessl K., & Weichhart. G. , (2005), Interoperability contributions of CrossWork. In
invited short paper to Proceedings of INTEROP-ESA’05 Conference, Springer-Verlag.

Meng J., Su S.Y.W, Lam H., Helal A., Xian J., Liu X., & Yang S., (2006), DynaFlow: a dynamic inter-
organisational workflow management system, Int. Journal of Business Process Integration and Management, 1(2),
101–115.

Muller R., Greiner U., & Rahm E., (2004), AGENT-WORK: a workflow system supporting rule-based workflow
adaptation. In journal of Data and Knowledge Engineering 51 (2) 223-256.

Peltz C., (2003), Web Services Orchestration and Choreography, IEEE Computer 36(10), 46-52.

Pérez-Castillo, R., de Guzmán, I. G. R., & Piattini, M. (2011). Business process archeology using MARBLE.
Information and Software Technology, 53(10), 1023-1044.

Pesic M., Schonenberg MH., Sidorova N., Van Der Aalst W., (2007), Constraint-based workflow models: Change
made easy. In Proceedings of the OTM Conference CoopIS’2007. LNCS 4803, 77–94.Springer-Verlag, Berlin.

Rotibi P., Murphy I., & Herzlich P., (2012), Enterprise Modernization: business agility and commercial edge
through application reuse and modernization, Creative Intellect Consulting Ltd.
http://public.dhe.ibm.com/common/ssi/ecm/en/zsl03182usen/zsl03182usen.pdf

Russell N., Van Der Aalst W., ter Hofstede A.H.M., (2006), Exception handling patterns in process-aware
information systems. In CAiSE'06 (Luxembourg), pp. 288-302.

Sadiq S.W., & Orlowska M.E., On capturing Exceptions in workflow process models. In proceedings of ER’2001.

Tragatschnig S., Zdun U., (2011), Runtime Process Adaptation for BPEL Process Execution Engines. 15th IEEE
International Enterprise Distributed Object Computing Conference Workshops (EDOCW).

Van Der Aalst W., (1999), Process oriented architectures for electronic commerce and interogranizational workflow.
Journal of Information systems, 24(9).

Van Der Aalst W., (2000), Loosely Coupled Inter-organizational Workflows : modeling and analyzing workflows
crossing organizational boundaries. Journal of Information and Management 37 (2), 67-75.

Van Der Aalst W., (2002), Workflow Management: Models, Methods and Systems. The MIT Press. Cambridge,
Massachusetts, London, England.

Van Der Aalst W., ter Hofstede W.M.P, Kiepuszewski A.H.M., & Barros B. A.P., (2003), Workflow Patterns.
DAPD 14(1), 5-51.

Weber B., Reichert M., Rinderle-Ma S.,(2008), Change patterns and change support features- Enhancing flexibility
in process-aware information systems. In Journal of Data & Knowledge Engineering (66), 438-466.

ADDITIONAL READING SECTION
Andonoff E., Bouaziz W., Hanachi C., Bouzguenda L., (2009), An Agent-Based Model for Autonomic Coordination
of Inter-Organizational Business Processes. INFORMATICA Journal, 20(3), 323–342.

Badr Y. (2008), Service oriented workflow. Journal of digital information management, 6(1).

Belhajjame K., Collet C., & Vargas-Solar G., (2001), A flexible workflow model for process oriented applications.
In Web Information Systems Engineering (WISE) (1), page 72, 2001.

Camarinha L. M. & Pantoja-Lima C., (1999) , A framework for cooperation in virtual enterprises. In DIISM ’98,
Proceedings of the IFIP TC5 WG5.3/5.7 Third International Working Conference on the Design of Information
Infrastructure Systems for Manufacturing II, pages 305–322, The Netherlands.

Casati F., & Shan M., (2001), Dynamic and adaptive composition of e-services. Information Systems, 26(3), 143–
163.

Chebbi I., Dustdar S., & Tata S. (2006), The view-based approach to dynamic interorganizational workflow
cooperation. Data and Knowledge Engineering Journal, 56(2) :139–173.

 27

Chebbi I. , & Tata S., (2005), CoopFlow : a framework for inter-organizational workflow cooperation. In
Proceedings of International Conference on Cooperative Information Systems, 112–129, Agia Napa, Cyprus.

Chen M., Zhang D., & Zhou L. (2005), Empowering collaborative commerce with web services enabled business
process management system. Decision Support System, 2005. www.sciencedirect.com

Fdhila, W, (2011), Décentralisation Optimisée et Synchronisation des Procédés Métiers Inter-Organisationnels.
Thèse de doctorat, Université Henri Poincaré-Nancy I, France.

Gerhard K., Retschitzegger W., Bernauer M., and Kappel G. (2002), Specification of interorganizational workflows
- a comparison of approaches. Technical Report 08/02, Institute of Software Technology and Interactive Systems,
Business Informatics Group, Vienna University of Technology.

Grefen P., Mehandjiev N., Kouvas G., Weichhart G., & Eshuis R., (2009), Dynamic business network process
management in instant virtual enterprises. Computers in Industry, 60(2), 86–103.

Hoffner Y., Ludwig H., Gülcü C., & Grefen P. W. P. J., (2000), An architecture for cross-organizational business
processes. In Second International Workshop on Advance Issues of E-Commerce and Web-Based Information
Systems, Milpitas.

Hofreiter, B., Huemer, C. (2008), A model-driven top-down approach to inter-organizational systems: From global
choreography models to executable BPEL. In: IEEE Joint Conference on E-Commerce Technology (CEC) and
Enterprise Computing, e-Commerce, and e-services (EEE).

Huang C. J., & Liao L.M., (2008), Applying intelligent agent technology to develop coordinative workflow platform
for inter-organizational applications. International journal of electronic business management, 6(4), 185-194.

Jan Ahn H., Lee H., Kim H., JOO Park S., & Shepherdson J., (2010), Dynamic change handling for inter-
organisational workflows in open virtual emarketplaces. International journal of intelligent information and
database systems, 4 (2).

Khadka R. Sapkota B., Pires L., van Sinderen M., & Jansen, S., (2011), Model-Driven Development of Service
Compositions for Enterprise Interoperability. In Proceedings of the 3rd International IFIP Working Conference on
Enterprise Interoperability (IWEI 2011). 177–190, Springer.

Kiepuszewski A.H.M., Hofstede T., & Bussler. C., (2000), On Structured Workow Modelling. In B. Wangler and L.
Bergman (ed), Proceedings of the Twelfth International Conference on Advanced Information Systems Engineering
(CAiSE'2000), LNCS 1789, Springer-Verlag, 431-445.

Kim J. & al., (2004), An Intelligent Assistant for Interactive Workflow Composition. In Proceedings of 2004
International Conference on Intelligent User Interfaces (IUI-2004), Madeira Islands, Portugal.
Lazcano A., Alonso G., Schuldt H., & Schuler C., (2000), The wise approach to electronic commerce, International
Journal of Computer Systems Science & Engineering, special issue on Flexible Workflow Technology Driving the
Networked Economy, 15(5).

Meng J., & Helal S., (2000) An ad-hoc workflow system architecture based on mobile agents and rule-based
processing. In: Proceedings of the 2000 international conference on artificial intelligence (ICAI2000), Las Vegas.

Muller R. (2002), Event-oriented dynamic adaptation of workflows. Ph.D.Thesis,Department of Computer
Science,University of Leipzig.

Perrin O., & Godart C., (2004), A model to support collaborative work in virtual enterprises. Data Knowledge

Van Der Aalst W., & Weske M., (2001), The P2P approach to inter-organizational workflows. In proceedings of the
13th international conference on advanced information systems engineering, Springer-Verlag, 140–156.

Van Der Aalst W., Adams M., Hofstede A. ter, Pesic M., & H. Schonenberg,(2008), Flexibility as a Service.
BPMcenter.org, Tech. Rep. BPM-08-09.

Virdell M., (2003), Business Processes and Workflow in the Web Services World. IBM, Developper
Works.Engineering, 50(1) :63–86.

 28

Voorhoeve M., & Aalst W.M.P., (1997), Ad-hoc Workflow: Problems and Solutions. In R. Wagner (ed), Database
and Expert Systems Applications, 8th. International Workshop, DEXA’97 Proceedings, 36–40. IEEE Computer
Society Press, Los Alamitos, California.

Zhao X., Liu C., & Yang Y., (2004), Web service based architecture for workflow management systems, Book
chapter, Database and expert systems applications, LNCS 3180, ISSN 0302-9743.

KEY TERMS & DEFINITIONS
WF process: is a set of activities consuming input data and producing outputs and linked between them
with control flow operators.

WF process model: is an abstraction of the main aspects (functional, behavioral, interactional,
organizational and/or informational) defining a WF process. But, we usually refer to functional and
behavioral aspects.

WF sub-process: is part of a WF process composed of a set of activities implementing a sub-
functionality, it requires input data and produces output ones.

Structured cooperation: is a form of cooperation where a process model is clearly defined at build time
and all process instances follow the same model at runtime.

Ad-hoc cooperation: is appropriate for non-durable cooperation where process models are not
completely defined at build time but can be completed in fly at runtime and process instances not
necessarily follow the same model.

Planned cooperation: is a form of cooperation where partners are known a priori and agree for
cooperation through a contract.

Cross-organizational WF: Inter-organizational WF which is a WF that implies several business partners.

WF composition: is a mechanism that allows a construction of new (usually more complex) WF
processes using existing ones (less complex).

Service-based WF: is a WF where activities are implemented as services.

