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ON BOTT-CHERN COHOMOLOGY OF COMPACT COMPLEX SURFACES

DANIELE ANGELLA, GEORGES DLOUSSKY, AND ADRIANO TOMASSINI

ABSTRACT. We study Bott-Chern cohomology on compact complex non-Kéhler surfaces. In particular,
we compute such a cohomology for compact complex surfaces in class VII and for compact complex
surfaces diffeomorphic to solvmanifolds.

INTRODUCTION

For a given complex manifold X, many cohomological invariants can be defined, and many are known
for compact complex surfaces.
Among these, one can consider Bott-Chern and Aeppli cohomologies. They are defined as follows:

ker @ Nker 0 ker 90
H3 (X)) = ———— d HY (X)) = —————— .
5e(X) im 80 o ) = e
Note that the identity induces natural maps
Hpe(X)
HI*(X)  Hyp(X:0)  Hy*(X)
13 (X)

where HZ*(X) denotes the Dolbeault cohomology and Hj*(X) its conjugate, and the maps are
morphisms of (graded or bi-graded) vector spaces. For compact Kéhler manifolds, the natural map
D, =e HEEH(X) — Hip(X;C) is an isomorphism.

Assume that X is compact. The Bott-Chern and Aeppli cohomologies are isomorphic to the kernel
of suitable 4th-order differential elliptic operators, see [19, §2.b, §2.c]. In particular, they are finite-
dimensional vector spaces. In fact, fixed a Hermitian metric g, its associated C-linear Hodge-*-operator
induces the isomorphism

Hpd(X) = Hy " 7(X)
for any p,q € {0,...,n}, where n denotes the complex dimension of X. In particular, for any p,q €
{0,...,n}, one has

dime H3(X) = dime HEL(X) = dime HY P""9(X) = dime H " (X)) .

For the Dolbeault cohomology, the Frolicher inequality relates the Hodge numbers and the Betti
numbers: for any k € {0,...,2n},

> dime H2Y(X) > dime HjR(X;C) .
pta=k
Similarly, for Bott-Chern cohomology, the following inequality d la Frolicher has been proven in [3]
Theorem Al: for any k € {0,...,n},

> (dime HEE(X) + dime HY (X)) > 2 dime Hjp(X;C) .
p+q=k
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The equality in the Frolicher inequality characterizes the degeneration of the Frolicher spectral se-
quence at the first level. This always happens for compact complex surfaces. On the other side, in [3]
Theorem B], it is proven that the equality in the inequality a la Frolicher for the Bott-Chern cohomology
characterizes the validity of the 99-Lemma, namely, the property that every d-closed O-closed d-exact
form is d0-exact too, [8]. The validity of the d0-Lemma implies that the first Betti number is even,
which is equivalent to Kéhlerness for compact complex surfaces. Therefore the positive integer numbers

AF = 3" (dime HEE(X) + dime HR(X)) - 2b, € N,
pta=k
varying k € {1, 2}, measure the non-Kéhlerness of compact complex surfaces X.

Compact complex surfaces are divided in seven classes, according to the Kodaira and Enriques clas-
sification, see, e.g., [4]. In this note, we compute Bott-Chern cohomology for some classes of com-
pact complex (non-Kéahler) surfaces. In particular, we are interested in studying the relations be-
tween Bott-Chern cohomology and de Rham cohomology, looking at the injectivity of the natural map
Héé (X) — H3x(X;C). This can be intended as a weak version of the 99-Lemma, compare also [10].

More precisely, we start by proving that the non-K&hlerness for compact complex surfaces is encoded
only in A%, namely, A! is always zero. This gives a partial answer to a question by T. C. Dinh to the
third author.

Theorem [I.1l Let X be a compact complexr surface. Then:
(i) the natural map Héé (X) — Hg’l(X) induced by the identity is injective;
(ii) Al =0.

In particular, the non-Kihlerness of X is measured by just A? € N.

For compact complex surfaces in class VII, we show the following result, where we denote h%3{, :=
dime HZA(X) for p,q € {0,1,2}.

Theorem The Bott-Chern numbers of compact complex surfaces in class VII are:

0,0 _
REY =0 e =t %L =0
2,0 Bo 1,1 Bo 0,2
he =0 hge=ba+1 hge =0
2,1 1,2
hpe =1 - hpe =1
hge=1.

Finally, we compute the Bott-Chern cohomology for compact complex surfaces diffeomorphic to solv-
manifolds, according to the list given by K. Hasegawa in [I1], see Theorem Il More precisely, we prove
that the cohomologies can be computed by using just left-invariant forms. Furthermore, for such complex
surfaces, we note that the natural map Héé (X) — H3,(X;C) is injective, see Theorem E2

We note that the above classes do not exhaust the set of compact complex non-Kéhler surfaces, the
cohomologies of elliptic surfaces being still unknown.

Acknowledgments. The first and third authors would like to thank the Aix-Marseille University for its
warm hospitality.

1. NON-KAHLERNESS OF COMPACT COMPLEX SURFACES AND BOTT-CHERN COHOMOLOGY

We recall that, for a compact complex manifold of complex dimension n, for k € {0,...,2n}, we define
the “non-Kéhlerness” degrees, [3, Theorem A],
AP = N (WL + R —2b €N
pta=k

where we use the duality in [19, §2.c] giving hl3¢ := dime HZA(X) = dime H)y” ©"7P(X). According to
[3, Theorem B], A* = 0 for any k € {0,...,2n} if and only if X satisfies the 90-Lemma, namely, every
O-closed O-closed d-exact form is d9-exact too. In particular, for a compact complex surface X, the
condition Al = A2 = 0 is equivalent to X being Kéhler, the first Betti number being even, [14] [T7, 20],
see also [15, Corollaire 5.7], and [, Theorem 11].

We prove that Al is always zero for any compact complex surface. In particular, a sufficient and
necessary condition for compact complex surfaces to be Kihler is A% = 0.

Theorem 1.1. Let X be a compact complex surface. Then:
2



(i) the natural map Héé (X)— Hg’l(X) induced by the identity is injective;
(ii) A' = 0.

In particular, the non-Kihlerness of X is measured by just A? € N.

Proof. (i) Let a € A>1X be such that [a] =0 € Hg’l(X). Let 8 € A2°X be such that a = 9. Fix a
Hermitian metric g on X, and consider the Hodge decomposition of 5 with respect to the Dolbeault
Laplacian O let 8 = 8, + 9 A where 8, € A2°X Nker[, and A € A>1X. Therefore we have

a =08 =00A=—-0%0%\) = —0(@xA) = 90(x)\) ,
——
ENZOX
where we have used that any (2,0)-form is primitive and hence, by the Weil identity, is self-dual.

In particular, o is 90-exact, so it induces a zero class in H?B’é(X ).
(ii) On the one hand, note that

kerd Nkerd N ALOX

H}e’g(X) = P = kerdNkerdNAMX
= ker d N A\M0X
C keronAMX = eramié = HX(X).
imo 0

It follows that
. 0,1 . 1,0 . 1,0 . 0,1
dime Hg(X) = dime Hp(X) < dimc H5 (X) = b —dimg¢ H5 (X),
where we use that the Frolicher spectral sequence degenerates, hence in particular by =
dime H3"(X) + dime Hy''(X).
On the other hand, by the assumption, we have
. 1,2 o 2,1 2,1 o 0,1
dime Hgo(X) = dime Hgo(X) < H (X) = dime H (X),
where we use the Kodaira and Serre duality Hg’l(X) ~ HY(X;0%) ~ HY(X;Ox) ~ Hg’l(X).
By summing up, we get
Al = dime H35(X) 4 dime H 2 (X) + dime HyZ (X) + dime Hyb(X) — 26y

= 2 (b — dime HY'(X) + dime HY' (X) = b1) = 0,
concluding the proof. O

2. CrAsS VII SURFACES

In this section, we compute Bott-Chern cohomology for compact complex surfaces in class VII.

Let X be a compact complex surface. By Theorem [ T] the natural map H?B’é(X ) — Hg’l (X) is always
injective. Consider now the case when X is in class VII. If X is minimal, we prove that the same holds for
cohomology with values in a line bundle. We will also prove that the natural map H llgé (X) — H%’Q(X )
is not injective.

Proposition 2.1. Let X be a compact complex surface in class VIIy. Let L € H'(X;C*) = PicO(X).
The natural map Hé’é(X; L)— Hg’l(X; L) induced by the identity is injective.

Proof. Let a € A2 X ® L be a dp-exact (2, 1)-form. We need to prove that o is 9,0 -exact too. Consider
a =00, where ¥ € A>°X ® L. In particular, 919 = 0, hence ¥ defines a class in H§’2(X; L). Note that
HZ*(X; L) ~ H*(X; Ox(L)) ~ H(X; Kx @ L) = {0} for surfaces of class VIly, [, Remark 2.21]. It
follows that ¥ = —5L77 for some n € AY°X @ L. Hence a = 6L5L77, that is, av is 91,01 -exact. O

We now compute the Bott-Chern cohomology of class VII surfaces.
Theorem 2.2. The Bott-Chern numbers of compact complex surfaces in class VII are:

hY =1

BC —
2,0 1,1 0,2
hge =0 hge=b2+1 hge =0

2,2 _

hpe=1.
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Proof. It holds Hp0(X) = ker@nkes DAY — keorg M kerd N AMOX C kerd NAMOX = kerdDn X
im 09 imd

H%’O(X) = {0} hence hyg, = hle = 0.
On the other side, by Theorem [T} 0 = Al = 2 (h}g’% + W5 — b1) =2 (h%’é - 1) hence h¢, =
1,2
hpe =1 - -
Similarly, it holds HZ2(X) = % =kerdNkerNA?0X C kerdNA>0X = % =
HZ%(X) = {0} hence hip¢, = hipe, = 0.
Note that, from [3, Theorem A], we have 0 < A% = 2 (h%g + hglc + h%% — bg) =2 (h}g’lc — bz)
hence h}B’é > by. More precisely, from [3] Theorem B] and Theorem [T} we have that h}éé = by if and
only if A? = 0 if and only if X satisfies the 00-Lemma, in fact X is Kéhler, which is not the case.

Finally, we prove that h%’lc = by + 1. Consider the following exact sequences from [2I, Lemma 2.3].
More precisely, the sequence

imdN AL X

0— lmiTﬁ = Hb(X) = im (HEL(X) = H3p(X30)) = 0
is clearly exact. Furthermore, fix a Gauduchon metric g. Denote by w := g¢(J-,--) the (1,1)-form
associated to g, where J denotes the integrable almost-complex structure. By definition of g being
Gauduchon, we have 00w = 0. The sequence
i d L1 |lw
im ﬂ/\_ X ¢ |H ) C

im 90

is exact. Indeed, firstly note that for n = 99f € im 99 N A1 X, we have

(nlw) = /XaEfAm _ /Xaéfw _ /Xfaéw ~ 0

by applying twice the Stokes theorem. Then, we recall the argument in [2I] Lemma 2.3(ii)] for proving
that the map

0—

imdnAbt X
(|w) : —ms —-C
is injective. Take o =d 3 € imdN ALY X Nker (-|w). Then
(Aall) = (afw) = 0,

where A is the adjoint operator of w A - with respect to ([--). Then Aa € ker(:[1) = im ADD, by
extending [I6] Corollary 7.2.9] by C-linearity. Take u € C°°(X;C) such that Aaw = AQOu. Then, by

defining o/ := a — ddu, we have [o/] = [a] € %, and Ao/ =0, and o = d ' where 3’ := 3 — Ju.
In particular, o/ is primitive. Since o’ is primitive and of type (1, 1), then it is anti-self-dual by the Weil

identity. Then

|2 = (]a’) = /Xo//\*_a’ _ —/Xo/AJ _ —/chmd@ _ —/Xd(ﬁ’/\dF) _ 0

and hence o = 0, and therefore [a] = 0.
imdnAltx
im 90
im (H}Bé (X) = H3,(X; (C)) is finite-dimensional, being a sub-space of H3,(X;C), we get that

Since the space is finite-dimensional, being a sub-space of Hllgé (X), and since the space

imdN AL X
dime 24O A gineC = 1,
im 00
and hence
imdN AL X
by < dime H5L(X) = dimeim (Hgé(X) = H§R(X;<C)) + dime lm.ﬁ < byt
1im
We get that dimc¢ H}Bé(X) =by + 1. O

Finally, we prove that the natural map H;’(QJ(X ) — H%’Q(X ) is not injective.

Proposition 2.3. Let X be a compact complex surface in class VII. Then the natural map Hé;é(X) —
H%’Q(X) induced by the identity is the zero map and not an isomorphism.
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Proof. Note that, for class VII surfaces, the pluri-genera are zero. In particular, H%’Q(X )~ H%’O(X ) =
{0}, by Kodaira and Serre duality. By Theorem 2.2 one has Hllgé (X) #{0}. O
2.1. Cohomologies of Calabi-Eckmann surface. In this section, as an explicit example, we compute

the cohomologies of a compact complex surface in class VII: namely, we consider the Calabi-Eckmann
structure on the differentiable manifolds underlying the Hopf surfaces.

Consider the differentiable manifold X := S' x S3. As a Lie group, S* = SU(2) has a global left-

invariant co-frame {61,62,63} such that de! = —2e? A e® and de? = 2e! Ae? and de? = —2e! A €2
Hence, we consider a global left-invariant co-frame { f, el e?, 63} on X with structure equations
df = 0
de! = —2e2n¢d
de? = 2et Ned
de? = —2el ne?
Consider the left-invariant almost-complex structure defined by the (1, 0)-forms
ol = el +ie?
{ 2 = eS+if
By computing the complex structure equations, we get
oot = 1ol A 9ot = i g
{8502 =0 and {5@2 = —iplAg!

We note that the almost-complex structure is in fact integrable.

The manifold X is a compact complex manifold not admitting Kahler metrics. It is bi-holomorphic
to the complex manifold My ; considered by Calabi and Eckmann, [6], see [I8, Theorem 4.1].

Consider the Hermitian metric g whose associated (1, 1)-form is

.2
i S
w=g ZW NgT.
Jj=1
As for the de Rham cohomology, from the Kiinneth formula we get
Hip(X;C) = C(1)eC <502 _ ¢2> @ C <¢12T _ ‘PH§> ®C <<P12E> 7

(where, here and hereafter, we shorten, e.g., 21 := p! A @2 A @!).
By [12, Appendix II, Theorem 9.5], one has that a model for the Dolbeault cohomology is given by

HZ*(X) ~ N\ (z21, 701)

where x;; is an element of bi-degree (¢,j). In particular, we recover that the Hodge numbers

PL = dime HE(X) |
{ 2 ety &) p,q€{0,1,2} e
he =1
=0 Wt =1
h2" =0 hit =0 h2? =0
o 2,1 o 1,2 o
hs =1 hz"=0
h2? =1
22 =

We note that the sub-complex
v N (@' 9% 85 @7) = ATt X
is such that Hz(t) is an isomorphism. More precisely, we get
1 %) = cmec([f])ec(ls])ec(e]).

where we have listed the harmonic representatives with respect to the Dolbeault Laplacian of g.
By [2] Theorem 1.3, Proposition 2.2], we have also Hpc(t) isomorphism. In particular, we get

iz = cwoe (el hoc( ) ee ().

5



where we have listed the harmonic representatives with respect to the Bott-Chern Laplacian of g.

In particular, the Bott-Chern numbers {h};, := dim¢ Hgg'(X)}p,qe{O,l,Q} are
0,0
1,0 Mpo =1 0,1
2 Mg =0 1,1 Mpo =0 0,2
hge =0 . hge = e hge =0
hpe =1 - hpe =1
hge =1

By [19] §2.c], we have
) - caec(e (@) ec([#])ec ([

where we have listed the harmonic representatives with respect to the Aeppli Laplacian of g.

In particular, the Aeppli numbers {h%;? := dim¢ Hgﬁq(X)}p,qG{O,l,Q} are
R00 _ 1
1,0 _ 4 0,1 _
Ry =1 Wyt =1
r%% =0 L At =1 , %% =0
hy™ =0 hs==0
A vy A
h%% =1

Summarizing, we have the following.

Proposition 2.4. Let X := S' x S? be endowed with the complex structure of Calabi-Eckmann. The
non-zero dimensions of the Dolbeault and Bott-Chern cohomologies are the following:

W2N(X) = ho(X) = h2H(X) = h2*(X) = 1
and
D) = HEL(X) = WEL(X) = RA(X) = WA () = 1.
Note in particular that the natural map Hé’é (X)— Hg’l(X) induced by the identity is an isomorphism,
and that the natural map Héé(X) — H3,(X;C) induced by the identity is injective.

3. COMPLEX SURFACES DIFFEOMORPHIC TO SOLVMANIFOLDS

Let X be a compact complex surface diffeomorphic to a solvmanifold I'\G. By [11, Theorem 1], X
is (A) either a complex torus, (B) or a hyperelliptic surface, (C) or a Inoue surface of type Sy, (D) or
a primary Kodaira surface, (E) or a secondary Kodaira surface, (F) or a Inoue surface of type ST, and,
as such, it is endowed with a left-invariant complex structure.

In each case, we recall the structure equations of the group G, see [I1]. More precisely, take a
basis {eq, e, €3,e4} of the Lie algebra g naturally associated to G. We have the following commutation
relations, according to [IT]:

(A) differentiable structure underlying a complex torus:
lejoex] =0 forany j.k € {1,2,3,4};

(hereafter, we write only the non-trivial commutators);
(B) differentiable structure underlying a hyperelliptic surface:

[e1,e4] = €2, [e2,e4] = —e1;
C) differentiable structure underlying a Inoue surface of type Sys:
g
le1,e4] = —aer +PBex, lea,eq) = —fer —aex, [es, eq] =2aes,

where o € R\ {0} and 8 € R;
(D) differentiable structure underlying a primary Kodaira surface:

[61,62] = —€3;
(E) differentiable structure underlying a secondary Kodaira surface:
le1,e2] = —e3, [er,eq] =€z, [ez,e4] = —e1;
(F) differentiable structure underlying a Inoue surface of type S*:

[ea,e3] = —e1, [ea,e4] = —ea, es,eq] =e3.

6



Denote by {e',e?,e3 e*} the dual basis of {e1,ez,es,e4}. We recall that, for any o € g*, for any

x,y € g, it holds da(x,y) = —a ([z,y]). Hence we get the following structure equations:

(A) differentiable structure underlying a complex torus:
de! = 0
de? = 0
de? = 0 ;
det = 0

(B) differentiable structure underlying a hyperelliptic surface:

del = e2net

de? = —elnet
de? = 0 ;
der = 0

(C) differentiable structure underlying a Inoue surface of type Sis:

del! = aelret+pe2Ne?
de? = —fBelnet+ae?net
de? = —2ae3net ,
det = 0

(D) differentiable structure underlying a primary Kodaira surface:

de! = 0
de? = 0
de? = elne?
der = 0

(E) differentiable structure underlying a secondary Kodaira surface:

de! = e2Aael
de? = —elnet
de? = elAe?
der = 0

(F) differentiable structure underlying a Inoue surface of type S*:

de! = e2Ae?
de? = e2net
de? = —e3net
det = 0

In cases (A), (B), (C), (D), (E), consider the G-left-invariant almost-complex structure J on X defined
by

Jer == ey and Jey := —e; and Jez := e4 and Jey := —e3.
Consider the G-left-invariant (1, 0)-forms
<p1 = el 4ie?
{ o = e tiet
In case (F), consider the G-left-invariant almost-complex structure J on X defined by

Jer := ea and Jey := —e; and Jes := e4 —qes and Jey := —e3 —qey,
7



where ¢ € R. Consider the G-left-invariant (1,0)-forms

ol = el +ie2 +iqet
©? = e +iet

With respect to the G-left-invariant coframe {(pl, <p2} for the holomorphic tangent bundle 7% T\ G,
we have the following structure equations. (As for notation, we shorten, e.g., ¢'? := o' A ¢%.)

(A) torus:
de! = 0
de? = 0
(B) hyperelliptic surface:
_ 1 1,13
dpl = —lpi241,12
de? = 0
(C) Inoue surface Spr: )
dwl _ ag;ﬂ 9012 _ a;ﬂ 9012
d 802 = —ia s022
(where ae € R\ {0} and € R);
(D) primary Kodaira surface:
{ de! = 0
d<p2 _ %Sﬁﬂ
(E) secondary Kodaira surface: i
{dsol = L2l
dp? = Lol
(F) Inoue surface S*: ) )
{dcpl = Lo +%¢21+%¢22
de? = 7¢%

4. COHOMOLOGIES OF COMPLEX SURFACES DIFFEOMORPHIC TO SOLVMANIFOLDS

In this section, we compute the Dolbeault and Bott-Chern cohomologies of the compact complex
surfaces diffeomorphic to a solvmanifold.

We prove the following theorem.
Theorem 4.1. Let X be a compact complex surface diffeomorphic to a solvmanifold I'\G; denote the
Lie algebra of G by g. Then the inclusion (/\'*'g*, 0, 8) — (/\"'X, 0, 8) induces an isomorphism both
in Dolbeault and in Bott-Chern cohomologies. In particular, the dimensions of the de Rham, Dolbeault,
and Bott-Chern cohomologies and the degrees of non-Kdhlerness are summarized in Table [A.

Proof. Firstly, we compute the cohomologies of the sub-complex of G-left-invariant forms. The compu-
tations are straightforward from the structure equations.

(A) torus (B) hyperelliptic (C) Inoue Syy
(p,q) H Hf}‘q ‘ dimc H;’q ‘ HEZ | dime HY, Hf}'q ‘ dime Hg'q ‘ HEE ‘ dime Hi¢, H%“’ ‘ dimg¢ H?’q ‘ HEL ‘ dime HYE,
(0,0 || 1) It 1w [ A I AL S 15 SO S ISV G S |
(1,0) || (¢*, ¥%) 2 (o' ¢ 2 (#%) 1 (%) 1 (0) 0 (0) 0
] ke B P e N IR 1< O T N | I
2.0) | (+) 1 <¢ o ) oo oo
1,1) <¢117 012, L, ¢2§> 4 12, 2L, 22 4 <¢1i' ¢2é> 9 <¢1I_ p22> 9 (0) 0 <¢22> 1
(0,2) <¢19> 1 1 () 0 (0) 0 () 0 () 0
(2,1) <¢121 ¢12§> p12T | 123 9 <¢121 o2 1 <,?7121> 1 <¢121 1
SET e T e
eolem | o 6 v L) o e | em] o e o

TABLE 1. Dolbeault and Bott-Chern cohomologies of compact complex surfaces diffeo-
morphic to solvmanifolds, part 1.



(D) primary Kodaira (E) secondary Kodaira (F) Inoue S+

(p,q) H H%‘q ‘ dim¢ H%’q ‘ HYE, ‘ dim¢ HZ, Hg'q | dime Hg’q | HYE ‘ dime HEZ, Hg'q ‘ dim¢ Hg'q ‘ HYE | dime HEZ,
(0,0) || (1) Y [ T e N
CRONIRED L Lo o O oo 0o |0 0
(0,1) <¢? ¢2> 2 <,ol> 1 <,92> 1 () 0 <YZ> 1 (0) 0
2.0) || () R T I S K 0| o o o |0 0
(1,1) <¢127 #7)1> 9 <,’911 12, W21> 3 (0) 0 99“> 1 (0) 0 ¢22> 1
(0,2) <gii> 1 <¢1§> 1 (0) 0 (0) 0 (0) 0 (0) 0
(2,1) Q121 122 9 Q121 122 9 ¢121> 1 o121 1 a5121> 1 Q12! 1
(1,2) ¢212> 1 »;,112‘ 4,0212 2 <O> 0 L,OIIQ 1 <0> 0 L,;‘llz 1
e | v ) Lo e v ()] v )] v ] |

TABLE 2. Dolbeault and Bott-Chern cohomologies of compact complex surfaces diffeo-

morphic to solvmanifolds, part 2.

(A) torus (B) hyperelliptic (C) Inoue Sy

k|| H:, | dime HE || HEL dime HYp, || Hp | dim¢ HY
0 (1) v R K v
a Katate @§> | ) |2 e-e) |
2| (e ehem et o) |6 |[(ehe®) |2 o oo
3 H <s0m, o122 112 ¢212> ‘ 4 H <<p1217 ¢11§> ‘ 9 H < 121 _ ié> ‘ 1 H
4] {e2) v ey b e |

TABLE 3. de Rham cohomology of compact complex surfaces diffeomorphic to solvman-

ifolds, part 1.

(D) primary Kodaira ( ) secondary Kodaira (F) Inoue S*

k Hé“R | dim¢ H§R HdR | dime HZiCR HalfR | dim¢ HQ“R
ofa v S S (¢ R
1] <¢ o) | s e-d) | (8- | ]
2| {2 ete®) | 4 o | o o [ o ]
3 H <<P12§: o212 121 7¢11é> ‘ 3 H < 1§> ‘ 1 H < @112+qwm> ‘ 1 H
4] {e) R <w”“> N <¢“> |

TABLE 4. de Rham cohomology of compact complex surfaces diffeomorphic to solvman-
ifolds, part 2.

In Tables [ and 2] and in Tables Bl and @] we summarize the results of the computations. The sub-
complexes of left-invariant forms are depicted in Figure[ll (each dot represents a generator, vertical arrows
depict the d-operator, horizontal arrows depict the d-operator, and trivial arrows are not shown.) The
dimensions are listed in Table

On the one side, recall that the inclusion of left-invariant forms into the space of forms induces an
injective map in Dolbeault and Bott-Chern cohomologies, see, e.g., [1, Lemma 9], [I, Lemma 3.6]. On
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the other side, recall that the Frolicher spectral sequence of a compact complex surface X degenerates
at the first level, equivalently, the equalities

dime H3"(X) + dime Hy'' (X) = dime Hjp(X;C)
and
dime HZ"(X) + dime Hy' (X) + dime Hg*(X) = dime Hip(X;C)
hold. By comparing the dimensions in Table (] with the Betti numbers case by case, we find that the

left-invariant forms suffice in computing the Dolbeault cohomology for each case. Then, by [I, Theorem
3.7], see also [2] Theorem 1.3, Theorem 1.6], it follows that also the Bott-Chern cohomology is computed

using just left-invariant forms. O
2 . o o . 2 . ° 2 T%—»o . .
(] e o (] (] (] l: o e .
1 1 1
[ ] e o [ ] [ ] [ ] L] ° (3 f
0 L] e o ] 0 ° ° 0 . . o»——»l
0 1 2 0 1 2 0 1 2
(A) torus (B) hyperelliptic surface (¢) Inoue surface Sy
2 ° ° T ° 2 Ti—»o ° ° 2 Ti—»o ° °
. . l»——»o l: o o . l: o e .
1 1 1
.)7%% L] L] o [ [ f L] [ [ f
0 ° l ° ° 0 ° ° o»——»l 0 ° ° o»——»l
0 1 2 0 1 2 0 1 2
(D) primary Kodaira surface (E) secondary Kodaira surface (F) Inoue surface S*

F1GURE 1. The double-complexes of left-invariant forms over 4-dimensional solvmanifolds.

(A) torus (B) hyperell (C) Inoue Sy (D) prim Kod (E) sec Kod (F) Tnoue S*
(p,a) || W27 hpE b AF | RPT Rl b AR | RZY R by AR BT ORGL b AN RPY R by AR BT ORGL by A
©@offlt 1 1 o Jt 1 1 o0 |1 1t 1 o0 [T 1 1 o0 |1 1 1 0 [t 1 1 o |
(1.o) [[2 2 11 ) 11 0 0 0 0
onl2 2 * O 1 2 Oy oo b0y g 3 0y g L0y 0
(2,0) || 1 1 0 0 0 0 1 1 0 0 0 0
(1,1) || 4 4 6 v 2 2 2 v 0 1 v 2 2 3 4 2 0 1 0 2 0 1 0 2
(0,2) || 1 1 0 0 0 0 1 1 0 0 0 0
(2,1) || 2 2 1 1 1 1 2 2 1 1 1 1
(1,2) || 2 2 4 0 1 1 2 0 0 1 ! 0 1 2 3 0 0 1 ! 0 0 1 ! 0
221 1 1 o |1 1 1 o0 |1 1 1 0 |1 1 1 0 |1 1 1 0 [1 1 1 0 |

TABLE 5. Summary of the dimensions of de Rham, Dolbeault, and Bott-Chern coho-
mologies and of the degree of non-Kéahlerness for compact complex surfaces diffeomorphic
to solvmanifolds.
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According to Theorem [[LT] the natural map H é’é(X ) — Hg’l (X) is injective for any compact complex

surface. We are now interested in studying the injectivity of the natural map H?B’é(X ) = H3(X;C)
induced by the identity, at least for compact complex surfaces diffeomorphic to solvmanifolds. In
fact, by definition, the property of satisfying the dd-Lemma, [8], is equivalent to the natural map
D, e HEH(X) — Hip(X;C) being injective. Note that, for a compact complex manifold of com-

plex dimension n, the injectivity of the map Hg,’gfl(X) — H32~1(X;C) implies the (n — 1,n)-th weak

00-Lemma in the sense of J. Fu and S.-T. Yau, [I0, Definition 5].
We prove the following result.

Theorem 4.2. Let X be a compact complex surface diffeomorphic to a solvmanifold. Then the natural
map Héé (X)— Hg’l(X) induced by the identity is an isomorphism, and the natural map H?Bé(X) —
H3,(X;C) induced by the identity is injective.

Proof. By the general result in Theorem [[T] the natural map H é’é(X ) — Hg’l(X ) is injective. In fact, it
is an isomorphism as follows from the computations summarized in TablesMland[2l As for the injectivity
of the natural map H éé (X) = H3,(X;C), it is a straightforward computation from Tables I and 2 and
Tables Bl and [

As an example, we offer an explicit calculation of the injectivity of the map Héé (X) = H3,(X;C)
for the Inoue surfaces of type 0, see [I3], see also [22]. We will change a little bit the notation. Recall the
construction of Inoue surfaces: let M € SL(3;Z) be a unimodular matrix having a real eigenvalue A > 1
and two complex eigenvalues 1 # 7. Take a real eigenvector (aq, aa, a3) and an eigenvector (f1, 2, 53)
of M. Let H={z € C | Smz > 0}; on the product H x C consider the following transformations defined
as

folz,w) = (Az, pw)
filz,w) = (24+oj,w+p6;) for je{1,2,3}.
Denote by I'p; the group generated by fo,..., f3; then I'j; acts in a properly discontinuous way and

without fixed points on H x C, and Sy := H x C/T'j is an Inoue surface of type 0, as in case (C) in [L1].
Denoting by z = x + iy and w = u + iv, consider the following differential forms on H x C:

1 1
el .= —dz, € = -dy, € =y du, et = ydv.
Y Y

(Note that e! and e?, and e Ae* are I'j-invariant, and consequently they induce global differential forms
on Sypr.) We obtain

1 1
del! = et ne?, de? =0, d€3=§€2/\€3, d€4=§€2/\€4.
Consider the natural complex structure on Sy; induced by H x C. Locally, we have
Jel = —e?> and Je?=¢€' and Je*=—e' and Je'=¢3.

Considering the I'j/-invariant (2, 1)-Bott-Chern cohomology of Sys, we obtain that

Hé’é(SM) = (C<[el ANeSAnettie? ned /\64]> )
Clearly 0 (61 ANedANetdie? Aed A 64) =0and e’ AedAet+ie?AedNet = —2iel nednet+2d (63 A 64),
therefore the de Rham cohomology class [e! Ae? Aet +ie? Aed Aet] = =21 [e! NeP Aet] € HIp(Su)
is non-zero. (]
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