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FROM LOCALLY CONFORMALLY KAHLER TO BI-HERMITIAN
STRUCTURES ON NON-KAHLER COMPLEX SURFACES

VESTISLAV APOSTOLOV, MICHAEL BAILEY, AND GEORGES DLOUSSKY

ABSTRACT. We prove that locally conformally Kéhler metrics on certain compact
complex surfaces with odd first Betti number can be deformed to new examples of
bi-Hermitian metrics.

1. INTRODUCTION

A bi-Hermitian structure on a complex manifold S = (M, J) consists of a pair
(J4 = J,J_) of integrable complex structures, inducing the same orientation, each of
which is orthogonal with respect to a common riemannian metric g. We are generally
only interested in the conformal class ¢ = [g]. Furthermore, the case when J; = J_ or
Jy = —J_ is considered trivial, so we shall also assume that J;(z) # +J_(x) for at
least one point z € M.

Bi-Hermitian geometry has attracted a great deal of interest recently through its link
with generalized Kdhler geometry, a natural extension of Kahler geometry first studied
by Gualtieri [22] in the context of generalized complex structures introduced by N. J.
Hitchin [27]. It is shown in [22] that a generalized Ké&hler structure is equivalent to
the data of a bi-Hermitian structure (g, J5,J_), satisfying the relations

(1.1) d°F, =—d°F_=dB,

for some 2-form B, where Fi(-,-) = g(Jx-,-) are the corresponding fundamental 2-
forms of the Hermitian structures (g, J+), and d%. = i(0+ — d+) are the associated
complex operators. We may (trivially) represent a Kéahler structure (J,w) by taking
Jy = +J, Fy = +w while recent work of Goto [20] provides a way to deform Kéahler
structures to non-Kahler, generalized Kahler structures.

This work is a part of the larger problem of the existence of (conformal classes of) bi-
Hermitian structures on compact complex surfaces. In this case, to each bi-Hermitian
structure (¢, J4,J_) on S = (M,J = Jy), one can associate (using the commutator
[Jy,J-] = JyJ_—J;J_ and a reference metric g € ¢) a non-trvial holomorphic section
o= [Jy,J_]F € H(S,K% ® L) of the anti-canonical bundle K% of S, twisted with a
topologically trivial flat holomorphic line bundle £, see [3, Lemma 3]. Furthermore, bi-
Hermitian structures (c, J4,JJ_) on compact real 4-dimensional (connected) manifolds
M can be divided into three different classes as follows:

(i) Everywhere on M, J; # J_ and J_ # —J_;
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(ii) Everywhere on M, Jy # J_ (resp. Jy # —J_), but for at least one x € M,
Ji(z) = —J_(x) (resp. Jy(x) = J_(z), though—Dby replacing J_ with —J_ if
necessary—we can assume without loss of generality that in this class J; and
J_ never agree but J; and —J_ sometimes do);

(iii) There are points on M where J = J_ and also points where J; = —J_.

Recall [35] 36, 12 29] that on a compact complex surface S = (M, J) a Kéahler
metric exists if and only if the first Betti number is even. Similarly, by [4, Cor. 1 and
Prop. 4], a bi-Hermitian conformal structure (¢, Jy, J_) corresponds to a generalized
Kahler structure for some g € c¢ if and only if by (M) is even. Furthermore, in this
case the flat holomorphic line bundle £ mentioned above is trivial ([3, Lemma 4]) and
the bi-Hermitian structures are either of type (i) or (ii) ([3, Prop. 4]). The first case
corresponds to Kéhler surfaces with trivial canonical bundle (see [3]), i.e. tori and
K3 surfaces. The classification in the second case follows by [3], [6] and a recent result
n [19]: S must be then a Kéhler surface of negative Kodaira dimension whose anti-
canonical bundle K§ has a non-trivial section and any Kéhler metric on S = (M, J;)
can be deformed to a non-trivial bi-Hermitian structure (¢, J4, J_) of the class (ii).

In the case when S doesn’t admit Kéhler metrics (i.e. the first Betti number of S
is odd), the complex surfaces supporting bi-Hermitian structures in the class (i) are
classified in [2].

Finally, another case for which the existence theory is fairly complete by [17) [13]
consists of the bi-Hermitian complex surfaces arising from twisted generalized Kdhler
structures, i.e., those for which relation (I.I]) is weakened to d$ Fy = —d® F_ = H for
some closed 3-form H: when the deRham class [H]| € H3,(M) is trivial, we recover
the generalized Kéhler case discussed above, while when [H]| # 0 one gets bi-Hermitian
structures with £ = O of the class (iii) ([3, Prop. 4]) on compact complex surfaces in
the Kodaira class VII ([I, Thm. 1]).

Thus motivated, in this note we narrow our focus to the existence of compatible
bi-Hermitian structures of the class (ii) on compact complex surfaces S = (M, J) with
odd first Betti number. It is shown in [I] that S then must be a complex surface in
the Kodaira class VII (i.e. S has Kodaira dimension —oco and b1(S) = 1) while [14]
provides a complete list of possibilities for the minimal model of S. A more exhaustive
taxonomy of bi-Hermitian complex surfaces with odd first Betti number is provided in
the appendix A.

One may regard a general bi-Hermitian structure (¢, J5, J_) on a compact 4-manifold
M as relaxing the generalized Kéhler compatibility relation (ILI). Even when by (M)
is odd, a choice of metric in ¢ satisfying (LI]) exists locally (see [3, Lemma 1] and
[13, Prop. 6]); thus, compatible bi-Hermitian conformal classes on S are always locally
conformal to generalized Kéhler structures. It turns out that under the assumption
(ii), one can further relate the bi-Hermitian structures to locally conformally Ké&hler
metrics, in a similar way that non-Kéhler generalized Kéahler structures arise as defor-
mations of genuine Kéhler ones [19, [20]. This is the context for our main result.

Recall that a locally conformally Kdhler (or lcK) metric on a complex manifold
S = (M, J) may be defined by a positive-definite (1,1)-form F satisfying dFF = 0§ A F'
for a closed 1-form #. The 1-form 6 is uniquely determined and is referred to as the Lee
form of F. The corresponding Hermitian metric g(-,-) = F'(-,J-) defines a conformal
class ¢ on M. Changing the Hermitian metric § = e/ g within ¢ amounts to transform
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the Lee form by 6 = 6 + df, showing that the deRham class [0] is an invariant of the
conformal class ¢. The study of IcK metrics, which goes back to foundational works
by F. Tricerri and I. Vaisman, is a natural extension of the theory of Kahler metrics to
certain classes of non-Kéhlerian complex manifolds, see e.g. [16] [32] for an overview of
the theory. Of particular interest is the case of compact complex surfaces, where recent
works [8, [10, 111 21] showed that 1cK metric exists for all known (and conjecturally for
all) compact complex surfaces with odd first Betti number, with the one exception of
certain Inoue surfaces with zero second Betti number described in [§].

Let S = (M, J) be a compact complex surfaces in the class VII. By the well-known
isomorphism (see e.g. [7])

(1.2) HA(S,C) =~ HY(S,0) “225° pid(S) ~ H(S,C*) ~ C*

for any deRham class a € H}, (S, C) there exists a unique flat holomorphic line bundle
Ly, over S. In the case where a is real, i.e., where it belongs to HéR(S, R), L, is
the complexification of a real flat bundle L, over S, and in the sequel we will tacitly
identify L, with L,, referring to such flat holomorphic bundles as being of real type.
Then we can make the following conjecture:

Conjecture. Let S = (M, J) be a compact complex surface in the class VII such that
HO(S,K% @ L) # 0 for a flat holomorphic bundle of real type £ with H%(S, LY =0 for
all £ > 1. Then the following two conditions are equivalent:

e There exists a bi-Hermitian structure (g, Jy,J_) of the class (ii) on (M, J),
such that J = J; and o = [J1, J_]# € H(S, K% ® L).

e There exists a IcK metric with Lee form —6 whose deRham class in H}(S, C)
corresponds to the flat bundle £*.

The assumptions are justified by the fact that, by [3l Proposition 4], [I, Theorem 1],
and the degree computation of [I, p. 561], the two cohomological conditions in the
above Conjecture are necessary for the existence of a bi-Hermitian metric satisfying
(ii), while H(S, £*) = 0 is necessary for the existence of a IcK metric with Lee form
corresponding to L*.

We will establish one direction of the conjectured correspondence by extending,
from the Kahler case to the strictly 1cK case, certain deformation arguments due to
R. Goto [19], N. J. Hitchin [26] and M. Gualtieri [23].

Theorem 1.1. Let S = (M, J) be a compact complex surface in the class VII such that
HO(S,K5®L) # 0 for a flat holomorphic line bundle of real type L. Let [0] € Hin(S,R)
be the real deRham class corresponding to L and suppose that S admits a lcK metric g
with Lee form —@. Then S also admits a bi-Hermitian conformal structure (c, J4, J-)
with Jy = J and o = [J4, J_]* € H(S,K5 @ L).

We use Theorem [[.T] to give new examples of bi-Hermitian metrics in the class (ii)
on certain Hopf surfaces.

2. PRELIMINARIES

For a closed 1-form 6 on M, we denote by L = Ly the flat real line bundle determined
by the class [§] € H}n(M). The differential operator dg = d — OA then defines the

Novikov complex
k—1

k
o /\Md_eg/\Md_e;
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and the corresponding cohomology groups H, g(M ). Let 84 = (U;) be an open covering
such that 0|y, = df;. Then, i defines a trivialization for L with (constant) transition
functions efi~fi on Ui; = U; N Uj; furthermore, (Us, e~ 1) defines an isomorphism,
denoted by e~/, between the Novikov complex and L-valued de Rham complex
a, a A d
B ANMRILHIAMSLS -
which acts at degree k by e~/ (a) = (e_fiawi) for any o € QF(M), and thus
dg = efidL‘Uieifi.
In particular, we have an isomorphism between the cohomology groups
HF(M) ~ H*(M, L).
Considering the Dolbeault cohomology groups of S with values in the flat holomor-
phic line bundle £ = L ® C, we have
szag—i-({?)g, and d9:69+59
with - -
Op=0—0""N and 9y =09—06%A,
giving rise to the isomorphisms

HEA(S) o HP9(S, £).

Similarly, the space of holomorphic sections H?(S, Ks®L) can be naturally identified
with the space of smooth sections of A%(TH0M) in the kernel of the twisted Cauchy—
Riemann operator

dgo = do + 0% @ 0.

We shall use the following vanishing result.

Proposition 2.1. Let S be a compact complex surface in the class VII and L o flat
holomorphic line bundle over S, such that H(S,K§ @ £) # 0 and HY(S,L®?) = 0.
Then H%2(S,L*) = 0. In particular, for any (0,2)-form with values in L*, o, there
exists a (0,1)-form with values in L£*, B such that o = O« 3.

Proof. As H(S, £%%) = 0 and HY(S,K% ® L) # 0, it follows that H°(S, Ks® L) =0.
By Serre duality, H?(S,£*) = H%2(S,£*) = 0. As QU3(M, L*) =0, a = O+ 3. O

Remark 2.2. If S is a minimal complex surface in the class VII with b2(S) > 0 and
HY(S,K% @ L) # 0, then H*?(S,F) = 0 for any flat bundle F by [14], [15, Lemma
2.1] and Serre duality.

Our proof of Theorem [LT] will rely on the following proposition, which should be
regarded as a straightforward generalization of [23, Theorem 6.2], which deals with
generalized Kahler structures, to the case of locally conformal generalized Kdhler struc-
tures [37].

Proposition 2.3. 23] Suppose S = (M, J) is a compact complex surface as in The-
orem [I1, endowed with a holomorphic section o € H°(S, K& ® L), where L is a flat
holomorphic line bundle of real type corresponding to a deRham class [0] € H}p(M,R).
Let Q = Re(0), and w € Q?(M, L*) be a dp«-closed 2-form with values in L* such that

e the J-invariant part of w is positive definite;
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o wJ —J'w+wQw =0, where w:TM - T*M QL*, Q: T*"M - TM ® L and
J* acts on T*M by J*a(-) = —a(J-).

Then,
(i) J- := —J — Qw is an integrable complex structure on M ;
(i) g = —w(J — J_) is a symmetric tensor field with values in L* which defines

a conformal class ¢ = [g] of riemannian metrics on M;
(iii) J4 :=J and J_ are orthogonal with respect to ¢ and J4(x) # J_(x) on M.

Proof. Let 4 = (U;) be an open covering such that ¢, = df;. This defines a trivi-
alization for L with positive constant transition functions (U;;,e/i=/i). We can then
write w = (w;) and o = (0;) with respect to 4, with w; (resp o;) being closed 2-forms
(resp. holomorphic Poisson structures) on each U; such that w; = efi~fiw; (resp.
oj = efivlig;). Putting Q; = Re(o;), by [23, Theorem 6.2] the J-invariant part of
w; gives rise to a bi-Hermitian metric g; on each U; with g; = efi=fig;. Thus, the
conformal structures ([g;], U;) extend to a global conformal class of riemannian metrics
on M; similarly, (U;, Q;w;) is a well-defined tensor field on M, showing that J_ is an
integrable almost complex structure on M. Finally, in order to verify (iii), suppose
that J4(z) = J_(z) for some xz € M. It follows from (i) that the endomorphism Quw of
T, M commutes with J. As the J-invariant part of w is positive-definite (and therefore
non-degenerate) while @) anti-commutes with J, one concludes that ) must vanishes
at x. But then, according to (i), J_(z) = —J(z) = —J4(x), a contradiction. O

Conversely, the general theory of bi-Hermitian complex surfaces [3] implies

Proposition 2.4. Any bi-Hermitian structure (¢, J4, J_) on a compact 4-manifold M,
such that Jy(z) # J_(x) for each x € M and Ji(x) # —J_(z) for at least one point
x, arises from Proposition [Z.3.

Proof. With respect to a reference metric g € ¢, let Fi(-,-) = g(J+-,-) denote the
fundamental 2-forms of the Hermitian structures (g, J;) and (g, J_), respectively, and
0+ the corresponding Lee forms defined by dFy = 6+ A Fy. By [3, Lemma 1], 64 +6_
is closed (as M is compact). Let J denote one of the complex structures, J4 say, and
S = (M, J) the corresponding complex surface. By [3, Lemma 3], the (1,1) tensor

1
P .= §(J+J7 - J7J+)

can be transformed, via the metric g, to a (2,0) tensor ). The later defines a smooth
section o of A\?(T19S) with Re(o) = Q, which belongs to the kernel of 9y = d + 0%'®
with 6 = %(9+ + 0_). Thus, by the discussion at beginning of this section, o can be
equally seen as an element of H°(S, K% ® £) where £ = L ® C is the flat holomorphic
line bundle of real type, corresponding to the deRham class [6].

Letting p = —1trace(.J4J_), one has (see e.g. [3, Eq. (2)]) that p is a smooth function
on M with values in [—1,1]. Furthermore, p(z) = £1 if and only if Jy(x) = £J_(z).
Thus, our assumption is that p < 1 on M, so that the 2-form
(21) wle) = Falty) = Tg(@ ),

is well-defined on M and is manifestly self-dual with respect to g. The co-differential of
w has been computed in the proof of [3, Proposition 4] to be §9w(-) = —1w((0.+0_)%, ),



6 V. APOSTOLOV, M. BAILEY, AND G. DLOUSSKY

where § stands for the vector field corresponding to a 1-form via the metric g. As w is
selfdual, the last equality equivalently reads as

o = %(9+ +0.) Aw,

showing that w is d_g closed and thus can be identified with a d«-closed 2-form with
values in L*. Note that the J-invariant part of w is, by construction, the positive-
definite fundamental 2-form Fy. The relations (i) and (ii) between Jy, J_, g and w are
checked easily. O

3. PrRoOOF OF THEOREM [I.1]

We start with a compact complex surface S = (M, J) in the class VII, endowed with
a section 0 € H°(S,K%® L), for a flat holomorphic line bundle £ = L& C, where L is a
flat real line bundle corresponding to a class [0] € H},(S). Let F be the fundamental
form of a 1cK metric on S with Lee form —6. Thus, F' is d_y closed, positive definite
J-invariant 2-form on S, which we will also identify with a dy~-closed positive definite
J-invariant 2-form with values in L* (still denoted by F'). Note that the degree of L
with respect to a Gauduchon metric g in the conformal class of the 1cK structure F' is
deg, (L) = —o= [3 10]2dvg < 0 (see e.g. [2, Eq. (5)]), so that HO(S,£%) =0, V£ > 1.
It follows that for any (0,2)-form with values in £L*, o = dz« 3, see Proposition 211

We wish to find a family w; of closed 2-forms with values in L*, such that wy = 0,
wo = F and, for sufficiently small ¢, (w;, @ = Re(o)) satisfy the two conditions of
Proposition 2.3l Note that the boundary condition at ¢ = 0 for w; implies that the
J-invariant part of w; will be positive definite for ¢ sufficiently small, so we have to deal
with the second condition relating w; and (). To this end, we suppose w; is expressed
as a power series in t,

wt:twl—i—tzwg—i—...,

where each w,, is a closed real 2-form with values in L* and w; = F.

The equation

(31) th — J*wt + thwt =0
relates to the (2,0) + (0,2) part of w;. In other words, it may be expressed as
(3.2) 2T w2 T0?) — 0, Quuy = 0.
If we decompose this term-by-term, we have (factoring out ¢")
1
* 2,04+0,2 __ )
(3.3) J*w2 002 — 5 Z w; Qu;.
i+j=n

Since w; = F is (1,1), this is satisfied for n = 1. Given w; for all : < n, B3] fixes
w2002,

Since we need that dp+w; = 0, in particular we must have 51;*w70{2 = ( for the wg’Q
thus determined: in complex dimension 2 this is automatic. By Proposition 211, there
exists a (0, 1)-form with values in £*, (,, such that

(3.4) 85*@}2 = aﬁ*gg*ﬁn.
If we let
(35) Wyll’l = aﬁ*/ﬁn + 5L*Bn

then it follows that dj+w, = 0.
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Thus, in order to show that our choices of w; satisfy equation ([B.3)), it remains to be
shown that the (1,1)-part of (3:3]) vanishes, i.e.,

Lemma 3.1. Given the w, as defined above,
(3.6) > (@iQu)" =0
i+j=n
Proof. In other words, we want to show that
Z (J*wiij + wiijJ) =0
i+j=n
Since @ anti-commutes with J, i.e. JQ = —QJ*, this is

Z (J*wiij — wiJij — wiQJ*wj + wiijJ)

i+j=n
= Z (J*wl — wl-J)ij — Z wiQ(J*wj — ij)
i+j=n it+j=n

Now let us assume, inductively, that ([3.6)—or, equivalently, (8.3)—holds for all n’ < n.
Then we make the substitution

J*wi - wiJ = Z kawl
k=i
(and likewise for w;), so that we finally get

Z (J*wiQuwj + wiQuw;J) = Z wEQuwiQw; — Z w; QwiQu; = 0.
i+j=n jt+k+l=n i+k+l=n
O

In this way we may build a formal power series for a real dj«-closed form w; with
values in L*, which satisfies (3I]). It remains to be shown that this series has a
positive radius of convergence. This is rather standard, by using Hodge theory as in
[30]. Thus, let g be a Hermitian metric on S (we can take for instance the 1cK metric
corresponding to F') and h a Hermitian metric on the holomorphic line bundle £*
(parallel with respect to the flat connection on L*). Denote by Ul = Oz« 0. + 050,
the resulting Laplacian acting on smooth sections of A%2S ® L£*. As H%2(S, L*) = 0,
O+ is invertible on C*°(A%2S ® L£*) with inverse denoted by G. Then, letting

Bn = 0p-G(wp?),
(so that f3,, manifestly solves (8.4])) we get, for n > 1,
whl = 07-95.G(w2?) + complex conjugate,
and therefore -

Wy = w? + 92+ 0. G(w2?) + complex conjugate,
where w3? is inductively defined by ([3.3)). Schauder estimates for the Laplacian imply
that in C**(M) (for given k > 2,0 < a < 1)

HWnHk,oz < Ck,oz Z ||Wi||k,oc‘|wj||k,om
i+j=n
for some positive constant Cy, o. We can conclude that the power series wy = > 7 | wpt™
converges for small ¢, by showing as in [30, Chapter 4, Thm. 2.1] that ||jwy||[ra <
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7

ﬁSn, where S,, = bfl—;‘ with by o = 16C} o||F||k,o (therefore the series converges in
Che(M) for t € [0,1/by.q))-

In order to establish smoothness of w;, we use elliptic regularity as in [30]. The real
2-form w;y satisfies wyp = 0,w1 = F as well as the equation ([3.2) and

(3.7) wit = tF 4 2Re{d+ 05 Gw"?}.
Substituting ([B.7) into (3.2) and taking only the (0,2) part for simplicity, we get

a3 — 0,2
2iwd? = wd?Qud? + ((tF + 2Re{0;- 05 G} Q(tF + zRe{aﬁ*az*ng,Q}))

Letting ©; = tho’z, thus
(3.8) 2i0,+0, = E(0y),

where
_ _ _ _ 0,2
E(6;) = (((Dz:* + 2Re 0 97+07+)0¢ + tF)Q((Og+ 4 2Re 0 O+ 07+ )0y + tF))

is a non-linear second-order differential operator with smooth coefficients acting on
sections of A28 ® L*. As Oy = 0, it follows that for small ¢ > 0, the non-linear
equation (B.8) is elliptic at Oy, so that ©; must be C* (see e.g. [9, p. 467, Thm. 41]).

Remark 3.2. Our method of proof works without change in the case when S = (M, J)
is a compact complex surface of Kodaira dimension —oo with b;(M) even, endowed
with a non-trivial section o of the anti-canonical bundle K§ and a Kahler metric w:
this formally is the case when £ = O. In this case, using the Hodge isomorphism, we
have H%2(S) = HY(S,Kg) = 0 as the Kodaira dimension is negative. We thus recast
[19, Theorem 6.1] entirely within the framework of bi-Hermitian geometry. A more
general approach to the deformation theory of generalized Kahler structures of any
dimension has been independently developed by M. Gualtieri and N. J. Hitchin [24].

Remark 3.3. We point out that as a by-product of Theorem [[I, we obtain non-
obstructness of the class [QF] € H!(S,T1°S), for any IcK metric F' with Lee form
corresponding to L*, should it exist.

4. TOWARDS A CONVERSE

In order to further motivate the conjecture in the introduction, recall that by Propo-
sition 2.4] any bi-Hermitian structure (¢, Jy,J_) on S = (M,J) with J = J; and
Ji(z) # J_(z) for each x € M, gives rise to a dp--closed form w whose J-invariant
part is positive-definite: in other words, J is tamed by a locally conformally symplectic
2-form w with Lee form corresponding to L*. Note that the flat line bundle L* is the
dual of the flat bundle L for which o € HY(S,K%® £). As computed in [I] (see also [2]
Eq. (6)]), another necessary condition for L* is that deg, (L") > 0 with respect to the
Gauduchon metric of (¢, J), in particular H%(S, £) = 0 for £ > 1. On a given minimal
complex surface in the Class VII with a global spherical shell and second Betti number
ba(M) > 0, one can show that there is a finite number of such line bundles L. We
therefore ask the following more general

Question 4.1. Let S = (M, J) be a minimal compact complex surface in the class
VII, with a global shperical shell, and £ a flat holomorphic line bundle of real type such
that HO(S, £°) = 0 for any ¢ > 1. Suppose there exists a dp+-closed 2-form with values
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in L*, w, whose J-invariant part is positive definite and denote Q = [w] € H?(M, L*)
the corresponding Novikov cohomology class. Does {2 contain a positive-definite J-
invariant 2-form F'?7

Note that the vanishing HY(S,£f) = 0 for £ > 1 is a necessary condition as the
degree of £ with respect to a Gauduchon metric g in the conformal class of the 1cK
structure is deg,(£) = —o= [3 1012dvg < 0 (see e.g. [2, Eq. (5)]).

For a compact complex surface with b1(S) even and H°(S,Ks) = 0 (and £ = O),
the analogous statement is known to be true as H3,(S) & H"!(S,R) and therefore
the deRham class 2 = [w] of a symplectic form taming J defines a Kéhler class by a
result of Buchdahl [12] and Lamari [29].

Similar question has been raised in [10, Remark 1] and in [33]. The general existence
results in [10, [11] show that 1cK metrics exist for L* corresponding to an interval of big
Lee forms in H},(S) (i.e. for Lee forms with deRham classes ta, 0 # a € Hj,(M), t >
£(S) > 0) while the stability results in [I8] [10] imply that the existence of IcK metrics
in H2(M, L*) is stable under complex deformations of S.

5. EXAMPLES
In this section we give new examples of bi-Hermitian metrics on primary Hopf
surfaces S, such that Jy (z) # J_(z) on S and J4 = —J_ on an elliptic curve £ C S.
To the best of our knowledge, these are new: Indeed, they are not strongly bi-Hermitian
(as Jy = —J_ on E) nor are they ASD (see [34]) as J; # J_ everywhere. According to
[13], these examples generate bi-Hermitian structures of the same kind on the blow-ups
of S at E.

Recall that a diagonal primary Hopf surface S is defined as the quotient of C? \
{(0,0)} by a contraction

(5.1) Y(z1,22) = (a121,a222), 0 <la1]| <laz| < 1.

Letting a = (a1,az) we denote by S, the resulting diagonal Hopf surface. As S, =
S1x S3, any holomorphic line bundle is topologically trivial. The diagonal Hopf surface
S, admits two elliptic curves, F1 and Fs, which are respectively the projections of the
axes {21 = 0} and {23 = 0} in C? under the contraction (5.I). A holomorphic section
of the anti-canonical bundle K§ is induced by the y-invariant bi-vector

0
21226—271 A 92
showing that
,Cga = [El + EQ]

Without loss of generality, we can choose the identification (L2]) so that K corre-
sponds to ajas € C* and thus [E;] corresponds to a;. It follows that the flat bundles

Ly pz = p1[E1] + p2[E2], pi >0,

which correspond to a}'ab? under (L2)), all admit holomorphic sections while Ks, ®

Ly, p, has a non-trivial sections for p; > —1. Furthermore, it is not difficult to show
(see e.g. [2, Lemma 4]) that £,, ,, is of real type if and only if a}" ab? is a real number.
Finally, the condition HO(Sa,Ef;l,m) = 0 implies p; < —1 or p» < —1. We thus get
two families of flat bundles £, = £_1,, p > —1 (resp. ENq = L4-1,9 > —1) possibly

satisfying the necessary conditions in Theorem [[T], subject to the constraint a}/a; € R
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(resp. af/az € R). It remains to investigate whether or not there is a IcK metric on

S in H?(S,, L}) or H(S,, LY).

In the case p = —1 (or equivalently ¢ = —1), the existence of IcK structure in
H?(Sq, L) = H*(54,K%, ) (with ajay € R) is established in [21] while the existence of
(strongly) bi-Hermitian deformations was observed in [2]. So we shall assume p,q > 0.

It is shown in [21] that any diagonal Hopf surface S, admits a Vaisman IcK metric,
i.e. a lcK Hermitian metric gy whose Lee form 6 is parallel. As observed in [2],
the deRham class [fy] of the Gauduchon—-Ornea lcK metrics corresponds to the real
number ¢y = |ai||az|. The Vaisman IcK metrics always come in families, called O-type
deformation in [§],

t—1
gt:go—kw(%@@o—i—t]@o@c]‘%)a t >0,
0

with Lee forms 6; = tfj, so that the deRham class of 6 corresponds to cf, (see e.g. [8]
Eq. [7)] or [5) Eq. (21) & (22)]). It follows that for each flat bundle of real type, £,
corresponding (via (L2)) to a positive real number p > 1, there exists a 1cK metric
with Lee form corresponding to Lj,. Thus, if for some p > 0 we have ab/ay > 1 (resp.
for some ¢ > 0 we have af/as > 1), we can apply Theorem [Tl with £ = £, (resp.
L = L,) in order to construct bi-Hermitian metrics metrics on S' x S3. As a special
case, we can take a; =as = A € R and £ = Lo = Ly (ie. p=0=q).

Another class of (primary) Hopf surfaces are the non-diagonal ones, when S = S, »
is obtained as a quotient of C2\ {(0,0)} by the contraction

Y(z1,22) = (021 + Az, bza), 0 < [b] <1,A#0,m > 1.

The deformation argument in [21] shows that such S still admits 1cK metrics in each
H?(S, L;) where L, is a flat bundle corresponding to 4 > 1. Furthermore, the axe
29 = 0 of C? defines an elliptic curve E C S with K& = (m 4+ 1)E and corresponding
complex number L. If b is real, then Theorem [[I] applies for the flat bundles
L=1L,=—p[E], 0 <p<m, corresponding to b~P.

Remark 5.1. It is well-known (see e.g. [32]) that the Vaisman IcK metrics we have used
to produce our examples of bi-Hermitian metrics admit potentials, i.e. there exists a
smooth (real) section f of L* such that F = 2i07+0c+f = dp+d$.f. This allows to
construct bi-Hermitian metrics via a hamiltonian flow, originally due to Hitchin [25],
and re-casted in the case of Hopf surfaces in our previous work [2] (in order to obtain
strongly bi-Hermitian metrics). Indeed, for any such potential f, Xy = Q(df) is a
smooth vector field on M whose flow ¢4 defines a family of 2-forms

t
wy ::/ pa(dp+d§« f)ds,
0

satisfying the second relation in Proposition 23] and (%)tzo =dp+dj.f = F (see
[23]). Thus, we obtain a familly of bi-Hermitian structures with J, = J and J. =

—pi(J).
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APPENDIX A. A ROUGH CLASSIFICATION OF BI-HERMITIAN COMPLEX SURFACES IN
THE CLASS VIIj

In this section, we recast the list obtained in [I4] of the minimal compact com-
plex surfaces S = (M, J) in the Kodaira class VII, possibly admitting compatible
bi-Hermitian structures, in terms of the classification of bi-Hermitian structures in the
three classes (i)—(iii) from the introduction (defined as a function of the number of
connected components of the divisor determined by o = [J4, J_]* € HY(S, K} ® L)).

As in [14], we will assume that the algebraic dimension of S is zero, i.e. that
there are no non-constant meromorphic functions on S, and that the fundamental
group 71(S) = Z. These assumptions exclude only the cases of elliptic primary Hopf
surfaces (i.e. diagonal Hopf surfaces with ai’ = ab? for some p1,ps € Z, see [28]),
and the secondary Hopf surfaces (which are finitely covered by a primary Hopf surface
described in Section [Bl). We then have the following

Proposition A.1. Let S = (M,J) be a minimal compact complex surface in the
Kodaira class VII of algebraic dimension 0, endowed with a compatible bi-Hermitian
structure (¢, Jy = J,J_). By replacing S with a finite covering if necessary, assume
also the fundamental group of S is Z. Then one of the following must hold.
(i) Bverywhere on M, Jy # J_ and J_ # —J_. Theno = [J4,J_]F € H*(S,K5®
Ks) never vanishes, and S is a primary Hopf surface described in [2, Thm. 1].
(ii) Fverywhere on M, J+ # J_ but for at least onex € M, J,(x) = —J_(x). Then
o= [Jy,J_]F € HY(S,Kf ® L) with £ # O, and S must be either a primary
Hopf surface, a parabolic Inoue surface, or a surface with GSS of intermediate
type.
(iii) There are points on M where Jy = J_ and also points where J = —J_. Then
o= [J;, " € HY(S,K%) and S must be a primary Hopf surface, a parabolic
Inoue surface or an even Inoue-Hirzebruch surface.

Proof. The case (i) is treated in [2].

We will next establish (iii). As the zero set of the holomorphic section o = [J,, J_]f €
H(S,K% ® L) consists of the points where either J,(z) = J_(z) or Ji(z) = —J_(z)
(see e.g. [3]), we conclude that g ® L is represented by an effective divisor D with at
least two connected components. By [14, Thm. 0.4], S must be then either a primary
Hopf surface, a (parabolic) Inoue surface, or an Inoue-Hirzebruch surface. The Inoue—
Hirzebruch surfaces come in two families, called even or odd in [14], and it has been
already observed in the proof of [14], Cor. 3.45] that the odd Inoue-Hirzebruch surfaces
cannot appear as the effective divisor representing Kg ® L for some flat bundle £ is
connected (it is given by one cycle of rational curves). It remains therefore to show
that in the three cases for .S, we must have £ = O. Suppose for contradiction that
L # O: by the degree computation in [I], we must then have H°(S, £) = 0 for £ > 1.

If S is a diagonal Hopf surface as in Section [l with [D] & K% ® £ and H°(S, L") =0
for £ > 1, we have already noticed that [D] = (p + 1)[E2],p > 0 or [D] = (¢ +
1)[E1],q > 0. As we assume that S doesn’t have non-trivial meromorphic functions,
it follows D = (p+ 1)Ey or D = (¢ + 1)E7, a contradiction as D has at least two
connected components. Similarly, if S is a non-diagonal primary Hopf surface, then
K& = (m 4+ 1)[E] and therefore D = (p+ 1)E,p > 0, a contradiction.

If S is a parabolic Inoue surface or an even Inoue-Hirzebruch surface, then Kg =
[A + B] for a cycle A of rational curves and a smooth elliptic curve B, or for two
cycles of rational curves A, B, respectively (see [14, Prop. 2.7] and [31]). In the first
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case, the cycle A represents a flat bundle, and therefore, by [14, Lemma 2.26], we must
have D = B, a contradiction as B is connected; in the second case, neither A nor B
represents a flat bundle, so we obtain a contradiction as we assumed £ # O.

Finally, we consider the case (ii): the only additional point with respect to [14}
Thm. 0.4] is that Inoue-Hirzebruch surfaces cannot support bi-Hermitian structures
of the class (ii). Indeed, as we have already explained in the introduction, a necessary
condition for the existence of such bi-Hermitian structures is that H%(S,K5®L) # 0 for
a non-trivial flat bundle with H°(S, £*) = 0 for £ > 1. For the odd Inoue-Hirzebruch
surfaces, H(S,K% ® L) # 0 for a (unique) a flat bundle £ which satisfy £2 2 O while
for the even Inoue-Hirzebruch surfaces the only flat bundle £ with H(S,K% ® L) # 0
is the trivial one, [31 [14]. O

Remark A.2. The general existence problem for bi-Hermitian structures can be reduced
to the minimal case by [I4] Lemma 3.43] and the construction in [I3]. From the list
above, the existence is now fully established in the case (i) by [2] and in the case (iii)
by [17]. The construction in this paper provides the first existence results in the case
(ii), but a complete resolution is still to come. We also note (see [4, Prop. 3]) that the
bi-Hermitian minimal complex surfaces in the class (iii) are precisely the ones arising
from twisted generalized Kéhler structures.
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