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Abstract. We discuss the Haar negligibility of the positive cone associated with a
basic sequence in a separable Banach space. In particular, we show that up to equiva-
lence, the canonical basis of c0 is the only normalized subsymmetric unconditional basic
sequence whose positive cone is not Haar null, and the only normalized unconditional
basic sequence whose positive cone contains a translate of every compact set. We also
show that an unconditional basic sequence with a non–Haar null positive cone has to
be c0-saturated in a very strong sense, and that every quotient of the space generated
by such a sequence is c0-saturated.

1. Introduction

The main topic of this paper is Haar negligibility, a quite well-known but still rather
mysterious notion of smallness introduced by J. P. R. Christensen [Chr1] in the 1970’s
(and rediscovered much later in [HSY]). A Borel subset A of a Polish abelian group G
is said to be Haar null if there exists a (Borel) probability measure µ on G such that
µ(A+ x) = 0 for every x ∈ G. Any such measure µ is called a test measure for A.

If the group G is locally compact, Haar negligibility turns out to be equivalent to
negligibility with respect to the Haar measure of G. Haar null sets always have empty
interior, and they form a σ-ideal, i.e. any countable union of Haar null sets is again Haar
null. Also, a “Pettis’ Lemma” is available: if a Borel set A is not Haar null, then A−A
is a neighbourhood of 0; in particular, every compact subset of G is Haar null if G is not
locally compact. Finally, it follows from the inner regularity of measures that if a Borel
set A ⊂ G contains a translate of every compact subset of G, then A is not Haar null.
(This is essentially the only known way of showing that a given set is not Haar null). We
refer to [BeLi, Chapter 6] for more information.

In the present paper, we study Haar negligibility in the framework of separable Banach
spaces.

Our work is motivated by beautiful results obtained by Matouskova and Stegall, which
provide the following surprising link between the geometry of a Banach space and the
Haar negligibility of its closed convex subsets with empty interior: A separable Banach
space X reflexive if and only if every closed convex subset of X with empty interior is
Haar null. More precisely: If X is reflexive then every closed convex subset of X with
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empty interior is Haar null ([M3]); and if X is not reflexive, there exists a closed convex
subset of X with empty interior which contains a translate of every compact subset of X
([MS]).

Thus, we see that as far as Haar negligibility is concerned, closed convex sets in reflexive
Banach spaces are “uninteresting”. However, this does not rule out the possibility that
closed convex sets with empty interior taken from an interesting specific class turn out
to be Haar null in some nonreflexive Banach spaces, and non–Haar null in some others.

With this in mind, a quite natural class of examples to consider is that of positive
cones associated with basic sequences. If e = (ei)i≥1 is a basic sequence in a Banach
space X, the positive cone associated with e is the set of all x ∈ X which can be written
as x =

∑∞
1 xiei with nonnegative coefficients xi. This positive cone will be denoted by

Q+(e). (That Q+(e) has indeed empty interior is easy to check).

In some sense, the real starting point of our study is the following well-known fact: the
positive cone of c0 is not Haar-null, whereas the positive cone of `1 is Haar null. More
generally, positive cones show-up naturally in the study of Haar negligibility, and play
a crucial role in the proofs of the Matouskova and Stegall results. They are the main
objects of study in the present paper.

Throughout the paper, we shall say that a positive cone Q+(e) in a Banach space X
is Haar null if it is Haar null in [e], the closed subspace of X generated by e.

Ideally, one would like to characterize the basic sequences e whose positive cone is
Haar null. (Note that since Haar negligibility is preserved under linear isomorphisms,
this can be done only up to equivalence). However, this seems rather too ambitious, and
we mostly concentrate on unconditional basic sequences.

Note that if e is unconditional then Q+(e)−Q+(e) = [e]; so one would rather expect
positive cones to be non–Haar null. Nevertheless, all our results suggest that the following
“conjecture” might be true: up to equivalence, the only unconditional normalized basic
sequence whose positive cone is not Haar null is the canonical basis of c0.

We have been unable to prove this in full generality, but we believe that some of our
results do support this conjecture rather convincingly. The most “important” ones seem
to be the following.

• The conjecture holds true for subsymmetric unconditional basic sequences, and
also for all unconditional basic sequences if “non–Haar negligibility” is replaced
by the stronger property “to contain a translate of every compact set”.
• A normalized unconditional basic sequence e whose positive cone is not Haar null

has to be “c0-saturated” in quite a strong sense: every normalized block-sequence
of e has a subsequence equivalent to the canonical basis of c0.
• If a Banach space X has an unconditional basis whose positive cone is not Haar

null, then every quotient of X is c0-saturated.

The paper is organized as follows.
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In Section 2, we introduce the notions and tools which will be used throughout the
paper, and we recall some known results concerning the Haar negligibility of positive
cones.

In Section 3 we give a characterization of those basic sequences whose positive cone
contains a translate of every compact set, and we use it to show that the canonical
basis of c0 is (up to equivalence) the only normalized unconditional basic sequence with
this property. We also observe that unconditionality cannot be dispensed with, one
counterexample being the positive cone of the classical James space.

In Section 4 we obtain several results concerning unconditional basic sequences whose
positive cone is not Haar null. We show in 4.1 that any block-sequence of such a sequence
e also has a non–Haar null mositive cone, from which it follows that all block-sequences of
e are both shrinking and non–boundedly complete. In 4.2, we isolate a simple necessary
condition for the non–Haar negligibility of a positive cone, which turns out to be crucial
in our study. We use this condition to prove in a very elementary way that the positive
cone of the Schreier space is Haar null, and that the canonical basis of c0 is the only
symmetric sequence with a non–Haar null positive cone. The c0-saturation property
stated above is established in 4.3, and the result concerning subsymmetric sequences
follows immediately. In 4.4, we prove a stronger c0-saturation result. However, in 4.5 we
give an example showing that this kind of c0-saturation is not even sufficient to ensure
the non–Haar negligibility of the positive cone.

In Section 5 we show that non–Haar negligibility of the positive cone associated with
an unconditional basis entails c0-saturation of the quotients.

Section 6 is independent of the rest of the paper. We give simple examples of Haar
null positive cones admitting a Gaussian test measure. On the other hand, we observe
that the positive cone associated to an arbitrary Schauder basis is never Gauss null.

Finally, we list a few natural questions in Section 7.

This work is based on Chapter 3 of the third author’s PhD thesis [Mo].

2. Background

2.1. Notations and terminology. We start by fixing some notations and recalling a
few quite well-known notions from Banach space theory. Our references are [LiTz] and
[AK].

Throughout the paper, the symbol X will denote a Banach space with norm ‖ · ‖. As
a rule, all Banach spaces are real, separable and infinite-dimensional.

For any family of vectors e = (ei)i∈I in X, we denote by [ei; i ∈ I], or simply by [e],
the closed linear span of {ei; i ∈ I}.

A sequence e = (ei)i≥1 ⊂ X is a basic sequence if it is a Schauder basis of its closed
linear span [e], i.e. every x ∈ [e] can be written in a unique way as x =

∑
i≥1 xiei, where

xi ∈ R and the series is norm-convergent. If, further, every (convergent) series
∑
xiei is

unconditionnally convergent, the basic sequence e is said to be unconditional. A basic
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sequence (ei) is said to be normalized if ‖ei‖ = 1 for all i, and semi-normalized if it is
bounded and infi ‖ei‖ > 0.

If e = (ei) is a basic sequence, we denote by (e∗i ) the associated sequence of coordinate
functionals on [e]. Note that if infi ‖ei‖ > 0 then (e∗i ) is w∗- null, i.e. 〈e∗i , x〉 → 0 for every
x ∈ [e].

The basis constant of e = (ei)i≥1 is the number K(e) := sup {‖Pn‖, n ≥ 1}, where Pn
is the canonical projection of [e] onto [ei; 1 ≤ i ≤ n]. This depends heavily on the given
norm ‖ · ‖, but the formula |||x||| := sup {‖Pn(x)‖, n ≥ 1} defines an equivalent norm on
[e] with respect to which the basis constant of e is equal to 1. Since Haar negligibility
is preserved under linear isomorphisms, it follows that for our purpose, we can safely
restrict ourselves to basic sequences with basis constant equal to 1.

Likewise, if e is unconditional, the unconditional basis constant of e is the number
Ku(e) := sup {‖PI‖; I ⊂ N}, where PI is the canonical projection of [e] onto [ei; i ∈ I];
and this can be made equal to 1 by replacing the original norm with the equivalent norm
|||x||| := sup {‖PI(x)‖; I ⊂ N}. When Ku(e) = 1, the basic sequence e is said to be
1-unconditional.

If e is a basic sequence in X, we denote ‖ · ‖e the restriction of ‖ · ‖ to the closed
subspace [e] ⊂ X. If e is normalized, we denote by ‖ · ‖e∞ the “`∞ norm built on e”, i.e.
the norm on [e] defined by ∥∥∥∥∥∑

i≥1

xiei

∥∥∥∥∥
e

∞

:= sup
i≥1
|xi| .

When e is a basis of X, we write ‖ · ‖∞ instead of ‖ · ‖e∞.

It is important to keep in mind that the original norm always dominates the `∞ norm
built on a normalized basic sequence e; more precisely, we have

‖ · ‖e∞ ≤ 2K(e)‖ · ‖e .

Two basic sequences (ei)i≥1 and (fi)i≥1 (living on possibly different Banach spaces) are
said to be equivalent if, for every sequence of scalars (xi)i≥1, the convergence of the series∑
xiei is equivalent to the convergence of the series

∑
xifi; in other words, if there is an

isomorphism from [ei; i ≥ 1] onto [fi; i ≥ 1] sending ei to fi. Note that the property “to
have a Haar null positive cone” is invariant under equivalence.

If e = (ei)i≥1 is a basic sequence, a block-sequence built on e is a sequence f = (fj)j≥1

of the form

fj =

pj−1∑
i=pj−1

aiei ,

where (pj)j≥0 is an increasing sequence of integers and (ai) is a sequence of scalars. Any
such sequence f is basic, with K(f) ≤ K(e); and if e is unconditional then so is f , with
Ku(f) ≤ Ku(e).
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Finally, recall that a basic sequence e = (ei) is said to be shrinking if the linear span
of (e∗i ) is dense in the dual space of [e], and boundedly complete if the convergence of a
series

∑
xiei is equivalent to the boundedness of its partial sums.

By a famous result due to R. C. James, a basic sequence generates a reflexive Banach
space if and only if it is both shrinking and boundedly complete. Moreover, an uncondi-
tional basic sequence is non–shrinking if and only if it has a subsequence equivalent to
the canonical basis of `1, and non–boundedly complete if and only if it has a subsequence
equivalent to the canonical basis of c0.

2.2. Three useful facts. For the sake of future reference, we now recall three extremely
useful results concerning basic sequences.

The first one is merely an observation:

Fact 2.1. If e = (ei)i≥1 is an unconditional basic sequence, then every bounded sequence
of scalars a = (ai)i≥1 defines a “bounded multiplier” on [e]; more precisely, for any
convergent series

∑
xiei, the series

∑
aixiei is convergent with∥∥∥∥∥∑

i≥1

aixiei

∥∥∥∥∥ ≤ Ku(e) ‖a‖∞

∥∥∥∥∥∑
i≥1

xiei

∥∥∥∥∥ .
In particular, any fixed change of signs on the ei’s defines an isomorphism of [e]. Since

Haar negligibility is preserved under linear isomorphisms, it follows that the property “to
have a Haar null positive cone” is invariant under changes of signs: if an unconditional
basic sequence (ei) has a Haar null positive cone, then so does any sequence of the form
(±ei).

The second result we want to state explicitely is the “principle of small perturbations”,
which is a standard tool for establishing the equivalence of two basic sequences:

Lemma 2.2. Let e = (ei)i≥1 be a normalized basic sequence in X. If f = (fi)i≥1 is a

sequence in X such that η :=
∑∞

1 ‖ei − fi‖ <
1

2K(e)
, then f is basic and equivalent to e.

Moreover, for every convergent series
∑
xifi, one has the following estimate:

(1− 2K(e)η)

∥∥∥∥∥
∞∑
i=1

xiei

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑
i=1

xifi

∥∥∥∥∥ ≤ 2K(e)

∥∥∥∥∥
∞∑
i=1

xiei

∥∥∥∥∥ .
The above estimate is not explicitely stated in [AK] or [LiTz], but it follows easily

from the proofs of the principle of small perturbations given therein.

Finally, let us recall the so-called “Bessaga-Pelczynski selection principle”:

Lemma 2.3. If e is a basic sequence, then any normalized sequence (yn) ⊂ [e] such that
〈e∗i , yn〉 −−−→

n→∞
0 for all i ∈ N admits a basic subsequence equivalent to a (normalized)

block-sequence of e.

This is often stated with a weakly null sequence (yn), but the greater generality is
useful; see [AK].
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2.3. Some Haar null and non–Haar null positive cones. To conclude this back-
ground section, we now state some known results concerning the Haar negligibility of
positive cones.

Proposition 2.4. Let e = (ei)i≥1 be a normalized basic sequence.

(1) If e is equivalent to the canonical basis of c0, then Q+(e) contains a translate of
every compact subset of [e], and so Q+(e) is not Haar null.

(2) If e is equivalent to the canonical basis of `p, 1 ≤ p < ∞, then Q+(e) is Haar
null. More generally, Q+(e) is Haar null as soon as e dominates the canonical
basis of `p, i.e. there exists a finite constant M such that∑

i

|xi|p ≤M

∥∥∥∥∥∑
i

xiei

∥∥∥∥∥
p

for every finite sequence of scalars (xi).
(3) If [e] is reflexive, then Q+(e) is Haar null.
(4) If e is unconditional and satisfies

lim
k→∞

inf
n1<···<nk

∥∥∥∥∥
k∑
i=1

eni

∥∥∥∥∥ =∞,

then Q+(e) is Haar null.

Part (1) is almost obvious; see [BeLi, p. 132]. Part (2) can be found in [BorN] and
[M1] (see also [BeLi]). Part (3) follows from the main result of [M3], and (4) can be
found in [M2].

Concerning (1), will show in Section 3 that the canonical basis of c0 is in fact the only
unconditional basic sequence for which the positive cone contains a translate of every
compact set. We will also see that (2), (3) and (4) can be obtained as applications of
Proposition 4.6 and Theorem 4.9 below. (However, the direct proof of (3) given in [BeLi,
Prop. 6.8] provides an explicit test measure for the positive cone).

3. Positive cones containing a translate of every compact set

In this section, we study the positive cones Q+(e) containing a translate of every
compact set. By this, we mean of course that Q+(e) contains a translate of every compact
subset of [e]. As already mentioned, this is a strong way of being non–Haar null.

The main result of this section is the following.

Theorem 3.1. Let e = (ei)i≥1 be a normalized basic sequence. The positive cone Q+(e)
contains a translate of every compact set if and only if there exists a sequence of real
numbers (λi)i≥1, with λi ≥ 1 for all i, such that

sup
n≥1

∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥ <∞.
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From this, it is easy to deduce

Corollary 3.2. Up to equivalence, the only normalized unconditional basic sequence
whose positive cone contains a translate of every compact set is the canonical basis of c0.

Proof. Let e be a normalized unconditional basic sequence such that Q+(e) contains a
translate of every compact set, and set X := [e]. Without loss of generality, we may
assume that e is 1-unconditional.

We already know that the original norm ‖ · ‖ of X dominates the norm ‖ · ‖∞, so we
just have to show that ‖ · ‖∞ also dominates ‖ · ‖. Let (λi)i≥1 be the sequence given by
Theorem 3.1, and set

M := sup
n≥1

∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥ <∞.
For every x =

∑
i≥1 xiei ∈ X \ {0} and all n ≥ 1, we have

Pn(x) :=
n∑
i=1

xiei =
n∑
i=1

xi
λi
λiei .

If we set ai := xi/λi, then |ai| ≤ ‖x‖∞ and so, by Fact 2.1:

‖Pn(x)‖ ≤ ‖x‖∞

∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥ ≤M ‖x‖∞ .

Hence, we obtain ‖x‖ = limn→∞ ‖Pn(x)‖ ≤M ‖x‖∞. �

The proof of Theorem 3.1 relies on the following lemma. Here and afterwards, for any
positive number r, we set

Q+
r (e) := Q+(e) ∩B(0, r) .

Lemma 3.3. Let e be a Schauder basis of a Banach space X, and let D be any dense
subset of B(0, 1). The following are equivalent.

(i) The cone Q+(e) contains a translate of every compact set.
(ii) There exists R > 0 such that Q+

R(e) contains a translate of every compact subset
of B(0, 1).

(iii) There exists M > 0 such that Q+
M(e) contains a translate of every finite subset of

B(0, 1) ∩D.

Moreover if condition (iii) is satisfied, then (ii) holds with R = 2M.

The proof of this lemma is quite nontrivial; but it is essentially the same as that of
[MS, Theorem 3] and is therefore omitted.

Proof of Theorem 3.1. Without loss of generality, we may assume that the basis constant
of e is equal to 1.
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Assume first that Q+(e) contains a translate of every compact subset of X := [e]. By
Lemma 3.3, there exists M > 0 such that Q+

M contains a translate of every finite subset
of D := B(0, 1) ∩ span (ei; i ≥ 1) .

For every k ≥ 1, set Fk := {−ei; 1 ≤ i ≤ k}. This is a finite subset of D, so there

exists zk =
∞∑
i=1

zi,kei ∈ X such that zk + Fk ⊂ Q+
M(e). Then ‖zk‖ ≤ M + 1, and so

|zi,k| ≤ 2(M + 1) since K(e) = 1. Moreover, since zk + Fk ⊂ Q+(e) we have zi,k ≥ 1
whenever k ≥ i; hence 1 ≤ zi,k ≤ 2(M + 1) for i ≥ 1 and k ≥ i.

By a diagonal process, one can find an increasing sequence of integers (pk)k≥1 such
that for every i ≥ 1, the sequence (zi,pk)k≥1 converges to some real number λi ≥ 1 as

k → ∞. Let us show that the sequence (λi)i≥1 has the required property, i.e. that the
partial sums of the series

∑
λiei are uniformly bounded.

For any n, k ≥ 1, we have∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

(λi − zi,pn)ei

∥∥∥∥∥+ ‖Pn(zpk)‖

≤ n sup {|(λi − zi,pk)| ; 1 ≤ i ≤ n}+ ‖zpk‖
≤ n sup {|(λi − zi,pk)| ; 1 ≤ i ≤ n}+M + 1.

Since this inequality holds for every k ≥ 1, we obtain∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥ ≤M + 1 for all n ≥ 1.

We now prove the converse. Suppose that there exists M > 0 and a sequence of real
numbers (λi)i≥1 with λi ≥ 1, such that ‖

∑n
i=1 λiei‖ ≤M for every n ≥ 1.

Set again D := B(0, 1) ∩ span (ei; i ≥ 1). Then R := 1 + 2M satisfies property (iii)
of Lemma 3.3. Indeed let F be any finite subset of D. One can find m ≥ 1 such that
〈e∗n, x〉 = 0 for every x ∈ F if n ≥ m. Since |〈e∗n, x〉| ≤ 2 for all n ≥ 1, if x ∈ F (because
‖x‖ ≤ 1), we see that F + 2

∑m
i=1 λiei ⊂ Q+

1+2M(e). �

We conclude this section by a simple example showing that Corollary 3.2 breaks down
if we drop the unconditionality assumption.

Example 3.4. The positive cone associated to the canonical basis of the James space J
contains a translate of every compact set.

Proof. Recall that J is the space of all sequences of real numbers x = (xi)i≥1 which
converge to 0 and satisfy the following condition:

‖x‖J := sup
m∈N

sup
{[

(xp2 − xp1)2 + · · ·+ (xpm − xpm−1)
2
]1/2

; 1 ≤ p1 · · · < pm

}
<∞.
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We refer to e.g. [LiTz, p. 25] for more details on the James space.

The canonical basis e = (ei)i≥0 is a normalized Schauder basis of J , and for every
n ≥ 1 we have ∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥
J

= 1 .

It follows then from Theorem 3.1 that Q+(e) contains a translate of every compact
set. �

4. Positive cones which are not Haar null

We now address the question of characterizing the basic sequences whose positive cone
is not Haar null. We obtain a complete answer in the case of subsymmetric unconditional
sequences: within this class of sequences, the canonical basis of c0 is the only one whose
positive cone is not Haar null. We also show that an unconditional basic sequence whose
positive cone is not Haar null has to be “very close” to the canonical basis of c0, in a
sense that will be made precise.

4.1. Haar negligibility and block-sequences. The following result shows that for
unconditional basic sequences, Haar negligibility of the positive cone can be detected by
looking at any block-sequence.

Proposition 4.1. Let e = (ei)i≥1 be an unconditional basic sequence. If e admits a
block-sequence f whose positive cone is Haar null, then Q+(e)is Haar null.

Proof. Set X := [e], and let Y be the closed subspace of X generated by the block-
sequence f = (fj)j≥1. There exists an increasing sequence of integers (pj)j≥0, with p0 = 1,

such that fj =
pj−1∑
i=pj−1

aiei; and since Haar negligibility is invariant under any change of

signs on the ei’s, we may assume that ai ≥ 0 for all i.

By assumption, one can find a probability measure µ on Y such that µ(Q+(f) +y) = 0
for every y ∈ Y. Denote by ν the measure µ viewed as a probability measure on X; that
is, ν(A) = µ(A ∩ Y ) for every Borel set A ⊂ X. We show that ν is a test measure for
Q+(e).

Since e is unconditional, we can write any x ∈ X as x = x+ + x−, where x+ ∈ Q+(e)
and x− ∈ Q−(e). Then x+Q+(e) ⊂ x− +Q+(e), and so

ν(x+Q+) ≤ ν(x− +Q+).

Hence, it is enough to check that ν(x+Q+(e)) = 0 for every x ∈ Q−(e). This follows
immediately from the following

Fact. Given x ∈ Q−(e), one can find w ∈ X such that
(
x+Q+(e)

)
∩ Y ⊂ w +Q+(f).

Indeed, once this is known one just has to write

ν(x+Q+(e)) = µ((x+Q+(e)) ∩ Y ) ≤ µ(w +Q+(f)) = 0.
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Proof of Fact. Fix x ∈ Q−(e), and let z ∈ (x+Q+(e)) ∩ Y be arbitrary. Write

z =
∞∑
i=1

(xi + λi)ei =
∞∑
j=1

zjfj =
∞∑
j=1

zj

 pj−1∑
i=pj−1

aiei

 ,

where λi ≥ 0 for all i. Then zjai − xi = λi ≥ 0 for every j ≥ 1 and all i ∈ [pj−1, pj). So
we get for j ≥ 1,

(4.1) wj := sup

{
xi
ai

; pj−1 ≤ i < pj, ai 6= 0

}
≤ zj .

Since xi ≤ 0 for all i, the series
∑
|xi| ei is convergent and

∞∑
i=1

|xi| ei = −x. It follows

from Fact 2.1 that the series
∑
j≥1

( pj−1∑
i=pj−1

|wj| aiei
)

=
∑
|wj| yj is convergent, and so the

series
∑
wjyj is also convergent in Y . Set w :=

∞∑
j=1

wjyj. Note that w depends only on x

and f (not on the point z we are considering).

Using (4.1), we see that z = w +
∞∑
j=1

(zj − wj)yj ∈ w + Q+(f), which concludes the

proof. �

�

We know that the positive cone of `1 is Haar null, and that positive cones in reflexive
spaces are also Haar null. By James’ characterization of reflexivity, we deduce

Corollary 4.2. If e is an unconditional basic sequence such that Q+(e) is not Haar null,
then every block-sequence of e is both shrinking and non–boundedly complete.

Since an unconditional basic sequence is non–boundedly complete if and only if it has a
block-sequence equivalent to the canonical basis of c0, it follows that if e is unconditional
and Q+(e) is not Haar null, then every block-sequence of e admits a block-sequence
equivalent to the canonical basis of c0. We will see in Section 4.4 that e has in fact a
much stronger “c0-saturation” property.

4.2. The (δ, R)-condition. Matouskova observed in [M2] that a Borel subset A of a
Polish abelian group G is Haar null if and only if the following holds: for every δ > 0
and every r > 0, there exists a probability measure µ supported by the open ball B(0, r)
such that µ(A+ g) ≤ δ for every g ∈ G. From this, it is easy to deduce

Lemma 4.3. Let e be a normalized basic sequence. The cone Q+(e) is not Haar null if
and only if there exist δ > 0 and R > 0 satisfying the following property:

(∗) For every probability measure µ on X supported on B(0, 1), there exists x ∈ X
such that µ(x+Q+

R(e)) ≥ δ.
In this situation we have ‖x‖ ≤ 1 +R.
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Proof. Since a countable union of Haar null sets is Haar null, Q+(e) is not Haar null if
and only if Q+

n (e) is not Haar null for some integer n ≥ 1.

If Q+
n (e) is not Haar null, it follows from Matouskova’s result mentioned above that

there exist δ > 0 and r > 0 such that for every probability mesure µ on X of support
contained in B(0, r), there exists x ∈ X such that µ(x+Q+

n ) ≥ δ. This gives the required
condition with R := n/r. Conversely if (∗) holds then Matouskova’s result implies that
Q+
R(e) is not Haar null, and so Q+(e) is not Haar null either.
The inequality ‖x‖ ≤ 1 +R follows from the triangle inequality. �

In what follows we will consider a weakened version of condition (∗) above, where we
only allow a special type of measures.

Definition 4.4. Let δ > 0 and R > 0. We say that a normalized basic sequence
e = (ei)i≥1 satisfies the (δ, R)-condition if for every probability measure µ having finite
support contained in {−ei; i ≥ 1}, there exists x ∈ X (necessarily satisfying ‖x‖ ≤ 1+R)
such that µ(x+Q+

R) ≥ δ.

The following observation shows the relevance of this condition to our matters.

Observation 4.5. Let e = (ei) be a normalized basic sequence.

(i) If Q+(e) is not Haar null, then e satisfies the (δ, R)-condition for some δ, R > 0.
(ii) If e is unconditional and if Q+(e) is not Haar null, there exist δ, R > 0 such that

all normalized block-sequences of e satisfy the (δ, R)-condition.

Proof. Part (i) follows immediately from Lemma 4.3. To prove (ii), argue by contradiction
and use Proposition 4.1. �

When e is unconditional, this implies a condition on the norm of all finite sums of the
form

∑
i∈J

ei.

Proposition 4.6. Let e = (ei) be a normalized, 1-unconditional basic sequence, and
assume that e satisfies the (δ, R)-condition for some δ, R > 0. Then the following facts
hold.

(a) For every finite set I ⊂ N, one can find J ⊂ I such that

|J | ≥ δ |I| and

∥∥∥∥∥∑
i∈J

ei

∥∥∥∥∥ ≤ 1 +R .

(b) If δ = 1, then e is equivalent to the canonical basis of c0.
(c) If δ < 1 then, for any finite set I ⊂ N, one has the estimate∥∥∥∥∥∑

i∈I

ei

∥∥∥∥∥ ≤ 1 +R

− log(1− δ)
log(|I|) + 2(1 +R) .
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Proof. (a) Set λi = 1
|I| for i ∈ I. Then µ =

∑
i∈I
λiδ−ei is a probability measure with finite

support contained in {−ei, i ≥ 1}. So there exists x ∈ X such that µ
(
x+Q+

R

)
≥ δ. This

implies that there exists J ⊂ I such that |J | ≥ δ |I| and such that −ej ∈ x + Q+
R for all

j ∈ J . So
〈
e∗j , x

〉
≤ −1 for all j ∈ J (and hence |〈e∗j , x〉| ≥ 1). Since e is 1-unconditional

and since ‖x‖ ≤ 1 +R, it follows from Fact 2.1 that
∥∥∥∑
i∈J

ei

∥∥∥ ≤ 1 +R.

(b) If δ = 1, then for every finite set I we have
∥∥∥∑
i∈I
ei

∥∥∥ ≤ 1+R. By 1-unconditionality,

this implies that ‖ · ‖ ≤ (1 + R) ‖ · ‖∞, and hence e is equivalent to the canonical basis
of c0.

(c) If δ < 1, we construct a family of disjoint subsets of I in the following way: set
I0 := I and choose J0 ⊂ I0 according to (i). Then set I1 = I0−J0 and we choose J1 ⊂ I1

in the same way, and so on. At step k, we thus have |Ik| ≤ (1−δ) |Ik−1|, |Ik| ≤ (1−δ)k |I|
and

∥∥∑
i∈Jk ei

∥∥ ≤ 1 +R

We stop when Ik+1 is empty, so at the latest when (1 − δ)k |I| ≤ 1, which gives

k ≥ log(|I|)
− log(1−δ) · So we can choose k ≤ log(|I|)

− log(1−δ) + 1. This gives

∥∥∥∥∥∑
i∈I

ei

∥∥∥∥∥ ≤
k∑
j=0

∥∥∥∥∥∥
∑
i∈Jj

ei

∥∥∥∥∥∥ ≤ (k + 1)(1 +R) ≤ 1 +R

− log(1− δ)
log(|I|) + 2(1 +R) .

�

Remark 1. Part (4) of Proposition 2.4 follows immediately from (a).

Remark 2. If e = (ei) satisfies the assumption of Proposition 4.6, then (c) shows that

lim
|I|→∞

∥∥∥∥∥ 1

|I|
∑
i∈I

ei

∥∥∥∥∥ = 0 .

Sequences e satisfying this property are called Blum-Hanson sequences in [LMP]. They
are quite interesting objects of study.

Remark 3. For every normalized basic sequence e = (ei) and any M ∈ R+, let us denote
by IM(e) the family of all subsets σ of N such that∥∥∥∑

i∈I

ei

∥∥∥ ≤M for every finite set I ⊂ σ .

Note that if e is unconditional and if σ ∈ IM(e) is infinite, then (ei)i∈σ is equivalent
to the canonical basis of c0. So our “main conjecture” would be proved if one could show
the following: if e is a normalized basic sequence such that Q+(e) is not Haar null, then
one can partition N into finitely many sets from

⋃
M>0 IM(e). Even though this is of

course very unlikely to be relevant, it is hard not to notice the formal analogy with the
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“paving” formulation of the famous and recently solved Kadison-Singer Problem. Note
that, by standard arguments, it would be enough to show that any ultrafilter U on N
contains a set from

⋃
M>0 IM(e).

Assuming that e is unconditional and that Q+(e) is not Haar null (so that e satisfies
some (δ, R)-condition), Proposition 4.6 (a) shows that there exists a constant M such
that IM(e) has an interesting “largeness” property, namely that inside any finite set
I ⊂ N, one can find a set J ∈ IM(e) with comparable cardinality; but this is definitely
not enough to get a partition result.

In the same spirit (and under the same assumptions on e), the argument of [BouTz,
Corollary 1.4] shows the following: there exists a constant M , a probability measure m
on the compact set IM(e) ⊂ 2N and a constant α > 0 such that

m({σ ∈ IM(e); i ∈ σ}) ≥ α for every i ∈ N .

This is another “largeness” property of the family IM(e), that makes perhaps plausible
the existence of a suitable partition.

We now show that Proposition 4.6 can be used to characterize the symmetric basic
sequences whose positive cone is Haar null. Recall that a basic sequence (ei) is said to
be symmetric if, for any permutation π of the integers, the sequence (eπ(i)) is equivalent
to (ei). In this case (see [LiTz, Chapter 3]), there exists a constant C > 0 such that for
every convergent series

∑
i≥1

xiei and every permutation π : N→ N we have

1

C

∥∥∥∥∥∑
i≥1

xieπ(i)

∥∥∥∥∥ ≤
∥∥∥∥∥∑
i≥1

xiei

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
i≥1

xieπ(i)

∥∥∥∥∥ .
Every symmetric sequence is unconditional, but not conversely (consider any enumer-

ation of the “canonical” basis of l1 ⊕ c0).

Corollary 4.7. Up to equivalence, the only normalized and symmetric basic sequence
whose positive cone is not Haar null is the canonical basis of c0.

Proof. Let e = (ei) be a normalized, symmetric sequence such that Q+(e) is not Haar
null. Assume without loss of generality that e is 1-unconditional. Choose δ, R > 0 such
that e satisfies the (δ, R)-condition. By proposition 4.6 and since Ku(e) = 1, one can

find for every integer p ≥ 1 a finite set Ip ⊂ N of cardinality p such that
∥∥∥∑
i∈Ip

ei

∥∥∥ ≤ 1+R.

Since e symmetric, there exists a finite constant C such that, for every finite set I of
integers of cardinality p, we have∥∥∥∥∥∑

i∈I

ei

∥∥∥∥∥ ≤ C

∥∥∥∥∥∥
∑
i∈Ip

ei

∥∥∥∥∥∥ .
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So the finite sums
∑

i∈I ei are uniformly bounded, which implies (by unconditionality)
that the given norm ‖ · ‖e on [e] is dominated by the norm ‖ · ‖e∞. Hence these two
norms are equivalent, and e is equivalent to the canonical basis of c0. �

As another of illustration of Proposition 4.6, we now show that the positive cone
associated with the canonical basis of the Schreier space S is Haar null.

Let us first recall the definition of S. Let c00 be the linear space of all real sequences
with finite support. For x = (xi)i≥1 ∈ c00, set

‖x‖S := sup

{
p∑
i=1

|xki | : p ≥ 1, p ≤ k1 < . . . < kp

}
.

Then ‖ · ‖S is a norm on c00, and the Schreier space S is the completion of c00 with
respect to this norm. The canonical basis (ei) of c00 is a normalized, 1-unconditional
basis of S, and it is also shrinking.

Corollary 4.8. The positive cone of the Schreier space is Haar null.

Proof. Let n ≥ 1, and let I ⊂ N be a set of cardinality 2n. Then the set I ∩ [n,∞)
contains at least n elements of I. It follows from the definition of ‖ · ‖S that we have:∥∥∥∥∥∑

i∈I

ei

∥∥∥∥∥
S

≥ n.

Since n is arbitrary, the result now follows from Proposition 4.6. �

4.3. Extracting c0-subsequences. In this section, we show that a normalized uncon-
ditional basic sequence whose positive cone is not Haar null has a wealth of subsequences
equivalent to the canonical basis of c0. This will follow easily from the following result.

Theorem 4.9. Let e be a normalized basic sequence, and assume that e satisfies the
(δ, R)-condition for some δ, R > 0. Then there exists an increasing sequence of integers
(mj)i≥1 and a sequence (xn)n≥1 ⊂ B(0, 1 +R) such that〈

e∗mj , xn
〉
≥ 1 for every n ≥ 1 and all j ∈ {1, . . . , n} .

Remark. It follows immediately from this result that a normalized Schauder basis of a
reflexive Banach space cannot satisfy a (δ, R)-condition, which gives part (3) of Propo-
sition 2.4. Indeed let X be a Banach with a normalized Schauder basis e = (ei)i≥1,
and assume that e satisfies the (δ, R)-condition for some δ, R > 0. If the space X were
reflexive, it would be possible to extract from the sequence (xn)n≥1 given by theorem 4.9

a subsequence converging weakly to some x ∈ X. Then we would have
〈
e∗mj , x

〉
≥ 1 for

every j ≥ 1, a contradiction since
〈
e∗mj , x

〉
→ 0 (recall that e is normalized).

Part (2) of Proposition 2.4 is also a consequence of Theorem 4.9. Indeed, let e = (ei)
be a normalized basic sequence which dominates the canonical basis of `p. If e were
to satisfy some (δ, R)-condition, then the sequence (xn)n≥1 given by 4.9 would satisfy
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i≥1 | 〈e∗i , xn〉 |p ≥ n for every n ≥ 1, which is impossible because (xn) is bounded.

Hence e does not satisfy any (δ, R)-condition, so Q+(e) is Haar null.

Theorem 4.9 is in fact a simple consequence of a classical combinatorial lemma due to
V. Ptak, which was already an essential tool in [M3].

Lemma 4.10. Let W be an infinite set, and let V be a family of subsets of W . Denote
by P(W ) be the set of all finitely supported probability measures on W . Assume that

inf
λ∈P(W )

sup
V ∈V

λ(V ) > 0 .

Then, there exists a sequence (Vj)j≥1 of elements of V and a sequence (wj)j≥1 of pairwise

distinct elements of W such that {w1, ..., wn} ⊂ Vn for every n ≥ 1.

For a proof of Ptak’s lemma, see [Pt] or [T].

Proof of Theorem 4.9. Let W := {−ei; i ∈ N} and denote by V the family of all subsets
V of W such that x+ V ⊂ Q+

R for some x ∈ B(0, 1 +R).

Let λ ∈ P(W ), and write λ(w) instead of λ({w}), w ∈ W . Set

Iλ := {i ∈ N; λ(−ei) > 0} .

Then Iλ is a finite set and
∑

i∈Iλ λ(−ei) = 1.

Since e satisfies the (δ, R)-condition, there exists Jλ ⊂ Iλ and x ∈ B(0, 1 +R) such
that

∑
i∈Jλ λ(−ei) ≥ δ > 0 and x + V ⊂ Q+

R, where V := {−ei; i ∈ Jλ}. Then V ∈ V
and λ(J) ≥ δ.

By Ptak’s lemma, there exists an increasing sequence of integers (mj)n≥1 and a se-

quence (Vj) of elements of V such that {−em1 , ...,−emn} ⊂ Vn for every n ≥ 1. So there
exists a sequence (xn) ⊂ B(0, 1 +R) such that xn+{−em1 , ...,−emn} ⊂ Q+

R for all n ≥ 1.
Hence for every n ≥ 1 and all j ∈ {1, . . . , n}, we have

〈
e∗mj , xn

〉
≥ 1. �

From Theorem 4.9, we easily deduce

Corollary 4.11. If e is a normalized, 1-unconditional basic sequence satisfying some
(δ, R)-condition, then e has a subsequence which is (1 + R)-equivalent to the canonical
basis of c0.

Proof. Let (mj) and (xn) be given by Theorem 4.9, and set f := (emj)j≥1. By Fact 2.1,
we have ∥∥∥∥∥

n∑
j=1

emj

∥∥∥∥∥ ≤ ‖xn‖ ≤ 1 +R

for all n ≥ 1, which implies that ‖ · ‖f ≤ (1 + R)‖ · ‖f∞. On the other hand, since f is
normalized we also have ‖ · ‖f∞ ≤ ‖ · ‖f , so the subsequence f is (1 + R)-equivalent to
the canonical basis of c0. �
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Remark. Of course, the same result holds if e is only assumed to be semi-normalized,
replacing 1 +R by some constant M depending only on R and on infi≥1 ‖ei‖.

If e is an unconditional basic sequence with a non–Haar null positive cone, then, after
the usual renorming to make it 1-unconditional and keeping in mind Proposition 4.1, one
can apply Corollary 4.11 to any normalized block-sequence of e. This yields

Corollary 4.12. If e is an unconditional basic sequence whose positive cone is not Haar
null, then every normalized block-sequence f of e is c0-saturated; that is, any subsequence
of f has a further subsequence equivalent to the canonical basis of c0, with uniform bounds
on the isomorphism constants.

Another immediate consequence of Corollary 4.11 is the extension of Corollary 4.7 to
the case of subsymmetric unconditional basic sequences. Recall that a basic sequence e
is said to be subsymmetric if it is equivalent to all its subsequences. Every symmetric
sequence is subsymmetric, but not conversely; see [LiTz].

Corollary 4.13. Up to equivalence, the canonical basis of c0 is the only normalized and
subsymmetric unconditional basic sequence whose positive cone is not Haar null.

Proof. Let e be such a sequence. Since e is unconditional, Corollary 4.11 implies that e
has a subsequence equivalent to the canonical basis of c0. Since e is equivalent to all its
subsequences, the result follows. �

Finally, we quote the following “decomposition” result for Banach spaces with a non–
Haar null positive cone.

Corollary 4.14. Let e = (ei)i≥1 be a normalized unconditional basic sequence, and set
X := [e]. Assume that Q+(e) is not Haar null. Then one can find some constant M and
a partition (Iλ)λ∈Λ of N such that each space Xλ := [ei; i ∈ Iλ] is M- isomorphic to c0

and X = ⊕λ∈ΛXλ, where ⊕ denotes an unconditional Schauder decomposition.

Proof. By Corollary 4.12, one can find a constant C such that every subsequence of e has
a further subsequence which is C-equivalent to the canonical basis of c0. By an obvious
transfinite induction argument, it follows that one can partition N as N = I0 ∪

⋃
λ∈Λ Iλ,

where I0 is finite (possibly empty) and each space Xλ is M -isomorphic to c0. Replacing
one set Iλ by Iλ ∪ I0 and using the unconditionality of e, the result follows. �

4.4. More on c0-saturation. We saw in Corollary 4.12 that unconditional basic se-
quences with a non–Haar null positive cone have a strong “c0-saturation” property. In
this section, we elaborate a little bit more on this.

For the sake of brevity, we adopt the following ad hoc terminology: given M ≥ 1, a
normalized basic sequence e is said to be of type Mc0 if ‖ · ‖e ≤ M‖ · ‖e∞. This, of
course, implies that e is equivalent to the canonical basis of c0.

Definition 4.15. Let e = (ei)i≥1 be a normalized basic sequence. We say that
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• e is Mc0-saturated (for some M ≥ 1) if every subsequence of e has a further
subsequence of type Mc0.
• e is strongly Mc0-saturated (for some M ≥ 1 if the following holds: from every

sequence (Ij)j≥1 of pairwise disjoint subsets of N for which there exists N ≥ 1 such

that all sequence (ei)i∈Ij are of type Nc0, it is possible to extract a subsequence(
I ′j
)
j≥1

such that (ei)i∈⋃j≥1 I
′
j

is of type NMc0.

• e is (strongly) c0-saturated if it is (strongly) Mc0-saturated for some constant M .

Note that taking each Ii to be a singleton in the above definition, we see that strong
Mc0-saturation indeed implies Mc0-saturation.

Recall also that a space X is said to be c0-saturated if every (infinite-dimensional)
closed subspace of X admits a further subspace isomorphic to c0. Using the Bessaga-
Pelczynski selection principle (Lemma 2.3), it is fairly easy to check that if a Banach
space X admits a c0-saturated (normalized) Schauder basis, then X is c0-saturated.

Our aim is to prove the following strengthening of Corollary 4.12.

Theorem 4.16. Let e be a normalized, 1-unconditional basic sequence. Assume that
there exists δ, R > 0 such that all normalized block-sequences satisfy the (δ, R)-condition.
Then all these block-sequences are strongly (1 +R)c0-saturated.

From this, we immediately get

Corollary 4.17. If e is an unconditional basic sequence whose positive cone is not Haar
null, then all normalized block-sequences of e are strongly c0-saturated.

The proof of Theorem 4.16 relies on the following lemma.

Lemma 4.18. Let e = (ei)i≥1 be a normalized, 1-unconditional basic sequence, and let
δ, R > 0. Assume that all normalized block-sequences of e satisfy the (δ, R)-condition.
Let also y = (yi)i≥1 be a normalized block-sequence of e. Finally, let n be a positive
integer, let (λj)1≤j≤n be a family of n nonnegative real numbers satisfying

∑
j λj = 1,

and let (Ij)1≤j≤n be a family of n pairwise disjoint infinite subsets of N such that each

sequence (yi)i∈Ij is of type Nc0 for some N ≥ 1. Then, one can find a set J ⊂ {1, . . . , n}
such that

∑
j∈J

λj ≥ δ and the sequence (yi)i∈∪j∈JIj is of type N(1 +R)c0.

Proof. For m ≥ 1 and 1 ≤ j ≤ n, let Imj be the set consisting of the first m elements of
Ij, with the convention Imj := Ij if m ≥ |Ij|. Set zm,j :=

∑
i∈Imj

yi (so that ‖zm,j‖ ≤ N)

and ẑm,j =
zm,j
‖zm,j‖ ·

For any fixed m, the sets Imj are pairwise disjoint. Hence (ẑm,j)1≤j≤n is a (finite)

block-sequence of (yi)i≥1 for every m ≥ 1. So it is also a block-sequence of e, and it
is normalized; hence it is 1-unconditional and satisfies the (finite version of) the (δ, R)-

condition. Forgetting the dependance on m, we denote Q̂+ its positive cone in Z :=
span (ẑm,j; 1 ≤ j ≤ n).
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For j ∈ {1, . . . , n}, denote by ∆j the Dirac measure at −ẑm,j. Then µ =
n∑
j=1

λj∆j is a

probability measure with finite support contained in {−ẑm,j; 1 ≤ j ≤ n}. So there exists

z ∈ Z such that µ
(
z + Q̂+

R

)
≥ δ, and hence there exists Jm ⊂ {1, . . . , n} such that〈

ẑ ∗m,j, z
〉
≤ −1 for all j ∈ Jm and

∑
j∈Jm λj ≥ δ. Since (ẑm,j)1≤j≤n is 1-unconditional

and ‖z‖ ≤ 1 +R, we deduce from Fact 2.1 that
∥∥∥ ∑
j∈Jm

ẑm,j

∥∥∥ ≤ 1 +R; and it follows again

from Fact 2.1 that
∥∥∥ ∑
j∈Jm

zm,j

∥∥∥ ≤ N(1 +R).

Since there are finitely many sets Jm, one can find J ⊂ {1, . . . , n} such that J = Jm

for infinitely many m. Moreover, since the basis constant of e is equal to 1, we have, for
every m ≥ 1 and every m′ ≥ m,∥∥∥∥∥∑

j∈J

zm,j

∥∥∥∥∥ ≤
∥∥∥∥∥∑
j∈J

zm′,j

∥∥∥∥∥ .
It follows that

∥∥∥∑
j∈J

zm,j

∥∥∥ ≤ N(1 +R) for every m ≥ 1. Hence, all finite sums built on

(yj)j∈∪i∈JIi are bounded in norm by N(1 + R), which implies that (yj)j∈∪i∈JIi is of type

N(1 +R)c0. �

Proof of Theorem 4.16. Since every normalized block-sequence of e satisfies the same
assumptions as e, it is enough to show that e is strongly (1 +R)c0-saturated.

Let (Ij)j≥1 be a sequence of pairwise disjoint subsets of N such that each sequence

(ei)i∈Ij is of type Nc0, for some fixed N ≥ 1.

Denote by V the family of all subsets V of N such that the basic sequence (ei)i∈∪j∈V Ij
is of type N(1 +R)c0. Lemma 4.18 ensures that

inf
λ∈P(N)

sup
V ∈V

λ(V ) ≥ δ > 0.

It follows then from Ptak’s lemma that there exists a sequence (Vj)i≥1 of elements of V,

and a sequence (wj)j≥1 of pairwise distinct positive integers such that {w1, ..., wn} ⊂ Vn
for every n ≥ 1. Then (ei)i∈∪j≥1Iwj

is of type N(1 +R)c0. �

4.5. One example. So far, we have shown that for a normalized unconditional basic
sequence e, the following implications hold true:

Q+(e) not Haar null =⇒ there exists δ, R > 0 such that every normalized block-
sequence of (ei)i≥1 satisfies the (δ, R)-condition =⇒ every normalized block-sequence of
e is strongly c0-saturated =⇒ the space X := [e] is c0-saturated.
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With our “main conjecture” in mind, it is rather tempting to believe that the strong
saturation of all block-sequences is already enough to ensure that e is equivalent to the
canonical basis of c0. The following result shows that this is not so.

Example 4.19. There exists a normalized, 1-unconditional basic sequence e which is not
isomorphic to the canonical basis of c0 but has the property that all its block-sequences
are strongly Mc0-saturated for any M ≥ 1.

Proof. Not surprisingly, the sequence e will be defined as the “canonical basis” of a
c0 - direct sum of suitably chosen finite-dimensional `p spaces.

Let (pn) be an increasing sequence of real numbers to be chosen later, with pn ≥ 1 and
limn→∞ pn =∞. We set Xn := lpn(n), and we denote by (eni )1≤i≤n the canonical basis of
Xn. Finally, we denote by X the c0 - direct sum of the spaces Xn,

X = ⊕c0 {Xn, n ∈ N} .
Denote by (ei)i≥1 the “canonical” enumeration of the vectors eni ; that is, e1 = e1

1,
e2 = e2

1, e3 = e2
2, e4 = e3

1 an so on. Then (ei) is a Schauder basis of X. This basis is
normalized and 1-unconditional.

For n ≥ 1, denote by Pn : X → Xn the canonical projection of X onto Xn. Since
K(e) = 1, we have ‖x‖ = sup {‖Pn(x)‖ , n ∈ N} for every x ∈ X..

We want (ei) not to be equivalent to the canonical basis of c0. For that it is enough
to ensure that

lim sup
m→∞

∥∥∥∥∥
m∑
i=1

ei

∥∥∥∥∥ =∞ ;

and this will hold if the sequence (pn) satisfies

lim
n→∞

n1/pn =∞ .

Having fixed (pn) in this way, we now show that every normalized block-sequence of
(ei)i≥1 is strongly Rc0-saturated for every R ≥ 1. So let us fix R ≥ 1, and let (yi)i≥1

be a normalized block-sequence of (ei), and let (Ii)i≥1 be a sequence of pairwise disjoint
subsets of N such that, for some N ≥ 1, all sequences (yj)j∈Ii are of type Nc0.

We claim that for any k ≥ 1, one can find a positive integer nk such that, for every
n ≥ nk and every family (xi)1≤i≤k of disjointly supported elements of Xn ∩ B(0, N), we
have

(4.2)

∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥ ≤ NR .

Indeed, denoting by Ji the support of xi and writing xi =
∑
q∈Ji

xi,qe
n
q , we have

∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥ =

[
k∑
i=1

(∑
q∈Ji

|xpni,q|

)]1/pn

≤

(
k∑
i=1

Npn

)1/pn

≤ N k1/pn .
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So inequality (4.2) is satisfied as soon as k1/pn ≤ R, which holds true when n is
sufficiently large since pn →∞ as n→∞.

Since (yi) is a block-sequence of (ei), there exists for every k ≥ 1 an integer jk ≥ 1
such that, for every i ≥ jk,

Pn(yi) = 0 if n < nk .

Hence, for every k ≥ 1, one can find an integer ik ≥ 1 such that

Pn(yj) = 0 for j ∈ Iik if n < nk .

To conclude the proof, it is now enough to show that the sequence (yj)j∈∪k≥1Iik
is of

type NRc0; and since this sequence is normalized and 1-unconditional, we just have to
show that the norm of any finite sum built on it does not exceed NR.

Every finite sum w built on (yj)j∈∪k≥1Iik
can be written as

w =
∑

1≤k≤m

wk ,

where m ≥ 1 is an integer and wk is a finite sum built on (yj)j∈Iik
. It follows then from

the definition of the norm on X that we have

‖w‖ =

∥∥∥∥∥ ∑
1≤k≤m

wk

∥∥∥∥∥ = sup
n∈N

∥∥∥∥∥Pn( ∑
1≤k≤m

wk

)∥∥∥∥∥ .
For n ≥ nm it follows from the definition of nm that

∥∥Pn(
∑

1≤k≤mwk)
∥∥ ≤ NR.

For ni−1 ≤ n < ni, with 1 ≤ i ≤ m, we have Pn(
∑

1≤k≤mwk) = Pn(
∑

1≤k≤i−1wk), and

so it follows from the definition of ni−1 that
∥∥Pn(

∑
1≤k≤mwk)

∥∥ ≤ NR. Hence, we do get
‖w‖ ≤ NR for any finite sum w built on (yj)j∈∪k≥1Iik

, which concludes the proof. �

Remark. As it turns out, the above sequence e does not satisfy any (δ, R)-condition, and
hence Q+(e) is Haar null. Indeed if δ > 0 is given then, for any set I ⊂ {1, . . . , n}
of cardinality δn we have

∥∥∥∑
i∈I
eni

∥∥∥ ≥ (δn)1/pn , which tends to ∞ by the choice of the

sequence (pn). By Proposition 4.6, it follows that e cannot satisfy any (δ, R)-condition.
Therefore, this example leaves our “main conjecture” open.

5. Quotients

We saw in the previous section that if a Banach space X admits an unconditional
basis X whose positive cone is not Haar null, then X is c0-saturated. One of the main
objectives of the present section is to prove the following more precise result.

Theorem 5.1. Let X be a Banach space, and assume that X admits an unconditional
basis whose positive cone is not Haar null. Then X has c0-saturated quotients; that is,
every quotient space of X is c0-saturated.
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To put this result into perspective, it is worth mentioning that the class of Banach
spaces with c0-saturated quotients seems far from being completely understood.

Odell showed in [O] that the Schreier space S has this property, and asked whether this
holds true for every c0-saturated Banach space having an unconditional and shrinking
Schauder basis. Leung [Leu] first gave a negative answer to this question, by constructing
a c0-saturated space with a shrinking unconditional basis admitting a quotient isomorphic
to `2. This was generalized by Gasparis [Ga], who obtained the same result for any `p,
1 < p <∞.

Theorem 5.1 just gives one class of examples, possibly consisting of the single space c0

(!) In any event, it shows that the c0-saturation of quotients is a property strictly weaker
than the non–Haar negligibility of the positive cone (by Odell’s result and Corollary 4.8),
and that the positive cones of the spaces constructed in [Leu] and [Ga] are Haar null.

As a matter of fact, we will deduce Theorem 5.1 from a more general result having
little to do with Haar negligibility. Let us first introduce the following terminology.

Definition 5.2. A Banach space X will be said to have property (P) if every weakly null
semi-normalized sequence in X admits a subsequence equivalent to the canonical basis
of c0.

It is clear that in this definition, one can replace “semi-normalized” by “normalized”.

Note that if X admits a Schauder basis e then, by Bessaga-Pelczynki’s selection princi-
ple, property (P) can be tested by looking only at those weakly null normalized sequences
which are block-sequence of e. By Theorem 4.16 (or Corollary 4.12) it follows that if the
basis e is unconditional and has a non–Haar null positive cone, then X has property (P).

Note also that if X has separable dual, then every quotient space E of X with property
(P) is c0-saturated: indeed, any infinite-dimensional subspace of E contains a weakly null
normalized sequence (because it has separable dual), and hence a subspace isomorphic
to c0 by property (P).

From these two remarks, it is clear that the following result implies Theorem 5.1.

Theorem 5.3. Let X be a Banach space admitting an unconditional shrinking Schauder
basis. If X has property (P) then all quotients of X have property (P).

Indeed, assume that X is a Banach space admitting an unconditional basis e whose
positive cone is not Haar null. Then X has property (P) by Corollary 4.12. Moreover, the
basis e is shrinking by corollary 4.2. By Theorem 5.3, all quotients of X have property
(P), and hence all these quotients are c0-saturated since X has separable dual.

The proof of Theorem 5.3 relies on the following result from [O].

Proposition 5.4. Let X be a Banach admitting a normalized, shrinking and 1-unconditional
basis (ei)i≥1. Let T be a continuous surjective linear operator from X onto another Ba-

nach space Y, and let C be any finite constant such that BY (0, 1) ⊆ C T
(
BX(0, 1)

)
. Let

also (εi)i≥1 be a decreasing sequence of positive real numbers tending to 0.
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Then, given any weakly null sequence (yi)i≥1 in the unit ball of Y , one can find a sub-
sequence (y′i) of (yi) and an increasing sequence of integers (pi)i≥0 with p0 = 0 satisfying
the following property:

For every sequence of real numbers (ai)i≥1 such that

∥∥∥∥ ∞∑
i=1

aiy
′
i

∥∥∥∥ ≤ 2, there exists an

increasing sequence of integers (ri)i≥0 with r0 = 0 and a sequence (xi)i≥1 ⊂ X such that

(1) pi < ri < pi+1 for every i ≥ 1;
(2) xi ∈ span

(
eri−1

, . . . , eri
)
;

(3) ‖T (xi)− aiy′i‖ ≤ εi;

(4) the series
∑
xi is convergent and

∥∥∥ ∞∑
i=1

xi

∥∥∥ ≤ 2C.

Proof of theorem 5.3. Fix a normalized shrinking unconditional basis e = (ei)i≥1 for
X. Since property (P) is invariant under renormings, we may assume that e is 1-
unconditional.

Let Y be any quotient of X, and let T : X → Y be the canonical quotient map. Note
that BY (0, 1) ⊆ T

(
BX(0, 1)

)
.

Let (yi)i≥1 be a weakly null normalized sequence in Y . Replacing this sequence by a
subsequence we may suppose that (yi) is a basic sequence, with basis constant K.

We apply Proposition 5.4 to (yi), with εi = 1
2K

2−i; this gives a subsequence (y′i) of (yi)
and an increasing sequence of integers (pi)i≥1.

For i, n ≥ 1 denote by δi,n the usual “Kronecker symbol”. Then ‖
∞∑
i=1

δi,ny
′
i‖ = 1 ≤ 2

for every n ≥ 1. Hence one can find for each n ≥ 1 a sequence (xi,n)i≥1 ⊂ X such that

(1) xi,n ∈ [er; pi−1 < r < pi+1];

(2) ‖
∞∑
i=1

xi,n‖ ≤ 2, and in particular ‖xn,n‖ ≤ 2;

(3) ‖T (xn,n)− y′n‖ ≤ εn.

Set ui := x2i,2i and vi := y′2i. Note that by (3), we have ‖ui‖ ≥ 1−ε2i
‖T‖ ≥

3
4‖T‖ , so that

(ui) is a semi-normalized block-sequence of (ei).

By the definition of (ui) and (vi), we have
∞∑
i=1

‖T (ui)− vi‖ ≤
∞∑
i=1

ε2i <
1

2K
·

Since (vi)i≥1 is a normalized basic sequence, it follows (by the principle of small per-
turbations, Lemma 2.2) that (T (ui)) is a basic sequence equivalent to (vi) and that for
every sequence of real numbers (ai) such that the series

∑
aivi is convergent we have:(

1− 2K
∞∑
i=1

‖vi − T (ui)‖
)∥∥∥∥∥

∞∑
i=1

aivi

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑
i=1

aiT (ui)

∥∥∥∥∥ ≤ 2K

∥∥∥∥∥
∞∑
i=1

aivi

∥∥∥∥∥ .
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In particular, there exists a constant c > 0 such that for any such sequence (ai):

c

∥∥∥∥∥
∞∑
i=1

aivi

∥∥∥∥∥ ≤ ‖T‖ ×
∥∥∥∥∥
∞∑
i=1

aiui

∥∥∥∥∥ .
Now, observe that the sequence (ui) is weakly null, being a bounded blok-sequence of

the shrinking Schauder basis e. Since (ui) is also semi-normalized and X has property
(P), it follows that (ui) has a subsequence equivalent to the canonical basis of c0. The
above inequality then implies that the corresponding subsequence of (vi) is a subsequence
of (yi) equivalent to the canonical basis of c0. �

To conclude this section (and although this has nothing to do with Haar negligibility),
we now show that property (P) is “almost” a three spaces property.

Proposition 5.5. Let X be a Banach space admitting a shrinking unconditional basis,
and let F be a closed subspace of X. If F et X/F have property (P), then X has property
(P).

Proof. Let e = (ei)i≥1 be a normalized, shrinking unconditional basis for X, and assume
without loss of generality that e is 1-unconditional. Also, set Y := X/F and denote by
T : X → Y the canonical quotient map.

Let (xi)i≥1 be a weakly null normalized sequence in X. To show that (xi) admits a
subsequence equivalent to the canonical basis of c0, we distinguish two cases.

Case 1. infi ‖T (xi)‖ = 0.

In this case, we may assume (upon extracting a subsequence) that limi→∞ ‖T (xi)‖ = 0.
Then there exists a sequence (fi) ⊂ F such that ‖xi − fi‖ → 0. The sequence (fi) is
weakly null, and since (xi) is normalized we may assume that it is also normalized. Since
F has property (P), (fi) has a subsequence (f ′i) equivalent to the canonical basis of
c0. By the principle of small perturbations (xi) has a subsequence equivalent to some
subsequence of (f ′i), which gives the required result.

Case 2. infi ‖T (xi)‖ > 0.

In this case, (T (xi)) is a a weakly null semi-normalized sequence in Y . Since Y has
property (P), we may assume that this sequence is equivalent to the canonical basis of
c0. Choose a constant M > 0 such that for every finite set I ⊂ N, we have∥∥∥∥∥∑

i∈I

1

M
T (xi)

∥∥∥∥∥ ≤ 2 .

Since BY (0, 1) ⊂ T
(
BX(0, 1)

)
, we may apply Proposition 5.4 with C := 1 and yi :=

1
M
T (xi), taking e.g. εi := 2−i. This gives a subsequence (y′i)i≥1 of

(
1
M
T (xi)

)
i≥1

and an
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increasing sequence of positive integers (pi)i≥0. We denote by (x′i)i≥1 the subsequence of
(xi) such that

y′i =
1

M
T (x′i) .

For each n ≥ 1, we have ‖
n∑
i=1

y′i‖ ≤ 2. So there exists a sequence (xi,n)i≥1 ⊂ X such

that

• xi,n ∈ Ei := [er; p2i−1 < r < p2i+1];
•
∥∥T (xi,n)− y′i

∥∥ ≤ εi if i ≤ n;

•
∥∥∥ ∞∑
i=1

xi,n

∥∥∥ ≤ 2, and hence
∥∥∥∑
i∈I
xi,n

∥∥∥ ≤ 2 for every finite set I ⊂ N.

For each fixed i ≥ 1, the sequence (xi,n)n≥1 is a bounded sequence in the finite-

dimensional space Ei; in fact ‖xi,n‖ ≤ 2. Hence (by a diagonal argument) we may
assume that (xi,n)n≥1 converges to some x̄i ∈ Ei for every i ≥ 1. Then ‖x̄i‖ ≤ 2

and ‖T (x̄i) − y′i‖ ≤ εi. Since (y′i) is semi-normalized, the latter inequality implies that
lim infi ‖x̄i‖ > 0; hence, we may assume that (x̄i) is semi-normalized.

Now set ui := x̄2i and vi := 1
M
x′2i. Observe that (ui) is a semi-normalized block-

sequence of e. For every finite set I ⊂ N, we have∥∥∥∥∥∑
i∈I

ui

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥∑
i∈I

x2i,n

∥∥∥∥∥ ≤ 2 .

Since (ui) is unconditional (being a block-sequence of e) and semi-nomalized, it follows
that (ui) is equivalent to the canonical basis of c0. Moreover, since ‖T (x̄i)− y′i‖ ≤ εi for
all i, we have

lim
i→∞

T (ui − vi) = 0 .

Set zi := ui − vi. If there exists a subsequence of (zi)i≥1 which converges to 0, the
principle of small perturbations tells us that some subsequence of (vi) is equivalent to
(ui), i.e to the canonical basis of c0, and the conclusion follows since vi = 1

M
xi. Otherwise

(disgarding finitely many terms) the sequence (zi) is semi-normalized, and hence we may
apply Case 1 to it; so there exists a subsequence of (zi) which is equivalent to the canonical
basis of c0. It is then easily checked that the same property holds true for (vi), and hence
for (xi). �

6. Positive cones and Gaussian measures

6.1. Gaussian test measures. In this section we intend to produce “explicit” test
measures for Haar null positive cones. More precisely we will see that under reasonable
assumptions, it is possible to construct test measures which are Gaussian measures.

Gaussian measures on Banach spaces may be defined as follows: a Borel probability
measure µ on a separable Banach space X is Gaussian if and only if it is the distribution
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of an X-valued random variable of the form

ξ(ω) = x0 +
∞∑
i=1

gi(ω)xi ,

where xi ∈ X, the gi are independent real-valued random variable (defined on the same

probability space (Ω,A,P)) having standard Gaussian distribution γ = 1√
2π
e−

t2

2 dt, and

the series is almost surely convergent. This means that for any Borel set A ⊂ X, we have

µ(A) = P(ξ ∈ A) .

A Gaussian measure µ is said to be centred if x0 = 0 in the above representation, which
means that

∫
X
x∗dµ = 0 for every continuous linear functional x∗ ∈ X∗. The measure

µ is nondegenerate if µ(V ) > 0 for every open set V 6= ∅; in the above representation,
this means that the linear span of the xi, i ≥ 1 is dense in X. For more information on
Gaussian measures, we refer to [Bog] or [CTV].

In the remaining of this section, we fix a normalized basic sequence e whose positive
cone is Haar null, and we denote by X the Banach space generated by e. For the sake
of notational simplicity, we write Q+ instead of Q+(e). For technical reasons, we will in
fact mostly deal with the negative cone Q− := −Q+.

We will consider Gaussian measures of a very special type. Let us fix once and for
all a sequence independent real-valued random variable (defined on the same probability
space (Ω,A,P)) having standard Gaussian distribution. We denote by R(e) the family
of all sequences of positive real numbers r = (ri)i≥1 such that the random series

∑
rigiei

is almost surely convergent. If r ∈ R(e), the corresponding Gaussian measure is denoted
by µr:

µr ∼
∑

rigiei .

Any such measure will be called a diagonal Gaussian measure. Note that µr is centred,
and also nondegenerate since ri 6= 0 for all i.

We restrict ourselves to diagonal measure because this allows to compute very easily
the measure of a translate of the negative cone. Indeed, if x =

∑∞
1 xiei ∈ X then, by

independance, we have

(6.1) µ(x+Q−) =
∏
i≥1

P
(
gi ≤

xi
ri

)
.

Having set these notations, we are going to prove the following result.

Theorem 6.1. Assume that the basic sequence e is unconditional. Let r ∈ R(e), and
assume that there exists a permutation π0 of the integers and a constant α > 0 such that
rπ0(i) = O (i−α). Then µr is a test measure for Q− = Q−(e) if and only if the series∑

log(i)1/2rπ0(i)eπ0(i) is divergent.
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When e is the canonical basis of `p, it is well-known that a Gaussian series
∑
rigiei

is almost surely convergent in `p if and only if
∑∞

1 |ri|p < ∞; see [CTV, Chapter V].
Applying Theorem 6.1, we get

Corollary 6.2. Assume that e is the canonical basis of `p, and let r = (ri) be a sequence of
positive real numbers such that

∑∞
1 rpi <∞. Denote by (r̄i) the decreasing rearrangement

of (ri). Then, the measure µr is a test measure for Q− if and only if∑
i≥1

log(i)p/2 r̄pi =∞ .

Proof. This follows immediately from Theorem 6.1 because r̄i = o
(
i−1/p

)
.

�

To prove Theorem 6.1, we basically have to determine whether an expression like (6.1)
above can be positive or not. The following remark shows that it is enough to consider
vectors x ∈ X having positive coefficients on the basis e. The set of all such vectors x
will be denoted by Q++:

Q++ =

{
x =

∞∑
i=1

xiei ∈ X; xi > 0 for all i ≥ 1

}
.

Remark 6.3. Let r ∈ R(e). For any a ∈ X, one can find x ∈ Q++ such that µr(x+Q−) ≥
µr(a + Q−). In particular, if µr is not a test measure for Q− then there exists x ∈ Q++

such that µr(x+Q−) > 0.

Proof. Write a =
∑∞

1 aiei and assume without loss of generality that µr(a + Q−) > 0.
Set I−a = {i ∈ N; , ai ≤ 0} and I+

a = {i ∈ N; ai > 0}; then

µr(a+Q−) =
∏
i∈I−a

P
(
gi ≤

ai
ri

)
×
∏
i∈I+a

P
(
gi ≤

ai
ri

)
,

and hence

µr(a+Q−) ≤
∏
i∈I−a

P
(
gi ≤

ai
ri

)
≤ 2−|I

−
a | .

Hence, the set I−a is finite. So if we set xi := 1 if i ∈ I−a and xi := ai if i ∈ I+
a , then

x :=
∑
i≥1

xiei is a well-defined element of Q++ such that µr(x+Q−) ≥ µr(a+Q−). �

In view of this remark, in what follows we will only consider translates of the negative
cone Q− by elements of Q++.

Lemma 6.4. Let r = (ri) ∈ R(e), and let x =
∑
i≥1

xiei ∈ Q++. Then

µr(x+Q−) > 0 if and only if
∑
i≥1

e−
1
2

(xi/ri)
2

(xi/ri)
<∞ .
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Proof. We have µ(x + Q−) =
∏

i≥1 P
(
gi ≤ xi

ri

)
=
∏

i≥1

(
1− P

(
gi ≥ xi

ri

))
. Therefore,

µ(x+Q−) > 0 if and only if ∑
i≥1

P
(
gi ≥

xi
ri

)
<∞ .

Set g(t) := e−t
2/2
√

2π
and G(a) =

∫∞
a
g(t)dt, a > 0. Then P

(
gi ≥ xi

ri

)
= G

(
xi
ri

)
. Now, it

is well-known that

G(a) ∼ e−a
2/2

√
2π a

as a→∞,

and the lemma follows. �

This lemma allows now to state the following “comparison criterion”.

Lemma 6.5. Let r ∈ R(e), and let x ∈ Q++. Let also π be a permutation of the integers.

• If lim sup
i→∞

(
xπ(i)
rπ(i)

log(i)−1/2
)
<
√

2, then µr(x+Q−) = 0.

• If lim inf
i→∞

(
xπ(i)
rπ(i)

log(i)−1/2
)
>
√

2, then µr(x+Q−) > 0.

Proof. Set bi := xi
ri

and ai =
xπ(i)
rπ(i)

. Then µ(x + Q−) > 0 if and only if
∑∞

1
e(bi)

2/2

bi
< ∞,

which is equivalent to the convergence of the series
∑

e−(ai)
2/2

ai
· We need the following

Fact. For any M > 0, set hM(t) := g(M log(t)1/2), where g(t) = e−t
2/2

t
· Then the series∑

i≥1 hM(i) is convergent if M >
√

2, and divergent if M <
√

2

Proof of Fact. The fonction hM is positive and decreasing on (0,∞), and so the conver-
gence of the series

∑
i≥1 hM(i) is equivalent to the convergence of the integral

∫∞
1
hM(t)dt.

A simple computation gives h′M(t) = −hM(t)
(
M2

2t
+ 1

2t log(t)

)
, and so

h′M (t)

hM (t)
∼ −M2

2t
as

t → ∞. It follows that the integral
∫∞

1
hM(t) is convergent if M >

√
2 and divergent if

M <
√

2. �

If lim inf
i→∞

(
ai log(i)−1/2

)
>
√

2, take M >
√

2 such that ai ≥M log(i)1/2 for i sufficiently

large, say i ≥ iM . Since g(t) = e−t
2/2

t
is decreasing on (0,∞), we obtain∑

i≥iM

e−(ai)
2/2

ai
=
∑
i≥iM

g(ai) ≤
∑
i≥iM

g
(
M log(i)1/2

)
=
∑
i≥iM

hM(i) ,

and hence µr(x+Q−) > 0 by the above Fact.

If lim sup
i→∞

(
ai log(i)−1/2

)
>
√

2, one gets in the same way that µr(x+Q−) > 0.

�
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From Lemma 6.5, we immediately deduce

Corollary 6.6. Let r ∈ R(e). If there exists a permutation π of the integers such that
the series

∑
i≥1 log(i)1/2rπ(i)eπ(i) converges in X, then µr is not a test measure for Q−.

Proof. If we set xM := M
∑

i≥1 log(i)1/2rπ(i)eπ(i), then µr(xM + Q−) > 0 for any M >√
2. �

The next lemma gives a kind of converse to Corollary 6.6.

Lemma 6.7. Assume that the basic sequence e is unconditional, and let r ∈ R(e). If
µr is not a test measure for Q− then, for every permutation π of the integers and every
α > 0, there exists a set I = Iπ,α ⊂ N such that

∑
i∈I

1
iα log(i)1/2

< ∞ and the series∑
i/∈I log(i)1/2rπ(i)eπ(i) is convergent.

Proof. Assume that µ is not a test measure Q−, and choose a point x ∈ Q++ such that
µ(x+Q−) > 0. Write x =

∑
i≥1 airiei, so that ai > 0 for all i. By Lemma 6.4, we know

that the series
∑

e−(ai)
2/2

ai
is convergent.

Now, fix α > 0 and a permutation π of the integers. Set

I :=
{
i ∈ N; aπ(i) ≤

√
2α log(i)1/2

}
.

By unconditionality and the definition of I, the series
∑

i/∈I log(i)1/2rπ(i)eπ(i) is conver-
gent. Moreover, we have∑

i∈I

1

iα log(i)1/2
=
∑
i∈I

e−α log(i)

log(i)1/2
≤
∑
i∈I

e−(aπ(i))
2/2

aπ(i)

<∞ .

�

We can now give the

Proof of Theorem 6.1. Taking α smaller if necessary, we may assume that in fact

rπ0(i) = O

(
1

iα log(i)

)
.

By Corollary 6.6, we know that if µr is a test measure for Q−, then
∑

log(i)1/2rπ0(i)eπ0(i)

is divergent.

Conversely, assume that µr is not a test measure for Q−. Then, by Lemma 6.7, there
exists a set I ⊂ N such that

∑
i∈I

1
iα log(i)1/2

< ∞ and the series
∑

i/∈I log(i)1/2rπ0(i)eπ0(i)

is convergent.

Since rπ0(i) = O
(

1
iα log(i)

)
, we have

∑
i∈I
‖ log(i)1/2rπ0(i)eπ0(i)‖ =

∑
i∈I

log(i)1/2rπ0(i) <

∞. So the series
∑
i∈I

log(i)1/2rπ0(i)eπ0(i) is convergent, and altogether the whole series∑
log(i)1/2rπ0(i)eπ0(i) is convergent. �
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6.2. Positive cones are not Gauss null. Besides Haar negligibility, there are many
natural notions of smallness for subsets of Banach spaces. One of the most useful ones
is Gauss negligibility, which was introduced by R. R. Phelps in [Ph]. A Borel set A in a
separable Banach space X is said to be Gauss null if µ(A) = 0 for every nondegenerate
Gaussian measure µ on X.

Since the family of all Gaussian measures on X is translation-invariant, any Gauss null
set is obviously Haar null; more precisely, a Borel set A ⊂ X is Gauss null exactly when
every nondegenerate Gaussian measure on X is a test measure for A.

Gauss negligibility is in fact a much stronger notion of smallness than Haar negligibility.
For example, a compact set needs not be Gauss null; see [BeLi]. More in the spirit of the
present paper, we have the following result.

Proposition 6.8. Positive cones determined by basic sequences are never Gauss null.

Proof. Let f = (fi)i≥1 be any normalized basic sequence, and set X := [f ].

Let also (ei)i≥1 be the canonical basis of `2, and fix any vector x =
∑

i≥1 xiei ∈ `2

such that xi 6= 0 for all i ≥ 1. Let (αi) be a sequence of positive numbers such that the
formula

T

(∑
i≥1

yiei

)
:=
∑
i≥1

αi sgn(xi) yifi

defines a bounded operator T : `2 → X. (For example we can take any square-summable
sequence (αi)). Note that the operator T has dense range since αixi 6= 0 for all i.

Now, choose a sequence (ai)i≥1 ⊂ (0, 1) such that
∏

i≥1(1− ai) > 0, and a sequence of
real numbers (ri) such that 0 < ri

xi
≤ √ai for all i ≥ 1. The series

∑
i≥1 riei is convergent

in `2 and so the Gaussian series
∑

i≥1 rigiei is almost surely convergent. Let ν be the
associated Gaussian measure on `2:

ν ∼
∞∑
i=1

rigiei .

Since the operator T : `2 → X has dense range, the measure

µ := ν ◦ T−1 ∼
∞∑
i=1

rigiTei

is a nondegenerate Gaussian measure on X.
Set

H :=

{
y =

∑
i≥1

yiei ∈ `2;
yi
ri
≥ 0 for all i

}
.



30 JEAN ESTERLE, ÉTIENNE MATHERON, AND PIERRE MOREAU

By the independence of the random variables gi, we have

ν(−x+H) =
∏
i≥1

P
(
gi ≥ −xi/ri

)
≥
∏
i≥1

P
(
|gi| ≤ xi/ri

)
≥
∏
i≥1

(
1− P

(
|gi| > xi/ri

))
.

Since P(|gi| > xi/ri) ≤ r2
i /x

2
i by Chebishev’s inequality, it follows that

ν(−x+H) ≥
∏
i≥1

(
1− r2

i

x2
i

)
≥
∏
i≥1

(1− ai) > 0 .

On the other hand, since T (H) ⊂ Q+(f) by the definition of T and since T is one-to-
one, we have

µ(T (−x) +Q+(f)) ≥ µ
(
T (−x+H)

)
= ν(−x+H) .

So µ(T (−x) +Q+(f)) > 0, and hence Q+(f) is not Gauss null. �

Remark. Another way of proving Proposition 6.8 is by using a deep result of M. Csörnyei,
according to which Gauss negligibility is equivalent to cube negligibility (see [Cs] or
[BeLi]). Indeed, it is not difficult to check directly that the positive cone of a Schauder
basis is never cube-null; see [Mo, Prop 3.5.2]

7. Some questions

(1) Let us say that a Borel set A in a Polish abelian group G compactivorous if for
every compact set K ⊂ G, one can find x ∈ G and an open set V such that
V ∩K 6= ∅ and x+ (V ∩K) ⊂ A. Does there exist a non–Haar null positive cone
(in some Banach space) which is not compactivorous?

(1’) Does there exist any closed convex non–Haar null set which is not compactivo-
rous? Note that for a quite large class of Polish abelian groups G, one can find a
Gδ set in G which is non–Haar null and non–compactivorous (see [M1, Proposi-
tion 1.2.2]), but it does not seem clear that there always exists a closed set with
these properties.

(2) What can be said of a Banach lattice whose positive cone is not Haar null?
(3) Let e a normalized unconditional basic sequence. Assume that there exists δ, R >

0 such that all block-sequences of e satisfy the (δ, R)-condition. Does this imply
that e has to be equivalent to the canonical basis of c0?

(3’) In the situation of (3), is it at least true that Q+(e) is not Haar null?
(4) Regarding our “main conjecture”, one may ask if the following weaker result holds

true: if e is an unconditional basic sequence whose positive cone is not Haar null,
then the Banach space [e] is isomorphic to a subspace of c0. The methods of
[GKL] might be relevant here.
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(5) Is property (P) a three spaces property?
(6) Let e be basic sequence with a Haar null positive cone. Assume that Q+(e) admits

a Gaussian test measure. Does it admit a diagonal such measure?
(7) Does there exist a Haar null positive cone which does not admit any Gaussian

test measure?
(8) It is known that if G is a non–locally compact Polish abelian group, then the

family of all closed Haar null sets of G is extremely complicated from a descriptive
point of view; see [So] and [SR]. What is the descriptive complexity of the family
of all basic sequences having a Haar null positive cone?
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