N

N

A Novel Framework to Detect Source Code Plagiarism:
Now, Students Have to Work for Real!

Boris Lesner, Romain Brixtel, Cyril Bazin, Guillaume Bagan

» To cite this version:

Boris Lesner, Romain Brixtel, Cyril Bazin, Guillaume Bagan. A Novel Framework to Detect Source
Code Plagiarism: Now, Students Have to Work for Real!. SAC "10 Proceedings of the 2010 ACM Sym-
posium on Applied Computing, Mar 2010, Sierre, Switzerland. pp.57-58, 10.1145/1774088.1774101 .
hal-01067161

HAL Id: hal-01067161
https://hal.science/hal-01067161v1

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01067161v1
https://hal.archives-ouvertes.fr

A Novel Framework to Detect Source Code Plagiarism:
Now, Students Have to Work for Real!

Boris Lesner Romain Brixtel

Cyril Bazin Guillaume Bagan

{blesner, rbrixtel, cbazin, gbagan}@info.unicaen.fr
GREYC (CNRS UMR 6072) 6, Avenue Maréchal Juin F14032 Caen CEDEX - France

ABSTRACT

Our work focuses on detecting plagiarism within a source
code corpus. The case study is to help a human corrector
to find out plagiarism within source code written by Com-
puter Science students. Like other approaches, we use the
notion of similarity distance. However, in this work we in-
troduce segmentation to split documents into smaller parts
and propose a document-wise distance based on the cost of
permuting segments to transform one document to another.
Our framework is laid out as a pipeline, where each stage
can be parameterized to build up a plagirism detector fitting
user needs. The approach makes no assumption about the
programming language being analyzed. Furthermore, it pro-
vides a synthetical report of the results to ease the decision
making process, as we consider that only a human user has
final word on wether it is plagiarism or not. We tested our
framework on hundreds of real source files, involving many
programming languages, allowing us to discover previously
undetected frauds.

Categories and Subject Descriptors

K.3.2 [Computer and Education]|: Computer and Infor-
mation Science Education

Keywords

Source Code Plagiarism, Similarity Measure, Segmentation

1. INTRODUCTION

As computer science teachers we sometimes have to deal
with unethical students who copy other’s work (ie. source
code) for their projects. Tracking this plagiarism is a time-
consuming task since it requires to compare each pair of
documents containing hundreds or even thousands of lines.
We propose a semi-automated framework, which highlights
the most suspicious pairs of documents within the corpus for
being manually checked afterwards. To gain generality we
want this method to be programming-language independent,

it should not have previous knoweldge about the language
being processed. The only restriction we make is that the
corpus should only contain source code documents written
in the same language.

2. A MODEL OF PLAGIARISM

In source code, we define plagiarism as the application of
successive transformations applied on an original document.
A transformation preserves the program function but not it’s
appearance. We aim to handle four kinds of transformations:
renaming, code reordering, adding/removing uninterpreted
text and replacing code sections or intructions by equivalent
ones. The more transformations are done, the less two doc-
uments are plagiarized. We aimed to build a framework to
help teachers finding plagiarised documents into a corpus of
source-code files. This framework pinpoints suspects pairs of
documents to be manually checked by the corrector, greatly
reducing the number of pairs to check.

3. A BOTTOM-UP APPROACH

Our method is based on six major stages, forming the de-
tection pipeline : (1) pre-filtering, (2) segmentation and sim-
ilarity measurement stage, (3) segment matching, (4) post-
filtering, (5) document-wise distance evaluation, (6) and cor-
pus analysis presentation. It works in a bottom-up fashion,
the first stages operating at the character level and the sub-
sequent ones becoming more and more abstract, by operat-
ing at the string, document and finally corpus level. Algo-
rithm 1 shows how different stages are coordinated.

Pre-filtering : Pre-filtering gives robustness to renam-
ing by replacing each alphanumerical string (eg. variable
name or keywords) by a single symbol.

Algorithm 1: Main algorithm

Input: D: a set of documents

begin
/* Prefilter the documents */
D' — {PreFilter(d) | d € D}
/* Segment filtered documents */

foreach d; € D’ do S; «— Seg(d})

/* Compute the distance between each pair of
documents */

foreach d;,d; eD',i>jdo

| Mi,j) < DocuMENTDISTANCE (S;, Sj)

/* Return a human-readable result */

return DispLAY (M)

end

Figure 1: Distance matrix of 2 plagiarized docu-
ments. Light points means small distance

Segmentation and similarity measure : For this
second stage, each document is divided into segments. We
try to be robust against code reordering by detecting simi-
lar segments of two documents. Intuitively, the segmenta-
tion determine what will be a “unit” of code. For exam-
ple, we may want to work at the line level or the function
level. A segment is a contiguous subset of a document, a
segmentation function Seg partitions a document d into a
sequence of segments Seg(d) = (s1,...,8m). A distance
function Dist(s1,s2) between two segments is a real num-
ber in [0, 1] satisfying the usual distance properties. For two
given segmentations S; = (s1,...,s5,) and Sz = (s3,...,s2)
and a distance function Dist, we obtain a m xn distance ma-
triz. M where M, jy = Dist(s},s7). When reasonably fine
segmentation is choosen, contiguous and similar sections of
documents make diagonals appear in the distance matrices,
revealing possible plagiarism, these diagonals are often diffi-
cult to see because of the noise (see figure 1). It’s important
to see that dissimilar documents have no diagonals in their
segments distance matrix. Many distance functions can be
used on segments, like Hamming distance or Levenshtein
[3] (aka. edit distance) counting the number of operations
(inserts, deletes, or replaces) to transform one segment into
another. An also interesting one is information distance (we
refer to [1] for details). In practice, we use a line-by-line
segmenter with edit distance.

Segment matching and Post-filtering : At this
point, we have a distance matrix M for a pair of segmen-
tations S1 and S3. From such a matrix, we want to find a
distance between documents themselves. To that end, we
look for a maximal matching of minimal distance within
M. A matching is a set of pairs C C S1 X Sz, such that
each segment of Si and Sz appears in at most one pair
of C. A matching C is mazimal iff all the segments of
the smallest segmentation are in C, and therefore |C| =
min(|S1], |Sz|). The distance of a matching C' is defined as :

(s},s2)eC M ;4. This stage aims to make the method ro-

bust to uninterpreted text modifications: if some comments
are added, the size of the document will be greater than the
original one, making the segments corresponding to this new
text unlikely to be matched with the original segments. We
use the Munkres algorithm [2] to perform the matching and
obtain a m x n matching matriz H such that H ;) = M ;)
if (s7, s?) € C and H; ;) = 1 otherwise. This algorithm per-
forms in O(max(m,n)?) time. The resulting matrix is then
filtered with an identity convolution matrix to enhance the
diagonals and remove the isolated matches.
Document-wise distance evaluation : From a fil-
tered matching matrix M between two segmentations, we

Algorithm 2: DOCUMENTDISTANCE

Input: S1,S2: two sets of segments (one per document,)
Data: Dist: a segment distance function

begin
/* Build the segments distance matrix M */
foreach (s;,s;) € S1 x Sy do

| M,) < Dist(si, s5)

/* Find max matching with min distance */
M’ — Matcher(M)
/* Post-filter the matching matrix */
M — PostFilter(M’)
/* Return the document-wise distance */
return 1 — mrmsrsgy 2 L M)

end

sum and normalize the matrix components with value less
than 1, giving a distance in the range [0,1] (last line of al-
gorithm 2).

Corpus analysis presentation : At this point we as-
sume we have the document-wise distance for every pair of
documents of the corpus. Thus, we can put these distances
in a spreadsheet where each cell contains a distance and is
emphasized by a color. The cell color represents the similar-
ity between documents wrt. the average corpus similarity,
to this end we choosed nested means to classify the pairs of
documents into 8 or 16 classes, each one colored on a scale
going from green (legitimate documents) to red (probable
plagiarism). We then used a hierarchical classification al-
gorithm to produce a binary tree with documents on the
leaves. The order on the leaves induced by the depth-first
traversal of this tree was applied on the row and columns
of the final distance matrix to group similar documents into
neighbouring cells.

4. DISCUSSION AND FUTURE WORK

Many experiments were conducted on students source code,
with some corpora with over 100 files and in many different
programming languages such as C, Python, Haskell, Bash,
PHP and Java. In most cases, plagiarism was found in sus-
pected documents, but we do not determined if all the unsus-
pected ones were original work. For all tests, the results were
given within minutes of computation time on a 2Ghz desk-
top workstation. In many corpora, the framework showed
promising results : we were able to discover previously unde-
tected frauds, even when the students were given a common
codebase. It has been interfaced with the student homework
repository of the University computer science department,
so every teacher can now use it on his own corpora. This
work is still in progress, we are working on an interactive
corpus summary to ease the corrector work allowing him to
explore the corpus at documents and segments levels.

5. REFERENCES

[1] R. Cilibrasi and P. Vitanyi. Clustering by compression.
IEEFE Transactions on Information theory,
51(4):1523-1545, 2005.

[2] H. Kuhn. The hungarian method for the assignment
problem. Naval Res. Logist. Quart., 2:83-97, 1955.

[3] Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics
Doklady, 10:707-710, 1966.

	p57-lesner-p1
	p57-lesner-p2

