
HAL Id: hal-01067100
https://hal.science/hal-01067100v1

Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-Based LQR with Integral Action
Sylvain Durand, Bruno Boisseau, John Jairo Martinez Molina, Nicolas

Marchand, Thibaut Raharijaoana

To cite this version:
Sylvain Durand, Bruno Boisseau, John Jairo Martinez Molina, Nicolas Marchand, Thibaut Rahari-
jaoana. Event-Based LQR with Integral Action. ETFA 2014 - EBS 2014 - 19th IEEE International
Conference on Emerging Technologies and Factory Automation - Workshop on Event-Based Systems,
Sep 2014, Barcelone, Spain. 7 p. �hal-01067100�

https://hal.science/hal-01067100v1
https://hal.archives-ouvertes.fr


Event-Based LQR with Integral Action

S. Durand1,2,3, B. Boisseau1,2,3, J.J. Martinez-Molina1,2, N. Marchand2,1, T. Raharijaona3

1 Univ. Grenoble Alpes, GIPSA-Lab, Grenoble, France.
2 CNRS, GIPSA-Lab, Grenoble, France.

3 Univ. Aix Marseille, CNRS, ISM, Marseille, France.

E-mail: sylvain@durandchamontin.fr

Abstract— In this paper, a state-feedback linear-quadratic
regulator (LQR) is proposed for event-based control of a linear
system. An interesting property of LQRs is that an optimal
response of the system can be obtained in accordance to some
specifications, like the actuator limits. An integral action is
also added in order to not only restrict the study to null
stabilization but also to tracking. The idea is to consider an
external control loop and stabilize the integral of the error
between the measurement and a desired setpoint to track.
However, an event-triggered integral can lead to important
overshoots when the interval between two successive events
becomes large. Therefore, an exponential forgetting factor of
the sampling interval is proposed as a solution to avoid such
problems. The whole proposal is tested on a real-time system
(a gyroscope) in order to highlight its ability, the reduction of
control updates and the respect to the actuator limits.

INTRODUCTION

The consistently-used periodic fashion cannot be applied
anymore in embedded and networked systems (with limited
resources) and resource-aware implementations are hence
required. In this context, recent works addressed alternative
frameworks where the control law is event driven. Whereas
the control law is computed and updated at the same rate
regardless whether is really required or not in the classical
time-triggered approach, the event-based paradigm relaxes
the periodicity of computations and communications in call-
ing for resources whenever they are indeed necessary (for
instance when the dynamics of the controlled system varies).
Typical event-detection mechanisms are functions on the
variation of the state (or at least the output) of the system,
like in [2], [5], [16], [14], [9], [11], [8]. Although event-based
control is well-motivated, only few works report theoretical
results about stability, convergence and performance. It has
notably been shown in [3] that the control law can be
updated less frequently than with a periodic scheme while
still ensuring the same performance. Stabilization is analyzed
in [19], [17], [12], [6], where the events are related to the
variation of a Lyapunov function or the time derivative of
a Lyapunov function (and consequently to the state too).
In the latter case, the updates ensure the strict decrease of
the Lyapunov function, and so is asymptotically stable the
closed-loop system.

The setup suggested in the present paper is based on the
seminal work in [12] originally developed for general non-
linear systems, which yields an event-based linear-quadratic
regulator (LQR) in the particular linear case, see [18], [4].

LQRs offer interesting properties, which most important is
that an optimal response of the system can be obtained
in accordance to the designer’s specifications (such as the
limitations of actuators for instance). They can also be
methodologically applied whatever the order of the system,
and are intrinsically stable. On the other hand, adding an
integral action allows to track a given setpoint (instead of a
classical null stabilization) and a better perturbation robust-
ness [10]. The idea is to stabilize the controlled system as
well as the integral of the measured error (the error between
the measurement and a desired setpoint to track). However,
the integral can lead to important overshoots in the event-
based scheme because the interval between two successive
events is no more bounded. This was discussed in [5] for the
design of an event-based PI (proportional integral) controller,
and several methods were suggested as solutions to avoid
such problems. In particular, an exponential forgetting factor
of the sampling interval is applied here, where the idea is to
decrease its impact as the elapsed time increases.

The rest of the document is organized as follows. In sec-
tion I, preliminaries on event-based control are introduced.
The event-based LQR derived from [12] is recalled and
extended to a version with dynamically varying (tunable)
parameter. The integral action principle is also presented and
the even-based LQR with integral action is finally detailed.
Experimental results are then depicted in section II for
the control of the angular positions of a gyroscope. They
highlight the capabilities of the proposed approach and a
significant reduction of the control updates. They also show
that the actuator limits are guaranteed. Discussions finally
conclude the paper.

I. EVENT-BASED LQR WITH INTEGRAL ACTION

A. Event-based (state-feedback) LQR

Let consider the linear time-invariant dynamical system

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) (2)
with x(0) := x0

where x ∈ Rn, u ∈ Rm and y ∈ Rl are the state,
(controlled) input and (measured) output vectors. System (1)
is assumed to be stabilizable and x is measurable. Note that
the dependence on t can be omitted in the sequel for the
sake of simplicity.



Definition 1.1: By event-based state-feedback we mean a
set of two functions:

i) an event function ξ : Rn×Rn → R, that indicates if one
needs (when ξ ≤ 0) or not (when ξ > 0) to recompute
the control law,

ii) a state-feedback function Rn → Rm, in the form

u(t) = −Kx(t) (3)

where the state-feedback matrix K is calculated to make
the closed-loop system stable.

The solution of system (1) with an event-based state-
feedback starting in x0 at t = 0 is then defined as the solution
of the differential system

ẋ(t) = Ax(t)−BKx(ti) ∀t ∈ [ti, ti+1[ (4)

where the time instants ti, with i ∈ N (determined when the
event function ξ vanishes) are considered as events and x(ti)
is the memory of the state value at the last event.

In [12], it is proved that the linear system (1) can be
asymptotically stabilized (as soon as (A,B) is a stabilizable
pair) by means of a particular event-based state-feedback,
defined by

u(t) = −Kx(ti) ∀t ∈ [ti, ti+1[ (5)
with K := 2ρR−1BTP (6)
ξ
(
x(t), x(ti)

)
= (σ − 1)x(t)T

[
PA+ATP

]
x(t)

−4ρx(t)TPBR−1BTP
[
σx(t)− x(ti)

]
(7)

where ρ > 0 and σ ∈ [0, 1[ are tunable parameters, P , Q
and R are positive definite matrices, with P solution of the
algebraic Riccati equation (ARE) given by

PA+ATP − 4ρPBR−1BTP +Q = 0 (8)

It is also proved in [12] that the feedback (5)-(7) is uniformly
MSI (Minimal inter-Sampling Interval). That means it is a
piecewise constant control with non zero sampling intervals,
which is useful to avoid Zeno phenomena.

The event-based state-feedback (5)-(7) is afterwards called
event-based LQR because it minimizes the value of a (infi-
nite horizon) quadratic cost functional defined by

J =

∫ ∞
0

(
xTQx+ ρuTRu

)
dt (9)

The first and second terms in (9) correspond to the energy of
the controlled state (or output if Q = CTQyC using (2) for a
given positive definite matrix Qy) and input respectively, and
the LQR strategy has to minimize both. However, decreasing
the one requires the other is large, and inversely. The role of ρ
consists in establishing a trade-off between these conflicting
behaviors: the smaller ρ, larger is the control and smaller is
the state. The role of Q (or Qy) and R consists in weighting
the different state (or output) and input variables. However,
note that the feedback (5) is twice the classical optimal LQR
feedback, as already noticed in [18]. For this reason, the
particular choice ρ = 1

2 will be applied hereafter for the
same Q and R matrices in order to be able to then compare
different closed-loop systems with equivalent control.

Let consider the function V : Rn → R defined by

V (x) := xTPx (10)

where the matrix P satisfies the ARE (8). This function is
a control Lyapunov function (CLF) for system (1) since u
in (5) renders V̇ strictly negative for all x 6= 0. Actually, the
idea behind the construction of the event-based feedback (5)-
(7) is to compare the time derivative of the CLF V i) in
the event-based case, that is when applying the piecewise
constant state-feedback with x(ti) as in (5), and ii) in the
classical case, that is applying the continuously varying state-
feedback x(t) instead of x(ti). The event function is the
weighted difference between both, where σ is the weighted
value. By construction, an event is enforced when the event
function ξ vanishes to zero, that is hence when the stability
of the event-based scheme does not behave as the one in
the classical case. Also, the convergence will be faster with
higher σ but with more frequent events in return. σ = 0
means updating the control when V̇ = 0.

Based on this behavior, σ is extended in the present paper
to a dynamically varying parameter. The idea is to have a
faster convergence when the system trajectory is far from
the desired setpoint (that is when the Lyapunov function V
is high) and few events when it is almost stabilized. The
proposed varying σ is defined by

σ
(
x(t), x(ti)

)
:= 1− δ

V
(
x(t)

)
V
(
x(ti)

) (11)

where V is defined in (10) and δ ∈]0, 1] is a new tunable
parameter. Note that (11) guarantees the condition σ ∈ [0, 1[
since V is decreasing by construction of the event-based
feedback (see [12] for the proof). As a consequence, the
condition

V (x(ti)) ≥ δV (x(t)) > 0 ∀x 6= 0, t ≥ ti (12)

is satisfied if δ ∈]0, 1]. Moreover, a simple solution for δ (in
order to not have anymore parameter to tune) is

δ :=
V (x(ti))

V (x0)
(13)

where x0 is the initial state value as defined in (1). The
condition δ ∈]0, 1] is also satisfied thanks to the decreasing
of V . Note that the particular case δ = 0 can occur in (13) for
x = 0, that is when the system is stabilized, which is not in
contradiction with the expected behavior (12). Nevertheless,
the solution(13) will not be applied here.

B. Event-based output-feedback LQR

Whereas the full state information x is considered as
measurable in a state-feedback approach (as in section I-A),
in practice only a small number of values in the state vector
(or linear combinations of the states) are really available in
the output vector y. Therefore, the idea behind an output-
feedback approach is to directly use the output in the control
law, i.e. u(t) = −K̄y(t) where K̄ is the output-feedback
matrix for y as defined in (2), or to apply a state observer in
order to have an estimation of the whole state information



(this is possible as soon as (A,C) is an observable pair), and
then build a state-feedback control law using the estimated
state. This latter case is concerned here.

An extension of the event-based state-feedback (5)-(7) to
an observer-based output-feedback version has been pro-
posed in [7]. To summarize, assuming system (1)-(2) is
observable and y is measurable, the typical Luenberger state
observer for linear system is given by

˙̂x(t) = Ax̂(t) +Bu(t) + L
[
y(t)− Cx̂(t)

]
(14)

with x̂(0) := x̂0

where x̂ ∈ Rn is the estimated state vector. The matrix L is
calculated to make stable the error of observation defined by

x̃(t) := x(t)− x̂(t) (15)

An optimal observer can be designed as the dual problem
of the LQR state-feedback problem (also known as Kalman
filter). The observer is optimal in estimating the state in
the presence of zero-mean stochastic Gaussian processes
corrupting the output measurements and the state, that is

ẋ(t) = Ax(t) +Bu(t) + w (16)
y(t) = Cx(t) + v (17)

where v ∈ Rl is the output noise and w ∈ Rn is the input
perturbation. The cost to minimize can be expressed as

J =

∫ ∞
0

(
eTwWew + µeTv V ev

)
dt (18)

where ew and ev are the errors of estimation in absence
of noise (v = 0) and in absence of perturbation (w = 0)
respectively. The role of µ > 0, W and V positive definite
matrices, then consists in establishing a trade-off between
the quality of sensors (sensor noise, measurement bias) and
quality of actuators (perturbations in the input, friction). By
duality, the matrix L is finally obtained as

L := µUCTV −1 (19)

where U is positive definite solution of the ARE given by

AU + UAT − 4µUCTV −1CU +W = 0 (20)

Definition 1.2: By event-based output-feedback we mean
a set of two functions:

i) an event function ξ : Rn ×Rn → R (as defined above),
ii) an output-feedback function Rn → Rm in the form

u(t) = −Kx̂(t) (21)
The solution of system (1)-(2) with an event-based output-
feedback using the observer (14) and starting in x0 at t = 0
is then defined as the solution of the differential system

˙̂x(t) = Ax̂(t)−BKx̂(ti) + L
[
y(t)− Cx̂(t)

]
(22)

ẋ(t) = Ax(t)−BKx̂(ti) ∀t ∈ [ti, ti+1[

Then, applying x̂ instead of x in (5)-(7) makes asymptotically
stable and uniformly MSI the closed-loop system for stable
matrices K (defined as in (6)) and L (with L faster than K).

C. Trajectory tracking and integral action

Only null stabilization is considered in previous sections,
which means all the state (and output) variables tend to reach
zero. Nevertheless, it can be interesting the outputs track
given setpoints and, accordingly, some of the state variables
be nonzero in the steady state. The idea is hence to control
the tracking errors (the errors between the states or outputs
and their setpoints) instead of the states. Let define

xe(t) := x(t)− xr(t) (23)
e(t) := r(t)− y(t) (24)

where xr ∈ Rn and r ∈ Rl are the state and output setpoint
vectors, xe ∈ Rn and e ∈ Rl are the state and output error
vectors. Note that r(t) := Cxr(t) by construction. Rewriting
system (1)-(2) with such a notation yields

ẋe(t) = Axe(t) +Bu(t) (25)
y(t) = Cxe(t) (26)
with xe(0) := xe0

but this is known as not robust enough to disturbance.
A robust tracking can be achieved thanks to an external

control loop and the so-called integral action. Note that other
methods can be applied, but an integral action also considers
system disturbances because the error will converge even if
the output responses are not as expected (because of model
uncertainties or external perturbations for instance) [10]. The
principle consists in building the extra states z defined as the
integral of the error, that is

ż(t) = e(t) (27)
with z(0) := 0

and constructing the whole system when taking into account
these added state variables. The augmented system, with new
state vector

x̄(t) :=
[
xe(t)

T z(t)T
]T

where x̄ ∈ Rn+l, becomes

˙̄x(t) = Āx̄(t) + B̄u(t) +Brr(t) (28)
y(t) = C̄x̄(t) (29)

with x̄(0) :=
[
xTe0 0

]T
Ā :=

[
A 0
−C 0

]
, B̄ :=

[
B
0

]
, C̄ :=

[
C 0

]
, Br :=

[
0
Il

]
where Il is the identity matrix of dimension l. Then, control-
ling the augmented system (28)-(29) with a state-feedback
in the form of (3) – or an output-feedback in the form
of (21) respectively – will make converge the augmented
state x̄ (and z in particular). As a consequence, the system
outputs track the desired setpoint without static error. Note
that the augmented state x̄ has to be taken into account in
the control law (5) but also in the event function (7), leading
to augmented matrices K̄, P̄ and Q̄ (R can remain the same
since the number of inputs does not change).



In practice, a discrete-time (time-triggered) version of (27)
(applying the backward difference approximation) is

z(tk) = z(tk−1) + ~e(tk) (30)

where ~ is the (constant) sampling period, tk and tk−1 are
two successive sampling instants, with k ∈ N. However,
in the event-based approach ~ becomes a varying interval,
afterwards denoted hi := ti − ti−1 where ti are event
instants with i ∈ N. As a consequence, an integral action
can induce overshoot issues when the sampling interval hi
becomes large since this variable is no more limited. This
was notably demonstrated in [5] in the case of an event-
based PI controller. Solutions to avoid such problems consist
in bounding the integral gain (i.e. the product between hi
and e(ti)) or adding an exponential forgetting factor of
the sampling interval for instance. This latter method is
dedicated here. The approach is somehow similar to the anti-
windup mechanism used in control theory, where the error
induced by the saturation has to be compensated. The integral
action (30) becomes

z(ti) = z(ti−1) + λ(hi)e(ti) (31)
with λ(hi) = hie

α(~−hi)

where α is a degree of freedom to increase/decrease the
exponential sampling interval of the integral action. One can
refer to [5] for further details. Therefore, the expression (31)
will be applied instead of (30) in the event-based LQR with
integral action. Note that other approaches proposed in [5]
can also be implemented.

II. EXPERIMENTAL RESULTS:
APPLICATION TO THE GYROSCOPE

Gyroscopes are widely used as actuators to control space-
crafts attitude for example. The physical principle consists
in varying the rotational speed of a flying wheel (motorized
gimbal) in order to apply a moment of controlled amplitude
(variable-speed single-gimbal gyroscope) or to orientate the
axis of the wheel (double-gimbal) to rotate the spacecraft.
These devices are generally called control momentum gyro-
scopes (CMG) and have been a topic of prime interest in
control theory.

A. Experimental platform

The experimental platform, depicted in Fig. 1, is a gy-
roscope M750p from ECP systems [1], where a (classical)
LQR control has been previously investigated in [13].

1) Electromechanical plant: The gyroscope consists of
4 (rigid) rotating masses. The 4 rigid bodies each have as
angular position θi relative to their rotating gimbal axis i,
with i = 1, 2, 3, 4. More precisely, a high inertia brass rotor
(body D) is suspended in an assembly with four angular
degrees of freedom. The rotor spin torque is provided by a
rare earth magnet type DC motor (motor 1) whose angular
position (θ1) is measured by an optical encoder (encoder 1).
The first transverse gimbal assembly (body C) is driven by
another rare earth motor (motor 2) to effect motion about
axis 2. The relative position between bodies C and B (θ2)

Fig. 1. ECP’s gyroscope (model M750p).

is provided by another encoder (encoder 2). The subsequent
gimbal assembly, body B, rotates with respect to body A
about axis 3. There is no active torque applied about this
axis and the relative angle (θ3) is measured by encoder 3.
Similarly, body A rotates without actively applied torque
relative to the base frame (inertial ground) along axis 4. The
relative angle (θ4) is measured by encoder 4. Two manual
brakes may be used to lock the relative position between
either bodies A and B or body A and the base frame, in
order to reduce the system degrees of freedom.

2) Angular positions and torques: The gyroscope is as-
sumed to be symmetric and the center of all rigid bodies (A,
B, C et D) lie at the center of body D (the rotor). As a result,
only the rotational dynamics needs to be taken into account.
The following convention is adopted hereafter:
• The angular position θ1 of the rotor (body D) is not

of importance: only the angular velocity ω1 = θ̇1 is
considered.

• The angular position θ2 of the rotor drum (body C) is
set to 0 if the rotor drum (body C) is perpendicular to
the inner gimbal (body B).

• The angular position θ3 of the inner gimbal (body B) is
0 if the inner gimbal (body B) is perpendicular to the
outer gimbal (body A).

• Since the outer gimbal (body A) is able to rotate freely
and the gyroscope is assumed to be symmetric, θ4 can
be reset to θ4 = 0 at any angular position of the outer
gimbal (body A).

The angular position of the 4 rigid bodies in the gyroscope
can be controlled with the 2 internal torques T1 and T2. These
torques are provided by DC motors: T1 rotates D around its
axis (flying wheel driver) while T2 rotates the C body around
the second axis (longitudinal).

3) Dynamic model: The gyroscope is a complex nonlinear
system. However, for a constant angular velocity ω1, it can be



modelized as a multivariable linear system. Thus, considering
small variations around the operating point defined by the
angular speed ω1 = Ω and the angles θi = 0 for i = 2 to 4,
gives

ω̇2 =
JDΩ

IC + ID
ω4 +

1

IC + ID
T2

ω̇3 = − 1

JB + JC
T1

ω̇4 = − JDΩ

ID +KA +KB +KC
ω2

(32)

The numerical values of the inertia of the four bodies are
KA = 0.067kg.m2, IB = 0.012kg.m2, JB = 0.018kg.m2,
KB = 0.030kg.m2, IC = 0.0092kg.m2, JC = 0.023kg.m2,
KC = 0.022kg.m2, ID = 0.015kg.m2, JD = 0.027kg.m2.
The (fixed) angular velocity for ω1 is Ω = 42 rad/s. The
actuators are limited to

|T1| ≤ 0.2Nm
|T2| ≤ 3.0Nm

(33)

and the angles are limited to

|θi| ≤ 20◦ for i = 2 to 4 (34)

A state-space representation as given in (1)-(2) of (32) with
state and input vectors respectively defined by

x =
(
θ3 θ4 ω2 ω3 ω4

)T
u =

(
T1 T2

)T
y =

(
θ3 θ4

)T (35)

then follows, with

A =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 JDΩ

IC+ID
0 0 0 0 0
0 0 − JDΩ

ID+KA+KB+KC
0 0

 ,

B =


0 0
0 0
0 1

IC+ID
− 1
JB+JC

0

0 0

 , C =

[
1 0 0 0 0
0 1 0 0 0

] (36)

This system is in limit of stability, it is controllable and
observable. An observer as defined in (14) is used in order
to estimate the whole state vector.

Note that the objective of the given configuration (35) is
not to control θ2 which is stabilizable, but only θ3 and θ4.

B. Control parameters

In order to compare the event-based LQR with a (classical)
time-triggered approach, the control parameters are tuned as
in [13], that gives

Q = CTC, R =

[
3 0
0 0.02

]
, ρ = {1, 1

2}

W = BBT , V =

[
1 0
0 1

]
, µ = 0.01

(37)

where W , V and µ are used for the observer’s design as the
dual parameters of Q, R and ρ respectively. The choice for ρ

is either 1 for the time-triggered approach or 1
2 for the event-

based one (because the control is twice in this latter case,
as already explained above). Note also that the particular
choice for R takes into account the actuator limits (33),
which should therefore be respected in practice. One can
refer to [13] for further details.

For the event-based LQR with integral action strategy,
augmented parameters are required for the control’s design
in order to fit with the augmented system (28)-(29). They
are also as in [13], that yields

Q̄ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(38)

in order to give priority on the stabilization of the extra states.
Other parameters are unchanged.

For the event-based setups, different values for the tuning
parameter σ will be applied, as well as the dynamically
varying version proposed in (11)-(13) with δ = 0.2 in this
latter case. Different values for the parameter α will also be
used in the exponential forgetting factor and ~ = 20ms.

C. Performance indexes

Performance indexes, introduced in [15], are recalled here.
They allow to compare the different event-based proposals
with respect to classical approaches:
• The number (Nb) of samples required to perform the

test bench.
• The IAE index, which gives information on the setpoint

tracking

IAE =

∫ ∞
0

∣∣e(t)∣∣dt
• By analogy, the IAU index gives information on the

control effort

IAU =

∫ ∞
0

∣∣u(t)
∣∣dt

The performance indexes obtained for different experimental
results are summarized in Table I. Results are discussed in
the next section.

D. Experimental results

The gyroscope angular position θ3 and θ4 has to track a
given (sinus signal) setpoint. Note that a first initializing part
consists in rising the angular velocity ω1 to the constant value
Ω (thanks to a simple PI control on T1) in order to satisfy the
assumption required for the linear form (32). Only updates
after this initialization are considered, that is after t = 15 s.
Different strategies are compared in the sequel:

i) Classical time-triggered (observer-based output-
feedback) LQR:
• with and without integral action.



TABLE I
PERFORMANCE INDEXES OBTAINED FOR THE DIFFERENT EXPERIMENTS WITH SEVERAL CONTROL STRATEGIES.

Nb IAE IAU
Classical LQR strategy 1000 2.036 3.534

σ = 0.8 84 1.812 3.723
σ = 0.5 81 1.816 4.065
σ = 0.2 69 1.806 4.046Event-based LQR strategy

varying σ 96 1.876 3.750
Classical LQR with integral action 1000 1.189 3.940

σ = 0.8 99 2.318 3.550
Event-based LRQ with integral action σ = 0.5 64 2.245 3.762
with time-triggered integral action σ = 0.2 55 2.303 3.343

varying σ 92 2.231 3.653
σ = 0.8 100 0.811 3.794

Event-based LRQ with integral action σ = 0.5 86 1.023 4.461
without exponential forgetting factor σ = 0.2 68 1.796 5.208

varying σ 84 0.816 3.846
σ = 0.8 91 2.384 3.603

Event-based LRQ with integral action σ = 0.5 61 2.362 3.479
with exponential forgetting factor (α = 10) σ = 0.2 53 2.610 3.602

varying σ 89 2.327 3.606
σ = 0.8 73 1.126 3.775

Event-based LRQ with integral action σ = 0.5 50 1.284 4.017
with exponential forgetting factor (α = 1) σ = 0.2 49 1.253 3.960

varying σ 68 1.156 3.943

ii) Event-based (output-feedback) LQR:

• with and without integral action;
• with and without exponential forgetting factor of the

sampling interval (for the integral computing);
• with and without dynamically varying parameter σ.

Experimental results for the time-triggered LQR strategy
without integral action are represented in Fig. 2. The top
plot shows the variation of the angular velocity ω1 which
is considered as constant in the theoretical part. However,
one can see that it is not. The initializing (ramp) part can be
observed during the first 10 s, where the manual brakes are
locked on axis 3 and 4. At 20 s, the brakes are unactivated
and the LQR strategy is enabled. ω1 hence varies whereas
θ3 and θ4 are controlled. This plot is not repeated in the
sequel. The bottom plots show the setpoints and the measured
angles. Experimental results when adding the integral action
are then represented in Fig. 3. The integral action ensures a
better tracking of the angular positions with lower error (as
one can see comparing the IAE index in Table I).

Several experimental results for the different event-based
LQR strategies were realized, which performance indexes are
all summarized in Table I. Performance are basically quite
similar but with a strong decrease of control updates (more
than 90 % in all the experiments). As before, the integral
action allows to reduce the IAE index. In the event-based
framework, this reduction seems related to the exponential
forgetting factor (and its tuning parameter α). On the other
hand, the frequency of control updates decreases with σ (as
expected by construction of the event function) but with
deteriorated IAE and IAU performance indexes in return.
The dynamically varying version leads to a certain tradeoff
between the number of updates and the performance. This is
because the value of σ can increase in case of fast required
samples and decrease when the system is naturally stable.
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Fig. 2. Experimental results: conventional time-triggered LQR strategy
without integral action.
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Fig. 3. Experimental results: conventional time-triggered LQR strategy
with integral action.
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Fig. 4. Experimental results: event-based LQR strategy with integral action,
exponential forgetting factor (α = 1) and varying parameter σ.

Finally, experimental results of the event-based LQR with
integral action, exponential forgetting factor (α = 1) and
varying parameter σ are represented in Fig. 4. Extra (bottom)
plots are added to show the (no more constant) sampling
instants (where ‘1’ means the control law is calculated and
updated during the sampling period h̄, ‘0’ means the control
is kept constant) and the dynamics of parameter σ. This
proposal gives even better results, with smaller IAE and
quite close IAU indexes, but with about 93 % of samples less
than the classical approach. Furthermore, the control signal
satisfies the actuator limits of the system (not represented in
the different plots) thanks to simple choice of the Q and R
matrices, the same as in the classical LQR synthesis.

CONCLUSIONS AND FUTURE WORKS

This paper first recalled the event-based LQR scheme
derived from the seminal work in [12]. Both state- and
output-feedback cases were treated. A dynamically varying
tunable parameter version was also suggested. Then, an
event-based LQR with integral action strategy was developed
and an exponential forgetting factor of the sampling interval
added, based on previous work focusing on the integral gain
in PI controllers [5]. The whole approach was finally tested
on a real-time system, for the stabilization of the angular
position of a gyroscope to a given setpoint. Experimental
results showed the effectiveness of the proposal with a high
reduction of the frequency updates for quite similar (or even
better) performance. The actuator limits are also respected
thanks to parameters tuning as simple as in a classical LQR
strategy. The advantage of an event-driven scheme was hence
highlighted and the encouraging results strongly motivate to
continue developing event-based control strategies.

Next step is to work on dynamic event function. Another
way of investigation could be to extend the proposal to
nonlinear systems and consider delays, in the spirit of [12]
and [6].
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[2] K. E. Årzén. A simple event-based PID controller. In Preprints of the
14th World Congress of IFAC, 1999.
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