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Preface

These lecture notes are an extended form of a course given at a CIMPA master
class held in LIMA, Peru, in the summer of 2008. The students who attended these
lectures were already introduced to linear differential equations, Gevrey asymp-
totics, k-summability and resurgence by my colleagues Michele Loday, Claude
Mitschi and David Sauzin. The aim was merely to show the resurgent methods act-
ing on an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes reflect this plan and this pedagogical point of view. The
example that we follow along this course is the First Painlevé differential equation,
or Painlevé I for short. Besides its simplicity, various reasons justify this choice.
One of them is the non-linearity, which is the field where the resurgence theory
reveals its power. Another reason lies on the fact that resonances occur, a case which
is scarcely found in the literature. Last but not least, the Painlevé equations and
their transcendents appear today to be an inescapable knowledge in analysis for
young mathematicians. It was thus certainly worthy to detail the complete resurgent
structure for Painlevé I.

We have tried to be as self-contained as possible. Nevertheless, the reader is
assumed to have a previous acquaintance with the theories of summability, espe-
cially with Borel-Laplace summation and a little background with resurgence the-
ory. Since this volume deals with ordinary non-linear differential equations, we be-
gin with definitions and phenomena linked to the non-linearity. Special attention is
then brought to Painlevé I and to its so-called tritruncated and truncated solutions
that are constructed by proving the summability of the transseries solutions. We an-
alyze the formal integral for Painlevé I and, equivalently, the formal transform that
brings Painlevé I to its normal form. We detail the resurgent structure for Painlevé I
via additional material in resurgence theory. As a rule, each chapter ends with some
comments on possible extensions for which we provide references to the existing
literature.

Angers, November 2015 Delabaere Eric
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Chapter 1

Some elements about ordinary differential
equations

Abstract This chapter is merely devoted to recalling usual notations and elemen-
tary results on ordinary differential equations (ODEs) in the complex domain. We
give the fundamental existence theorem for Cauchy problems (Sect. [I.T). We detail
the main differences between solutions of linear versus nonlinear ODEs, when the
question of their analytic continuation is considered (Sect. [I.2). Finally we provide
a short introduction to Painlevé equations (Sect.[I.3).

1.1 Ordinary differential equations in the complex domain

An ordinary differential equation (ODE) is a functional relation of the type

dka

Z (x,u(x),u (x),- . uM(x) =0, uW(x)= W

eC™. (1.1)
We refer to m as the dimension of the ODE. The order N of the ODE refers to the
highest derivative considered in the equation. This ODE of order N is said to be
solved in his highest derivative if it is written as

u®™) :F(x,u7--~,u(N_1)). (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for analytic
ODEs (see, e.g. [20L 18} 23] [19]). We denote by D(z,r) C C the open disc centred
on z and of radius r. For a given domain U C C™ (i.e., U is a connected open set)
we denote by &'(U) the complex linear space of functions holomorphic on U.

Let U C C" be an open set and let f : U — C be a function. The following statements are
equivalent (this is the Osgood lemma):

e fisanalyticon U, thatis f can be represented by a convergent power series in a neigh-
bourdhood of each x € U;
f is complex differentiable on U
f is weakly holomorphic, that is f is continuous on U and partially differentiable on U
with respect to each variable x; (x = (xp,- -+ ,x,)).

As a matter of fact, it is enough to assume only the holomorphy in each complex variable
without the continuity hypothesis (Hartogs theorem).
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Theorem 1.1 (Cauchy problem). Let U C C x C™ be a domain and F : U — C™
be a holomorphic vector function. For every (xp,ug) € U, there exist a polydisc
D(xo,€0) [Ti<i<m D(00;, &) C U and a solution u : D(xo,&) — [1i<i<m D(uoi, &) of

d
the analytic ODE of order 1 and dimension m, au = F(x,u), which satisfies the

initial value condition u(xg) = wg. Moreover this solution is unique, u belongs to
O (D(x0,€)) and also depends holomorphically on the initial value uy.

In what follows we shall consider essentially scalar ODEs, that it ODEs of di-
mension 1 and of order N. The theorem [I.1] translates to this case as well, since
every ODE of order N and of dimension 1, once solved in his highest derivative,
is equivalent to an ODE of order 1 and of dimension N : if u = vy, t/ = vy, -+,
uN=1 = yy_|, the following Cauchy problem,

M(N) :F(xﬂ/t’... 7M(N*l))
(u(xo),~-- ’M(Nfl)(xo)) — (Mo ’uéN*U)’

is equivalent to that one:

V v
0 1 Yo it

— : = E and : (x0) =

VN-1 Uy

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, e.g. [6]]):

e The general solution of an ODE of order N and of dimension 1 is the set of all
solutions determined in application of the Cauchy theorem [I.1} It depends on N
arbitrary complex constants.

e A particular or special solution is a solution derived from the general solution
when fixing a particular initial data.

e A singular solution is a solution which is not particular.

1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these we de-
fine now.

Let U C C be a domain. We denote by .# (U) the field of meromorphic functions
on U. The ODE of order N and of dimension 1 is said to be algebraic on a
domain U if & € A4 (U)[u,u,--- 7u(N)] that is, .% is polynomial in (u,u/,- - ,u™))
with meromorphic coefficients in x. An algebraic ODE is rational if it is of degree

one in the highest derivative ™), and linear (homogeneous) if .% is a linear form
in (w0, ,u™).
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1.2 On singularities of solutions of ordinary differential
equations

1.2.1 Notations

We fix some notations that will be used in a moment.

Definition 1.1. Let A : [a,b] C R — C be a path starting at x; = A(a) and ending at
xp = A(b). If u is a (germ of) holomorphic function(s) at x; which can be analyti-
cally continued along A, we denote by conty u the resulting (germ of) holomorphic
function(s) at x;.

Remark 1.1. Let 0 = |_| O\ be the set of all germs of holomorphic functions. We

xeC
equip ¢ with its usual Hausdorff topology, a basis Z = {% (U, ®)} of open sets
being defined as follows: % (U, ®) = {¢; € O, | ¢, germ of ® at x € U}, where

. . . - 0—C .
U C Cis a domain and @ € &(U). With the projection ¢ : 0 €O, xeC which
associates to a germ its support [12,[9], the (non-connected) topological space & be-
comes an étalé space, that is q is a local homeomorphism. The analytic continuation
of the germ u € O, along A, if exists, is the image of the unique path A : [a,b] — &
7

AN

la,b] — C" With this notation,
A

such that A (a) = u and whose projection by qis A,

conty u = A(b). See [32]] for more details.

1.2.2 Problem

We consider an ODE of order N and dimension 1, % (x,u(x),u'(x), -+ ,u®™ (x)) = 0
with .% : U — C a holomorphic function on the open domain U C C x CM*!, As-
ﬁ(x()au(h e 7u(()N)) =0

2 (0,0, sug") #0
implicit function theorem, the Cauchy problem

sume that (xo,uo, e ,u(()N)) € U and that { . By the

F (x,u(x),u' (x),-,uM(x)) =0
{ (u(xo)’... ™ xO)) - (1407"' 7,4(()1\’))

is locally equivalent to a Cauchy problem where the ODE is solved in its highest
derivative. Theorem [I.1] thus provides a holomorphic solution u near x = xo. We
consider a path y: [a,b] — C from xp to x; in C and for s € [a,b] we denote by
¥ : [a,s] = C the restriction to [a, s] of y. Assume that u can be analytically contin-
ued along the path ¥ and that for every s € [a,b], the value at ¥(s) of the analytic
continuation conty (x,u,u’, -+ ,u™)) along ¥ belongs to U. Then the analytic con-
tinuation contyu along 'y of the solution u still satisfies the differential equation,
thanks to the uniqueness of the analytic continuation.

This property raises the question of describing the singularities of the analytic
continuations of solutions of analytic ODE:s, for instance for an algebraic differential
equation defined on an open domain. As we shall see, appearance of singularities is
quite different whether one considers linear or nonlinear ODEs.
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1.2.3 Linear differential equations

Linear differential equations are studied in [32} 30|, see also, e.g. [39, 25} [19} 22]].
For linear (homogeneous) ordinary differential equations it results from the Cauchy
existence theorem and the Gronwall lemma that the general solution has no other
singularities than the so-called fixed singularities which arise from the coefficients
of the ODE once solved for the highest derivative.

1.2.3.1 Example 1

We start with an equation where x = 0 is an irregular singular point of Poincaré
rank 1,
A +u=0, ulx)=ce'r, cCeC.

Here x = 0 is a fixed essential singularity for the general solution (but not for the
particular solution u(x) = 0), which arises from the equation itself.

If u e 6(D*(0,r)) is holomorphic on the punctured disc D*(0,r) = D(0,r) \ {0}, then u
can be represented by its Laurent series expansion Z a,x" which converges in 0 < |x| < r.

nez
One says that 0 is an essential singularity if and only if the Laurent series expansion has an
infinite number of n < 0 such that a,, # 0 or, equivalently, if u has no limit (finite or infinite)
when x — 0. A typical example is provided by the function e!/*.

1.2.3.2 Example 2

We consider the Airy equation,
W' —xu=0, u(x)=CAi(x)+CBi(x), C1,CeC.

Here Ai and Bi are the Airy’s special functions of the first and second kind respec-
tively. These are entire functions. When considered on the Riemann sphere C (see
[32]), x = oo appears as a fixed (essential) singularity for the general solution (except
again for the particular solution u(x) = 0) which arises from the equation : x = co is
an irregular singular point of Poincaré rank 3/2.

More generally, for a linear ordinary differential equation

N
Y au® =0, a(x)e o), (1.3)
k=0

the general solution can be analytically continued as a multivalued functionon U \ S,
S = {the zeros of ay}, or more precisely as a single valued holomorphic function
once it is considered on a Riemann surface [12, 9] defined as a covering space,
X
7 | . In other words, the general solution is uniformisable (or also stable) [6] in
U\S
the following sense : for any Cauchy data at xo € U \ S that determined a unique local
solution u of (1.3)) on a domain Uy C U \ S, one can find a domain % C Z such that
Tt|o, + % — Up is a homeomorphism, and a holomorphic function ¢ : Z — C so
that ¢|@0 =uo 7E|%0.

Then, for any domain %' C Z so that t| 4,/ : %' — U’ is a homeomorphism, the function
¢ o (7|4 ) " is still a holomorphic solution of (1.3) on U”.
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1.2.4 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly fixed singularities arising
from the equation, the general solution has as a rule other singularities which depend
on the arbitrary coefficients : these are movable singularities.

1.2.4.1 Example 1

We consider the following nonlinear ODE,

1
general solution : u(x) = T Tog()’ ceC.
—log(x

singular solution : u(x) =0

xu —u? = 0,

For the general solution, x = 0 is a fixed branch point singularity which comes from
the equation. The general solution u is uniformisable : considered as a function
on the Riemann surface (C,7) of the logarithm, C = {x = re'® | r > 0, 6 € R},

m:xeCix=rel® € C \ {0}, one sees that the general solution u is meromorphic
with poles at 77! (e€) : these are movable singularities, depending on the chosen
coefficient C.

1.2.4.2 Example 2
The above example is just a special case of a more general rational ODE of order 1,
the Riccati equation,

/

W =ap(x) +a1(Nu+ay(x)u>  a€.#(U), (1.4)

where U C C is a domain. By the change of unknown function u = —

equation (T.4) is linearizable into the following linear ODE,

! a/Z(x)—a X V/ ax(x)ap\xX)v =
v (S8 )V =

The general solution for this linear equation has (fixed) singularities located at the
/

az(xg —aj(x) and ap(x)ap(x). We denote by S C U this set of poles. The

ar\x

general solution of the Riccati equation (1.4) is then uniformisable since it can be

analytically continued as a meromorphic function on a Riemann surface defined as

a covering over U \ S.

When the g; belong to €(U), then the general solution of (1.4) is a meromorphic

function on U [26]].

poles of

1.2.4.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of order 1,
of degree 2 in its highest derivative, namely the elliptic equation:

WP =4 —gu—g3,  (g2,83) €C. (1.5)
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Fig. 1.1 The elliptic

curve £ viewed as

the Riemann surface of

p = (4 —gou—g3)'/2. The
homology classes of the cy-
cles 7, and 9» drawn generate
H 1 (g N Z)

A particular solution is provided by the Weierstrass p-function (x; g2, g3) which
can be obtained as the inverse function of the elliptic integral of the first kind

/u dg (dx>2 1
e e ———— =) =\
© /4¢3 — 819 — g3 du 4 — gou—g3

(Just apply the inverse function theorem).
When the discriminant D = g% — 27g§ satisfies the condition I # 0, the polyno-
mial function 4u® — gou — g3 = 4(u — 1) (u— e) (u — e3) has 3 distinct simple roots
e1,e2,e3. In that case the elliptic function (x;g2,¢3) is a doubly periodic mero-
morphic function with double poles at the period lattice m@; + nw,, (n,m) € Z2,
0]
@l ¢R.
The period lattice can be described as follows : consider the elliptic curve
% ={(q,p) € C?, p*> = 44> — g2q— g3} for D # 0. The homology group H; (.Z;7Z)
is a free Z-module of rank 2 and we denote by ¥, and > two cycles which generate
d
H\(Z;7Z). Then the period lattice is generated by the period integrals @; = / —q,
np
d € d e d
w = / i (equivalently @ :2/ —q, w=2 —q).
v P e \VAg —g2q— g3 e \VAq —g1q—g3
The homology group H (.Z;7) can be seen as a local system on C2\ N(ID) (that is a
locally constant sheaf of Z-modules on C>\ N(ID)), where N(ID) is the zero set of ID.
Viewed as functions of (g2, g3), 0 2 can be analytically continued as “multivalued”
analytic functions on C?\ N(ID). On the discriminant locus N(D), the solutions de-
generate into simply periodic solutions, with a string of poles instead of a double
array.
(0]

Conversely, starting from the period lattice with @1 ¢ R, the Weierstrass -

function can be obtained by a series,

) ) x2 x4
_w_ — _
}=x +8220+g328+

P(x:82,83) =x"+ Y {x—0)
0#0

where the first summation extends over all ® = m; +nw, # 0, (n,m) € Z* while
g22=60) 0t g=140Y 0°.

0#0 0#0
The general solution of is given by @(x — x0;€2,83), since (1.3) is an au-
tonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [37]].
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1.2.4.4 Example 4

The singularities of differential equations may be isolated singularities such as
poles, branch points of finite or infinite determinations, or essential singularities.
They may be also essential singular lines, or even perfect sets of singular points. For
instance, the general solution of the following Chazy equation of class III,

u® —2uu® + 3% = 0, (1.6)

is defined only inside or outside an open disc whose boundary is a natural movable
boundary determined by the initial data [3} 4]

1.3 The Painlevé program, Painlevé property and Painlevé
equations

At the end of the 19th century a list of special transcendental functions was known,
most of them being obtained as solutions of linear algebraic differential equations.

An algebraic function u in one complex variable x is a solution of a polynomial equation
P(x,u) =0, P € C[x,u]. A transcendental function « is a function which is not algebraic.

A challenging problem in analysis was thus to discover new transcendental func-
tions defined by algebraic ODEs which cannot be expressed in term of solutions of
linear algebraic ODE:s : these new functions should thus be defined by non-linear
algebraic differential equations [6} 8} [22].

For that purpose a systematic approach needs first to classify the ODEs under
convenient criters. This is the goal of the so-called Painlevé program (see [6] and
references therein) which consists in classifying all algebraic ODEs of first order,
then second order, etc ..., whose general solution can be analytically continued as a
single valued function'. In other words, no branch point is allowed. For instance the
elliptic equation or the Chazy equation are such equations.

According to what we have seen, the Painlevé program splits into two problems:

absence of fixed branch point for the general solution;
absence of movable branch point for the general solution : this condition is the
so-called Painlevé property.

In the literature, the term *“Painlevé property” is sometimes used for the stronger property
for the general solution of an ODE to be meromorphic, see [0]

Notice that the Painlevé property for an algebraic ODE .% (x,u,u’,--- ,uP)) =0
defined on a domain U C C is preserved by:

e a holomorphic change of variable x € U — X = h(x),h € O(U);
e a linear fractional change of the unknown with coefficient holomorphic in U
(action of the homographic group),

a(x)u+b(x) _d(x)v—b(x)

we V= c(x)u+d(x)’ ven= —c(x)v+a(x)’

a,b,c,d € O(U), ad — bc # 0. Therefore, the classification in the Painlevé program
is made up to these transformations.

! This condition can be weakened by asking the general solution to be only uniformisable.
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Notice however that other actions preserving the Painlevé property can be considered, see
[6l 7 22].

1.3.1 ODE;s of order one

We consider (nonlinear) ODEs of the form
ﬁ(x,u,u') =0, (1.7)

with % € .# (U)[u,u']. For that class of ODEs, the Painlevé program can be consid-
ered as being achieved and we mainly refer to [20, 18,16, 22]] for the classification.

In that case no essential movable singular point can appear ([20], Sect. 13.6).
Therefore looking for ODEs of type with the Painlevé property reduces in
asking that the movable singular points are just poles.

When is a rational ODE, then the class of ODEs we are looking for is
represented only by the Riccati equation (I.4). See [26], in particular the Malmquist-
Yosida-Steinmetz type theorems.

The ODEs of type of degree > 2 in the highest derivative and satisfying the
Painlevé property essentially reduce (up to the transformations mentioned above) to
the elliptic equation (I.3). See [6} [20] for more precise statements.

1.3.2 ODEs of order two and Painlevé equations

In contrast to what happens for algebraic ODEs of order one, essential movable
singular points may exist when the order is > 2, making the analysis more difficult.
Nevertheless, the classification is known for at least algebraic equations of order
two

ﬁ(x,u,u/,u”) =0, FeHU)uu u" (1.8)

which are rational, that is of degree one in u”. Such equations enjoying the Painlevé
property reduce (up to transformation) to:

e equations which can be integrated by quadrature,
e or linear equations,
e or one of six ODEs known as the Painlevé equations, the first 3 being:

(P) ' =6u+x

(Pr) =20 fxu+a
2 / 2
u U out+ 1)
(Pup) u" = ***+7[3+7M3+*
u x x u

(1.9)

For the complete list see, e.g. [20L[18}16}122]]. In , a,B,v, 8 are arbitrary com-
plex constants. Each Painlevé equation can be derived from the “master equation”
Py; by some limit processes [22]].

Painlevé equations have beautiful properties, see e.g. [5, 22, [16]. One of them is
the following one:

Theorem 1.2. The general solution of the Painlevé equation Py, J =1,--- VI admits
no singular points except poles outside the set of fixed singularities.
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Therefore, the Painlevé equations have the Painlevé property but moreover, the

general solution is free of movable essential singularities.
Notice that the Painlevé equation should be seen as defined on the Riemann sphere
C. The set of fixed singular points S; of Py is a subset of {0, 1,c0}. For instance S;
and Sy are just {eo}, while Sy = {0,00}. Theoremthus translates as follows :
the general solution of P; can be analytically continued as a meromorphic function
on the universal covering of C\ S;.

Theorem [I.2] can be proved in various ways. An efficient one uses the relation-
ship between Painlevé equations and monodromy-preserving deformation of some
Fuchsian differential equations [24} 23] 31}, 22} [11]].

The general (global) solutions of the Painlevé equations are called the Painlevé
transcendents. This refers to the fact that, for generic values of the integration con-
stants and of the parameters of the equations, these solutions cannot be written with
elementary or classical transcendental functions, a question which has been com-
pletely solved only recently with the development of the modern nonlinear differen-
tial Galois theory (see [38] and references therein. For an introduction to differential
Galois theory, see [32]]).

1.3.3 Painlevé equations and related topics

The renewed interest in Painlevé equations mainly came from theoretical physics
in the seventies, with the study of PDEs of the soliton type (Boussinesq equa-
tion, Korteweg-de Vries KdV and modified Korteweg-de Vries equation mKdV,
etc..): when linearized by inverse scattering transform [1]], these PDEs give rise to
ODEs with the Painlevé property. For instance, the Boussinesq equation uy,; — ., —
6(1?)xx + Urrex = 0 has a self-similar solution of the form u(x,t) = w(x —t) where
w is either an elliptic function or satisfies the first Painlevé equation. In the same
lines, the (m)KdV hierarchy introduced by Lax in [29] (and already in substance
in [28]] after the work of Gardner et al [13] on the KdV equation), will later give
rise to various Painlevé hierarchies which are thought of as higher-order Painlevé
equations and much studied since. For instance, the first Painlevé hierarchy is of the
form

(B")  dypyylu] +4x=0, =12, (1.10)

where dj,) [u] are differential polynomials recursively determined as follows (see
[36] and references therein):

djoj[u] = 1 (.11
Od}y 1) [u) = (9 —8ud — 4 )dyy[u), 0 = d neN. '

(The first Painlevé equation is (Pl(l)).) See also [33] and references therein, for
an asymptotic study of the Jimbo-Miwa [23] and Flaschka-Newell [10] second
Painlevé hierarchies [[15]].

For the first and second Painlevé hierarchies, one conjectures that the solutions of each
equation are meromorphic, thus satisfy the Painlevé property, but there is no proof up to our
knowledge [27].

Discrete (analogues of) Painlevé equations are today the matter of an intensive
research, after the pioneering work of Bessis ef al [2] on the study of partition
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functions in 2D quantum gravity, yielding what is now known as the first discrete
Painlevé equation (dP;) when the quartic matrix model is considered:

(dP)) Wp[Wns1 +Wn+wnoi] =an+b+cw,, a,b,ceC. (1.12)

The first discrete Painlevé equation naturally arises in the context of orthogonal poly-
+o0
nomials. Consider the inner product (f | g) = / f(x)g(x)w(x)dx with the exponential

weight w(x) =e M@ v (x) = %xZ + %x“, and look for an orthogonal polynomial sequence
(pn)n>0, each p, being a monic polynomial of degree n. It can be shown that the polynomi-
als p, are governed by a three-term recurrence equation of the form

xpn(x) = Pn+1 (x) + rnpn—1 (x)
{170()‘ =1,pi(x)=x (1.13)

h
where r, = h—” with (P, | pm) = hnOum (Oum is the Kronecker index). This motivates the
1

e
calculations of the coefficients r,, which themselves satisfy a recurrence relation of the form

n
Ay [Fust + T+ 1] + piry = v (1.14)

and we recognize (dP;). Among remarkable properties, (1.14) has a continuum limit to the
n
first Painlevé equation when the double-scaling limit n, N — oo, N — t is considered. See

for instance [21} 14} [17] and references therein.

Non commutative extensions of integrable systems have recently attracted the atten-
tion of the specialists, with non commutative (analogues of) Painlevé equations and
their hierarchies as main examples, see e.g. [35].

Finally, we could hardly leave untold the important group-theoretic interpretation

of Painlevé equations in the line of the work of Okamoto [34]], see for instance [8]
and references therein.

It is not our aim to say more about Painlevé equations in general except for

the first Painlevé equation which is used in this course as field of experiments in
asymptotic and resurgent analysis, and which is the matter for the next chapter.
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Chapter 2
The first Painlevé equation

Abstract This chapter aims at introducing the reader to properties of the first
Painlevé equation and its general solution. The definition of the first Painlevé equa-
tion is recalled (Sect. [2.1). We precise how the Painlevé property translates for the
first Painlevé equation (Sect.[2.2)), a proof of which being postponed to an appendix.
We explain how the first Painlevé equation also arises as a condition of isomon-
odromic deformations for a linear ODE (Sect. [2.3] and Sect. [2.4). Some symmetry
properties are mentioned (Sect. [2.5). We spend some times to describe the asymp-
totic behaviour at infinity of the solutions of the first Painlevé equation and, in
particular, we introduce the truncated solutions (Sect. [2.6). We eventually briefly
comment the importance of the first Painlevé transcendents for models in physics

(Sect.[277).

2.1 The first Painlevé equation

We concentrate on the first Painlevé equation,
(P) u" = 6u° +x. 2.1

We notice that for every xo € C and every (uo,u;) € C?, theorem ensures the
existence of a unique solution of (2.1)), holomorphic near xo, satisfying the initial
data (u(xo),u’(x0)) = (uo,up).

2.2 Painlevé property for the first Painlevé equation

As already mentioned, the first Painlevé equation satisfies the Painlevé property. The
following more precise result holds.

Theorem 2.1. Every solution of the Painlevé equation P; can be analytically con-
tinued as a meromorphic function on C with only double poles.

This theorem will be shown in appendix. We add the following result for com-
pleteness:

Theorem 2.2. Every solution of (2.1) is a transcendental meromorphic function on
C with infinitely many poles.

13
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Proof. We just give an idea of the proof. It is easy to see that every solution u of
the first Painlevé equation (2.I) is a transcendental function. Otherwise, since u is
P(x)
Q(x)*
Reasoning on the degrees of P and Q, one shows that this is impossible. So every
solution u is a transcendental meromorphic function. It can be then derived from
the Clunie lemma in Nevanlinna theory of meromorphic functions that necessarily
u has an infinite set of poles [29,[14]. O

meromorphic with double poles, u should be a rational function, u(x) =

The above properties were well-known since Painlevé [41]]. The following one
was also known by Painlevé, however its complete proof has been given only re-
cently [38]], see also [S].

Theorem 2.3. A solution of P; cannot be described as any combination of solutions
of first order algebraic differential equations and those of linear differential equa-
tions on C.

2.3 First Painlevé equation and isomonodromic deformations
condition

Each Painlevé equation P; is equivalent to a nonautonomous Hamiltonian system
[39]. Concerning the first Painlevé equation this Hamiltonian system is given by the
following first Painlevé system:

au_oH _
dx  Ju =H 1

(1) , Hy(u,p,x) = ~u? —2u’ — xu. 2.2)
df“——@—&tz—f—x ?
dv ~ Ju

It is known [12} 40] that this Hamiltonian system arises as a condition of isomon-
odromic deformations of the following (Schlesinger type) second order linear ODE,

o’y

FER Oi(zu, 1, x)¥
(L) (2.3)

) 43 K 3

Q](Z,M,I.L,.x) = 4Z +2XZ+2H[(M,IJ,,.X) — Z—iu —+ m
In other words, u is solution of the first Painlevé equation (2.1)) if and only if the
monodromy data of (2.3) do not depend on x. We explain this point. Equation (2.3)
has two fixed singularities z = u, o, so that any (local) solution of (2.3 can be ana-
lytically continued to a Riemann surface which covers C\ {u,}. The point z = u
is a regular singular point, and a local analysis easily shows that the monodromy
at this point (see [37]) of any fundamental system of solutions of (2.3) does not
depend on x. The other singular point z = oo is an irregular singular point. Thus
the only nontrivial monodromy data of (2.3)) are given by the Stokes coefficients at

Z = o0,

The second order linear ODE (2.3)) is equivalent to a first order linear ODE in dimension
two. Each Stokes matrix is a two by two unipotent matrix (see [31}137]), and thus depends
on a single complex coefficient called a Stokes coefficient.
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In general these Stokes coefficients depend on x, except when ¥ satisfies the fol-
lowing isomonodromic deformation condition:

alP:A,a—qj wA’lP A,zil (2.4)

() 5 =M, "2 20—

The first Painlevé system (2.2)) ensures the compatibility between equations (2.3))
and : solving a Painlevé equation is thus equivalent to solving an inverse mon-
odromy problem (Riemann-Hilbert problem) [37} 18, [17} 125} 26, 142l 24, 21} 11]].

We add another property : we mentioned that the asymptotics of at 7z = oo
are governed by some Stokes coefficients s; = s;(u, it,x). It can be shown that the
space of Stokes coefficients makes a complex manifold .#; of dimension 2. Also,
for any point of .#; there exists a unique solution of the first Painlevé equation (2.1])
for which the monodromy data of equation are equal to the corresponding
coordinates of this point [25]].

2.4 Lax formalism

There is another fruitful alternative to get the Painlevé equations, however related to
the previous one, based on the linear representations of integrable systems through
the Lax formalism [30]]. We exemplify this theory for Painlevé I, for which the so-
called Lax pair A and B are the matrix operators given as follows [[17]:

A= <z2+u(x)z‘f;)(x)2+x/2 4(2_\)&(;‘)) ) P (Z/zfu@ g) .

To the matrix operator A one associates a first order ODE in the z variable, whose
time evolution (the x variable) is governed by another first order ODE determined
by the matrix operator B,

erd
4 (2.5)
¥
— =BY¥
ox
2[1] 82
The compatibility condition ——— = ——— provides what is known as the zero cur-
dzdx  dxdz

vature condition (or Lax equation), namely g—ﬁ - %—B = [B,A] where [B,A] = BA — AB

stands for the commutator. Expliciting this condition, one recovers the first Painlevé

du
~—v

equation under the form (Cjt"f . From what have been previously seen, the
a = 61/{2 +x

zero curvature condition allows to think of (2.5)) as an isomonodromic deformations
condition for its first equation.

2.5 Symmetries

We would like to notice here that the cyclic symmetry group of order five acts on the

set of solutions lb Indeed, introducing @, =e K k= 0,---,4, then any solution
u of ([2.1)) is mapped to another solution uy through the transformation
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2
uk(x)za)ku(a)kx), k=0,---.,4.

In general u and u; will be different solutions, an obvious exception being when u
satisfies the initial data u(0) = «/(0) = 0.

2.6 Asymptotics at infinity

Our aim in this section is to describe all the possible behaviors at infinity of the
solutions of the first Painlevé equation (2.1)).

We first notice that x = o is indeed a fixed singularity for P; : making the change of
variable u(x) = u(t), = 1 equation translates into £>u” + 240 = 1 + 6112,
where t = (0 appears as a (igregular) singular point.

We mention that, when analysing the asymptotics of solutions of differential
equations at singular points, there is a great difference between linear and nonlinear
ODEs. When a linear ODE is concerned, the asymptotics of every solution can be
derived from the asymptotics of a fundamental system of solutions. For non linear
ODEs some care has to be taken, since as a rule singular solutions may exist, which
cannot be deduced from the general solution.

The study of all possible behaviors at infinity was first made by Boutroux [3|
4]. Various approaches can be used: a direct asymptotic approach in the line of
Boutroux as in [15} [19] 22]], or another one based on the relationship between the
first Painlevé equation and a convenient Schlesinger type linear ODE as described
in Sect. see [25] (see also [26} 128,127, 42]] for an exact semiclassical variant).

2.6.1 Dominant balance principle

We only want to give a rough idea of how to get the whole possible asymptotic be-
haviors and, in the spirit of this course, we follow the viewpoint of asymptotic as
in [150 22} [19]). In this approach, for a given ODE, the first task is to determine the
terms in the equation which are dominant and of comparable size when x — o along
a path or a inside a sector. The reduced equation obtained by keeping the dominant
terms only in the ODE gives the leading behavior.
One usual trick to guess the asymptotics of solutions of ODEs is the dominant bal-
ance principle [2]. A maximal dominant balance corresponds to the case where there
is a maximal set of dominant terms of comparable size in the equation. As a rule,
this gives rise to the general behavior. The remaining cases are called subdominant
balances.

It is useful to introduce the following notations:

e [~ g whenx — oo along a path if lim @ = Cte, Cte € C*.
x—e0 g(x)
N L
e f < g whenx — o along a path if lim —— =0.
e g(x)

The unique maximal balance for P; consists in assuming all the three terms in (2.1))
of comparable size when x — co. In particular «* and x have comparable size, so that
u(x) = x20(1) when x — oo. We therefore write u(x) = x%v(z(x)) with z(x) — oo
and v(z(x)) = O(1) when x — eo. If z(x) behaves like a fractional power of x at
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1
infinity, then < ~ — and this is what will be assumed. We also make
Z X

the following remark : if v(z) is an analytic function whose asymptotics at infinity

Viz) _V(2)

is governed by a (formal, possibly Laurent) series, then —— < —— < v(z) at
Z z
V(z®) V()
infinity, that i h oo,
infinity, that is 200 < = < v(z(x)) when x —

Here we will adjust the choice of z(x) by adding the demand:
v(z(x)) < z(x)V (z(x)) < z(x)*V"(z(x))  when x — oo,

These assumptions on v and z(x) provide the identities:

W (x) = x 22(x)V (z(0)) O(1) +o(1),  u"(x) =x 22 ()" (2(x)) O(1) +0(1).

Thus, if v(z(x)) =V/(z(x)) =v"(z(x)) = O(1) and demanding that «” and x have

. 5 . .
comparable size, one gets z(x) = x4O(1) as a necessary condition. This suggests
with Boutroux [3} 4] to make the following transformation,

1

u(x) =ax2v(z), z= ﬁx%, (2.6)
with o, B # 0 some constants, under which equation (2.1) becomes:

oV 4y 9%a, 16
7 2572 25B2 25aB?

With the following choice for & and f3,

a=", B=e¥_ @.7)

one finally gets:
Vi————+ (2.8)

We now concentrate on this equation (2.8) and we examine the possible balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume that v and its derivatives
can be compared to unity. This means that equation (2.8) is asymptotic to the equa-

1,

1
tion v/ = —v* — 3 whose solutions! are the functions v(z) = 12/(z — z0; ~—, 3)

12
where o is the Weierstrass p-function (cf. Sect.[I.2.4), while zo and g3 are two free

complex parameters. This indeed provides the general behaviour of the Painlevé
transcendents near infinity [3} 4] 22] : for |z| large enough in each open quadrants

Or=1{z¢ C,kg <argz < (I’c—f—l)g}7 k=0,1,2,3 mod4,

! Just multiply both sides of the equality by v/, then integrate.
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Fig. 2.1 Left hand side : approximate period lattices in each quadrants Q; of z-plane. Right hand
side, their images in the x-plane through the transformation x — z defined by Z.6)-2.7)

the generic solution v of (2.8)) has an approximate period lattice of poles, Fig. 2.1}
In this domain, excluding small neighbourdhoods of poles, the asymptotics of such
a generic solution v of is governed by Weierstrassian elliptic functions. With
Kruskal & Joshi [22] one refers to this behavior as an elliptic function-type behavior.
Through the transformation (2.6)-(2.7), this translates for the Painlevé I transcen-
dents into an asymptotic regime on the sectors:

2 2
Si={xeC, —7r+k?ﬂ <argx < —7r+(k+1)?ﬂ}, k=0,1,2,3,4 mod5. (2.9)

When z approaches the real axis (resp. the imaginary axis), |z| large enough and
in a small angular strip of width O ((log |z])/ |z\> , then the solution v displays a near

oscillatory-type behaviour with no poles, and v(z) — —1 (resp. v(z) — +1) when
|z| = o, see [22]). The five special rays argx = fﬂ+k%’r, k=0,---,4 thus play an
important role in the asymptotics of the solutions of Painlevé I, the general solutions
having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated solutions

We now consider submaximal dominant balances, that is when v or one of its deriva-
tives differ from order unity. As shown in [22]], the single consistent case occurs
when v ~ 1 and v/ < 1. This implies that equation (2.8)) is now asymptotic to the

2

1 1
equation —v° — = =0, that is v(z) = +1 + o(1). Examining this case leads to the

2
following result:

Theorem 2.4. The first Painlevé equation has:

o five complex parameter families of solutions u, the so-called intégrales tronquées
(truncated solutions) after Boutroux, such that u is free of poles in two adjacent

1
sectors S and Sy for |x| large enough, and u(x) = (—%) ’ (1 + O(X_%)) at

infinity in these sectors (for a convenient determination of the square root).
e among these truncated solutions, five special solutions, each of them being free
of poles in four adjacent sectors Si,Sky1,Sk+2,Sk+3 for |x| large enough, with the
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above asymptotics at infinity in these sectors. These are the so-called intégrales
tri-tronquées (tritruncated solutions).

This theorem has various proofs, see for instance [20, 35, [36] for “nonconven-
tional” approaches. We will see in this course how the resurgent analysis can be
used to show theorem 2.4]

There are analogues of truncated solutions for each member (PI(">), n=1,2,--- in the first
Painlevé hierarchy (1.10), with asymptotics at infinity of the form [8]:

X ”Jlril 2n+3 3n+1 n
u(x) = ((_1)'1;) (1+0(x*zn+z)>, cn = % (2.10)

Similar results occur for the first discrete Painlevé equation (T.12), see [23].

2.7 First Painlevé equation and physical models

As already said (Sect.[I.3.3), the Painlevé equations in general and the first Painlevé
equation in particular, appear by similarity reductions of integrable PDEs. They play
a significant role in others physical models, see e.g. [24] and references therein for
the first Painlevé equation. This includes the description of asymptotic regime in
transition layers and caustic-type domain. We exemplify this fact with the focus-
ing nonlinear Schrédinger equation ie¥; + %‘I’xx + |‘P\2‘I’ = 0 (fNLS). It is shown
in [10] that when considering the (so-called) dispersionless limit € — 0, the solu-
tions (of convenient Cauchy problems) of (fNLS) are asymptotically governed by
a tritruncated solution of the first Painlevé equation. In the same work, theoretical
and numerical evidences led the authors to conjecture that the tritruncated solutions
of the first Painlevé equation have the following property, shown in [7]] under the
naming “the Dubrovin conjecture”:

Proposition 2.1. Each tritruncated solution of the first Painlevé equation is holo-
morphic on a full sector of the form {x € C | argx € I, |x| > 0}, where I stands
Sor the closure of an open arc I of length |I| = 8w /5. Moreover, each tritruncated
solution can be analytically continued to a disc |x| < ro with ry > 0 small enough.

Recently, resurgence theory spectacularly enters the realm of string theory and
related models, as an efficient tool for making the connection between perturbative
and non-perturbative effects (see, e.g. [32] and references therin). In particular, the
first Painlevé equation was particularly adressed in [[L] thanks of its physical inter-
pretation in the context of 2D quantum gravity [9} 33} |34} [13]].

Appendix

The reader only interested in learning applications of resurgence theory may skip
this appendix, where we show theorem [2.1] for completeness. We follow the proof
given in [6]. See also [15, [16] and specially [14] with comments and references
therein. We start with two lemmas.

Lemma 2.1. Let u be any solution of (2.1), holomorphic on a neighbourhood of
xo € C. Then the radius R of analyticity at xq satisfies R > 1/p with
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12 14 1/3 1/4 / 111/5
p:max(’u(xo)‘ 5 M(;O)‘ 5 u2 X0 —‘r%‘ R M_’_ﬂ‘ ) (211)
Proof. If u(x Z cx(x—x0)% € C{x—x0} solves li then
k=0
co — I/L(X()), c1 = u’(xo) |
=33+ % ¢3 = 2eoc1 + ¢ 2.12)

(k+1)(k+2)ckra =6 Yk —oCmChoms k > 2
Let be p > 0 given by (2.11)) so that for any integer / € [0, 3],
le)] < (141)p!*2. (2.13)

Assume that (2.13)) is satisfied for every 0 <1 < k+ 1 for a given k > 2. Then

by 2.12),

(k+1)(k+2)|ckr2| <6 f (m+1)(k—m~+1)p*™* < (k+1)(k+2)(k+3)p*™.

m=0

k
The coefficients Z (m+1)(k—m+ 1) are those of the taylor expansions of (1 —x)~* at

m=0

the origin. Indeed, for x| < 1, —— = Zxk so that Z(k—}—l )x*. Therefore
k>0 (T—x? k>0

) el e

k>0 \m=

We conclude that (2.13) is satisfied for every [ > 0 and this implies that R >

|~

where R is the radius of convergence of the series expansion u. O

Lemma 2.2. In a neighbourhood of any given point X € C, there exists a one-
parameter family of meromorphic solutions u of having a pole at x. Necessarily
X is a double pole and u is given by the Laurent-series expansions

1 X 2 3 4 k
S AP o R +ea(x—x)"+ ) cr(x—x
(x — ‘%')2 10 ( ~) ( "’) 4( N) Z k( N)

k>6

u(x) =
where c4 € C is a free parameter.

Proof. We are looking for a Laurent-series u(x Z a(x—x)keC{x—3} { }

satisfying (2.1)). Necessarily p > —2,c_» =1 or O c_1 = 0. Therefore, either X is a
regular pomt or otherwise

e i Moo e+ Faa—

k>6

u(x) =

where ¢4 € C is a free parameter, while for k > 6 the coefficients are polynomial
functions of (¥, a). Indeed, one has (k —2)(k+5)crs2 = 6% _ocmCrm» k > 2. We
can define p > 0 (depending on (X, @)) such that, for 0 <[ <5,

lef] < = (l+ 1)p'*2. (2.14)
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Assume that this property is satisfied for every ¢;, 0 <1 < k+ 1, for a given k > 4.
Then

2

(k—=2)(k+5)[crsa| < 3 4 (k+1)(k+2)(k+3)p’<+4

\D \

k
Z (m+1)(k—m+1)p*+*

and we conclude that |cp42| < = 3 (k—l— 3)p**. Therefore (2.14) is true for every [ >0

and the Laurent series converges in the punctured dics D(x,1/p)*. O

The following notations will now be used:

e D,, C Cisan opendisc, Q is a discrete subset of Dy, and xo € Dy, \ Q.

e u is a solution of defines by some initial data at xo € Dy, \ 2 and u is
meromorphic in Dy, \ Q.

e A(a,b):[0,1] = Dy, \ Q denotes a € **-smooth path in Dy, \ 2 with endpoints
A(a,b)(0) =aand A(a,b)(1) = b. When b € dDy, it is assumed that A(a,b) is a
path where b is removed (that is one considers the restriction to [0, 1 of A (a,b)).
Moreover we assume that the length of any subsegment A (c,d) of A(a,b) is less
that 2|c — d|.

We mention that we use the same notation A (a, ) for the path and its image.

e X € dD,, is a singular point for u.

Lemma 2.3. Assume that u(x Z ar(x — )% + O(]x — X|°) when x — X along
k=-2
A(x0,X), with a_p # 0. Then u is meromorphic at X and u is uniquely determined by

()?,a4).

Proof. Since u is solution of (2.I)) which is analytic at each point of the smooth path

A (x0,X), one has u” (x) = 6u?(x) +x =6 (Lf__, ar(x —X)* + O(|]x — )ﬂs))2 +x when
x — X along A (xo,x). This implies that the asymptotic expansion is differentiable.

X
This is a consequence of the mean value theorem, u(x) = u(xg) + / i/ (s) ds along A (xo,X)
X0

which is ©*°-smooth, and the uniqueness of the asymptotic expansion.

With the same calculus made in the proof of lemma[2.2] we show that

1 X

) = (o 1R D e D+ O 7).

We denote by v the meromorphic solution of (2.I) obtained in lemma [2.2] with

c4 = a4. We set
w(x) =v(x) = (x—%) 7 = O(lx— )
J(x) =u(x) —v(x) = 0(\x—3c15)
f =g with g = 12wf + 6,

and we want to show that f = 0. We have f” — = 5672
g = O(|x—x]|"). Integrating this linear ODE yields:

() = Q= 3+ O - B

xf)/ —e(s)ds+ & f)

—X) 7g(s)ds

Since f(x) = O(]x —x]%), f is solution of the fixed-point problem f = N(f) with
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- x—x)* [~
NI = 7037 [[(s-Dgpas + S o5 gts)as

For x; € A(xo,Xx) we consider the normed vector space (B, ||.||),

B={f€ ¢’ (A(x1,%)), f=0(k=3F}, |Ifl= sup |(x=3)f(x)].

x€A(x1,%)

We show later that (B, ||.||) is a Banach space (lemma[2.4). Now for x| close enough
from X (see lemma 2.4):

o the mapping N send the unit ball B of B into itself,
e the mapping N : B — B is contractive.

Therefore the fixed-point problem f = N(f) has a unique solution in B by the con-
traction mapping theorem. Obviously this solution is f = 0 and therefore u =v. 0O

Lemma 2.4. With notations of the proof of lemma 2.3} (B, |.||) is a Banach space
and the mapping N : B — B is contractive.

Proof.

(B, ||.Il) is @ Banach space. Assume that (f},) is a Cauchy sequence in (B, ||.

)-
Ve, 3po: Yp,q > po, ¥x € Alx1,3), |[(x—%)(f(x) — () <e.  (2.15)

Writing g, (x) = (x —X) 7> f,(x), condition implies that for every x € A (x1,X)
the sequence (g,(x)) is a Cauchy sequence, hence g,(x) — g(x) in C. Now making
q — +ooin one sees that g, — g uniformaly. Therefore g € €°(A(x1,%)) and
is bounded on A (x1,%). Thus g = (x —X) > f with f € B.

The mapping N is contractive for x; close enough from Xx. We set
X—X 4 -

N (f)(x) = =T(x= %) [ (s = %)*g(s)ds, Na(f)(x) = E5L [X(s — %) 3g(s) ds s0

that N(f) = Ny (f) + N (f). One can assume that |s —X] < |x — x| for s € A(x,X)).

Also, there exist 7 > 0 and a > 0 such that |w(x)| < a|x —X]*> when |x — %] < r. We

now assume that |x; —X| < r. For any fi, f» € B and x € A(x1,X):

(=97 (i () = Na ()|
16-07 5= 9 (1209 (1 5) — () +6(£35) — (6)) ) ds

<

)

thus
=975 (N1 () = Na() )| < The—3178 (120l =711 7y — o]
+ 6l —x"|fi — £l +f2||>Length(7L(x@)
< 14|x_3c14(12a+12\x—5c13)||f1 — L2l

The other term of (x —X)~> (Nz(fl) - Nz(fz)) is worked out in a similar way.

Choosing x; close enough from X, one obtains the existence of a constant Cte €]0, 1]
such that for any f1, f> € B, [[N(f1) = N(f2)|| < Cte||fi — f2]|. O

Lemma 2.5. When x — X along A (xo,x) with X € dDy, a singular point for u:

L fu(x)|+ [u' (x)| = +ee,
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2. u is unbounded.

Proof. 1. Lemma2.1|implies that [u(x)| or i (x)| has to be large for x near X which
is a singular point.
2. Multiplying (2.1) by «’ and then integrating yields

X
(')? :4u3—|—2xu—2/ u(s)ds+C (2.16)
X0

where C € C is a constant. Therefore if u is bounded x — X along A (xp,) then
u’ is bounded as well, which contradicts the first property. O

Lemma 2.6. When x — X along A (xo,X), with X € dDy, a singular point for u, then:

u*3(x)/x:u(s)ds—>o, ()| = +oo, [ (x)| — +oo.

Proof. By lemmal[2.5] we know that u is unbounded when x — X along A (xo,X), so
that limsup |u(x)| = +oo, liminf|u~"' (x)| = 0.
X% XX

Reminder: limsup f(x) = liII(l) (sup {f(x) | x € A(x0,%) ﬁD()?,S)}),

X=X

liminf £ (x) = lim <inf{f(x) | x € A(x0,%) ﬂD(Bc“,e)}).

Since < |u=3(x)|. max |u|. Length(A (xo,x)) for x € A (xo,%), it

A(x0,%)

u3(x) /xu(s) ds

X0

turns out that

X—X

u3(x) /Xxu(s) ds

0

limipf{ } < limiyf{ lu=>(x)|. max |ul. Length(l(xo,x))} .
X=X A(xp.x)

The right hand side term vanishes because u is unbounded when x — Xx, thus
liminf {

X—X
In particular, for every v > 0, for every D(X, €), there exists x € A (xg,X) N D(X, €) so

u3(x) /x u(s)ds

X0

u3(x) /x u(s)ds

X0

} =0. (2.17)

that <.

We make the following | Assumption : u™>(x) / u(s)ds — 0 is a false premise.

X0

This assumption translates into the condition : there exists ¥ > 0 such that, for every

X
D(%,€), there exists x € A (xo,¥) ND(F, €) so that |u~3(x) / u(s)ds| > 7.
X0

By continuity, we see that for any ¥ > 0 small enough, there exists a sequence
Xn = X, X € A(x0,X), such that

'/Xn u(s)ds

X0

= 7|’ ()] (2.18)

The arguments used in the proof of lemma show that limsup |u(x,)| = +eo.

n
This means that there exists a subsequence (x,, ) of (x,) such that |u(x,, )| — +oe.

Therefore we can assume that lim |u(x, )| = +ec. with the following consequences:
n
from (2.18)) we see that
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/X:n u(s)ds

while lb with 7 > 0 chosen small enough and 1) imply li;n |t/ (x,)| = +oo.

We are going to prove in several steps that the above assumption leads to a con-
tradiction.

lim
n

= too (2.19)

First step We consider the solution A, of the Cauchy problem

~ ~ Xn
(W)?* = 4h* +2x,h+C, withC, =C— 2/ u(s)ds
X0
h(0) = u(xn), n'(0) = u'(x)

(2.20)

where C is the constant given in (2.16). Notice by (2.19) that lim \(,~’n| = 400 and by
n

(2.18) then (2.16):

11, (0)] = (27) |G| ' (14 0(1))

(2.21)
O] = 27 1+ 1|2 C[ 2 (140(1),  gueR.
Writing N B
(1) = Y H,(X), X =CV/%1, (2.22)

the function H, is solution of the following elliptic differential equation (see (I.3))
with a given initial data:

(H')? = 4H® +26,H + 1, with 8, = x,C, 2>

Hi(0) =G Pulr). [Ha0)] = 29) P (1+40(1)), (2.23)

H(0) =G P (%), [HL0)] = [2y e+ 1) (1+0(1)).

From the properties of elliptic functions, H,, can be analytically continued as
a doubly periodic meromorphic function with double poles at the period lattice
an +mwy (6,) +nw(6,), (n,m) € Z*, for some a, € C and @; »(6,) = Cte1 2+ O(6y).

Second step Next we consider the function U, satisfying to the condition:

u(x) = Cy2UL(X), X = Gy (x —x). (2.24)

From 2.1)), U, is solution of the ODE

U" = 6U*+ 6, + &,X, with &, = Cy'°, (2.25)
and, more precisely from (2.16):
N2 3 X
U')y =4U"+26,U+1+2¢, | XU — u(s)ds
) +26,U +1+2¢, /0 ()) (2.26)

Ua(0) = Cy Pulxy),  UL0) =Cp ' (x)

Third step We want to show that U, and H,, are locally holomorphically equivalent:
we look for a function G, holomorphic near O such that

U, = H,0G, with G,(X)=X+g,(X), g.(0)=0,5,(0)=0. (227
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We know from (2.23) that H! = 6H?> + 6,,, hence from (2.25) we deduce that
24 H" oG, +(g))*H" 0 G, + g!'H! 0 G, = €,X
or else:
28}, (Hy, 0 Gp)' + gy Hy 0 Gy = &,X + (g))*H}, © Gy,
Multiplying both parts of this equality by H), o G, and integrating, one gets:

X
wp = (H.0G,) 2 /O H' 0G,(S) [ens+w,%(5).H,;’oG,,(S) ds = N(wy)

X
g0 = [T w(S)dS. wi0)=0.  G(X) =X +g(X)

(2.28)

Let D(0, ‘E”‘ ) be the disc centred at 0 of diameter |g,|~'/*. We denote by

D(0, ‘8”‘ ) the disc D(0, |8”‘ ) deprived from the discs of dlameter d () around

the poles and the zeros of H),. We consider a path A(0,Xp) in D(0, |£"‘ ) In (2.28),
X
the integrals / are considered along A(0,X) C A(0,Xp). We can assume that the

0
length of any subsegment A (0,X) of A(0,Xp) is less that 2|X]|.
Let be a €]1/4,1/2[ and (B,]|.||) be the Banach space B = {f € ¥°(1(0,Xy))},
[ £1l = supyea(o.xp) [ £ (x)|- Let B be the ball B= {f € B, || f|| < |e,|*}. If w € B and

g(X) =[5 w(S)dS

X
lgll < sup /W(S)dS‘§||w|.Length(),(O,X0))§gn|”1/4.
XeA(0.Xp) 170

One can assume that d(y) > 3|,|%/* so that
INW)I| < lealCrer (v)leal =/ + Crea(y)en* /%,
Therefore ||N(w)]|| < |g,|? for |g,| small enough. Quite similarly, for w,w, € B,
INGw1) = N(w2) | = Ol *) lw1 = wa].

We conclude by the contraction mapping theorem: N has a unique fixed point in B,
for |g,| small enough.

Final step We have seen that for |g,| small enough and a €]1/4,1/2],

e,V
U(X) = Hy(X +2,(X)).  lg(X)| <l x b, L)
Therefore,
sup |G P, +Cr VOX) — Hy(X)| = O(|ga|* 4. (2.29)
XeD(0 M)

~ ~_ ~ ~1/4
Remember that |C,| — +o0 and |g,| = |C, 5/6| — 0 whenx, — % If X € D(0, \8;1\2]/ ),

then C, /6% belongs to a disc of radius |6,,\ 1/24 deprived of some discs of radius
d(7)|C,|~"/®. Consequently, for n large enough,
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|—1/4

_ _ d(y) ~
vxez)xo,3XeD(0,|€"T x— (x,+ G /0X) SQ‘Cnrl/é’

) 2

Choosing x = xo, we see from (2.29) that u is unbounded near xo which is a regular

point for u: | contradiction.

X
SI'GOI'G,M_ X uls)ds — U when x — x alon X0,X). t 1S now an eas
Theref 3 ds — 0 wh X along A It i y
X

0
exercice by lemmal[2.5|and (2.16) to see that min{|u|, |u'|} — +oo necessarily when
x — X. (Just assume that u~"(x) — 0 is false and see that there is a contradiction.)
O

End of the Proof of theorem|2.1} What remains to show is that x is a second order
pole. The substitution u = 1/v* transforms (2.16)) into

6 rx
V12:1+{V47L/
) 2 2 Jxy V2

d(ss) ¥ gvﬁ. (2.30)

6 X d
We know from lemmathat VE Ts) ds — 0 and v — 0 along a path A (xg,X)
xo V(s

which avoids the poles of u in Dy, Therefore (V)2 = 1 + o(1), then
v (x) = (x—X)*(140(1)). Plugging this last equality in (2.30) yields
(VP0) = L+ 3 (=9 +o{(x— D), thus v206) = (r—02 5 (e~ + o (v,
One uses (2.30) again and eventually concludes with lemma[2.3]
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Chapter 3

Tritruncated solutions for the first Painlevé
equation

Abstract This chapter is devoted to the construction of the tritruncated solutions for
the first Painlevé equation, the existence of which being announced in Sect. This
example will introduce the reader to common reasonings in resurgence theory. We
construct a prepared form associated with the first Painlevé equation (Sec[3.1). This
prepared ODE has a unique formal solution from which we deduce the existence
of truncated solutions by application of the “‘main asymptotic existence theorem”.
We then study the Borel-Laplace summability property of the formal solution by
various methods (Sect.[3:3). One deduces the existence of the tritruncated solutions
for the first Painlevé equation, by Borel-Laplace summation (Sect. [3.4).

3.1 Normalization and formal series solution

Throughout this course, C[[z~!]] stands for the differential algebra of formal power

series of the form g(z) = Z apz ", while C((z7")) is the space of formal Laurent
n>0

series. The space of formal Laurent series is a valuation field with the natural valu-

ation

C(z ") — ZUoo
val : Z ayz " — valw =min{n € Z / a, # 0}. 3.1
nez

3.1.1 Normalization, prepared form

We saw in Sect. [2.6] that the first Painlevé equation is equivalent to the following
differential equation,

/
gV I 4v 1,
Vi —=—=4+——5+2-Vv 32
z 2 2572 27 (3-2)
, . S siz 43 3
under the Boutroux’s transformation: u(x) = X v(z), z=e S5t

The variable z is most often called critical time [7].

It is worth mentioning that the symmetries detailed in Sect. [2.5]translate into the fact
that any solution v of (3.2) is mapped into another solution vy through the transfor-
mation:

vi(z) = ™ (e™/27),  k=0,---,3. (3.3)

29



30 3 Tritruncated solutions for the first Painlevé equation

z

plugging this formal series in |b one gets the necessary conditions: b% =1,b;=0
and by, = —%. Thanks to the symmetries 1| there is no restriction in assum-
ing by = 1. Also, it will be convenient in the sequel to make a new transformation,

We look for a formal solution of

) of the form v(z) = ¥ b;z! € C[[z™"]]. When
=0

4 1

1
V(Z) =1- 25 ? + ?W<Z), (34)

which has the virtue of bringing (3.2) into the following differential equation :

1" ! 2

Definition 3.1. The differential equation (3.3)), which reads

P(3)w+ éQ(a)w — Flz,w), with P(d)=92—1,0(9) =39, = d% (3.6)

21 4

1
and F(z,w) = == = Sw+w? = o(2) + fi(2)w+ fo(a)w, is called the pre-

pared form equation associated with the first Painlevé equation.

Remark 3.1. For general comments on normalization procedures see, e.g. [[7] and
exercise[3.1] Notice that the prepared form is not uniquely defined.

3.1.2 Formal series solution

=

Substituting the formal series expansion Z a;z~! into equation lb and identifying
=0
the powers, yields a quadratic recursion relation, namely:

392

ap=a; =0, ="

3.7
) 1 -2
a=1a »— 5 Z a(p)a(1—2—p)s [1=3,4,---
p=0

The following proposition is a simple exercise.

Proposition 3.1. There exists a unique formal series solution of ([3.6) denoted by:
wz)=Y az ' eClz"]]. (3.8)
=0

Moreover the series w is even, val w = 2 and the coefficients a; are all real negative.

Remark 3.2. 1. One infers from (3.7) that the series w diverges since obviously
lazm| > (m!)?|ay| form > 1.
2. The differential equation (3.6) can be written as a fixed point problem, w = N(w),

N(w) = —F(z,w) — =w' +w". On can consider the differential operator N as
z

acting on the ring C[[z7!]], N: C[[z"!]] — C[[z"!]]. When C[[z~!]] is seen as a
complete metric space (for the so-called Krull topology, see [19]), N appears as
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a contractive map and the formal solution w given by lemma is the unique
solution of the fixed point problem. This way of showing the existence of the
formal solution w is also useful for numerical calculations,

302, 6272, 141196832
625° 625 ° 390625

w(z) =—

In this course, all calculations have been produced that way under Maple 12.0
(released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Notations

We fix notations (essentially common with [19, [16]]) which will be used in this
chapter and throughout the course.

Definition 3.2. We denote by S! the circle of directions about 0 of half-lines on C.
We usually identify S' with R/27Z. Let I =]a, B[C S' be an open arc. Its length is
denoted and defined by |I| =8 — c.

Definition 3.3. Let 7 C S! be an open arc. For 0 < r < R < o0, we denote by :Sf (I) the
domain defined by ZR ={¢=¢&%cC|0el r<&<R}. Inparticular Bg(l)
(resp. ZS (I))is an open sector with vertex O (resp. o) and aperture 1.

One denotes by AO (I) (resp. A (I )) the closure of AR( ) (resp. A (I))inC*=C\ {0}.

We use abridged notations :So (), Ao(l ) (1 (I) and A (I) for sectors, when R or r is

unspecified.

A sector :So( I') (resp. :S°°(I)) is said to be a proper subsector of Ao( ) (resp. :S°°(I))

and one denotes Ao( Ve Zo( I (resp &~ (I e &~ (1)) if the closure 80(1") (resp.
)

A8=(I')) is included in 50(1 (resp. e ().

3.1.3.2 Main asymptotic existence theorem

We have previously seen that the ODE (3.6) is formally solved by a unique formal
series w(z) € C[[z™]].

Question 3.1. Can we associate to w a holomorphic solution whose Poincaré asymp-
totics' are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”. This theo-
rem is detailed in [16] for linear ODE:s. It can be formulated to nonlinear equations,
see [27]], theorems 12.1 and 14.1, and [24]] for extension to Gevrey asymptotics.

Theorem 3.1 (Main asymptotic existence theorem M.A.E.T.). Let I C S! be an
open arc of length |I| < w/(q+ 1) where q is a nonnegative integer. Let F(z,w) be
a m-dimensional vector function subject to the following conditions:

! The reader is referred to [16][19]] for details on asymptotic expansions.
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1. F(z,w) is holomorphic in (z,w) on the domain of :3“’(1) x B(0,r) with
B(0,r) ={w e C™, ||w|| < r} for some r>0;

2. F(z,w) admits an asymptotic expansion in powers of 7=\ at infinity in ,<.1°°(I),
uniformaly valid in w € B(0,r);

3. the equation W = F(z,w) is formally satisfied by a formal power series solu-
tion w(z) € (C[[z"1])™;

4.if Fj(z,w) denotes the components of ¥(z,w), the Jacobian matrix

Fur(@0) -+ 5iH(2,0)

aw1 an
lim . . has non zero eigenvalues.
z—ro0,2€48%(1) 9F,

9Fn
36 (2,0) -+ i (0)

Then there exists a solution w of the equation 7 w' = F(z,w), holomorphic in a

domain of the form 8~ (I), whose asymptotics at infinity in every proper subsector

of e (I) is given by the formal solution W.

3.1.3.3 Application

Let us transform (3.6) into a one order ODE of dimension 2. We introduce

w1 w . .
w={ )= ( w’) and we obtain the companion system:
2

Fi(z,w)

Iw = (? 1) Wt (F(Zf’wl)) - (Fz(z’w)) —F(zw) € (Cl"w])2. (3.9)

We fix an open arc I C S', arbitrary but of length || < 7. We also consider a domain

of the form ;3°°(I ) and we make the following observations:

1. F(z,w) is polynomial with respect to w, with coefficients belonging to C[z~!].

Therefore F(z,w) is holomorphic in (z,w) on the domain Z""(I) x B(0,r) with
B(0,r) = {w € C?, |w|| < r} for some r > 0;

2. again because F(z,w) € (C[z~!,w])?, F(z,w) admits an asymptotic expansion in
powers of z~! at infinity in 4 (I), uniformaly valid in w € B(0, r);

3. the equation (3.9) is formally satisfied by a formal power series solution

wo) = () ey

8
=
‘m
8
=]

01 9B (
. . ow
4. the Jacobian matrix (1 0) = ( OF

( ) has non zero eigenvalues
owy ’

8
o
S~—
NS
&
38
o

Uy =—1land up =1.

These properties allow to apply the (M.A.E.T.) and this shows the following propo-
sition (see also [[15]):

Proposition 3.2. For any open arc I C S of length |1| < T, there exists a solution w
of , holomorphic in a domain of the form :3°°(I ), whose Poincaré asymptotics at
infinity in every proper subsector of 8~ (I), is given by the formal solution w given

by proposition|3. 1

Proposition thus describes the minimal opening of sectors on which holo-
morphic solutions w asymptotic to w exist. Through the transformations (3.4), (2.6)
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and (2.7), these solutions w corresponds to holomorphic functions u solutions of the
first Painlevé equation, defined on open sectors of aperture 47t/5 : we thus get a first
insight towards the truncated solutions for the first Painlevé equation (theorem [2.4).

As a matter of fact, from the above informations and the property for any solution
of the first Painlevé equation to be a meromorphic function, one can even show the
existence of tritruncated solutions [[15]]. However, to get more precise informations,
we decide in what follows to turn to the question of the Borel-Laplace summability
of w.

3.2 A reminder

We assume that the reader has a previous acquaintance with Borel-Laplace summa-
tion and a little background with resurgence theory, amply elaborated in [19, [16]
to which we refer. For the convenience of the reader, we offer a brief reminder of
definitions and results used in this chapter.

Formal Borel transform and convolution product

Definition 3.4. The formal Borel transform %(z — §) is the linear isomorphism
% :Cllz7']] = C5 d C[[¢]] defined by

- ) -1
7= L b o480, 8O=Lhipg

The formal series g is the minor of g. The inverse map . = %~ is the formal
Laplace transform.

Definition 3.5. Let by8 + g(£) and ¢o8 + h({) be two elements of C8 & C[[¢]].
Their convolution product (b6 + §) * (co0 + h) is defined by

(bo8 +32) % (co8 +h) = B(gh), where §=_Z(by6+3),h=L(cod+h).

When g({) = Z b, " and E(C ) = Z ¢y " are two formal series, their convo-

n>0 n>0
lution product g h is given by the Hurwitz product, g+ h({) = de«;k with
k>1
n'm!
dy = ————Dbycp.
P SR T

Proposition 3.3. The linear map J: bod + g — —Cg provides a derivation of
CS@C[[¢]] and % : (C[z”"]],d) — (CE & C[[¢]],9) is an isomorphism of dif-

ferential algebras.

Gevrey series of order 1

Definition 3.6. A formal series g(z) = Z a,z " € C[[z""]] is 1-Gevrey when there
n>0

exist constants C > 0, A > 0 so that |a,| < C(n!)A” for all n. The space of 1-Gevrey

series is denoted by C[[z7']];.

We recall from [16}[19] that the space C[[z~!]]; of 1-Gevrey series is a differential
algebra.
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Notice that a formal series g is 1-Gevrey if and only if its minor g is a convergent
power series, thus defines a germ of holomorphic functions (still denoted by g).
More precisely:

Proposition 3.4. The restricted linear map %) : C[[z”']]1 — C8 @ Oy is an isomor-
phism of differential algebras. Also, for any two germs of holomorphic functions
g,h € O, their convolution product g h € Oy has the following integral represen-

—~ ¢ ~
ration: g+(0) = [ g)h( —m)an.
A flavor of resurgence

Definition 3.7. Let Q be a non-empty closed discrete subset of C and ¢ € 0, be
a germ of holomorphic functions at 0. This germ is said to be Q-continuable if
there exists 7 > 0 such that D*(0,7) N2 = @ and @ can be represented by a function
holomorphic on D(0, r) which can be analytically continued along any path of C\ Q
originating from any point of D*(0,r).

The space of all Q2-continuable germs is denoted by Rq. The space Cé @ R is
called the space of Q-resurgent functions. The space of Q-resurgent formal series
is denoted by # and defined by % = E(CS @,@Q).

Theorem 3.2. Let 1, Q5 be non-empty closed discrete subsets of C. Let Q C C be
the subset defined by Q = Q1 UQ, U (2 + Q,) where

Qi+ ={o+m; |0 € Q21,0 € Q2;}.
If Q is closed and discrete, then Q| € ﬁgl and @, € Q_Qz imply @) x @) € Ho.
In particular, the space C8 & %7, of Z-resurgent functions is stable under convo-
lution product, thus is an algebra with unit &.

Borel-Laplace summability

~ b
Definition 3.8. A formal series g(z) = ) —

n>0*
summable in direction 8 € S! if the following conditions are satisfied:

€ C[[z™"]] is said to be Borel-Laplace

e the series g is 1-Gevrey or, equivalently, its minor g is a convergent series whose
sum defines a holomorphic function (still denoted by g) near the origin ;

e 2 can be analytically continued to an open sector of the form :36"(1 ) where I C S!
is an open neighbourdhood of 8, with exponential growth of order 1 at infinity.

Under the above conditions, the Borel-Laplace sum of g in direction 6 is denoted
by .7%% and defined by .7%5(z) = .#% 0 B3(z) where .2 9 stands for the Laplace

coeif
transform in direction 8, .2 (by8 +2)(z) = by +/ e %5(8)d¢.
0
In addition to this definition, we recall that the Borel-Laplace sum .% 9% is holo-

morphic on a half-plane where its asymptotic behavior is governed by the formal
series g. This will be made more precise in a moment.

3.3 Formal series solution and Borel-Laplace summability

We go back to the formal series w given by proposition Since val w > 0, the
formal Borel transform of w just reduces to its minor w. Also, w(z) is the unique
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solution in C[[z~']] of the differential equation (3.6). One easily infers the following
result from the general properties of the formal Borel transform.

Proposition 3.5. The formal series w(z) € C[[z™']] is solution of @ if and only if
its minor w(§) € C[[{]] is solution of the following convolution equation:

P()i+ 1% [Q()W] = fo+ fi % W+ fo w5,

P@)=9>—1, Q(3)=-39, (3.10)
M@= 228 FO=-4 BQ)=3¢

We will see in a moment that w is 1-Gevrey and even Borel-Laplace summable.
In the rest of this chapter, we analyse this Borel-Laplace summability and we offer
various approaches.

3.3.1 Formal series solution and Borel-Laplace summability: a
perturbative approach

We start with a perturbative approach which has the advantage of giving a first
insight into the resurgent structure. In practice, we consider (3.10) as a perturbation
of the equation P(d)w = f which is quite easy to solve:

~

e cither formally since the map P(d) : g € C[[{]] — ({% —1)g € C[[{]] is invertible;
e or analytically, in a space of analyic functions, say ¢y, because

P(d):g€ Oy (£ —1)g € 0} is once again invertible.

To keep one, it is convenient to transform equation (3.10) into the following one
parameter family of convolution equations,

P(§)ﬁ=fo+e(—1*[g(5)ﬂ +ﬁ*ﬁ+ﬁ*ﬁ*ﬁ)7 G.11)
and to look for a solution under the form
h(g.e)=Y m({)e". (3.12)
>0

When plugging (3.12)) into (3.11)) and identifying the same powers in €, one obtains
a recursive system of convolution equations, namely:

P(9)ho = fo,
P(§)ﬁ1 =—1x [Q(b\)ﬁo] —i—fl *ﬁo—&—fz * o *ﬁo,

P(a)z,,z—l* [Q(a)ﬁn,l] +fA1 *ﬁ,,fl—k Z ﬁ*ﬁnl*ﬁnz, n>1.
ny+ny=n—1

(3.13)
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3.3.1.1 Formal analysis

Lemma 3.1. The system provides a uniquely determined sequence (71\1)120 of
formal series. Furthermore hy(§) € E¥1C[[]] for every 1 > 0.

~

Proof. Use the fact that the map P(d) : C[[{]] — C][[{]] is invertible and the general
properties of the convolution product. [

The above lemma has the following consequence:

Proposition 3.6. The series Zﬁl(c ) is well defined in C[[]] and is formally con-
>0
vergent to the unique formal solution w({) € C[[{]] of the convolution equa-

tion (3.10).

We mention that proposition @]Ahas a counterpart by formal Laplace trans-
form £ ({ — z). Introducing h; = £k, one gets from lemma [3.1|that the sequence
(h1);>0 solves in C[[z~']] the following recursive system of linear nonhomogeneous
ODEs:

P(d)ho = fo(z)
~ 1 ~ ~ =
P(9)in = =—Q(d)ho + fi()ho + fo(2)Ii (3.14)
p@)zn:*%Q(aﬁz’n,l+f1<z>%nfl+fz<z> Y Iwhey, n>1
ny+ny=n—1

From lemmaagain, one deduces that ; € z~22C[[z!]] for every [ > 0, thus:

Proposition 3.7. The series Zii,(z) is well defined in C[[z""]] and is formally
>0
convergent to the unique formal solution w(z) € C[[z~']] of the differential equa-

tion ([3.6).

3.3.1.2 Analytic properties and a flavor of resurgence

Instead of working in the space of formal series, one can rather work in a space of
analytic functions. The next proposition uses definition

Proposition 3.8. For every | € N, the formal series ZI given by defines a
germ (still denoted by h;) of holomorphic functions at 0, which can be represented
by a function holomorphic on the open disc D(0,1). Moreover, h; belongs to the
space 92’91 of Q;-resurgent functions, where Q; = {0,%1,--- ,+1,+(I+1)}. As a
consequence, the germ 2, is a Z-resurgent function.

Proof. The proposition is easily shown by induction from (3.13), theorem
and the following remark : for every [ € N, Zq, C #q,,, and the linear map

P(§) S %A’_Ql = (82-1)ge @Q/ is invertible. 0O
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3.3.1.3 Further preparations

solution of the prepared form equation (3.6)), can be written as w({) = ZZ;(C ) in
>0

the space C[[{]], where the sequence (EI)IZO solves the recursive system of equa-

tions (3.13). To show the Borel-Laplace summability of w, it is thus enough to check

the following properties:

We have previously seen (proposition [3.6) that the minor w of the formal series w

e the series of functions Zﬁ,(; ) converges to a holomorphic function near the
>0
origin and can be analytically continued in a convenient sector;
o this function has at most exponential growth of order 1 at infinity in this sector.

We also know by proposition that each ﬁ, (&) is a Z-resurgent function. This mo-
tivates the following definition, with the notations : D(a, r) is the open disc centred
in a with radius r and D(a,r) is its closure.

Definition 3.9. One sets 9;,0) = U D(A,p) for any p €]0,1[. We denote by ,9.32,0)
A==+1
the star-shaped domain defined by:

2V =C\ {1 | €1, 4o, { € D(£1,p)} CC\QSO)’

and 20 = | J éf}’)ZC\{i[1,+oo[}.(SeeFig..

0<p<1

Definition 3.10. Let f({) = Zalgl be an analytic function on the open disc
>0
D(0,r). One denote by | f| the function defines by | f|(&) = Z |ag|EL.
>0
Notice that | f| is also analytic on D(0,r).

Lemma 3.2. Let be p €]0, 1[. There exists a constant M, (o) > O such that for every

polynomial q € C[{] of degree < 1 and every {e€C\ 20, one has
’ q()
P(=¢)

< M, (0)lq|(1). Moreover, on can choose M, () = %.

.. 1 1 4 1 (0)
Proof. By definition of 20, < —and ‘ <1+ —forevery{ € C\ 2, .
PUICEI T p TG E P \7p
Therefore L‘< ! <1+1)p<1(P+1)p<2pforp012 This
CIP(=8) 1T pre p) ~p? - p? T
means that one can choose M, oy = — in the lemma. It is possible to be more
p,(0) p2

e

Fig. 3.1 The domain ég)).



38 3 Tritruncated solutions for the first Painlevé equation

precise. Suppose for instance that R({) > 0. Then |{+ 1] > max{1,|{|}, thus

% < 1. 1In a nutshell, one can choose M, (o) = % in the lemma. O

As a rule, we will combined lemma [3.2] with the following lemma whose proof
is left as an exercise (see [19, 16]):

Lemma 3.3. Let U be a domain star-shaped from 0. Suppose that f and g are
two holomorphic functions on U and satisfy the conditions: for every { € U,
‘f | < F(|CD and ‘g ’ < G(|¢|) with F,G positive contlnuous functions on

R*. g(8)| <F=G(|¢])
and‘ Cﬂ xg(C ‘g |C|(F*G(\C|))

3.3.1.4 Majorant functions

We have in mind to show that the series of functions Z (¢ ), discussed in proposi-
>0

tions|3.6|and is uniformaly convergent on any compact subset of &.7’(0). We will
use majorant functions which we now define.

Definition of tAhe majorant functions We consider, for any p €]0, 1], the sequence
of functions (H;);>¢ recursively defined by:

1 ~ ~
Ho = [fol(§),

My o)

1 ey -~ ~ -~ ~ ~

= (3+|/1l) *Ho + | f2| * Hy * Ho, (3.15)

My 0)

1 —~ ~ —~ ~ ~ ~
o Hn= B+ Ha+ Y [falsHy i Hyy, >

p(0) ny+ny=n—1

where M), (o) is given by lemmaand fol(€) = B2, 1F11(8) =4E&, |](&) = 3E.
(Compare l) w1th -.) We claim that for every / € N, H; is a majorant func-
tion for A;. Precisely:

Lemma 3.4. For every p €]0, 1] and every | € N, the following properties are satis-
fied: Hy(&) is a polynomial which belongs to E'*'C[&]; furthermore,

~

h(Q)| <H(&) with &=|¢], (3.16)

Jorevery { € ég)),

where (51)120 is defined by .

Proof. The fact that Hy(€) € ET1C[E] is proved by induction from (3.15)) and the
properties of the convolution product. By 1! and lemma for every § € QE,O),
|ho(¢)] < |f0 )| < M, 0| fol(€) with & =
1=0.We now assume that (3.16) is true for [ =0,--- , (n— 1), for some n € N*. By
lemma and the induction hypothesis, for every { € ééo)’

3.16)) is true for

1*[ nl ‘_

‘P(lol' ) (1+B,1(€D),
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where |Q|(&) = 3&. Therefore, by lemma[3.2]

\P(lg) | 1 [Q(0)ha1)(0)] < My 0)01(1) (14 Ho-1(8))

with & = |{]. More generally, for similar reasons,

1(0)] < (35,1 (©)) + 1Al Bas @)+ Y ol + oy (&),

ny+ny=n—1

My (o)

y(8)| < Ha(E). This ends the proof. O

Upper bounds for the majorant functions Before keeping on studying the above
majorant functions, we state a property which will be useful in the sequel. We first
recall two notations.

Thus, for every § € é)’()o)’

Definition 3.11. Let U C C be an open set. We denote by &'(U) the space of func-
tions holomorphic in U and continuous on the closure U.

1
For Ry > 0, we set D(e0,Rg) = {z eC,lz| > R}'
0

Lemma 3.5. Let be Ry > 0. We suppose f € 0 (D(e,Ry)) with f(z) = O0(z™™) at

infinity for a certain m € N, and let be M =  sup  |f(z)|. Then the formal Borel
ZeD(W,Ro)

transform Bf = f,6 + fof f satisfies the following properties:

~ M
1. f€O(C)and |fo| < —.
Ro

£
o< |ﬂ eRo with & = |£| and, when m > 2,

- m—2 &
|f<c><,§gn(nf_2)!*efo, E=1¢l.

Proof. The Taylor series expansion of f, Z sz*k =z (1) Z fm+1,1z*l, con-
k>m >1

M
verges to f in D(eo, Ry). By the Cauchy inequalities, |f;| < 7 for any k € N. The
0
formal Borel transform of f reads Zf = fy6 + f with :

-1

¢
Zfl -1 as rule,

>1 )

2. f(¢) = g o h >2
. (C)i(m—Z)!* ;fm+l_1(1—l)! when m > 2.

|C|l 1 M él—l & )
1! < ZRm+l Ti—1! = ﬁeR with

Also, for every { € C, Z|fm+1 1|(
i>1

& =|C|. This ensures the uniform convergence on any compact set of C, thus
f € 0(C), and provides the upper bounds. 0O

We return to the majorant functions defined by (3.13).

Lemma 3.6. For every | € N, the majorant function I Hy (&) is the formal Borel trans-
form of Hy(z) which has the following properties: Hl( ') belongs to C[z™'] and, for

every p €0, 1], H;(z) is bounded on the domain |z| > & o 8 precisely sup |H)(z)| < 7

l2|>2
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Proof. We introduce the generating function: H (& ZH; V€' € C[E][[e]]. From

(3.15), we observe that this generating function formally solves the convolution
equation

7o = VRl +e (3 Al) <+ ol <A (3.17)

Therefore, ﬁ can be seen as the formal Borel transform of the solution

ZH; €' € C[z7Y[[€]] of the following second order algebraic equa-
tion:
A =1l + e[+ LD E + 1A
Mp.0) z
(3.18)
. 392 1 4 1
with |fo|(z) = i) =5, 1Al =55

T 6252
This equation has two branch solutions and one of them is asymptotic to the equa-

tion H= | fo| when € goes to zero. We are interested in that solution. Instead

p:(0)
of using an explicit calculation, we rather use another method which can be gener-

1 _
alized. In (3.18) we make the change of variable + = — and set H(z,€) = H(t,€).
z

The equation (3.18]) becomes:

F(1,e,H) = 0, with (3.19)
F(t,8,H) = 1ol — €[ G+ LAl H+ Al HH?)
Mp (o)
, 0F L .
Since .%(0,0,0) = 0 and (0,0,0) = # 0, the implicit function the-
9H M, 0

orem provides a unique holomorphic solutlon H(t,€) to (3.19), for [t and |
small enough : there exist r; > 0, r» > 0, r3 > 0 and a holomorphic function
H:(t,e) € D(0,r1) xD(0,r2) — H(t,€) € D(0,r3) such that for every
(1,8.H) € D(0,r1) x D(0,72) x D(0,13), | F (1,6,H) = 0 H = H(t,¢) .

To get more precise informations, we view the implicit problem (3.19) as a fixed-
point problem:

H = N(H), (3.20)
N(H) = Mp o) (1ol + e[ B+ Al H+ [l 07H?)])

(2, g L
- M, ()<625t e[ (Gr+a)H + 3H D

We choose M,, (o) = % (see lemma and we introduce the space ¢'(U) of func-
tions in (¢,€) which are holomorphic on the polydisc U = D(0,%£) x D(0,2) and
continuous on the closure U. The space (¢/(U),||||) is a Banach algebra where || ||
stands for the maximum norm.

We recall the following theorem [26]: let U be a bounded open subset of C*, n > 1, E be a
Banach space and ¢ (U) be the space of functions f : x — f(x) € E which are continuous
on U and holomorphic on U. With the the maximum norm || f|| = sup |f(z)], (¢(U),]|.||) is

z€

a Banach algebra.
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For a reason of homogeneity, we introduce the ball B, = {H € ¢(U), ||H|| < p}.
2 7 2

For any H,Hy,H, € By, [N(H)| < (%2—4 +2 [%HHH +{’ﬁ||H|\2D < p (re-

member that p < 1), while

2 (17 2
INGH) = N(#)]| < = (jgnm ~ ||+ L H2|(||H1||+||H2||))

The mapping N\Bp :H € By, — N(H) € By, is thus contractive. Since B, is a closed
subset of a complete space, (B, |.||) is complete and the contraction mapping the-
orem can be applied. We deduce the existence of a unique solution H in B, of the
fixed-point problem (3.20).

This solution H (t,€), thus holomorphic in U = D(0, &) x D(0,2), has a Taylor ex-

pansion with respect to € at 0 of the form H(z,€) = ZHI (t)€!, where (H) > is a
=0

sequence of holomorphic functions on the disc D(0, %) Moreover, by the Cauchy

inequalities and using the fact that sup |H(¢,€)| < p, one gets: for every | € N,
(r,.e)eU

sup |H(t)] < B] This ends the proof of lemma(3.6f O
1eD(0,8) 2
'8

Lemma 3.7. For every p €]0,1] and every | € N, the majorant function Hy(€) is a
~ 8 s
(&) < Sl

polynomial which satisfies: for every & € C,

Proof. This is due to lemmas[3.5]and[3.6] O

3.3.1.5 Formal series solution and Borel-Laplace summability

We are ready to show the following theorem.

Theorem 3.3. The formal solution w of the prepared equation (3.6) associated with
the first Painlevé equation, is a 1-Gevrey series and satisfies the following proper-
ties:

1. its minor w is an odd series, convergent to a holomorphic function which can be
analytically continued to a function (still denoted by w) holomorphic on the cut
plane 20;

2. W has at most exponential growth of order 1 at infinity along non-horizontal

directions. More precisely, for every p €]0, 1], there exist A > 0 and T > 0 such

that, for every § € {%”()0), w(8)| < Ae™lél;

3. moreover in the above upper bounds one can choose A =16 and © =

oo

Proof. Combining 1emmasand we know that, for every p €]0,1[and [ > 0,
the function iz\l(é_f ), is holomorphic on @2,0). Moreover, for every R > 0, setting
° 0 ~ ~ 8 s 3 .
Ur =D(0,R)ﬂ%,(g ), Y sup|m(Q) <Y H(R) <Y ?ePR < 16e#*. This normal
1>0 Ug >0 >0
convergence ensures the uniform convergence on any compact subset of %% of

the series Zﬁ,(g ), which thus defines a function holomorphic on é(o). However,
>0
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proposition|3.6|tells use that the series Z Z, converges to the formal Borel transform
>0
w of the formal solution w of the ODE (3.6). O

Remark 3.3. Better estimates can easily be obtained, see corollary and exer-
cise[3.3

3.3.2 Formal series solution and Borel-Laplace summability:
second approach

In this second approach, however related to the first one, we introduce a Banach
space (following [6l [7]]), convenient to analyse the analyticity of the formal Borel
transform of the formal series w solution of the ODE (3.6). We then introduce the
reader to a “Gronwall-like lemma” which will give the upper bounds we are looking
for.

3.3.2.1 Convolution algebra and uniform norm

Definition 3.12. Let U = Ug C C be an open neighbourdhood of the origin, bounded

and star-shaped, R = sup || the “radius” of U. We denote by (O(U),+,.,)
feUu

the convolution C-algebra (without unit) of functions continuous on U and holo-
morphic on U. We denote by .# ¢ (U) the maximal ideal of ¢(U) defined by
MOWU)={fe0), f(0)=0}. We set

9:f€0) = f(§)=~Lf(§) € MOD).
Let be v > 0. The norm ||.||y is defined as follows: for every f € 0(U),

1£]lv = Rsup|e V¢l £(£)].
teu

This norm is extended to C8 & O(U) by setting: ||cd + fllv = |c| + || ]
while 96 = 0.

Vs

Proposition 3.9. The space (C6 ® O(U),|.||v) is a Banach algebra. In particular,
for every f,.g € C6® OU), ||f=gllv < || lIvllgllv- The space . O(U) is closed in

the normed space (0(U), ||.||v). Moreover, for v > 0:

— n!
1. for every n € N, for every g € OU), |&" *g|v < mHg||\,,

(€ &l < R and (€ Dl =R

2 for every .8 € 0O), /sl < 17 gl

3. for every f € ﬁ(U),J/ >vo > 0= || fllv < || fllv-

4. forevery f € #0(U), &gIEOHfHV =0.

5. the derivation g\ﬁ(ﬁ) € O0T) s of € M O(T) is invertible. Its inverse map
0~ satisfies: for every f € O(U), for every g € .# O(U), 9! (fxg)e #0U)
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~ 1 ~ _
and |07 (fxg)|lv < V—R||f||v||371g\|o. Also, forevery f e C6® O (U), for every
gEMOWU) 0~ (f+g) € OU) and |0~ (f+g)[llv < I £lIvIo~gllv-

Proof. Since Re VR sup |£(&)| < Rsup |efv‘§|f(C)‘ < Rsup |f({)|. we see that
Leu teu Leu

||.]lv is equivalent to the usual maximum norm on the vector space ¢'(U) and this
normed vector space is complete. This shows the completeness of ((ﬁ @), +,.), Il v)

and of (C6§ & O(U),||.||v) as well.
For f,g € 0(U) we have, writing { = |{|e!® € U,

I¢] . 0\ i
Re " Elpeg(§) = Re S [ 7G5 ((16]-)6) s

= R/0§|f(seie)e\/sg((|§ —s)eie)e"’(m*S) «if s

1€ 1
Therefore Rje V1 % g()| < ||va||gHv/ Eds < |IflIviigllv. We conclude that
0

forevery f,g € O(U), ||f+gllv < |Ifllvligllv, hence (ﬁ(U), H||v) is a Banach al-

gebraand (CS @ 0(U),|.||v) as well.
We now suppose v > 0.

1. For the particular case f: { — (" and g € O(U):

1€ .
R EI(Em s ) ()] <R [T e |g((12] = )6 [e 06 s

4
< lgly / ¢ s ds

oo

<lgll [ e s,

This shows that || * g||, < s H g||v The other properties follow.

2. Obviously, |Ifgllv < [I£]lvsuple < *Ilfllvllgllo, for every f,g € O(U).

. Itis straightforward to see that v > vy > Oimplies || f]|v < || f|lv, when f € &(U).
4. 1f f € MOU), then f = {g with g € O(U). From the previous property,

1 1 .
11l < ZlElvllgllo < llgllo. Thus limy—e. | £y = 0.
51 feCé®0(U) and g€ #C(U) then fxg € #C(U). Assume now that
feoU)andgec.#0(U). Then d~'(f+g)(0) =0 and writing { =|{|e® c U,

(O8]

14 .
Re vl Fsg(0) _Vm/ g(se® £ =) efds (3.21)

ler .~ . . ‘
= R/ 5el® (97 g) (se!®)e VS £((|C] —5)e®)e v 1=9) el gy,
0
On the one hand, from (3.21)),

ICI2

1 ~
Rle‘vlg‘f*g(é)\SEHfllvHa_lgllv/ sds < S| fllv 19~ gllv,
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so that Rl 37(/ # )0 < S gl < 113 gl Thus

||§_1(f*g)Hv < Hf||v\|5_ gllv. One easily extends this formula to the case
feCéa o).
On the other hand, from (3.21),

~ 14 ‘ ~_
Rle™élfxg(0) < IIf\Ivsuplflg\/ se”Vds < m||f||v||a "gllo,
U 0 VR
~ 1 ~
hence R|e*V\§\a*1(f*g)(§)| < ﬁ||f|\v||a*1g||0,.Therefore:

~ 1 ~
197 (F+2)llv < S IllIvIo gllo-

This ends the proof. O

3.3.2.2 A Gronwall-like lemma

We start with the following observation.

Lemma 3.8. Let be a,b,c,d >0, N € N* and (F,)o<n<y be a sequence of entire
functions, real and positive on R, with at most exponential growth of order 1 at
infinity. Then, the convolution equation

N
W:d+[a+b5]*W+c<Fo Z A*") (3.22)

has a unique solution in C[[£]], whose sum converges to an entire function Wy (&)
with at most exponential growth of order 1 at infinity. The function VAVd(é) is real,
positive and non-decreasing on R™ and, for every & € C, the mapping d \/At/d(é)
is continuous on RY.

Proof. Obviously, (3.22) has a unique solution W,y € R[[€]]. Its formal Laplace
transform, Wy = Z(W,) € R*[[z71]], solves the algebraic equation

N
W(z) = g + B + ;] W(z)+c Z F(2)W'(2), (3.23)

where the (F,)o<n<y is a (N4 1)- tuple of holomorphic functions on a neighbour-
hood of infinity with F,,(z) = O(z~!). This shows (by a reasoning already done) that
W4 = 0(z"") is a holomorphic function in (z,d) for d € C and z on a neighbourhood
of infinity (independent on d). Therefore, W, determines a function holomorphic in
(&,d) € C?, with at most exponential growth of order 1 at infinity in &. The fact
that, for d > 0, Wy is real, positive and non-decreasing on R+, is evident. 0O

Lemma 3.9 (Gronwall lemma). Let U be a domain star-shaped from 0 and N € N*.
Let (fn)o<n<n, resp. (Fp)o<n<n, be a (N + 1)-tuple of functions in G(U), resp. of
entire functions, real and positive on R*. We suppose that for every 0 < n < N and

(O] < Fy(E) with &€ = |C|. Let p,q,r € C[{] be polynomials such
that the function § — p(—{) is non vanishing on U and the following upper bounds

l(S) _ , p— up [1UED !

are satisfied: a = sup <o, ¢ =SUp 5+ <

CeU|P(*C)‘ et IP(=0)1 =7 T L (=]
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We finally assume that w € O'(U) solves the following convolution equation.:
~ -~ -~ o~ N ~
P()W+1x[q()w] = L+ [r(A)W] + fo+ Y fux W™ (3.24)
n=1

W(E)| < Wa(§) with & =

W, € O(C) is the holomorphic solution of the convolution equation .

, where

Proof. (Adapted from [17]). We assume that w € &'(U) is a solution of the convo-
lution equation (3.22). We thus have, for every § € U,

~ ~ ¢
PO = (&)~ [ la@lmyan + [ (€ ~mlr@psin)an
Noorb
H X [ A mn

Thus, writing &€ = |{| and { = &Ee'?,

& I 5T 14l(é) r|(&) — A 15re®) | dr
FOl < pgy©)+ | {|p<—c>|+|p<—c>(5 )]' (re)1d

I 1 = A i0
+ X [ g e el

n=170

Therefore,

-~ 2 ¢ TN A PN N
WOl <)+ [ [a+b(5—r>]|w<re9>\dr+c; | e =nia el ar

We notice from (3.24) that |w(0)| = f(— W4(0) = cFy(0) +d, where Wy
solves (3.22). Remark that [W(0)| < ¢Fy(0) by definition of ¢ and by hypothesis

on Fy.

First case. We assume W4(0) > |iw(0)|. We want to show that |w({)| < Wy(&) for
Contheray { = &ef € U.

Assume on the contrary that there exists {; = &el® € U such that |[W(&1)| > W,(&)).
Define y = {¢ € [0,&1] | W(&)| > W4(|€])}. This is a non-empty closed set,
bounded from below, and we note {, its infimum.

o If [W(8)| > Wy(|C]) for some ¢ €]0,&], then & € % _and this contradicts the
definition of &. Thus, for every { € [0, (], |w(C)| < wa(l¢)).

o If [W(&)| > Wy(|&|) then, by continuity of W and Wy, one can find o > 0 such
that |[W((|&| — @)e®)| > Wy(|&| — ), but this this contradicts again the defini-
tion of &. Therefore [w(&)| = Wy(| &)

Putting things together, one gets with & = |{]:
~ 5 & 000
W(&)| < CF0(52)+/ [a+b(& —r)] [W(re™)|dr
+c2/ (& —r)|w(re' )|dr

< cFy(&) +/ la+b(E — )] Wa(r) dr—}—cZ/ (& — )"

/-\

r)dr.



46 3 Tritruncated solutions for the first Painlevé equation

Therefore [w(&)| < Wq(&) —d and we get a contradiction. As a conclusion, for
every d > 0, forevery { € U, |w(&)| < Wy (&) with & = |{].

Second case. The case W4(0) = |w(0)| (thus, in particular, d = 0) is deduced from
the above result. Indeed, for a given { € U, one has by |[w({)| < Wy(&) for every
d > 0. Since the mapping d — Wy (&) is continuous on R (cf. lemma, one gets
the result by lettingd — 0. O

3.3.2.3 Applications

We prove theorem [3.3]with the tools introduced in this section. For R >0 and p > 0,

we introduce the star-shaped domain Ug = D(0,R)N ég)). We  set
B,={ve O(Ug),|vlly <r},r>0and v > 0.

We consider the convolution equation (3.10), viewed as a fixed-point problem. Pre-
cisely, we consider the mapping

N:7€B, — P(d)"! [_ 15 [Q()7] + fo+ fi 7+ fox %7
By lemmas|[3.2]and proposition [3.9] one first gets:
ING)lv < Mp o)l = 1% [Q)5] + fo + fi 0+ Fox 05T

By proposition again, since Q(g) = —35, one easily obtains:

11+ 12@)9] v < 1@l < Q- Olollly < > [l

The functions fo.f1, 7> belong to 4O (Ug). By proposition this implies
3§3°||f:||v =0, i=0,1,2. We then deduce |[N(V)||y < r by choosmg v > 0 large
enough.

By the same arguments, one easily sees that [|[N(v;) — N(W)||v < k||vi — 2|y with
k < 1, for v{,v, € B, and for v > 0 large enough.

This means that N is contractive in the closed set B, of the Banach space
(O(Ukg),|||lv). for v > 0 large enough. The contraction mapping theorem provides
a unique solution w € B, for the fixed-point problem v = N(¥). Since R and p can
be arbitrarily chosen, we deduce (by unlqueness) that the formal Borel transform w

of the unique formal series w solution of (3 6 defines a holomorphic in %
One turns to the Gronwall lemma to get ur bounds. Workmg in the star- shaped

2 lemma and the Gronwall lemma
, where W(&) solves the fol-

domain ,@p , p €]0, 1], one sees by lemma 3

that for every { € %p W) < W(E
lowing convolution equation:

W=|fo|+ (3+ |f1|) « W | o] « W W.
Mp (0
This is nothing but (3.17) with € = 1. We adopt the notations and reasoning made
for the proof of lemma [3.6} Let W(z) be the inverse Borel transform of W and
W(z) = H(t), t = z~!. The function H solves the fixed-point problem H = N(H)
with
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392 1
NH) =M ()(625t2+(3t+4t VH 2t2H2>. (3.25)

We set M, o) = p U =D(0,;55), and B, = {H € 0(U), ||H|| < p}. One easily
shows that for any H,H,,H, € By,

44150

N(H)€By and  IN(H) ~N(H)|| < 1o

|H1 H2||

We conclude with the contraction mapping theorem: W(z) is holomorphic on the

4.22 Py
domain |z] > e and is bounded by p there. Therefore, by lemma (3.5, W is an
~ 422
entire function and satisfies: for every £ € C, [W(&)| < 4.22¢77 %l To sum up:

Corollary 3.1. In theorem one can choose A =4.22 and T = 4%.

3.4 First Painlevé equation and tritruncated solutions

Theorem [3.3]shows that one can apply the Borel-Laplace summation scheme to the
unique formal series expansion w € C[[z~!]] solving equation (3.6). This is what we
do in this section which starts with a brief reminder.

3.4.1 Reminder

We complete definitions [3.3] and definition [3.8] with notations essentially common
with [19, [16]]. For the convenience of the reader we also recall some results about
Borel-Laplace summability and we refer to [[19}[16]] for more details.

Definition 3.13. Let 6 € S! be a direction and I =], B[C S! be an open arc. We de-

note by 8 C S! the open arc defined by 6 =] — 5—6,-0+7%], and T =Upe; 0. We
denote by I = [a, B] the closure of I and by I* =] — B, —a[ the complex conjugate
open arc.

Definition 3.14. For a direction 6 and 7 € R, we denote by I:I 9 the following open

half-plane, bisected by the half-line e "OR* : T ® = {z€C, R(ze'?) > 1}, of aper-

ture 6.

Let I C S' be an open arc of length || < 7r andy: 1 — R be a locally bounded func-

tion. The domain 9(1 7) is defined by @ rLy)= H gy and is called a sectorial
fel

neighbourhood of infinity, of aperture 1.

~ b - . P .
Letg=) — €Clz 1)1 be a 1-Gevrey series: the minor g thus determines
n>0 z
a holomorphic function near the origin (still denoted by g). We add the following
conditions:

e one can find an open arc I C S! such that g can be analytically continued to an

open sector of the form 55"(1 );
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e this function (still denoted by) g is of exponential growth of order 1 at infinity:
for every proper-subsector 8 (I') € 45 (I), there exist A > 0 and 7 > 0 such that
forevery { € x.lm(l'), 2] < Ae™lél.

Under these conditions, for every direction 8 € I, the Borel-Laplace sum . 9§ is

well-defined and holomorphic on the half-plane I.ITO Moreover, for two close direc-
tions Oy, 6, € I, the Borel-Laplace sums .7 % g and .%2 g coincide on their common

domain 1‘[19l NII 22, thus can be glued together to give a holomorphic function on

: by T % More generally:

~ b
Proposition 3.10. Ler g(z) = ) = € Cllz7"]]1 be a 1-Gevrey series subject to the

n>0 z
following conditions:
e there exists an open arc I C S' of length |I| < Tt so that the minor g can be

analytically continued to the open sector 58"(1 );
e for every direction 6 € I, |g(Eel?)| < A(0)eY )%, & >0, where A : 1 — R and
Y: 1 — R are locally bounded functions.
Then the family (#°g)gc; of Borel-Laplace sums determines a holomorphic func-
tion on the domain é(l ,Y), denoted by ./ s

Definition 3.15. Under the conditions of proposition [3.10} g is said to be Borel-
Laplace summable in the directions of /. The function ./ € 6(%(1,7)) is called
the Borel-Laplace sum of g in direction /.

~ b
Proposition 3.11. Ler g(z) = Z — € C[[z7"]] be a formal series, Borel-Laplace

n>0 <
summable in the directions of I C S, an open arc of length |I| < . Then its Borel-

Laplace sum .9'g € ﬁ(é(l, }/)) is 1-Gevrey asymptotic to g on é(l7 Y) : for any

proper-subsector B‘” S é(l ,Y), there exist constants C > 0 and A > 0 such that for
every N € N and every z € :S°°,

PN ) N|_|-N

Sg2)— ), 5| <CNAY |z~ (3.26)

=0 <

In this proposition, the property [3.26]essentially characterizes the Borel-Laplace
sum. Indeed, notice that the sectorial neighbourhood of infinity é(] ,7) is of aperture
I which satisfies © < |I| < 27, and one can draw the following consequence from
the Watson lemma (see [16]): let E""(I’) be any sector such that |[I'| > wand I’ C 1.
Letfeo (:S“’ (1)) be a holomorphic function which is 1-Gevrey asymptotic to g on

A""(l’). Then f and .#’g coincide on :S""(I’) N é([, 7).
We eventually ends this reminder with the following statement:

Proposition 3.12. Let I C S! be an open arc of length |I| < wand f(z),g(z) € C[[z" Y]]
be Borel-Laplace summable formal series in the directions of I. Then fg and d f are
Borel-Laplace summable formal series in the directions of [ and

S(fg) = (S ) (F"3). S1(9f) = (S f).
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3.4.2 Formal series solution and Borel-Laplace summation
3.4.2.1 Borel-Laplace summation

We go back to the formal solution w of equation (3.6). Theorem and corollary
[BTJhave the following consequences:

Corollary 3.2. The Borel transform w € (é(o)) of the formal solution w of equa-
tion ([3.6) satisfies the following property.

T
For every 0 €]0, —|, there exist As > 0 and t5 > 0 so that

2
for every £ € 83(8, 1~ 8[), [W(E)] < Age®ISl. (3.27)
4.22
Moreover one can choose As = 4.22, Ts = — .
sin(9)

2

Proof. One can define § = sin~!(p) = arcsin(p) €]0 S b forany p €]0,1[. O

From corollary [3.2] and the properties of the Borel-Laplace summation, we

T e~ .
see that for every & 6]0’5[’ the Borel-Laplace sum .#%w of w in any direc-
tion 6 €]5,m — §], is well-defined and holomorphic in the half-plane 1'125 with

4.22
Tg = — ) These holomorphic functions glue together to give the Borel-Laplace
sin

sum 19795 holomorphic  in  the domain  2(]0,7[,T)  with

4.22
7:0€0,x[— 1(0) = Sin(@)" (See Fig.and exercise [3.4).

Moreover, since w formally solves (3.6)), its Borel-Laplace sum . 10713 is a solution

of this equation which is 1-Gevrey asymptotic at infinity to w on 2(]0, x[, 7).
Similarly, the formal series w is Borel-Laplace-summable in the directions of the

interval |7, 27t[. This provides the Borel-Laplace sum .#/%2%lii which belongs to

ﬁ(é(]n:, 27[,7)) and is 1-Gevrey asymptotic to w on é(]n’, 2n[, 7).

=
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Fine Borel-Laplace summations It is possible to get more precise estimates than
those given by (3.26), by appealing to fine Borel-Laplace summations, discussed
with much attention in [[16} [19]] to whom we refer.

Definition 3.16. We denote by S,(8) the open half-strip S,(0) = U D(se®, r), for
seRT
r> 0 and 0 a direction.

The following proposition is the easy part of a theorem due to Nevanlinna [19, |16}
181,112} 25]].

~+oo

Proposition 3.13. Let ¢(z) = Y| % € C[[z"Y]1 be a 1-Gevrey series, r >0, A >0,
n=0 %

T > 0 and 0 a direction. Then property (|l) implies property (2)) in what follows.

1. The minor @ is analytically continuable on S,(0) and for every { € S.(0),
9(0)] < Ae™El.

2. The Borel-Laplace sum . e(ﬁ(z) is holomorphic in 1'12 and for every p > 0,
NZOandzEI.Le. :

ar.7%¢
dzp

(k=p)---(

k—1 .
Zk )‘ SRM(}’,A,T,N7Z616;p)

(*l)pak—p

w
T

(3.28)

where

Nl ! 2 (H(R(z)—1))
Rus(r,A,T,N,z;p) _ArN|z|N e EO I (3.29)

Applications We return to theorem [3.3]and corollary [3.1] We consider a direction
0 €]0, [ and we choose r > 0 and 0 < p < 1 such that sin(6) =r+ p. This en-

sures that the half-strip S,(0) is a subset of the domain ég]) and, by theorem ,

there exist A > 0 and T > 0 such that for every { € S,(8), |W({)| < Ae™¢l with
22
sin(@) = r+ p. Also, from corollary 3.1} one can choose A =4.22, 7= ——. Asa

P
consequence, proposition can be applied. The reader will easily adapt the pre-
vious considerations when the directions 8 €], 2x]| are considered.

We summarize what have been obtained.

Proposition 3.14. The I-Gevrey series w € C[[z~!]]1, solution of the prepared equa-
tion (3.6) associated with the first Painlevé equation, is Borel-Laplace summable
in the directions of the arc Iy =]0,n|, resp. I =|r,2x|. The Borel-Laplace sum
Wi = Foxlg resp Wiyl = IG5 a holomorphic solution of the differen-
tial equation (@) and Wi 0, Wiri 1 satisfy the following properties. For every 0 € I,
resp. 6 € I, for every r > 0 and p > 0 so that |sin(0)| = r+ p, there exist T >0
and A > 0 such that :

o Wi €EO0(ITY), j=0resp. j=1;
o foreveryz €1, forevery N €N, for j=0resp. j=1,

N Tr
ak’ Nle 1
Weri il Z) — E — - )
trlyj( ) =z FN|Z|N m(zele) —

(3.30)
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‘dwtri,j l (k_ 1)(1(](71) ‘ Nle™ 1+ r(m(zeie) — T) (3.31)

dz @+Y) & Nz (EK(zei")—r)z

k=1
where the coefficients ay are given by ;

4

e morover one can choose A =4.22, T = . In particular wy; o, resp. Wiy 1, is

o . 4.22
holomorphic in 9(Iy, ), resp. in 9(I1,7), with T(0) = Sin(8)]

3.4.2.2 A link with 1-summability theory

We assume that the reader has a previous acquaintance with 1-summability theory,
introduced and much discussed in [[16], to which we refer. We only fix some no-
tations, these are classical [16} 18] but for the fact that we consider asymptotics at
infinity, and we recall some properties.

Definition 3.17. Let I C S' be an open arc and A7 = 47 (I) a sector.

L. Q(Z“) resp. o/ (I), is the differential algebra of holomorphic functions on the

sector 47 admitting Poincaré asymptotics at infinity in this sector, resp. asymp-
totics germs at infinity over /.

The linear map T : o7 (4) — Cl[z"]), resp. T : &7 (I) — C[[z""]], which assigns
to each f € 3(:&“), resp. f € o/ (I), its asymptotic expansion at infinity, is called
the Taylor map.

The Taylor map 7T is a morphism of differential algebras and this map is onto (Borel-Ritt
theorem).

2. .4/ (2""), resp. </ 1(I), is the differential algebra of holomorphic functions on

L]
the sector 4 with 1-Gevrey asymptotics at infinity in this sector, resp. 1-Gevrey
asymptotics germs at infinity over /.

On denotes by Tj : .7 (2"") — Cl[z~ "I, resp. Ty : & 1(I) — C[[z~']]1, the Taylor
map restricted <7 | (:3‘”) resp. o/ (I), called the 1-Gevrey Taylor map.

The 1-Gevrey Taylor map 77 is morphism of differential algebras. This map is onto
when |I] < 7 (Borel-Ritt theorem). This map is injective when |I| > 7 (Watson lemma).

3. ./ <0(8>), resp. o/ <O(I), is the space of flat functions on 4>, resp. flat germs at
infinity over /.

7/ <(4>) is thus the kernel of the Taylor map T : <7 (4%) — C[[z7]]

4. =71 (2""), resp. o/ =~1(I), is the space of 1-exponentially flat functions on ,Z"",
resp. 1-exponentially flat germs at infinity over /.

/=71(4%) is the kernel of the 1-Gevrey Taylor map Tj : &/1(48%) — C[[z"']]1.

5. o/ is the sheaf over S! of asymptotic functions at infinity associated with the
presheaf 7. We denote by .27 the sheaf over S! of 1-Gevrey asymptotic functions
at infinity associated with the presheaf .. We denote by .27 <° the sheaf over
S! of flat germs at infinity associated with the presheaf .7 <C. Finally .«/<~!
stands for the sheaf over S! of 1-Gevrey flat germs at infinity associated with the
presheaf .27 <1,
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Theorem 3.4 (Borel-Ritt). The quotient sheaf <7 |.</<°, resp. o/ </<7", is iso-
morphic via the Taylor map T, resp. the 1-Gevrey Taylor map T, to the constant
sheaf, C[[z~1]] resp. C[[z~']]1

We now go back to proposition On the one hand, The domain é([o,’r)

is a sectorial neighbourhood of e with aperture 7 =] — 5”’+§n[' On the other

hand, while é([l ,T)=e 7 é(lo, T) is a sectorial neighbourhood of e with aper-

1 N
5™ 75717[. These two open arcs provide a good covering {7, 1} of

1 1 3 1
the circle of directions S'. Let Jy =] — Xl 571:[ and J; =] — XL _Eﬂ[ be the two

ture 1, =] —

intersection arcs. Both wy,; o and wy,; 1 can be considered as defining sections of 7,

namely wy;0 € I' (70,42{1) and wyi1 €T (71 , ), and are asymptotic to the same
1-Gevrey formal series w. The pair (Wm‘,o,Wm',l) defines a 0-cochain in the sense
of Cech cohomology, and the 1-coboundary (Wi 0 — Wiri, 1, Wiri,1 —Wiri) belongs to
F(Jo,ﬂgfl) X F(]],%Sil).

3.4.2.3 Miscellaneous properties

We discuss various properties for the Borel-Laplace sums wy; ;.

For any j € Z and I; = Iy + jm =]0, 7| + jx, one can of course consider the
Borel-Laplace sum w; j = . Tiw, which defines a holomorphic function on the

domain 9(I s T), a sectorial neighbourhood of o with aperture 1 = 70 —Jjm,

- 3 1
Ij=]— 577:,+§77:[7j7r. Morever, for every j € Z,

Wriri,j+2 (Z) = Wtri,j(Z) for z € @(Ij, T) (3.32)
because w € C[[z1]];.
We mentioned in propositionthat the formal series w(z) is even. One deduces
that for any 6 €]0, z[, for every z € I:[’TT‘G

ST O5(z) =70 W(—2).
Therefore, for every j € Z,

forevery z € P(I,7), Wiri,j(2) = Weri j+1(—2)- (3.33)

We know by proposition|[3.1]that #(z) belongs to R[[z~']]. This has the following
consequence : for any 0 €]0,x], for z € I:[f?, SOw(z) = OW(zZ) (where @
stands for the complex conjugate of a € C). In other words, for any j € Z, the
two functions w;,; ; and wy,; j;1 are complex conjugate,

for every z € 9(1;,7), Wiri j(2) = Wiri,j+1(2)- (3.34)

However, neither w0 nor w1 are real analytic functions, since this would
mean that the 1-coboundary wy,;0 — wyyi,1 is zero which is not as we shall see
later on.

The properties and have the following consequences: for every
J € Z, Wi j is © P T -symmetric” [10, [11} [13], in the sense that for every
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zE é([j, T),
Wiri j(2) = Wiri j(—2)- (3.35)

In particular, for r > 0 large enough,

wirio(re ) ER,  wjo(re ) € iR. (3.36)

3.4.2.4 Asymptotics and approximations

1
By Stirling formula one has N! ~ v2aN""2e ™ for large N. Since for a given z # 0
No—N
. c . .. .
the function N > D™ reaches its minimal value at n = r|z|, it turns out from
rlz
formula (3.30) that one can estimate the value of wy,; or w;; from the truncated

N
. . ag . . . L
series expansion T]j with N = [r[z|] where [.] is the entire part. This gives rise
z
k=0
to the summation to the least term.

Along this state of mind, there are many ways of computing Borel-Laplace sums
approximately in practice (see, e.g., [[14}, 3]). Among them, one may quote the so-
called hyperasymptotic methods [1] which have strong links with resurgence theory.
These methods, originally arising from (and extending to) geometrical considera-
tions on (multiple) singular integrals [23} |9, 8], can be applied to a wide class of
problems stemming from applied mathematics and physics, see [20} 21, 22]] and
references therein. Other ways are available, for instance those based on the use of
conformal mappings [2] with realistic upper bounds. It is also theoretically possible
to calculate a 1-sum exactly by means of factorial series expansions [[18}12].

3.4.3 Tritruncated solutions

3.4.3.1 Tritruncated solutions

One can easily translate proposition [3.14] into properties for the first Painlevé equa-
tion (2.1). However, to use the Boutroux’s transformations (2.6), properly, it
is worth to work on the Riemann surface of the logarithm and we thus fix some
notations.

Definition 3.18. We denote by C the Riemann surface of the logarithm,
C={z=re? | r>0,0€R}, mizeCrrz=rel® e C*.

For any z = reﬁ’ € C, we refer to 6 as to its argument, denoted by 6 = argz.

We denote by S! (usually identified with R) the set of directions of half-lines about
0 on C. We (still) denote by 7 : S! — S! the natural projection which makes S' an
étalé space on S' (and even a universal covering).

Definition 3.19. Let € S! be a direction and 7 € R. We set

Il ={z=re%c @| €6 and E(z)GI.Tg}-
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Let I C S! be an open arc and y: I — R be a locally bounded function. We set

2(1,y) = U Hf(e) c C. One calls 2(1,7) a sectorial neighbourhood of infinity
ocr
on C.

In order to define the transformations (2.6) and (2.7) safely, we introduce a bi-
holomorphic mapping.

Definition 3.20. The biholomorphic mapping .7 is defined by:

~ g ~

4/5
C>C, z»—>x:§(z):&

o e imAS, (3.37)

For 7 C S! an open arc and ¥ : I — R locally bounded, the domain Z(I,7) is sent
onto .7 (2(1,7)) C C through the mapping .7, and we set

3(1.y)=7(2(17), By =x(71). (3:38)
We will consider the domains Z(I},7), j € Z, for I; = Iy+ jm =]0, 7| + jm and
4.22 .
= —— . Notice th 1 =e " Y(l;,7) f j € Z.
7(0) Sin(0)] otice that Z(1;11,7) =e " 2(l;,7) forany j €

The domain (I}, 7) (see Fig. and Fig. is a sectorial neighbourhood of in-
11

finity of aperture K; =] — —, —gﬂ:[—f jm and we may notice that, for any j € Z,

5 5

S(Ij11,7) = e %57 (I;,7). In particular, 8 (5, 7) = S (I}, 7).

We now think of w;; ; = .%/iw as a holomorphic function on Z(I;, 7). By
and (3.35), these functions satisfy some relationships: for any j € Z, for every
€ .@(Ij, ‘L'),

Wiri j(2) = Wiri j+1(ze7%), (3.39)

Wirij (2) = Wi, j(ze~ @I,

with the convention z = re % € C for z = re'® € C.
This gives sense without ambiguity to (3.4), and ([277), with the transform

Fig. 3.3 The shaded domain

is the projection of & (Iy, 7),

image by the transforma-

tion (3:37), of the domain

9(Ip, ) drawn on Fig. for
4.22

7(0) = Sin(8)]" The dash

lines recall the sectors (2.9).
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z€ 9(1;,7) <> x€B(1},7) (3.40)

e () () = S (4 wirij (7' (%))
trl,](Z) g trl,]( )— \/6 (1 25<y71(x))2 + (yfl(x))z ) .

The functions u;; ; are solutions of the first Painlevé equation (2.1) and by (3.39) and
(3.40), they satisfy the following relationships: for any j € Z, for every x € 4 (I}, 7),

i (%) = €2 Uy oy (xe =47/, (3.41)
Ui j(x) = 5Ty, (e ST

We recover here the symmetries discussed in Sect. [2.5]

L]

By projection, u;,; j becomes a function holomorphic on the domain &(/;, 7). This
provides five distinct functions u;,; j(x), j =0,--- ,4, the so-called tri-truncated so-
lutions.

We now use notions developed in [16] to which the reader is referred. Since wy,; ;
is a section on I ;j of o7, we deduce that the tritruncated solution u,; j(x) belongs
to the space of holomorphic functions with Gevrey asymptotic expansion of order

L]

4/5 at infinity in 8(/;, 7). One can thus recover u; j(x) by its asymptotics through
5/4-summability.
It is also worth mentioning that u,ri,z(x) is a real analytic function, as a consequence

of property (3.41).

Proposition 3.15. Let be S(I,t) = n(ﬂ(@(lg,r))> with 7(0) 4.22

~ [sin(0)]

, K 2% _2ix; . . .
=Y s = j 0,v) j — .
for j=0 4, 8(1;,7) = 0:d(lo,7), w; =e 5/ The first Painlevé equation
has 5 tri-truncated solutions uyy; j(x), j = 0,---4. The tri-truncated solution

and,

Ui j(x) is holomorphic in 8(1;,7), a sectorial neighbourhood of infinity of aper-

ture Kj =] — %TC, —%n[—%jn, and has in 3(1;,7) a Gevrey asymptotic expansion
L]
of order 4/5 which determined uy; j(x) uniquely. Moreover, for every x € 8(I;,7),
2irx
Upri j(x) = a)ju,,,',o(wj*zx), wj=e 57, j=0,---,4, and wy is a real analytic
function.

Remark 3.4. Tt is shown in exercise[3.3|that for any j =0, - - ,4, the tri-truncated so-

lution u;,4 ; can be analytically continued to the domain 3 (1;, ) with 7(8) = %.
We will see later on that each tri-truncated solution u,,; ; can be analytically contin-

ued to a wider domain than 8 (I}, 7).

Exercices

3.1. We consider an ordinary differential equation of the form

P(d)w= G(z7w,w/,...,w(”7l)) (3.42)

P(0) = ZO 0—md™ € C[0], g # 0, 0y # 0
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where G(z,y) is holomorphic in a neighbourhood of (z,y) = (e,0) € C x C",
NG

n € N*. We furthermore suppose that G(z,0) = O(z"!) an % =0z "

when [l] = 1.

1. Show that for every M € N and up to making transformations of the type

M
w=Y azF+v, (3.43)
k=1

one can instead assume that G(z,0) = O(z~M~1).
2. We suppose that for some M € N*, G(z,y) satisfies G(z,0) = O(z~™~1). Show
that, up to making a (so called) shearing transformation of the form

w=z", (3.44)

dlG(z,0)

oy O(z™') when 1| = 1

one can rather assume that G(z,0) = O(z™ '),

n
d 8(;)(5,0) = 0(z " MII=1)) when [I] > 2.

3. Deduce that, through transformations of the type (3.43) and (3.44)), one can bring
equation (3.42)) under the prepared form:
1
P(@)w+-0(d)w = F(z,w,w,...,w"") (3.45)
z
n n—1
=Y o wd"€C[d] , Q) =Y Bimd™ €C[I]
m=0 m=0

where F(z,y) is holomorphic in a neighbourhood of (z,y) = (e,0) € C x C"

olF
such that F(z,0) = O(z~2"Mo), My € N, a)(j’o) = 0(z7%) when [I = 1 and
dlF(z,0) o
oy =0(z > M), My €N, when [1] > 2.
-M

4. Show that the shearing transform w = z~"v, M € N*, brings equation (3.45)) into
an equation of the form P(d)v + % (Q(d) —MP'(d))v=g(z,v,/,--- v~ D),

3.2. We consider the ODE || and its unique solution w € & (<%."(0)).

1. Show that, for any p €]0, 1], for any { = Ee'® e%p ,’g’ IC],

392 A*Z
pIR(E)| < 7/ I#(re'®)|dr+ = /| o\ dr.

2. Let be p €]0, 1[. We consider the (unique) entire function W solution of the con-
volution equation pW (&) = ggg +7+W(E)+ L xWxW(&). We denote by W(z)
the inverse Borel transform of W.

Show that W(z) € ({|z > 52; }) (consider the discriminant locus). Show

1/2 ~ -
that for |z| > §gg,w( )=25 ((pzf7)+ ((pz—=7)2-33) / ) W) =0(z")

at infinity, and [W(z)| < 2% Ipzl 7 < .3

3. Show that [W(&)| < 25584e25l>|§‘ for every & € C.
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0) | 5684 395 ||
4. Deduce that for every p €]0,1[and every £ € %, [W({)| < 3355 7F -

3.3. We consider the ODE

(3.46)

4
deduced from 1} by the transformation v(z) = 1 — 252 +y(z) or, from l)

through the transformation y(z) = z 2w(z). In particular there exists a unique for-

mal series y(z) = 7 2w(z) € C[[z~"]] solution of (3.46). We thus know that the for-
mal Borel transform y belongs to .Z & (9.2(0)) and satisfies the convolution equation
associated with (3.46) by formal Borel transformation:

2 e o392 8% 1.
(¢ *1))’*1*(Cy)*@m+§)’*y~ (3.47)

1. Let f € O be a germ such that £(0) = 0. Show that the solutions g € 0 of the
convolution equation ({2 —1)g — 1 % (g) = f are given by

C 1 ¢
g(C) = (1 _C2)1/2 - 1f_(§c)2 + (1 _C2)1/2/0 (1 _22)3/2f(n)dn’ ceC.

(Hint : set g(§) = 1(; _(2, differentiate the convolution equation to obtain a non-

homogeneous linear differential equation of order 1, and solve this equation).

2. Show that y satisfies the convolution equation (3 in A#40 (%( ) if and only
if y satisfies the following fixed-point problem:

(392 &
y=2 (625 )

) + -2 (y*y) with
(3.48)

1 ¢
(290 =%+ s || s,

1
Sm-

3. Show that for any p €]0, 1] and any § € %p , and ’

W
4. Show that for any p €]0, 1] and any { € %p LF(8)] <Y (&) with & =
Y is an entire function which solves the fixed-point problem:

s (392 & RPN

, where

(26)) - B+ (1+6) @)

5. For any p €]0, 1] we denote by Y (z) the inverse Borel transform of Y. Show that
Y (z) satisfies the algebraic equation

~ /3921 1 1 ~ 392 1
Y=(2=—+-V*)(1+— Y = o(z7). 3.50
p (625 it3 )( +pz>’ @)= G5 pa TOET)- G50

6. We set U = D(oo, { 4) Show that the ﬁxed -point problem (3 has a unique
solution in B3 , = {H € O(U), || H| <t } for
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Fig. 3.4 The shaded domain
is the projection of 85 (I, 7),
image of the domain 2(I»,7)
by the conformal mapping

1
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The dash lines recall the
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7. Deduce that the minor y of the formal series y solution of equation (3.46)) can be

analytically continued is on 2 and that, for any p €]0,1[ and any { € f%gg)):

5(0)| < 0.7p% 5 ¢! 3.51
(&) <0.7p%er ™. (3.51)

8. We set [; = Iy + jm =|0,n| + jm, j € Z. Show that the Borel-Laplace sum

Yuri,j = -7y defines a function holomorphic on é(l ;,7) with 7(0) = ‘Siln%(‘g)‘.

9. Deduce that the tri-truncated solution u,; ;, j € Z, is holomorphic on the domain

3(15.%) = 7 (9(1;,7)) with 7(8) = ity See Fig.p4

3.4. We consider the domain é(]o,n[, 1) for 7(0) = sinkﬁ’ A > 0. We want to de-
scribe the boundary d é (]0,z[,7) of this domain.

1. show that o é(]O, 7[,7) is the envelope of the following family of line curves:

z=x+1iy, xcos(0) —ysin(0) = ﬁ(m, 0 €]0,x].

2. Deduce that d é(]O, [, ) is the parabolic curve of equation y = % —A.
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Chapter 4
A step beyond Borel-Laplace summability

Abstract We previously showed that the minor w of the unique formal series so-
lution w of the prepared ODE associated with the first Painlevé equation, defines
a function holomorphic on a cut plane. We further analyze the analytic properties
of w. We show in Sect. how w can be analytically continued to a domain of a
Riemann surface, defined in Sect.[4.2] and we draw some consequences. This ques-
tion is related to the problem of mastering the analytic continuations of convolution
products and, as a byproduct, of getting qualitative estimates on any compact set.
This is what we will partly do in Sect. and Sect. using only elementary
geometrical arguments. We end with some supplements in Sect.

4.1 Introduction

We previously analyzed the Borel-Laplace summability of w(z) € C[[z"']], the

unique formal solution of the prepared ODE (3.6) associated with the first Painlevé

equation. This was done by two approaches. In one of them, we defined a sequence

(hy)1en of Z-resurgent functions (proposition and we showed that the minor w

of w can be represented as the sum of the series Z/I;[ which converges to a holo-
>0

morphic function on the cut plane 20 =C \ {£][1,4oo[}. The key issue is:

Question 4.1. Does w belong to the space of Z-resurgent functions or, in other
words, is w a Z-resurgent formal series ?

The answer is “yes” and this will allow an in-depth examination of the (so-called)
non-linear Stokes phenomenon for the first Painlevé equation, in the spirit of the
various examples handled in [10]]. However, this question requires further tools and
we postpone the complete answer to the last chapter of this course. One of these
tools consists in sharpening our understanding of -resurgent functions, at least
when Q2 = Z. This is our aim in this chapter.

The Q-resurgent functions have been recalled in definition This can be
rephrased as follows for Q2 = Z:

the germ @ € O is a Z-resurgent function if and only if @ can be represented
by a function @ holomorphic on Uy = D(0,r), 0 < r < 1, and for any given
$o € Uy = U\ {0}, this function can be analytically continued along any path y
of C\ Z originating from &.

61



62 4 A step beyond Borel-Laplace summability

Notice in this rephrasing that Uy could have been replaced by any connected

and simply connected neighbourdhood of the origin, for instance Q(O). (Exer-
cise : why ?)

We would like to characterize Z-resurgent functions by means of Riemann sur-
faces. Let @ € Oy be a germ of holomorphic functions at 0 and (&,q) be the
étalé space associated with the sheaf & (cf. remark . We denote by Z(9) the
connected component of ¢ containing @. Endowed with the restricted projection
0" = dlz(g), Z(@) is the Riemann surface of ¢.

We recall that a Riemann surface is a connected one-dimensional complex manifold [10, 7}
3]l Notice that () is not necessarily simply connected. (Exercise : why ?)

We now assume that @ is a Z-resurgent, determined by a function @ holomorphic
on Uy C C, a connected and simply connected neighbourdhood of the origin. Let us
draw some conclusions about Z (@) from this hypothesis.
In the first place by the very construction of Z (@), one can find a neighbourhood
Uy C % (®) of @ such that q'(%) = U and the mapping q'|o, : % — Up is a home-
omorphism. In particular, %4 is connected and simply connected.
In addition, let be §y € U and denote by @y = ¢’ @:} (&) € % the germ of holomor-
phic functions at {y determined by &. Since @ is Z-resurgent, {0 can be analytically
continued along any path y of C\ Z originating from . In other words, any such
path ¥ can be lifted to (@) from @y with respect to q’, and this lifting is unique by
uniqueness of lifting [7]. We denote by I this lifting, ¥y = q' o I". Now assume that
v is a loop homotopic in C \ Z to a loop ¥ in U{. Then conty, @ = @ because conty
only depends on the homotopy class of ¥ in C\ Z, meanwhile @y is represented by
@ € 0(Up) on Uy. In regard, lifting the homotopy, I" is homotopic to a loop in %%,
thus null-homotopic since % is simply connected.

This being said, we raise the following question:

Question 4.2. Can we determine a simply connected Riemann surface %z on which
any Z-resurgent function can be analytically continued ?

We answer to this question in Sect. through an explicit construction of %z.
We also describe there various sheets of this Riemann surface which will be usefull
for later purposes.

Next we turn to the convolution product. We already know by theorem|3.2]that the
space of Z-resurgent functions is stable under convolution product. In other words,
if the germs @, ¥ € O can be analytically continued to the Riemann surface %z,
then it is the same for their convolution product @ * . But what about the question
of upper bounds ? In the previous chapter, the answer was essentially the matter of
lemma[3.3]and the new issue is:

Question 4.3. Can we formulate an analogue of lemma [3.3] for holomorphic func-
tions defined on the Riemann surface %z ?

The main result of this chapter, namely theorem {.T] and its corollaries detailed
in Sect. [4.4] gives a partial to this question. Its proof relies on the use of shortest
symmetrically contractile paths which we describe in Sect. We then apply our
results to the first Painlevé equation in Sect. to get theorem A theoretical
supplement ends this chapter.
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4.2 Resurgent functions and Riemann surface

This section is devoted to defining the Riemann surface # = %7 and some of its
sheets. We first recall usual notations.

4.2.1 Notations

In this course, a path (or a parametrized curve) A in a topological space X is any
continuous function A : [a,a+1] — X, where [a,a+ ] C R is a (compact) interval
possibly reduced to {a}.

One denotes by 2! the inverse path, thatis A~! : ¢ € [a,a+1] — A (2a+1—1)

We often work with standard paths, that is paths defined on [0,1]. The path
At €[0,1] — A(a+1¢l) is the standardized path of A.

For two paths A; : [@,a+1] — X, A : [b,b+k] — X so that A (a+1) = A2(b), one
denotes by A1 A, their product (or also concatenation),

Ai(t),t €la,a+]]

My it €laatl+h e {Az(z—a—l+b),te la+la+1+K]

We denote by ~x the equivalence relation of homotopy of paths with fixed extrem-
ities in X : A} ~x A, if the two paths A;, A» in X have same extremities and there
exists a continuous map H : [0,1] x [0, 1] — X that realizes a homotopy between the
standardized paths A, and A».

When X has a (finite R-dimensional and ™) differential structure, one can de-
fine smooth paths. We recall that any path can be uniformaly approached by €*-
paths. Typically in this course, X = C with its 2-dimensional real differential struc-
ture. For a piecewise ¢'-path A : I — C, its length is denoted by length(A) where

n te
length(1) = Z/ |A'(t)|dt, for any partition 0 =fg <#; < -+ <1, =1 of [0,1]
=1

T—1
for which A has a continuous derivative on each interval [f;_1,%].

4.2.2 The Riemann surface of 7-resurgent functions

4.2.2.1 The space %7 ¢,

Definition 4.1. Let Up be a connected and simply connected neighbourdhood of the
origin in C and §y € Uy = Uy \ {0}. We denote by Ry, (resp. B,) the set of paths
in Uy (resp. C\ Z) originating from §p, endowed with the equivalence relation ~Uy
(resp. ~c\z) of homotopy of paths with fixed extremities.

We set R = A UBy, and denote by S the relation on R defined as follows.
For any two 1,2 € Re ), 1 B 7> when one of the following conditions is satisfied:
e cither y1 ~y, r or y ~\z V2

e or else there exists 13 € 2 NB, such that { N B or { N~z B .

2~z Y2 ~uy V3

Exercise 4.1. Show that 2 is an equivalence relation on R, .
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Definition 4.2. Let y be an element of 93, . We denote by clg (7) its equivalence
class for the relation §3 We set é’ = C\ Z" and we define:

‘%Z,Co = {C]go(’)/) | ve 9{40} and b C]C()(Y) — ’J:/(l) cEA. 4.1)
Notice that pgol (0) is reduced to a single distinguished point, the equivalence
class of any y € ¢, ending at the origin, because Uy is simply connected.

Definition 4.3. One denotes by 0 € %7 ¢, the unique pre-image of 0 by pg, . Let be
fe é, one denotes by § € X7, ¢, one of its pre-image if exists. For any fe K760

one denotes by { = p¢, ({) its projection by pe, .

4.2.2.2 The Riemann surface %7, ¢,

The topological space % ;, We endow %7, ¢, with a topology, a basis # = {% }
of open sets being given as follows. Let { be an element of %, ¢ and set § =p, ().

e Assume that { = cly () with y € ¢, (thus § € Up). Let U C U be any connected
and simply connected open neighbourhood of §. To (U, {) we associate the set
U C Ry, made of all & = clg (7172) where 1 satisfies 7 ~u, ¥ while 7, is any
path in U originating from {.

e Assume that § = clg (y) with y € B, (in particular { # 0). Let U C C\ Z
be any connected and simply connected open neighbourhood of §. To (U, )
we associate the set % C %y, ¢, made of all & = cly (7172) where ¥ satisfies
% ~c\z Y and % is any path in U originating from g.

Exercise 4.2. Show the following properties (hint : see the classical construction of
the universal covering of C\ Z [7, 3] and adapt the arguments):

1. # = {% } provides a Hausdorff topology on %7, ¢, ;

2. the projection p¢, is a continuous mapping and even, a local homeomorphism :
for every % € 9, the mapping pg, |2 — U = pg, (% ) is a homeomorphism.

3. Xy, 1s arc-connected and simply connected.

The Riemann surface % ¢ The following proposition is a direct consequence of
the properties detailed in exercise

Proposition 4.1. The space %y, ¢, is a topologically separated space, arc-connected

and simply connected The projection pg, makes %z, ¢, an étalé space on . By
pulling back by p¢, the complex structure of C, the space %7, ¢, becomes a Riemann

surface with a uniquely defined distinguished point Q = pgol (0).

Notice that p¢ is not a covering map since the curve lifting property [7, 3] is not

satisfied. For instance, as a rule, a path starting from and ending at O cannot be lifted
from 0 on %7, ¢, with respect to p, .
We precise the “pull back™ of the complex structure. If %y, %, % N # 0
are two open sets of %z ¢ such that the mappings p¢ |%, : % — g, (?%) and
pelan : U — pe(7%) are two homeomorphisms, then the chart transition
Pl obg, |;z/1 Py, (% NU) — g, (% N ) is nothing but the identity map, thus
is biholomorphic. This makes %7, ¢, a Riemann surface.
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Exercise 4.3. Let Uy, {y be as in definition Let U; C C\ Z be a connected and
simply connected open neighbourhood of §y such that Uy N U; is connected. We
denote by % C %y, the uniquely defined open set such that p¢ %, : % — Uo
is a homeomorphism and we set go = pgo@:)(é’o). We denote by % C %z,¢, the
uniquely defined neighbourdhood of § 0 such that p¢, |7, : % — U, is a homeomor-
phism.

1. Show that U = Uy U Uy is simply connected.
2. We set % = U U . Show that py, |4 is a homeomorphism between % and U.

4.2.2.3 The Riemann surface %7,

Up to now, the Riemann surface (%’Z;O,pgo) depends on the given of Up, a con-
nected and simply connected neighbourdhood of the origin, and of { € U.

Lemma 4.1. Let Uy (resp. Uy) be a connected and simply connected neighbourd-
hood of the origin in C and §y € Uy (resp. 1 € Uy ). Then there exists a fiber preserv-
ing homeomorphism ©: %y, ¢, — %y, ¢, between the Riemann surfaces (%z,¢,,9¢,:0)
and (%ngl 7pg1 ,Q)

Proof. Left as an exercise to the reader.

Definition 4.4. The class of isomorphisms of the Riemann surfaces (%7 ¢,,p¢,,0)
is denoted by (%7,p,0). In this course we often use abridged notation %.

Proposition 4.2. Let ¢y € Oy be a germ of holomorphic functions at the origin and
let (Z#(®0),q,Po) be its Riemann surface. Then @y is a Z-resurgent function if and
only if (%,p,0) is contained in (%#(@o),q, @), that is there exists a fiber preserving
continuous map T: % — Z(@o), qo T =p and 7(0) = Pp.

Proof. Assume that @y is a Z-resurgent function. We set Uy = D(0, 1) and we pick
a point {y € Uj. On the one hand, there is a uniquely determined domain %, C %
homeomorphic to Up by p|, and we set { = p@})(@o). On the other hand, there
is a uniquely determined domain % C %(¢y) homeomorphic to Uy by q|%/ and
we set g) = q@:),(co) We get this way a natural fiber preserving homeomorphism
|y 1 & € U — §' € % We now extend 7|, as follows: pick any path yin C\ Z,
originating from (o, let I be its lifting from  on & with respect to p and set
{ =I(1) € Z. The path y can be lifted as well on Z (@) with respect to q from { ;)
into a path I'”, because @y is Z-resurgent. We set I''(1) = {’. The extended mapping
T:8 R — Z(Pp) thus (well)-defined is injective by uniqueness of lifting [[7]],

continuous because we work with étalé spaces, and preserves fibers.
The converse of the proposition is left to the reader as an exercise. O

In other words, @y € O} is a Z-resurgent function if and only @y can be analyt-
ically continued to the Riemann surface %7. This means that one can identify the
space % with the space &'(Z) of functions holomorphic on the Riemann surface Z.

Definition 4.5. The Riemann surface (%z,p,0) is called the Riemann surface of
Z-resurgent functions.
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4.2.3 Riemann surface %y and sheets

We introduce various sheets and domains on %Zz. At first sight artificially compli-
cated, these constructions will be needed to state one of main results of this chapter,
namely theorem 4. and its consequences.

4.2.3.1 Principal sheet

By the very construction of the Riemann surface Z, there exists a unique domain
%) of Z so that p| 40 realizes a homeomorphism between 29 and the simply

connected domain é(()). The domain %) is made of endpoints ¢ of paths deduced

from any segment [0, {] C é,(o)’ by lifting from 0 with respect to p.

Definition 4.6. One refers to 2% as to the principal sheet of the pointed Riemann
surface (Z,0). For every p €]0,1[, one denotes by %’;(,0) the unique open subset of

29 such that p(z%’;(,o)) = é;)o)' (See Fig. .

4.2.3.2 Other sheets

Definition 4.7. Let be m € N*, € = (&1, ,6,-1) € {+,—}""! a (m— 1)-tuple of
signs and n= (ny,--+,ny—1) € (N*)""1 a (m — 1)-tuple of positive integers. Let
) € {0,w} C S! be a direction. Let y be a path in C originating from 0.

When m = 1, one says that the path 7 is of type 7/(6)1 when ¥ closely follows the
segment €110, 1[=]0, @[ toward @; = e'%.

Otherwise, for m > 2, on says that the ¥ is of type type }/g.l if y connects the segment
10, ;| to the segment |@,,_1, @[, @ — @1 = %, through the following steps:

e yclosely follows the segment ]0, @, [ toward the direction 6;, makes n; half-turns
around the point @y, anti clockwise when & = 4, clockwise when & = —1, and
finally closely follows the segment @, @[, 0, — @) = el®%2 toward the direction
6, =0, +¢& (}’ll — 1)7[.';

e then, successively for k =2,--- ,m— 1, ¥ makes n; half-turns around the point
wy, anti clockwise when &, = +, clockwise when & = —1, and eventually
closely follows the segment |, Wi 1[, Op1 — O = el%+1 toward the direction
Orr1 = 6k —|—€k(nk — 1)717.

Fig. 4.1 Above, the domain é,(o). Below, the domain é?},o).
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Fig. 4.2 A path of type ¥? for Y
= (+,—,+)and 6 =0. * &/ ¢ &/ *
0 1 2 3 4
Fig. 4.3 A path of type ¥ )
for0=0,e=(—,+,+,+,—) b \*/ i i °
andn=(1,2,1,1,1). -2 -1 0 1 2

When n = (1,---,1) € {1}, we simply say that 7y is of type 72!, (See Fig.

and Fig.[4.3).

For instance, if 7 is of type yg , then someone standing at 0 € C and looking in the direction
of the half-line ]0,e!?oo[ will see the path y avoiding the point @, = ne'® € C* by swerving
in the direction of his right hand when €, = +, of his left hand when ¢, = —

Definition 4.8. Let be m € N*, e € {+,—}", n € (N*)" and 6 € {0, r}. We denote
by %#¢"® C Z the domain made of endpoints { = (1) where I is the lift from 0
with respect to p of any path 7 of the form y = 7,9 with the conditions : y; is a path

of type % ending at ée]p, (p+ 1)[=]om, On+1], P is a path starting from é and
contained in the simply connected domain C\ {] —eo, p] U [p+ 1, +oo[}, star-shaped

from &. Whenn = (1,---,1) € {1}, we simply write 2% = %9

The collection of sheets {Z?)| %¢"®} provides an open covering of %, with the
following property: the restriction p| en o is a homeomorphism between ZE"0 and
the  simply  connected domain  C\{]—e,p]U[p+1,+[}  where
1P, (p+1)[=]0n, Ops1 [, With @y, @yt as given by definition 4.7}

Remark that for every 6 € {0,7}, for every m € N* and for every € either in
{+¥" orin {=}", Z©) and %%® have a non-empty intersection (a half-plane on
projection). This justifies the following definitions.

Definition 4.9. Let be m € N*. We set (+)u—1 = (+,---,+) € {+}™! and
(=)m—1= (—, —) € {=}"1. We denote by (£),,_1 any ( — 1)-tuple of the
form (=, - ) G {+, =11 Also, (4+)o = (=)o = (£)o = () is the O-tuple.

Thus the set of all (£),, is made of 2" elements.

Definition 4.10. The domain #%¢ is called a ZY-nearby sheet if
g€ [J {(++)m>(=)m}. One denotes by ") C Z the union of the principal sheet
meN*
and of all nearby sheets: 2(!) = () U B HmO Y gp(~)m:
0e{0,w},meN*
More generally, for any k € N*, one defines:

%(k+l> :%U() U %((i)k«( U'@ a Jm—1)5 0'
0c{0,m},meN*
ne (N

Remark 4.1. Notice that p(2)m9) = p(2()m0) = C\ e'{] — oo, m] U [m+ 1, +oo[}
and U%(k) =X.
!

For every integer k € N, the domain %Z¥) inherits from Z the structure of complex
manifold, thus is is a Riemann surface.
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o 1 1
Fig. 4.4 The domain %, when 5 <p< 7 (the scale is not correct).

4.2.4 Q?éo)-nearby domains

Our aim is to introduce various of the Riemann surface % which will be convenient
for later purposes.
We start with the following remark: for p €]0,1[ and m € N*, the closed discs

— — -1
D(m,mp) and D(m+ 1,(m+ 1)p) are disjoint as soon as m < 2 271. Thus, now

assuming that p €]0, $[ and introducing the integer part .Z(p)+1 = Lpi;_lj >2

(|.]] is the floor function), one observes that the discs D(m,|m|p) do not overlap
when |m| < .#(p)+ 1.

Definition 4.11. Let be p €]0, 1[. We denote by . (p) € N* the positive integer de-

fined by . (p) = Lpilzflj — 1. For any integer m € Z* such that [m| < .Z(p)+1,
we denote by D,, = D(m, |m|p) the closed disc centered at m with radius |m|p, and
Dy = {0}. For any 6 € {0, 7}, we denote by Qg C C the closed subset defined by

7o ={1C1rell,+ ¢ Do} U Dany
0<m<.#(p)

We set 3.22 =C\ @g. We denote by é’p the domain defined by
Rp = (ég N éﬁ) U{0} and by Z,, its closure. (See Fig. .

Notice that é = U z%p. The domains 3.22 satisfy the following property,
0<p<1/5
the proof of which being left as an exercise :

Lemma 4.2. Let be § be an element of ég Foreveryn € [1,.#(p)), the closed set
§—Dgo, ={,—& | & €Dgo,} is a subset of 5.

Definition 4.12. Under the hypotheses of definition}4.11| for any integer m € [0,.7 (p)]
and 6 € {0,n}, we define:

&0 = U {e+E-0.0+1C-8) 1o+

(§:8)€Di0,, Do (1 1)
and :@;,""9 =C \gg,m' for any integer m > . (p), we set :@Zl’e = . For any positive
integer m > 1 and € = £, we set :@,(f)'""’ = :@Zq’e N{¢ | ee®(3¢) <0}. See Fig.
The domains :@Z”G have been defined so as to enjoy the following property :

Lemma 4.3. Letbe § € :@;,""efor some integerm € [1, .4 (p)] and some 0 € {0, 7}.

Then, for every integer n € [1,m|, { — D, is a subset ofg;"‘""’_
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Fig. 4.5 The domain :@,2,’". The set :@(_)2’” lies below the real axis, :@‘(,HZJ

axis.

lies above the real

Proof. We only consider the case 6 = 0 and we suppose § € :@Z”O. Lebene[l,m].

Assume the existence of {, € D, such that { — §, ¢ QZ’*"’O, thus § — &, € ?’;}7"’0
(see definition . Therefore, there exist §,_» € Din» Guni1 € Dp_ni1 and
t € [0,+oo[ such that

C - Cn = gm—n +I(Cm—n - gm—n+1) or C - Cn = Cm—n+1 +Z(Cm—n+1 - Cm—n)~

We look only at the first case, which we write as follows:

&= Gt &) +1((Gnont 6) = Guonit +81))-

We observe that ,,_,, + &, € D,, while {,, 1+, € Dy 1. Therefore { € gZ”O
and this contradicts the assumption § € :@Z”O. O

Definition 4.13. Under the hypotheses of definition[d.11]}, for any integer m € [1,.# (p)]
and any 0 € {0, 7}, we denote by @7}’9 C C the closed subset defined by

Ty® ={1¢ | 1€]—e0,1],{ €Dy, fU{1C |1 € [1,+e0], £ € Doy }-

We set 3.275”9 = (C\@;,"’e and é?,%e = C;Q%O. For any integer m > . (p), we set
e —0.

For € = + we denote by 3.25,8)""9 the domain ég)mﬂ = g'zf;’e N{¢ | gel? (3¢) <0}.
(See Fig.[4.6).

Definition 4.14. Under the hypotheses of definitiond.11] for any 6 € {0,7}, € =+

and m € N, we denote by é’ég)’”’e the domain é’ff)'"’e = é?ff)'”’e U ,522,78)’"’9 (see

Fig.[d7), and we set:

@0 = | @m0 = Y @5 =C\e®{]—oo,mUfm+ 1,40}
0<p<1/5 0<p<1/5

Fig. 4.6 The domain 302,2,’". The set 3.3(_)2’” lies below the real axis, the set ‘ég)z’” lies above the

real axis.
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2 (+)2.7

Fig. 4.7 Figure above, the domain %, . Figure below, the domain ézﬂ,

We have already noticed that for 6 € {0, 7} and m € N*, the restriction p| (1,0
and p|,().e respectively, realises a homeomorphism between the nearby sheet
R Im® and gg(~)m0 respectively, and the simply connected domain

p(%("’)mve) — p(%(—)m,e) _ %m,e )
This justifies the following definition.

Definition 4.15. With the above notations, with € = & and m € [1,.#(p)] an inte-
ger, one sets %F(,s)"”e = p|‘;;(£>m,9 (é‘()s)mﬁ)_ The domain 92,(,8)””6 is called a ,%F(,O)-
nearby domains .The connected and simply connected domain %’él) c #Y) is de-

fined by %’,()1) = %}(,O) U {%(’e)m,e' We denote by @g) the closure of %’,(31)
1<m<.#(p)
0c{0,w},e=+

in ).

Observe that p %’,(31)) :%p. In the same line, the following lemma is a conse-
and[@.3]

Lemma 4.4. Let beme[l,.#(p)], 0 € {0,7}, € == and let "// be the closure of

quence of lemmas

(8)’”’9 \% . For every § € ¥, and every integer n € [1,m], C De"’ is a subset

of %p and there exists an open set U C %( mn8 such that % and C —D_ig, are

p-homeomorphic.

elfn

4.2.5 Geodesics

The closed space ﬁpc é (definition 4.11) can be thought of as a complete real
2-dimensional Riemannian manifold with smooth (¢'!) boundary embedded in the
2-dimensional euclidean space. The following lemma thus makes sense.

Lemma 4.5. Let X Q@p be any closed space with smooth(€") boundary. For every
two points §1, 8 € X, there exists a geodesic in every homotopy class of curves from
81 10 & in X, and this geodesic may be chosen as a shortest path in the homotopy
class.
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Fig. 4.8 Shortest curve for § ¢
in 72570\ 7).

In this lemma, a geodesic means a locally shortest path for the euclidean metric.
Lemma [4.3] can be seen as a corollary of the Hopf-Rinow theorem [9]. As a mat-
ter of fact, the situation is quite simple here : inside X, a geodesic is nothing but
a straight line, otherwise one just follows the smooth boundary dX. (See [1l] and
references therein for more general cases.)

The Riemann surface (#,p,0) of Z-resurgent functions can also be thought of
as a real 2-dimensional Riemannian manifold, by pulling-back by p the standard
euclidean metric on the complex plane. It follows from its very construction that

@ﬁ,” (definition i meets the requirement:

Lemma 4.6. The closed, connected and simply connected space with smooth €' -

(1)

boundary @p C Z is a complete real 2-dimensional Riemannian manifold.

Pick a point § € @E,l). Up to homotopy, there exists a unique path A joining O to

€ in @,(,1) , because @g) is (path)connected and simply connected. Moreover, from
the Hopf-Rinow theorem, A can be chosen as a shortest (¢! -)path in this homotopy
class, and is uniquely determined when parametrized by arc-length. To sum up:

Lemma 4.7. For every { € @,()l), there exists a unique path A in gﬁ,]), originating

from 0 and ending at §, such that A is a shortest path in its homotopy class and is
parametrized by arc-length.

Remark 4.2. 1t is easy to construct A by hand.

20

First case: { belongs to Xy . Consider the curve A, with its arc-length parametriza-

tion, starting from 0 which follows the segment [0, {] C @E)O). The path A is obtained
by lifting A from 0 with respect to p on @g).
Second case: { belongs to @9’"’9 \@E,O) for some 6 € {0, 7}, £ =+ and some m €

[1,.# (p)]. Consider the path A = ¥ 808, where Y, 8y, 6; stands for the following
geodesics with their arc-length parametrizations (see Fig. [4.8) :

e 7 follows the segment [0, {,] C 9 (@;,8)"”9 ﬂ@g))) that circumvents the segment
e'%[1,m] to the right when & = + and to the left when & = —;

e { is the arc-curve from {, to { that follows in @,(f’)’""e the boundary dDe,,;

e ) follows the segment [{,,{] in @,(f)’"’e (possibly reduced to the point §).

Once again, one deduces A from A by lifting.

Definition 4.16. Let { be an element of { € @g). The unique €!-path A in @E)U
given by 1emma is called the shortest path from 0 to §.
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4.3 Shortest symmetric (Z, p)-homotopy

4.3.1 Symmetric Z-homotopy

The notion of symmetric -homotopy is introduced in [10] and used there for ana-
lyzing the convolution product of resurgent functions, see also [4} [12, 13| [14]]. For
the convenience of the reader, we recall it here for 2 = Z.

Definition 4.17. A continuous map H : [ x I — C, I = [0, 1], is called a symmetric
Z-homotopy if, for each t € I, the path H, : s € I — H(s,t) satisfies:

1. H;(0) = 0 and H; can be lifted on the Riemann surface %7 with respect to p
from 0;
2. H,(1) — Hy(s) = H, ' (s) for every s € I.

The path Hy (resp. Hy) is called the initial path of H (resp. final path) and the path
t € I — H;(1) is called the endpoint path of H.

A path A in C is called a symmetrically Z-contractile path if its standardized path
A is the final path of a symmetric Z-homotopy whose initial path follows a segment

[0,&] of 2 in the forward direction.

Let £ be any point of the Riemann surface %7 and pick a path joining 0 to
£, thus uniquely defined up to homotopy. It is known that one can find a path A
in this homotopy class with the further condition : its projection A = po A is a
symmetrically Z-contractile path. This is a key result to analyze the convolution
product, as detailed in [10].

However, there are plenty of paths with the above properties and we raise the
question:

Question 4.4. In the homotopy class of these paths, is it possible to find a shortest
curve ?

This question is meaningless because %y, is not a complete Riemannian mani-
fold, but makes sense on @E,l) which is our frame in what follows.

4.3.2 Shortest symmetric (Z,p)-homotopy

Definition 4.18. Let A be a path in @’(,1) originating from 0 and let A = po A
be its projection. The path A is said to be symmetric if A satisfies the condition:
A(1)—A(s) = A~ (s)for every s € [0,1]. A symmetric path A in @f,” is said to
be shortiest-symimetric when A is a shortest (¢’!-)path among the symmetric paths

belonging to the same homotopy class in @f,l).

For instance, pick a point { in @E)O) and let A be the smooth path which follows

the segment [0, {] C ,%’f,o) in the forward direction with a constant velocity. The path
Ain @,()0) deduced from A by lifting from 0 with respect to p, is shortest-symmetric.

Proposition 4.3. Let { be any given point in @g). There exists a unique continu-

ous map H: (s,t) €I x 1 H(s,t) € @,(,l), I =10, 1], which satisfies the follow-
ing conditions:
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1. for each t € I, the path ¢ . s € I — F(s,t) is shortest symmetric;

2. the projection Hy = p o &) of the initial path & follows a segment in @E,O) ;

3. denoting by I' the endpoint path t € I — (1), the product JGQI", when
reparametrized by arc-length parametrization, coincides with the shortest path
fromQ1o .

Proof. Let £ be a point in ?}j) and A be the shortest path from 0 to {. We denote
by A = poA its projection.

First case: Either { belongs to @,(,0). Then A follows the segment [0, {] C @,@. We

set H : (s,;t) € I xIw— H(s,t) =35 (€ @,(,O). For each t € I, the path

H,:s €I+ H(s,t) can be lifted uniquely on @ﬁ,m from O with respect to p into

apath 74 : 1 — @E,O). From the lifting theorem for homotopies [7, 3], the mapping
S (s,t) € I x I — #(s) is continuous and matches the other conditions.

second case: Or else { belongs to @Ef)’”’e \@,(,O) for some 6 € {0,7}, € = + and
some m € [1,.# (p)]. For simplicity, we suppose & = 0 and € = +. The path A,
resp. A, can be written as a product A = yAy, resp. A =IyAy, where 9 = polj and
A1 = 801 = poAj are the geodesics described in remark with their arc-length
parametrizations.

We set Hy = 7y, resp. 4 = L the standardized path deduced from %y, resp. I,
which follows a segment in @E,O), resp. @E,O). This path can be lifted from 0 with re-
spect to p into a unique path .7 whose endpoint is denoted by {y = 7% (1). By

its very construction, the point {, belongs to ¥, the closure of %E,H”"O\%E,O),
and we can apply lemma [4.4] Therefore Hy can be thought of as a geodesic in

Xg, :gp \ U {{,— Dy} and is a shortest path in its homotopy class, by appli-
1<n<m

cation of lemma[d3] .

According to lemma (4.4| again, the space X =%p \ U {& —D,} remains in

1<n<m

the field of application of lemma [4.5] for every & € ¥. One gets this way a local
system (X¢) ¢ Of Riemannian manifolds with smooth boundary.
Let ¢; > 0 be the length of Aj and T : ¢ € [0, 1] — t¢; € [0,¢;]. For any ¢ € [0, 1], the
point §; = A; o T'(¢) belongs to ¥ by construction. To the path A o T is associated a
section ¢ € [0, 1] + X, thus a map ¢ € [0, 1] + [¥%] which allows to follow the con-
tinuous deformation of the homotopy class [}p] of 1o, the extremities 0 and {y being
kept fixed. In the homotopy class [};] we choose, for any ¢ € [0, 1], a shortest path ¥
in Xz, with its arc-length parametrization. Let K; = %41j 71 be the (minimal)

¢-Dj ¢-D,

C‘Dl C

Fig. 4.9 The shortest sym-
metrically contractile path for

0 7 (1)3.0\ (0)
CinZy P\ %
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geodesic defined as the product of ¥ with the restriction of A; to [0,7~!(¢)]. We
denote by H; the path deduced from K; by standardization and we eventually obtain
a continuous mapping H : (s,t) € I x I+~ H(s,t) = H;(s), I = [0,1]. See Fig.4.9]
For any ¢ € [0, 1], the path H; can be lifted to @,(,1) from O with respect to p. This
gives a path, denoted by %, which is shortest symmetric by construction and the
mapping S : (s,t) € I x [ — H(s,t) = H(s) € @,(3]) is continuous by the lifting
theorem for homotopies [7, [3]. The reader is encouraged to check the remaining
properties. O

Definition 4.19. Let { be any given point in @,()1). The uniquely determined con-
tinuous map ¢ given by proposition is called the shortest symmetric (Z,p)-
homotopy associated with §. The path 74 : s € [0, 1] — S (s, 1) is called the short-

est symmetrically contractile path associated with { in @,(,1) and its length is denoted
by leng, ()

Remark 4.3. Let 5 be a shortest symmetric (Z,p)-homotopy. Consider the path
I s €[0,1] — 5 (s,t) for any givent € [0, 1]. Then 4 is the shortest symmetri-
cally contractile path associated the endpoint 7% (1) in @5)1).

The next two statements are left as exercises.

Lemma 4.8. The mapping { € @,(,]) > leng, (§) € R is continuous.

Lemma 4.9. Let be § € @,()l) and F be its associated shortest symmetric (Z,p)-
homotopy. Then for every t € [0,1] and every s € [0,1]:
e leng, (A (s)) <length(HA|y);
e leng, (%’j_l(s)) <leng, (%(l)) —length(%hoﬁs]).

We finally state a result drawn from [8]], which gives an upper bound for the
length of the shortest symmetrically contractile path we work with.
> L]

Lemma 4.10. Let be § € @E,l). Either § € @E,O and then leng,(§) = | §

[ 1<teng, () < A €145 (5-2).

Proof. The first case is obvious. The second case means that § € @,(,8)’"’9 \@,(,O)
for some 6 € {0,7}, € = + and some m € [1,.#(p)]. Let us assume that 6 = 0
and € = + for simplicity. We return to the construction of the shortest symmetri-
cally contractile path .77 associated with § (see also Fig. and we denote by
H; = po 2 its projection. The path H; is made of :

, or

e m+ 1 segments between 9D, and d( { —Dy,—,), n € [0,m]. Each of these seg-
ments has length less than | { —m| +mp.
e msegments between d (§ —Dj,—,) and 9D, 41, n € [1,m]. Each of these segments

has length less than | { —(m+1)|+ (m+1)p.
e 2m arcs of circle, the total length of which being less than 2(1 +--- +m)2mp.

Putting things together:
leng, (§) < (2m+1)[ & [+ 2m(m+1)(1+p)+2m(m+1)7p.

Since p < £, one has | { | < leng, (&) < (2m+1)| § | +4m(m+1). Remember that

(
AM(p)+1= L’f;_lj, thus m < #(p) < % — 1 and one concludes. O
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4.4 Convolution product and related properties

It has been recalled that the space R = Ry, of Z-resurgent germs is a convolution
algebra without unit (definition [3.7)and theorem [3.2).

Question 4.5. Ts it possible to give quantitave estimates for the convolution product
of two Z-resurgent functions ?

The answer is “yes”, as detailed (without proof) in [[10] (see also [2}112]]). Even,
quantitave estimates can be obtained for iterated convolutions and this allows non-
linear operations in the frame of resurgent functions [[14].

Nevertheless, these results are difficult to use in our context. This is why we
follow another strategy in the sequel.

4.4.1 A new convolution algebra

Definition 4.20. Let k € N* be a positive integer. We denote by A% the space of
germs of holomorphic functions at the origin which can be analytically continued to
the Riemann surface 2.

In other words, the germ @ € & belongs to 2™ when there exists a function
@ € 0(%™) holomorphic on %) whose germ ¢ € 0 at 0 satisfies g = @ o p.
Notice that the linear map 9 : g € Z%) — —{g still provides a derivation of Z®).

Theorem 4.1. [. The space A is a convolution algebra (without unit).
2. Let ¢, W € Z#) be two germs and let ®,¥ € O(#V) be their associated holo-
morphic functions on ZY). Assume that the following properties hold : for ev-
—(1
ery § € %E, ) P(()| < F(lengp(C)) and |¥({)| < G(lengp(C)), where F,G
are two positive, non-decreasing and continuous functions on R™. Then the

convolution product @ x W, resp. (0Q) * Y, can be analytically continued to

ZY) and the corresponding function y € O(Z M), resp. Y € 6(#"), satisfies
the following properties: for every § € @‘()1), X(C)‘ < Fx G(lengp(C)), resp.

[7(0)] < leng, (£) (F+Gleng, (£)) ).

Proof. The standard proof for proving that Z is a convolution algebra [10} [12] can
be copied as it stands for 2. We sketch it here, essentially so as to fix notations
that will be used later on, more details can be found in [[10]].

Letbe @,y € Z) and let ®,% € (%)) be their associated holomorphic func-
tions on Z1). .

The convolution product @  §({) is well-defined for every { € Z(©) and we set
x(8) =0 1/7(5) For every i_.fo € ég)) and 5 € C such that |§.\ < £, the point
5 0 +§. belongs to é(o)’ thus there exists a uniquely determined point denoted by
Go+ é € 29 such that p(& + 5.) = é’ o+ é Therefore, the convolution product
2(Go+E) = 95 (G + ) reads
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. Cot& . e e
2(&+8) :/ BMP(Co-+&—m)dn

—/ Bm(Ey+E- ndn+/ o+ mW(E —myan.

Let now { be any given point in @ﬁ,w. We denote by 7 the associated shortest sym-
metric (Z, p)-homotopy given by proposition We want to construct the analytic
continuation of y at {. We therefore assume that §j is the endpoint % (1) of the
intial path J%). The above equality yields :

x(A)+8) = [ @t (A 5) + EHis)as
+& [[ et +EgwEn-9)as

where Hy = p o .7 stands for the projection of .74). The analytic continuation of
x from 5#)(1) along the path t € [0,1] — J4(1) € 7&1) is thus given by (see the
arguments in [10])):

x(A0) +E) = [ @) (5)+ )
+& [ o) +Ew(En—s)as

1
In particular when ¢ = 4 (1), x({) = / D (A (s))¥ (4" (s)) H{ (s)ds where
0
A7 is the shortest symmetrically contractile path associated with {.

Notice that the germ ) (§ + &) of holomorphic functions at § thus obtained does
not depend on the chosen path .74 since 2! is simply connected.
We turn to estimates. Let T be the homothety s € [0, 1] — s.leng, (&) so that

fengy () . o

x(g):/ D (A 0T (€)W (A, 0T ({)) dl. We then use lemmal4.9|to
0

get:

eny (©)
@1 < [ F(06(engy (0) - )
< F*G(lengp(C)).

The proof for the last assertion is left as an exercise. O

4.4.2 Convolution space and uniform norm

The following definition makes sense by lemma[.8and lemma .9

Definition 4.21. Let L > 0 be a real positive number and p E] ] One denotes by
.1, the open subset of %’,() defined by: %1 =1{{ € % | leng, (&) <L}. An
element of %), 1 is called a L-point.

We denote by 0(% p,L) the space of functions holomorphic on %), ; and continuous
on % p 1. For any two elements f,g € O(% p 1), one sets



4.4 Convolution product and related properties 77

leng, ()
f*g(C):/O ) F(A T (0)g(A 0T, (0)) dt 4.2)

where 77 stands for the shortest symmetrically contractile path associated with
§ € U p 1. while Ty is the homothety T : 5 € [0, 1] = s.leng,, (£).
The function § € @p‘,L — f*g(&) is called the convolution product of f and g.

Proposition 4.4. For any two elements f,g € O (@,,y, their convolution product
belongs to O(% p1). In other words, C8 & O (% p 1) is a convolution algebra.

Proof. Use lemmaf4.9]and adapt the proof of theorem@d.1] O
The following definition is similar to definition [3.12]

Definition 4.22. Let % = %, ;. be an open set of L-points. We denote by .# 0 (% )

the maximal ideal of (%)) defined by 4 O(%) = {f € O(%), f(0) = 0}.

Let v > 0 be a nonnegative real number. The norm ||.||y on &(%)) is defined by

lf]lv = L sup |e_VIengP(C>f(C)|. We extend this norm to C8 & (% 1) by setting
Cew

lcd + fllv = |c| + || f|lv for every f € O(% ) and every ¢ € C.

We now state an analogue of proposition [3.9]

Proposition 4.5. The normed space (C8 & O( ), ||.||v) is a Banach algebra. In

particular, for every f,g € C6© O(% <|flvlgllv. The space .4 6 (%)
is closed in (O(% ), ||.||v). Moreover, for v > 0:

1. for every n € N, for every g € O(%), ||({ é:'”) * glly < S
. n!
16 = EDlv < gLand [[(§ = DIy = L.

2. for every f,.g € O(%). ||fgllv < *Ilf\lvllgHO-

3. forevery f€ O(U), v>vy> Oi A1y < 11 £]lv-
4. forevery f € MO(U ), ‘}gn If1lv =0.

5. the derivation :9\‘5 7 fEOU) —sz € M O(U) is invertible and the in-
verse map8 1satzsﬁes forevery f € O(%), foreveryg € M O(U ), ’1(f>kg)
belongs t0.. 4 0(7) and [ (7 +8)llv <~ 198l
Forevery@5@ﬁ( )foreverygE///ﬁ(gi/) ’l(f*g) belongs to O (% ) and
19" (Fx)lllv < IIIv1I9~"gllv.

Proof. The norm ||.||y is obviously equivalent to the maximum norm on the vector
space (% ). This shows the completeness of (&(%),||.|v) and of
(CoBO().|-|Iv) as well.

Pick a point { € % . Forany f,g € O(% ),

Fre@) = [ an s (17 ) g (7 ) 43

< (o TC,l(é))e—vlengp (tyfloTEI(l))g(jfi,l . Tgl(é))e—vlengp (,%”l’lngl(l))'

We know from lemmathat leng, (1 (s)) +leng, (] “1(s)

) < leng, (&) for any
gp(8)
€ [0,1]. Therefore Le ™% )| fxg(£)] < 111 ]y / :
0

de<|fllvliglv-
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This shows that for every f,g € (7). || f*gllv < || fllv]lg|lv. hence (ﬁ@), ||.\|v)

is a Banach algebra and (C8 @ &(% ), |.||v) as well. We encourage the reader to
show the other properties. O

Remark 4.4. We have already noticed that the space # can be identified with
the space &(%'") of holomorphic functions on the Riemann surface %(!). Since

o#x") = (| O(%..). formula (4.2) provides the convolution product
L>0
0<p>§1/5

on 0(#V).

4.4.3 An extended Gronwall-like lemma

The following statement is similar to lemma[3.9]

Lemma 4.11 (Extended Gronwall lemma). Let N € N* be a positive integer. Let
and (£,)o<n<n, resp. (Fy)o<n<n, be a (N + 1)-tuple of functions in 6(ZWV), resp.
of entire functions, real, positive and non-decreasing on R, with at most exponen-
tial growth of order 1 at infinity. We suppose that for every 0 < n < N and every
¢ e @S)’ ﬁ,(C)\ < ﬁn(lengp(l_f)). Otherwise, let p,q,r be polynomial functions

such that the function § — p(—{) does not vanish on @;,1) and we assume that the

following upper bounds are valid:
lq|(leng,, (€))
— <o, b= sup ————F—— <o, c= sup

sup .
ez |p(=0)| ez’ p(=0)] sy [p(=4)]

|r|(leng, (€))

a= < oo,

We furthermore assume that w € O (@g)) solves the following convolution equa-
tion:

~ -~ -~ ~ N ~
pA)W+1x[g(d)w] = L*[r(d)W] + fo+ ) fux W™ “.4)
n=1

Then, for every d > 0 and every { € @g), W) <Wy (lengp (), where Wy € 0(C)
stands for the holomorphic solution of the following convolution equation:

N
W:d+[a+b§]*ﬂ/+c<F0+ZF,,*W*">. (4.5)
n=0
Proof. Letw e 0 (7,(,1)) be a solution of convolution equation 1| This means
that for every § € @S):

~ ~ eng, ()
PO = R0~ [ gt o T )R oTS 0 e
leng, (£)
+/0 T A ST (Or(A 0T (0) (o TS () d

N cleng, ()
F X [T R T ) (AT (0) e

n=1

where .77 stands for the shortest symmetrically contractile path associated with (.
From lemma and the hypotheses, one obtains with § = leng,, ({):



4.4 Convolution product and related properties 79

(¢ < )+ / 'q‘ + M- 0| Aoty ()t
In( p(=0)]
N 5
+Z/ (- D (0TS (0)de.
=0 |p(=0)]
Therefore
(6] < cFo(& +/ [a+b(& —9)][W(A T (6))|de (4.6)

+cz/ W&~ O™ (A1 0T (1)) .

The existence and the properties of Wy, solution of . have been given in lemma
8} We adapt the proof of lemma We first notice that |#(0)| < cFy(0) by defini-
t10n of ¢ and by hypothesis on Fy. Since W(0) = d +cFy(0), we have [iw(0)| < W(0).

First case. We first assume |w(0)| < W(0). One considers, for L > 0, the open set
W1, of L-points. We remark that, once Ly > 0 is chosen small enough, then for every

0 < L <Ly, forveryd >0, forevery { € % p 1, [W({)| < Wa(E) with € = leng,, ().
This is just a consequence of lemma (For L > 0 small enough, leng,,(§) = |C ).

We now assume that there exist L; > 0and §; € % p 1, such that [w(&;)| > Wa(&),
&1 = leng, (1). We recall that the mapping { € @g) — leng,, (§) is continuous and

we define y = {L € [Lo,L,] | there exists { € Z p 1, [W($)| > Wd(lengp(g))}. This
is a closed set bounded from below and we denote by L, €]Ly, L] its infimum. This
implies that:

o forevery { € %p1,, [W()| < Wd(lengp(C));
o there exists { € % p 1, such that |[#(&2)| = Wa(&) and & = leng, (&) = Lo

We take such a §, € % 1,. By ,
W) < @) + [ lat bl O] [R( 0T (0)
+ cz/ W& — O (i 0T, (1) de
where 77 is the shortest symmetrically contractile path associated with §,. We

know by lemma (4.9 that leng,, (.71 o Tél(ﬁ)) </ for every £ € [0,&], while W,
is real, positive and non-decreasing on R*. Therefore,

WG| < ho@) + [ lat bl —0)ale de+cz/ F(&— OW; (1)

This shows that [w({)| < Wq(&) —d and we get a contradiction.

Second case The case |w(0)| = W(0) (thus d = 0) is done by an argument of con-
tinuity already used in the proof of lemma[3.9] O
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4.5 Application to the first Painlevé equation

4.5.1 A step beyond Borel-Laplace summability

We come back to the minor w of the formal series solution of the prepared equa-
tion (3.6). We already know that w can be analytically continued to the star-shaped

domain ,%.’(0) C C, with at most exponential growth of order 1 at infinity there (the-
orem [3.3). Said in other words, w can be interpreted as a holomorphic function on
the principal sheet (%) of the Riemann surface %. We claim that this function can
be analytically continued to every %(O)mearby sheets: this is the matter of the next
theorem.

Theorem 4.2. The formal solution w of the prepared equation associated with
the first Painlevé equation satisfies the following properties:

1. its minor w can be analytically continued to the Riemann surface #\V). This
provides a function in 0(#") still denoted by Ww;

2. this function W has at most exponential growth of order 1 at infinity on ZV). More
precisely, for every p €]0, 1] there exist real positive constants A= A(p) > 0 and

T =1(p) > 0 such that for every { € %’ WO < Ae™ with & = leng, (&),

3. moreover leng,, () < %|C| +5 (5 - 2) and one can choose A =4 and T = ;%

in the above estimates.

Proof. We begin this proof with a preliminary result which should be compared
with lemma[3.2]

Lemma 4.12. There exists a real positive number My, (1) > 0 such that for every

polynomial q of degree < 1, for every { € %p> M| <M, 1)lql|(1). More-
)

IP(=9)
over one can choose M, (1) = 5’%
Proof. From lemma and lemma , one sees that for every § € @g),

lengo (&) _[1 4 1(1 1
—L2 < |-+ (2—2)| M, - Then use the fact that p €]0,<]. O
IP(=)] [” P (” )} PO ’

Holomorphy of #w on 21 Let r >0 and v > 0 be positive real numbers,
U = Uy %V betheopen set of L-points, L > 0,and B, = {v€ O(%),|]vlly < r}.
The convolution equation (3.10) can be viewed as a fixed-point problem on B, and
we set:

N:veEB, P’l(ﬁ)[— 1% [QD)7] + fo+ i 0+ fo x4
By lemmas and proposition 4.3]
IND) v < My 1)l = 1% [Q()T] + fo+ Fi T+ fox T |y

o~

By proposition since Q(é) = —30:
1+ (0@l < 1@l < 7 11E = (-EN ol < 5 ]

The functions fo,fl,fz belong to .# (%), therefore by proposition
hm I filly = 0, i=0,1,2. Hence, |[N(¥)||y < r for v > 0 large enough.
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The same arguments shows that |[N(V}) — N(v,)||v < k||[vi — W2|v with k < 1, for
V1,v2 € B, and for v > 0 large enough.

The mapping N is thus contractive on the closed subset B, of the Banach space
(G(%),]|.|lv), for v > 0 large enough. The contraction mapping theorem ensures
the existence of a unique solution w € B, for the fixed-point problem v = N(¥).
Since L and p can be arbitrarily chosen, we deduce (by uniqueness) that the minor
w of the unique formal series w solution of (3.6) is a germ of holomorphic functions
which can be analytically continued to 748

Upper bounds We use the Gronwall lemma (with d = 0), which tells us that
for every § € ﬁg), w(g)| < VAVd(é) &= lengp(C) where W() solves the fol-
lowing convolution equation 7, " = |fol+ (3+ |f1 )« W+ | /o] * W W (just use

lemma4.12). Moreover, one can choose M, (1) = Sp . We would like to get explicit

estimates. We consider W as the Borel transform of the function W, solution of the
second order algebraic equation,

1 - 3 N ,
Mp,(l)W: | fol(2) + (2+|f1|)W+|f2\W : (4.7

holomorphic at infinity and asymptotic to | fo|(z) there. Remember that | fo|(z) = 232 Z%,

Ifil(z) = ;iz, fl@) = ﬁ Setting W(z) = H(t), t = z~', the above problem reads
as a fixed-point problem,

H=N(H), N(H) =M, 1) (16l(™)+ Gr+ 1Al H+ 1107 H?). @.8)

From homogeneity reasons, we introduce U = D(0,p>/4), we consider the Ba-
nach algebra (O(U),||||) where |||| stands for the maximum norm, and we set

By ={H €O0(U), |H| <p’ 3}, It is easy to show that the mapping
pr3 :H € B3 — N(H) € B3 is contractive (remember: p €]0,1/5]). Therefore,

from eontraction mapping theorem, the fixed-point problem (4.8)) has a unique solu-

4
tion H in Bs. In return we deduce that W is an entire function and [W(&)| < 4e pr ol

for every & € C (see lemma[3.5). One ends with lemma

4.5.2 Concluding remarks

The following comments rely on notions introduced in [10]] to which the reader is
referred.

It turns out from theorem-that the minor w can be analytically continued along
any path of type 79 Yt and 79 (deﬁnltlons H and {4 i for any m € N* and

any direction 0 € {0,717} C Sl.

To fix our mind, we consider a path y of type Y(() Pt The analytic continuation of
w along ¥ gives a germ contyv? which can be represented by a function holomor-
phic on the open disc D(2%-1, 1) adherent to m. Writing fm(&) = contyw(m+{),

we get a function f, holomorphic on D =D(— 2, 2) However, theorem trans-
lates into the fact that f,, can be analytically continued to a wider domain as a
“multi-valued function”. Precisely, pick a point { = 3 tei e x71(—1) above —%

on the Riemann surface (C,7) of the logarithm. Let D =D Sy e C be the
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Fig. 4.10 Comparison of
right and left Borel-Laplace
summation for the direction
0 =0.

neighbourhood of ¢ 0 which is m-homeomorphic to D. One obtains a function

v v -
fm= fmom, f€ O(D). This function can be holomorphically extended to a func-

v ~
tion (still denoted by) f,,€ O (A(l)/ 2), where A(l)/ > C Cisthe open sector defined by:
87 ={ =% € T| 0 €] —m+60,00+2[,& €]0,1/2]}.

v
Question 4.6. Can we analytically continue each f,, into an element of ANA ?

The answer is “yes” but requires further effort and supplements to resurgence
v
theory, given in chapter Taking this for granted, to f,, thus corresponds a singu-
v

larity f,,€ SING deduced from w through the action of the alien operator denoted
by Ay 04 [TO]], or more precisely to A,}.

v
Question 4.7. Can we describe more precisely the singularities f,, ?

This is of course the key-question for describing the Stokes phenomenon. Partly,
the reply relies on the formal integral associated with equation (3.6), which is the
matter of the next chapter [5] The final answer will be given in the last chapter 8] of
this course, with the use of the alien derivations. In the same spirit:

Question 4.8. At this stage, can we compare the sums ./~ "0y ¢ ﬁ(é(] —x,0[,7))

and 7107l ¢ ﬁ(é(]o, 7[,7)) ? (See proposition ) In other words, are we able
to analyze the Stokes phenomenon ?

Formulated another way, we would like to compare the right Borel-Laplace sum-

mation .° W and the left one .%* . Look at Fig. : we have chosen two

directions 8 €] — 7,0 and 6~ €] — 7,0 closed to zero, so that the Borel-Laplace

sums .7%" i(z) = / e w()d¢ and .70 W(z) :/ e W (¢)d¢ can be com-
A A

pared on their nonempty common domain of definition I.T 2&#) N I:If( o) The curve

A~1A, can be seen as a chain on the Riemann sphere C = C U {eo} running from
o0 to oo and avoiding the points Z* C C. In other words, A~'A, represents a cy-

cle for the 1-homology group H| (é’ U {0}, ) which is homologous to the sum
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Yl Yk + Cimt1 (with m =2 on Fig. . Interpreting this result on #Y) where w

is holomorphic with at most exponential growth of order 1 at infinity (theorem[4.2)),

we get: for every z € I:[f(;ﬂ N I:[f(e,) with |z| large enough,

Q)= )+ Y [ e En e EW(¢)dC. :
7@ =2 B+ Y [ Rl [ e @9

One recognizes in this equation the very construction of the Stokes automorphism,

detailed in [10]. The asymptotics at infinity of the integrals / e W(¢)dE are of
Yk

the form e‘kZWk(z) where W, stands for a formal series which only depends on the

v

still unknown singularity f. The remaining integral / e %W(¢)d¢ provides an
Cm+l

exponentially smaller vanishing behaviour. It will be shown in this course that the

right-hand side of the equality (4.9) when letting m — oo, is nothing but the Borel-
Laplace sum of a “transseries” introduced and studied in chapters [5]and [6]

4.6 Some supplements

We end this chapter with some supplements to the that will be used later on.

Definition 4.23. Let be 6 € {0, 7}, o €]0,7/2] and L > 0 be a real positive number.

we denote by Rr(6.0) (L) the set of paths A in & originating from 0, piecewise ¢,
with length(A) < L+ 1, with the conditions:

e cither A stays in the open disc D(0,1);
e orelse, for every ¢ € [0,1], the right and left derivatives A'(¢) do not vanish and

argA'(r) €] —a+6,6 +af.
We denote by 22(®) (L) the subset of the Riemann surface % defined as follows:
Z 9 (L)={A(1) € Z | 2 =poA belongs to R®* (L) and A(0) = 0}.

We should note in passing that every path A € 91(®:%) (L) can be lifted on Z from
0 with respect to p.
The following assertion is left as an exercise.

» e

Fig. 4.11 Two paths belonging to 3(®*) (L) for § =0 and L > 2.
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Lemma 4.13. The set Z'%%) (L) is an open and connected neighbourhood of 0 in

# and #09 (L) c % U B'F)i® with m = [L). Also, for any m € N*, for any
1<j<m

path y of type Y2 with € € {+,—}/ and 1 < j < m, the endpoint L (1) belongs to

Z%%) (m), where T is the lift of 'y from O with respect to p on Z.

In the above lemma, [.] is the ceiling function.

Remark 4.5. Notice that 2(%%)(L;) € 2% (L,) when L; < L,. Also, since (%% (L)
is open and connected in %2, %'%® (L) inherits from Z the structure of complex
manifold, thus is a Riemann surface.

Definition 4.24. We denote by %(®®) (L) > # the space of germs of holomorphic
functions at the origin which can be analytically continued to the Riemann surface
20 (L).

Example 4.1. The formal solution w of the prepared equation (3.6) has a minor w
which belongs to %®%/2) (L), for any direction 8 € {0, 7} and any L €]0, 1]: this is
a consequence of theorem§.2]

Proposition 4.6. The space #'®® (L) is a (non unitary) convolution algebra.

Proof. We just have to prove the stability by convolution product. It is shown in [[10]
that for any smooth path y:1=[0,1] — C\ Z such that |y(0)| < I, one can find a
symmetric Z-homotopy H : (s,t) € I x I — H(s,t) = H;(s) whose initial path Hy is
Hy : s €[0,1] — s7(0) and whose endpoint path ¢ € [0, 1] — H,(1) coincides with 7.
Lifting every path H; from 0 on % with respect to p, one gets the mapping
A (s,t) €I x I — H(s,t) = H(s) € X, which is continuous by the lifting theo-
rem for homotopies, and the following diagram commutes:

74
H 0 p

IxI —s 2.
H

(4.10)

We recall from [10] how this symmetric Z-homotopy can be constructed. Pick a

%! function 1 : C — [0,1] satisfying {{ € C | n({) = 0} = Z and consider the
n(¢) y .

(t). The path H; is ob-

() +n(r() - ¢) ’

tained by deformation of the initial path Hy through the flow of the vector field
g: (t0,1,4) € 10,1 x C - g0 () € C of X, precisely H;(s) = g (Ho(s)).

non-autonomous vector field X (£,1) =

Let ¢ be any point in %2(®:® (L). This point is the endpoint of a path A in Z
originating from 0 and whose projection A = po A belongs to 1(¢-%)(L). We forget
the case where A stays in D(0, 1) and, without loss of generality, we can assume
that A = Agy with Ag : s € [0, 1] — s¥(0). Let us analyze the above symmetric Z-
homotopy H constructed from 7y and Hy = Ay, and the associated mapping 7. We
would like to show that 77 (s,t) € %% (L) for every (s,t) € I x I. For this purpose
we introduce the path H* : ¢ € I — H*(t) = H(s,t). We notice that H° = 0 while for
any s €]0,1] :

1. H*(0) = Ho(s),

2. YLD — X (HE(r),1), thus 0 < |50

< |¥/(r)| and arg L0

€l—o+6,0+af.
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Denoting by Hylj, : 5 € I = Ho(s's) the restriction path, we see that the product
of paths F* = Hyl(o ; H* has the following properties, for any s €]0, 1]:

1. F¥isapathin é’ originating from 0 and is piecewise %'

2. length(F*) < length(Holo) +length(H*) <length(A) < L+1,

3. for every ¢ € [0,1], the right and left derivatives (F*)'() do not vanish and
arg(F*) (1) €] —a+6,0 +al.

Therefore F* belongs to 9:(®:%) (L) and as a consequence, .7 (s,t) belongs to
Z %) (L) for every (s,t) € I x I. We end the proof with the arguments used re-
called in the proof of theorem.1} O

4.7 Comments

As arule in resurgence theory, one has to deal with endlessly continuable functions.
This notion is defined in [2], a more general definition of which being given by
Ecalle in [5} 6]]. The key point is the construction of endless Riemann surfaces [2,
12])). For such an endless Riemann surface, one can define “nearby sheets” in the
way we did in Sect. [4.2] and analogues of theorem (.1 and proposition f.6| can be
stated.
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Chapter 5

Transseries and formal integral for the first
Painlevé equation

Abstract This chapter has two purposes. Our first goal is to construct the so-
called “formal transseries solutions” for the prepared form associated with the first
Painlevé equation, which will be used later on to get the truncated solutions : this
is done in Sect.[5.3] after some preliminaries in Sect.[5.1]and Sect.[5.2] Our second
goal is to build the formal integral for the first Painlevé equation and, equivalently,
the canonical normal form equation to which the first Painlevé equation is formally
conjugated. This is what we do in Sect. [5.4] These informations will be used in a
next chapter to investigate the resurgent structure for the first Painlevé equation.

5.1 Introduction

We have seen in chapter [3] that the prepared equation has a unique formal
solution, from now on denoted by w (g o). This solution is 1-Gevrey and even Borel-
Laplace summable in every directions apart from the directions k7, k € Z (theo-
remand proposition [3.14). To each interval I; =]0, &[+j7, j € Z, one associates

the Borel-Laplace sum w,; j(z) = -/iw g 0)(z) € ﬁ(é(lj,r)) where é(lj,r) is a

- 3 1
sectorial neighbourhoods of oo with aperture [; =] — 571,—1—571:[— jm. As said in

Sect. |3.4.2.2} each wy,;; can be thought of as a section over TJ- of the sheaf &7
of 1-Gevrey asymptotic functions, wy;; € I' (7 i, ). These sections are asymp-
totic to the same 1-Gevrey series W(o,o)- Therefore the 1-coboundary w1 — wirio
belongs to I'(71 N 7o,/=""), while wiyiz —wii1 belongs to I'(Ta N1y, a/<7"),
where 7=~ is the sheaf of 1-Gevrey flat germs. In other words, the 1-coboundaries

3 1
H0le) = wiia () —wrald), 7 <are(e) <~ [ large cnough,
5 .

W51(2) = Wirin(2) — Wi (2), 7577: <arg(z) < 75717, |z| large enough,

are exponentially flat functions of order 1 at infinity, and we deduce from equation
@ that #{;1) ;> j = 0,1, satisfies the linear ODE:

1
P)H j1),;+ gQ(a)W(jﬂ),j = [@W 1), + (@) Wi je1 +Weri )W j11), -
(5.2)

87
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Question 5.1. Can we get more informations about %/, ; ? In other words, are we
able to analyze the Stokes phenomenon ?

We have already made some advances in reply to this query in Sect. as
an application of theorem [#.2] Here we return to the asymptotics. Denoting by

Ty the 1-Gevrey Taylor map, we set #{;.y); = Ti (7j+1 ﬂfj)“//(jﬂ),j. We have
%H), ; = 0 by construction but, more interestingly for our purpose and since T}
is a morphism of differential algebras, we deduce from l| that #{; 1), solves the
problem By = 0, where P stands for the second order linear differential operator

1 ~
deduced from the operator P(d) + —Q(d) — F(z,-) by linearisation at w g g):
F4

1 JF (z,w
Po = P(9)+-0() - 2 Vo) (5.3)
1

= P(d)+ EQ(a) — fi(z) = 2w(0,0)(2) f2(2)

— (P —1)— %a 1o,

For a moment, let us think of ﬁoiﬂvz 0 as a linear ODE with holomorphic coeffi-
cients (thus we think of w(q o) as a convergent series at infinity). The formal invari-
ants for this this equation are governed by the Newton polygon at infinity .4 (Bo),
drawn on Fig.[5.1]

The definition and properties of the Newton polygon are amply elaborated in [32], to which
the reader is referred. We only mention that the valuation v., defined there is the opposite of
our valuation val defined by (3-I).

The polygon 4%, (By) has a single non-vertical side of slope —1: this corresponds to
the fact that %) j, j =0, 1, are exponentially flat functions of order 1 at infinity.
The characteristic equation associated with this side is nothing but the equation

P(u)=0, Pu)=p>-1

The polynomial P(u) has two simple roots, 4 = —1 and g, = 1. Therefore, from
the theory of linear ODE [39] [32]], we expect for #] ( to behave like e*2*z~20(1)
at infinity, and for #4 ; to behave like e#1%z~ " O(1) at infinity.
P/uvrsuing in that direction, the coefficients 77,7, can be easily found
W =eMz7"wy(z) solves the ODE with P(1t) = 0 and wj, € C[[z""]], only
under the condition

o) _ 3

TP 2

Fig. 5.1 The Newton polygon
at infinity A% (Po) associated
with the linear operator (5.3).
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As a matter of fact, these behaviours are direct consequences of the analytic proper-
ties of the minor w(g o) of (g ). In particular, 4; = —g; and A, = —p, are precisely
the so-called seen singularities of (g g, cf. theorem

The differential equation %077: 0 has thus its general formal solution under
the form % = Uietiz= 1wy, + Uset2*z" 2w, and, as we will see later on, both
wy, and wy, are 1-Gevery series whose minors have the same properties than W(0,0)~

However, the expectation that % o could be obtained from U;e*1*z""1w,, by
Borel-Laplace summation for some well-chosen U; € C is wrong. Indeed, this
would mean that wy,; | = .71 (W(Qo) +Uret1iz My, )’ thus wg o) + Uret*z" 1wy,
is a formal solution of (3.6). This is not the case because of the nonlinearity of (3.6)
and to the very nature of the Riemann surface Z(!) on which W(0,0) can be analyti-
cally continued (theorem [4.2). This raises the question:

Question 5.2. can we define an analogue of the general formal solution for the non-
linear equation (3.6) ?

The answer is given by the notion of “formal integral” which we now introduce.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to fix customary notations.
Definition 5.1. We suppose n € N*, k,h € N" a,b € C".

Ifk = (ki, - k), then [K| = kj +--- +k,.
Ifa=(ay,---,a,) ora="(ay,--,a,), then ak :alfl eakn,
Ifb= (b1, - ,bn), thenab=a1b +---+ayb,.

We denote by e; the j-th unit vector of C".

5.2.2 Setting

5.2.2.1 Single level 1 ODE
To introduce the reader to the notion of Ecalle’s formal integral [[19], it will be useful

to skip a moment from the ODE (3.6)) to a more general one! with the same kind of
properties. Namely we introduce

P(d)w+ EQ(a)w = F(z,w) (5.4)

PO)= Y 0y nd" € T3] . 0)= ¥ puwd" € ClO
m=0

m=0

! Though far from the more general. For instance in ID one could replace F(z,w) by
F(z,w,dw,---,0" 'w), with F holomorphic in a neighbourhood of (s0,0) in C x C"~!, see ex-
ercise 3.1] We refrain of doing that only for a matter of simplicity. See [19] for more general
results.
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with n € N*. We assume that P is a polynomial of degree n, that is o # 0, and
that F(z,w) is holomorphic in a neighbourhood of (c0,0) in C? with the condition
o"F
W(Z’()) = 0(z%), m € N. (See exercise [3.1). We will add other assumptions to
w

guarantee that the ODE (5.4) has a single level 1 at infinity.

When assuming furthermore that @, # 0, what have been said in Sect.
can be applied as well for (5.4). The equation (5.4) has a unique formal solution
wo € C[[z~!]] and val wg > 2. The Newton polygon at infinity .4 ("By) associated

1 F, _
with the linear differential operator 39 = P(d) + —-0(d) — e (z,wp) deduced from
z

1 ~ . .
the operator P(d) + —Q(d) — F(z,-) by linearisation at wyp, has still a single non-
Z
vertical side of slope —1 and the characteristic equation associated with this single
side remains the equation P(i) = 0.
Since o, # 0, the roots of the characteristic equation do not vanish. We will also
assume that the polynomial

p— P(p) = Z O™ = o (f — 1) -+ (1 — Phn)
m=0

has only simple roots y = y;, i = 1,--- ,n. The following definitions are adapted
from [3,[19].

Definition 5.2. Let {;} be the set of the roots of the polynomial P(t), and we set
Ai=—W;, i=1,--- .n. The complex numbers Ay, - - - , A, are called the multipliers of
the ODE (5.4).

The ODE is said to have a single level 1 at infinity when the multipliers are all
nonzero.

One says that the multipliers are non-resonant when they are rationally indepen-
dent, that is linearly independent over Z. The multipliers are positively resonant
when there exists Kreson = (k1,-+,ky) € N*\ {0} so that A .Keeson = 0, where
A= (A1, ,A) € (C*)" The number |Keeson| + 1 is the order of the resonance,
since the positive resonance brings semi-positively resonances, that is relationships
of the type A.(Kreson +€;) = A; for any j € [1,n].

We mention that the following constants are properly defined, since P has only
simple roots:

o(—A) .
T = =1,---,n. 55
1 P/(—A,l) b l b 7n ( )
From the theory of linear differential equations (see [34} 132], see also [4} 139]), we
notice that the linear equation

P(d)w+ %Q(a)w = 0 has a formal general solution under the form

-

w(z) = ) vi(2)yi(z)- (5.6)

1

l
In || yi(z) = Use %%;=% U, € C, stands for the general solution of the differential
Ti . 1 e . . .
equation y; + ( A; + ) y; = 0, while v; € C[[z™!]] is invertible and is determined
z

uniquely up to normalization.
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5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations of order
one are considered. We therefore translate the ODE (5.4) into a one order ODE

w1 w
wy w
of dimension n by introducingw = | ., | = . . We get the companion
Wi W(nfl)
system
ow+Aw = f(z,w), (5.7
o -1-- 0 0
with A = S ' and f(z,w) = :
: 0o -1 0
Gy B a4 B F(z,w1)/ a0
o Tz a T zo ( )/

Since (5.4) has avunique formal solution wo € C[[z™"]], val wp > 2, we may re-
mark that (5.7) has a unique formal solution Wy € C"[[z~!]] as well, and in fact
wo € 2 2(C[lz7 1))

Lemma 5.1. There exists Ty(z) € GL,(C{z"'}[z]) so that the meromorphic gauge
transform w = Ty(z)Vv brings into the prepared form

+2- 0
dv+Byv = g(z,v), By = , (5.8)
0 s A+ %
with g a C"-valued function, holomorphic in a neighbourhood of (,0) and
g(z,v) = 0(z72) + O(||v||?) when z — oo and v — 0.

The prepared form has a unique formal solution Vo € (C[[z~']])" and
Vo€ (Cll )"

Proof. The proof is based on classical ideas for linear ODEs (see [34, 32, see also
(41139, [15]). Looking at (5.6), we compare (5.7) with the linear equation

A+ % e 0
1
du+Byu=0, By= Do =A+-L, (5.9
: : Z
T)l
0 - Atz
whose general solution (holomorphic on ((Nj) is given in term of the fundamental
matrix solution z Le =%,
u(z) =z Le MU =@}z %e U, UeC (5.10)
We remark that
(m) 4 (=1);
—Az 71') _ Az T m) ) J 5
e 7z =e ™z . - A1
( L ( ") ar 5.11)

for (1,7) € C* and m € N, where (—17); = j! <_JT) mimics the Pochhammer sym-

bol:
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(—t)o=1 and (—7); = (=1)/t(t+1)--- (t4,j—1) forj> L. (5.12)

We thus set the meromorphic gauge transform w = Ty (z)v with Ty(z) € GL,(C{z"'}[2])
of the form:

1 1

T T
_11_71 A=

1 (n—1 i (=1); 1 (n—1 i (=T
Z;lzé( j )(ll)n 1 ]( ;jl)/ Z?:é( i )()Ln)n 1 ]( z’fj)/
(5.13)
By its very definition, this gauge transform brings (5.7) into the differential equation:

ov = — [T, 1(9T) + Ty 'ATy] v+ Ty £z, Tov) (5.14)
= _BOV+g(ZaV)

where g has the properties described in the lemma. The fact that (5.8) has a unique
formal solution vy € (C[[z!]])" is obvious. O

Example 5.1. We have already seen that the companion system associated with

1 1
is 1i The gauge transform w = Ty(z)v, To(z) = (_1 L343 ) , brings l
2z 2z

into the prepared form:

1-2 0 15 (-1 -1 1 [ —F(z,vi+w)
2z = = — ’ . 1
8V+< 0 1§Z)V sz2< 11 )V+2(F(z,v1+v2) (5-15)
Remark 5.1. Let us consider the action of the gauge transform y = Tp(z)u on the
differential equation du+ Bou = 0. This differential equation is transformed into the

system dy + Agy = 0 with Ay = TOBOTO’l — (aTO)TO’1 of the form
0 —-1--- 0

Ao=| T 7 | withpy,-pr e C{z L pale) = %+%+0(z*2),
: 0 —1
pa(2) - o pi(2)
o, pi(z) =g+ 2%10 +0(z72). The system dy + Aoy = 0 is the companion system
for the one-dimensional homogeneous ODE of order n,

3"y +p1(2)d" 'y + -+ pa(2)y =0, (5.16)

whose general solution is y(z) = Y/, Ue %*z~%, (Uy,--- ,U,) € C".

5.2.2.3 Normal form, formal reduction

We have previously reduced the companion system to a prepared form through
a meromorphic gauge transform. Under some conditions, one can go further, but
through formal transformations, in the spirit of the Poincaré-Dulac theorem [3]] and
the classification up to formal conjugation.

Proposition 5.1. We consider the ODE (5.8) and we assume that the multipliers

Al,- -+, Ay are non-resonant. Then there exists a formal transformation v =T (z,u),
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T(zu)= Y u*W(z), W) e[z "), (5.17)
keN~

which formally transforms into the linear normal form equation du + Bou = 0.
In , Vo stands for the unique formal solution of @) for j=1,....n Ve_/. is
uniquely determined when one prescribes its constant term to be equal to €;; then
the formal series Vi are unique for |K| > 1.

We will see in the sequel how this proposition can be shown. Here, we rather
concentrate on its consequences.

One can refer to, e.g., [31115] for a proof that extend to possibly nilpotent cases (but with no
resonances), and to [[19] for a very general frame.

We know that the general solution of the normal form du+ Bou = 0 is
u(z) = @,z %e i ("U), U = (Uy,---,U,) € C". Through the action of the for-

mal transformation v = T'(z,u), this provides the following general formal solution
for the ODE (5.8):

n

v(z,U) = Y H(U,-szfefdi)k’vk(z) =Y Uke A ke-7kg (2) (5.18)
k=(ky -+ k) ENT i=1 KeN

with A = (A4, ,A4,) € (C*)"and T = (11, ,T,) € C".
Definition 5.3. The formal series (5.18)) is called the formal integral of (5.8).

Of course, one can obtain the formal integral w(z,U) of lb as well, by the
gauge transform w = Tp(z)V, with Tp(z) given by (5.13). When finally returning to
the n-th order ODE (5.4) of dimension 1 we started with, one gets its formal integral.

Definition 5.4. We assume that the multipliers are non-resonant. The formal inte-
gral w(z,U) of the ODE (5.4) is defined by:

wel) = kZNn Uke MR ™K (2), k() =Wk(2).(1,+-, 1) € C[lz '],

= ®(z,Uje M0 . Upe Mig ™) (5.19)

with @ (z,u) = Yyene w0k () € C[[z~!, u]]. The formal transformation w = ®(z,u)
formally transforms (5.4) into the normal form equation du + Bou = 0.

The formal integral (5.I9), thus depending on the maximal n free parame-
ters U= (Uy,---,U,) € C", plays the role of the general formal solution for the
ODE (5.4) of order n. Formal integrals can be defined as well for difference and
differential-difference equations, see, e.g. [19} 131]]. This notion has been enlarged
for nonlinear partial differential equations in [35].

Remark 5.2. Although working at the formal level, one may wonder what is the
chosen branch when we write z~7¥. As a matter of fact, this is not relevant at this
stage since moving from a determination to another one just translates into rescaling
the free parameter U.

Remark 5.3. Introducing VK = Uke Akez~Tk we remark the identity:

3. (V¥in) = [(az - ;ﬁl(xi + %)uiau,.) (ukﬁk)] ey
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Looking at the equality
W(Z7 U) — ¢(Z, U1672'1 ZZ771 AR UnefanZ*Tn) (520)

and since the formal integral (5.19) solves the differential equation (5.4), one de-
duces that @ satisfies:

P(2~ Y (i + Dyuid, )&+ L0(2 -

(Ai+ %)ui&ui) @ =F(z,®). (521)
—1 14

n

1

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal integral for
the ODE (5.4), that is a n-parameters formal expansion of the form

w(zU) =Y Uke Ak, (), A, 1eC, (5.22)
keN?

Let us start with (5.22) and investigate the conditions to impose on the wy’s in
order for (5.22)) to be formally solution of (5.4).

We could start with (3-2T) as well.

Using the identity (5.11)) for m € N, one obtains from (5.22):

wm = ¥ Uk i <n1> (e Mz (P) )
K=o p=0 \F
- F R R
K0

(m)

where Tp ,41(wo) = wom and, more generally for k € N2,

Tims1(wi) = y (:Z) [i (?) (fl.k)p‘/@}wl((m‘l’)

p=0 j=0 Z
& (m) (—TK); ’”‘f<m—j> 2 eym—i—qy, (@)
/;)(J) s [qgo ) ],
that is also
m —1k); .
T (’7) %[(—a.kw)mﬂwk] (5.23)
J=0

In what follows we will simply write 7,1 instead of Tk7m+1(wk). We intro-

duce the notation V¥ = U¥e 4k:z-7k and we notice that for every ki, ky, € N,
vkiyke — ykitki Op the one hand,

P@Ow=Y V[ ¥t nliner | = ¥ VEpi(@)m (5.24)

k=0 “m=0 k|>0

where for |k| > 0,
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@) = Y oy m(—Ak+ )"
m=0

Y % y (’7) #(—l.kA—&)’"*/}.

m=1 j=1

In other words, for |k| >0,

pk(9) = P(—A k+0)+ Zn: l (_§'k> PO (A k+0). (5.25)

=
Similarly
00)w="Y V¥q(d)wk (5.26)
k| >0
with

Tk

qx(0) = O(—A k+0) +Z ( i

> 0V (A k+09). (5.27)

On the other hand we consider the Taylor expansion of F(z,w(z,U)) at wy,
namely

¢
(Zlk\zl Vka) 9°F (z,wy)

i = (5.28)

F(z,w) =F(z,wy) + Z
=1

We observe that for every ¢ € N*,

(Y kak)€: UL MR (5.29)

Ik[>1 Ip[>¢

As a result, equation (5.28) reads

Wp, * W, d'F(z,wp)
F(z,w) = F(z,wp) 21 . ; 7 v (5.30)
B

¢ |pil>1, i

Finally, plugging the formal expansion (5.22) into the differential equation (5.4),
using the identities (5.24), (5.26), (5.30) and identifying the powers V¥, one gets
the next lemma 5.2 which justifies the following definition.

Definition 5.5. For k € N”, we define

P(9) = P(—A k+9), (5.31)
Ox(d) = —TKP' (A k+9)+Q(—A.k+9)

"2 [/—1k k
Rk(a)zzj[<j12) PUD(ZA k+9) + (]_T_l)Q’“( Ak+9)|.
(5.32)

For k € N”, we denote by Dk = D (wy) the linear differential operator



96 5 Transseries and formal integral for the first Painlevé equation
1 1 IF (z,wo
D4 = A(9) + L0u(d) + Sy~ T
z Z dw
. 1
where wy satisfies P(d)wy+ —Q(d)wy = F(z,wp).
b4
For k € N", we denote by Rk = Pk (wy) the linear differential operator

1 IF (2,
mk:P(—l.k+3)+gQ(—l.k+&)—$. (5.33)
Lemma 5.2. The n-parameters formal expansion
w(zU)= Y Uke Aker=mkyy (7) (5.34)
keN"?
solves (5.4) if and only if :
1
P(d)wo+ gQ(a)Wo = F(z,wo), (5.35)
De;we, = 0 (5.36)
with e; the i-th vector of the canonical base of C", and for |k| > 2,
l
Wik, -+ Wi, 0°F(z,wp)
Dywk = ; 7 S (5.37)
\ ot o

Remark 5.4. Notice that in lemma we have neither supposed that
o(—4)
P’(—/l,'),

A = (A, -+, A) are the multipliers, nor that T= (7, - - , 7,) are such that 7; =

i=1,---,n. However, these conditions will come in the next section.

Example 5.2. We consider equation (3.6) where n = 2, P(d) = 9> — 1, Q(d) = —30.
Then, for every k € N2,

B () = 0> —2A ko + (A .k)> —1, (5.38)
0k(d) = 3+27.k)(—3d +1 k),
Ri(9d) = Tk(Tk+4).

3 3
In particular, taking A = (1,—1) (the zeros of { — P(—{)) and T = <—2,—2>

(we take the values given by (5.5))), then writing k = (k;,k2):

B(0) = 0% —2(ky —k2)d + (k1 —kp)* — 1, (5.39)
Ok(9) = 3(1 —ky —k2)(—0d + ki —k2),
R (9) = %(kl +ka) (kl +ky — 2) .

We eventually mention some identities for later purposes, the proof of which
being left as an exercise.

Lemma 5.3. The operators By and Dy, given by definition[5.5|satisfy the identities:
for any k,ki,k, € N, —). klzm el kiz _ e—). kzzmk el kzz 7 k@k ‘Bkz (A
and
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—-Akiz —1k —-Akz —7k -1 —-Akyz —7k —Akyz —Tky\—1
(™M FE Dy (e M) T = (e MR TR ) Dy (e T TR)

Setting Wy = 2~ “*wy for k € N" and the wy given by lemma one has Pe,We, =0,
i = 1,2 while and for |k| > 2,

(5.40)

5.3 First Painlevé equation and transseries solutions

We partly describe in this section the contains of lemma [5.2] for the prepared form
equation associated with the first Painlevé equation. Thus n = 2, P(d) = 9% — 1,
0(9) = =30 and F(z,w) = fo(2) + f1(z)w+ fo(z)w?. Also, we will for the moment
specialise our study to only one-parameter formal expansions, that is we will as-
sume that either Uy = 0 or U, = 0 in (5.34). This study will be enough to get the
truncated solutions. We will keep on our study of the formal integral associated with
(3:6) in Sect.[5.4 where will we see the effects of resonances.

5.3.1 Transseries solution - statement

This section will be devoted to proving the following proposition.

Proposition 5.2. We consider the prepared ODE . Weset A = (A1,4;) = (1,—1)
where the ;s are the multipliers, that is the roots of the polynomial { — P(—{).
3 o(-A&) .,

> here T,
—=,—= |, where 1; =
2" 2 YOPI(=A)
Then for each i = 1,2, there exists a formal one-parameter solution of (3.6) in the
graded algebra EBz*Tikefl"kz(C[[zflﬂ of the form:
keN

We set T=(11,1) =

w(z,Ue) =Y Uke 4k =%k (2),  Wie, € C[lz71]). (5.41)
k=0

We have val Wi, = 2(k — 1) and the formal series is unique once one fixes
the normalization of We, to be We,(z) = 14 O(z™ 7). Then wie, € R[[z71]] and

~ k
Wke; (2) = ]2](7711—2(’“1)(1 +0(z 1)) for every k > 1. Furthermore changing the

normalization of We, is equivalent in rescaling the parameter U € C. Eventually,
wkﬁ (z) = Wkez (—z) for every k > 0.

Definition 5.6. The series (5.41) is called a formal transseries. The terms e~ k¢~ Tik
are (log-free) transmonomials. The formal series wye, are called the ke;-th series of

Tik

the transseries. We set Wie, = 27 Wy,

Remark 5.5. The term “transseries” is due to Ecalle [20]. These are objects that are
widely used in resurgence theory, see, e.g. [9,136,128129]. More details on transseries
can be founded in [19, 20} [7, [8]]. Transseries are also common objects in theoretical
physics : these are the so-called “multi-instanton expansions”, see e.g. [40, 25/ 26}
27,133,241 11,116} (17, [18]].
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In quantum mechanics or quantum field theory, an instanton action (the terminology of
which is due to Gerard 't Hooft) is a classical solution of the equations of motion, with a
finite and non-zero action. A well-known instanton effect in quantum mechanics is given by
a particle in a double well potential. The tunneling effect provides a non-zero probability
that the particle crosses the potential barrier. This gives rise to a tunneling amplitude pro-
portionnal to the instanton ¢S/ where S is the instanton action, /i being the Planck constant
or the coupling constant. For the bound states, this translates into the fact that they can be
described at a formal level by a multi-instanton expansion, that is a transseries of the form
Y0 Ei(R)e*/" where the perturbative fluctuations Ey (%) are formal expansions with re-
spect to /. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [38} (104 1111121131114} 22} 23]

For later use, we mention a lemma that result from proposition[5.2]and lemma[5.3]

Lemma 5.4. Under the conditions of proposition and for any k € N?, the (so-
called) general formal solution of the linear differential equation Px(wo)W =0
is W = erke (Cle’}”ZVNVe1 + Cze’lﬂVNVez), C,C, € C. For any ke N2 the (so-
called) general formal solution of the linear differential equation Dg(wg)w =0 is
W(z) = et kegTk (Cle_’llzﬁfel +Cze_122ﬁ/e2), Ci,C, eC.

5.3.2 Transseries solution - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5. We suppose n,N € N*. We consider the ordinary differential equation
1 -
P(d)w+ ER(&)W =f(2), f@) = vz N(1+0(z ") ez NC[[lz7 )], fv #0

with P(9) = ¥ On-m0" € C[9], & # 0, R(9) = ¥, Ya-m(2)9" € C[lz”]][0].
This ODE has a unique solution W in C[[z""]], moreover valw =val f and
w(2) = gz N1+ 0@E ).

Proof. Tn the valuation ring C[[z~!]] we consider the following map :
N:Cllz™)] = C[l™"]]

W = % (7~ (P(0) ~ P(0))w— éR(a)w} .

(Remember that P(0) = o, is nonzero). From the hypotheses made one easily ob-
serves that N(C[[z™"]]) € z~'C[[z~!]] while, for every p € N*,

if u,v € z7PC[[z"']], then N(u) —N(v) €z 77'C[[z""]].

This means that N is contractive in C[[z~!]], thus the fixed point problem w = N(w)
has a unique solution w = li£n N”(0) in C[[z""]]. Since N(0) = f(z)/P(0) one gets
p 00

w(z) = %Z_N(l +0(z'Y). O
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5.3.2.2 Proof of proposition[5.2]

We precise as an introduction that the assertion W, € R[[z~!]] is just a consequence
of the realness of equation . The relationships w o) (z) = w0y (—2) for every
k > 0, come from the property of equation to be invariant under the change of
variable z — —z and to the chosen normalization of we,, i = 1,2.

5.3.2.3 The return of the formal solution

We remark that wo = w(g ) has to solve (5.35) which is nothing but the equation
one started with. In particular we know that this equation has a unique formal
solution wy € C[[z!]] which has been investigated in the previous chapters.

In what follows, one will always replace wy by this formal solution wq. We mention

the following obvious fact, essentially due to the property that val wy > 2 and that
4

for every £ =0,1,2, 2 gf;o) € z72C{z"'}. (This is one place where it is interesting

to work with a “well-prepared” equation, see what we have done in Sect. [3.1]to get

and exercise[3.1)):
Lemma 5.6. If wo(z) = ¥y>2a0,2 " € C[[z™ Y] is the formal solution of , then

{/ ~
for every £ =0,1,2, % € C[[z7']] has valuation 2, and vanishes identically
for every £ > 3. Alsg, % = —477% 4+ 772wy is even and its coefficients are all
real negative, and W =72

5.3.2.4 The cases |ke;| =1

Formula (5.36) with k = e; provides

Deywe, =0 (5.42)
1 1 dF (z,w .
where D¢, = Pe, (d) + EQe' (d)+ Z—zRel — % with

(2
n (=A1)

2
2!8

Pe (9) = P(—=A1 +9) = P(=A1) + P/ (=)

Qe () = =T P (M +9)+Q(—A1 +9)
Re, Tl(Tl +4)

Assuming that we, € C[[z"!]], one observes that the right-hand side of has
valuation less or equal to (val we, ) — 2, because of lemma In order to get a non
identically vanishing solution, one thus has to impose the condition P(—A;) = 0.
Following our conventions, we take A; = 1.

The same reasoning leads to impose furthermore that —7iP'(—A;) +Q(—4;) =0,
thus 7y = —3. Therefore, P, (9) = 9> —20, Q¢, (9) =0, R¢, (9) = — 2. Symmetri-

3
cally fork = ey, one gets A, = —1, 7, = ) as a necessary condition and
De,We, =0 (5.43)

where De, = Pey(9) + 106, () + SR, — 275 whereas P, () = 92 + 20,
0, (9) =0, R, (9) = — .
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Fig. 5.2 The Newton polygon
at infinity A% (De, ) associ-
ated with the linear operator

633,

Lemma 5.7. The linear homogeneous equations (0.42), (5.43) have both a one-
parameter family of formal solutions we, = UyWe, and we, = Uawe, in C[[z71]],
where we, and we, are uniquely determined by their given normalization
We; = 1+ 0(z7"). Moreover we, € R[[z7"]] and We, (z) = We, (—2). Furthemore, if
Wo(z) = Lys0a0,z2" and We, (z) = Ly ae, 127!, the following quadratic recursion
relation is valid:

de|,0 = ]a
1 = 5.44
ael’l:§ <—(21_1)20e17l1+4Zae1,p00,lpl> =12, ( )
p=0

Proof. We only examine (5.42). We look at this equation in the space of normalized
formal series C[[z~!]], namely

(151 0FG@w)
(&_Z)awel - ( 4 Z2 + aw )Wel

we, € C[le7']l, we, =1+0(7").

(5.45)

We remark that the restriction of the derivation operator d to the maximal ideal
z7'C[[z7"]] is a bijective operator between z~'C[[z~!]] and z2C[[z~!]]; we denote
by @~ the inverse operator, N
'Clle ) 2l ]l
91
We transform (5.45) into the equation —2dwe, = (—82 + %Z% + W) We, and

we see that the right-hand side of this equation belongs to z 2C[[z™!]] once we,
belongs to C[[z~!]], because of lemma and to the choice of the coefficient 7.
This means that the map

N:Clle™)) = Cllz™]

1. 5> 151  9F(z,wy)
We, %1_53 1(_8 +Z?+T We,

is well defined and the problem (5.43) is equivalent to the fixed-point problem
We, = N(we, ). One easily checks that the map N is contractive in C[[z~!]] so that
the fixed point problem we, = N(we, ) has a unique solution we, in C[[z™]].

From the fact that (5.42) is a homogeneous equation, one immediately concludes
that Uywe,, U € C, provides a one-parameter family of formal solutions.

The proof for the quadratic recursion relation (5.44) is left to the reader (see

also [24,[1). O
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Remark 5.6. 1. The Newton polygon at infinity .45, (De,) drawn on Fig. has
one horizontal side that corresponds to the operator —2d. General nonsense in
asymptotic theory (see [32], or [6,130]) provides the existence of the formal (nor-
malized) series solution We,. The other (normalized) formal solution associated

with the side of slope —1 is ezzﬁe2 (see lemma i which, in our frame, is already
incorporated in the other transseries solution.
2. From lemma [5.6|or (5.44), one easily shows that

! 9 341329
Sl 2 2 341329
We (2) 85 T128° T 1920000°

is a real formal expansion, with coefficients that alternate in sign.

5.3.2.5 The cases |ke;| > 2

Lemma 5.8. For any k = ke;, i = 1,2 and k > 2, equation has a unique for-
mal solution Wie, = Wi, in Cl[z""]). Moreover val Wie, = 2(k—1).

Furthermore, when considering Uwe, instead of we, for the solution of , then
the unique solution of at rankk = ke;, k> 2, is Ukv?kel,. Also, Wie, € R[[z_l]],

Wie; (2) = W[z(k*l)(l +0(z)) and Wo,k)(2) = W) (—2) for every k > 2.

Eventually, writing Wie, (2) = L;>0 akel,lz’l, the coefficients are governed the fol-
lowing quadratic recursion relations, for every k > 2:

Qke,,0 = Gke,,1 = 0,

kK> —1age, 1 = k(3k — 21 — age, -1 — 2 (3k —20)?ake, 1>
( ) €, ( ) e, 4( ) e, (546)

-2 i
+X, 0 | ke, pa0i—p-2+5 iy pise l—p—2 | » 1 =2,3,---
p=0 p p 2 p P
ky+ky=

k1 =21,kpy>1

Proof. We only examine the case k = ke, k > 2.
The proof is done by induction on k. We first consider equation (5.37) for k = 2:

ﬁ}%l azF(Zﬂ?‘;O)

20w C47

©2e| erl =

with Dae, = Pae, (9) + 1 02e, (9) + S Rae, — £ We know that Pre, (0) =3 is

nonzero since, by (5.31), Pse, (9) = P(—2A; +9) = 9> — 40 + 3. Using lemma
one sees that lemmal5.5|can be applied to and this provides a unique solution
Wae, € C[[z7!]]. Its valuation is 2 and explicit calculation gives:

- 1, 11 5 53 4 - ~
Wae, (2) = 6 T 1° + 192° Ty Waey(2) = Woey (—2).

One easily checks that replacing we, by Uw,, implies changing woe, into U 2W2e1-
We now assume that the properties of lemma [5.8] are true for every 2 <k < K — 1.
When considering equation (5.37) for K one gets :

Wk Wk 82F Z,W
Die Wke, = 2: e ( A 0, (5.48)
k1+ 2:K 2 aW

ki >1,kp>1
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with De, = Pre, (9)+ L Oke, (9) + SRie, — L5 Py, (9) = 9% —2K3 + (K> — 1).
One deduces the conclusion of lemma- 5.8|at the rank K by the arguments used pre-
viously. For the valuation, observe that val Wy, e, Wi,e, > 2(k1 — 1) +2(ko — 1) when

ki +ky = K, thus val Wy, e, Wkye, > 2(K —2). As a matter of fact, for every k > 2,
Wk0)(2) = bz 2 K= (14 0(z7")) with

by=1
_ 1 k—1
{bk = 5D Lp=t blhp K22,

which easily provides by = 12,% by induction. The reader will easily check that the
recursive relations (5.46) are true. (See also [24,[1). O

Remark 5.7. Here again, we are not interested in the whole formal fundamen-
tal solutions of equations l Wthh incorporate the general solution
(e —hikz el (Cle”llz ’le +C2e T2we of the associated homogeneous
linear ODEs D gyw = 0 (cf. lemma E Takmg into account the term (---)We,
would imply a rescaling of U;. The other term (- - - )We, concerns the other transseries.

5.4 Formal integral for the first Painlevé equation

We made general considerations on formal integrals in Sect. [5.2] We started the
study of the formal integral for the prepared equation (3.6) associated with the first
Painlevé equation in Sect.[5.3]: this gave us the transseries described by proposition
When no resonances occur, one gets with quite similar arguments the formal
integral. However, this is not that simple for the first Painlevé equation where we
have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:

Definition 5.7. For any n € N*, we setn =n(1,1) and
Zn0 = {k = (ki, k) € N*\ {0} | ky <n or ky <n}U{n}.

We also set Zgo = {(0,0)}.
Example 5.3. E1 o = (N* x {0}) U ({0} x N*)U{(1,1)},

Er0=(N"x{0,1})U({0,1} x N*)U{(2,2)}.
Notice that for every n € N, 5,110\ Zp0 =n+ Zj .

5.4.1.2 Resonances : first consequences

Equation has the feature to have positively resonant multipliers A; = 1,
A = —1 because A.n = 0, for every n € N* (see definition . This brings semi-
positively resonances, the cases of semi-positive resonances being all described by
A =A.(n+e;)and 1, = A.(n+ey), for every n € N*.
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We have already seen (proposition[5.2) that these properties have no consequence
for the transseries but, as we shall see, this produces new phenomena when the
formal integral is concerned, these being essentially consequences of the following
fact, derived from lemmal[5.3}

Lemma 5.9. For every n € N, k € N?, the following identities are satisfied:

T. —T.
Pork =Pk, Dnrk=2""Dz ™™, Tn=-3n

5.4.1.3 Preliminary lemmas

P ~
In a moment, we will have to deal with formal expansions of the type Z logl (2)f1(2),
1=0
p €N, with the f;’s in C[[z']].

Definition 5.8. We equip the graded algebra EBlogl (z)C[[z"']] with the valuation
leN

val defined by: val (Zlogl (@ﬁ) = mlin{val fi}.
]

Lemma 5.10. We suppose n,N € N* and p € N. We consider the ordinary differen-
tial equation

PO ROW=T0. e @LLOCE). 549
=0

P@) = ioanmam €C), 0 £0,  R(9)= "i;ynm@am e Cllz"'])[0)

P

Then (5.49) has a unique solution w € @logl (2)C[[z""]] and val w = val f. More-
=0

over, if f =Y} log!(2) f; and w = ¥.1_, log' (z) Wy, then:

~ 1 ~
1. W), solves the ODE: P(d)w+ —R(d)w = f),;
z
2. if val f, < val Zf:ol log! (z) f; then val w,, < val Zf:ol log! (z)w.

Proof. One easily sees that the arguments used for the proof of lemma [5.5] can be

extended, when observing that val d (Zlogl (z)ﬁ) < val (Zlogl (z)ﬁ) +1. O
1 1

We have seen in lemma that the operators ®De;, i = 1,2, have specific be-
haviours. This is the purpose of the following lemma.

Lemma 5.11. We suppose p € N and i € {1,2}. We assume that
f=Xr log' () fi € ®}_log! (z)C[[z" 1] satisfies the conditions:

Lvalfy=1, fp=fpz " (1+0(z 1)), fp, #0

2. val (X)) log'(9)fi) =2

Then the equation De,w = f has a unique solution W = ):fjol log' (z)w; in

1117:01 log' (z)C[[z™"]] that satisfies the condition val (¥}_,log' (z)w;) > 1. Moreover
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Wpil = Lwe"

(P (=4 T
Otherwise, the general solution of the ODE De,w = fin @pH log' (2)C[[z7"]] is of
the form w = w+Uwe, where U € C.

Proof. We examine the case i = 1 only. The ODE D¢, w = f is equivalent to the
equation :

. ~ 151  9F(z,wp) ,
P(*/’L])aW:f‘i’ ((92 42+8W> w, P(*A]):f

By arguments already used in the proof of lemma this problem amounts to
looking for a formal solution which satisfies the fixed-point problem

B ! ) 151 9F(z i)
wa(z)+P,(_ll>a ( 2°+ 22T ow w

i F f d -
where U(z) = 97! P’(—?Ll)> = (p+1);1/(_ll)log”H(z)—F[Z’logl(z)O(z h.

Notice that we take the primitive with no constant term. This fixed-point problem
has a unique formal solution under the form

W — #’“ +1 L I
e (p+ l)P’(—/ll)Wei log”™ (2) + Zlo% (2)w

and val (Zl 0 log(z )wl) > 1. Eventually one can add to this particular solution any
solution of the homogeneous equation D¢, w = 0, that is any term of the form Uwe,
withU € C. O

5.4.2 Painlevé I: formal integral

We are now in position to detail the formal integral associated with the first Painlevé
equation.

Theorem 5.1. We consider the ODE (3.6)). Let be A = (A1, 42) = (1,—1) where the
o(=4A)

P (A ) =1,2. We
set VK = Uke A kez=tk for any k € N? and any U = (U;,Us) € C2 We write
n=n(l,1) foranyn € N.

There exists a two-parameter formal solution of (@) freely depending on U € C?,
of the form

3 3
Ai’s are the multipliers, and T = (71, T)) = (—2, —2), T =

w(z,U) = wo(z +Z Y Vi), (5.50)

n=0 k€~n+ 1 ,0\—'11‘0

and uniquely determined by the following conditions:

1. wp € C[[z7"]);
n

2. WK:ZIOgI wk G@log 1), for everyk € 110\ Epo, n €N;
=0

3. fori=1,2, w, satlsﬁes we,.( )=14+0(z"1);
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4.for every n € N* and i = 1,2, Wnye = Yy log’ (z)v?ﬂei satisfies
~[n IR
val WL J]rel < val (Z;':o log (z)wLLei).
Moreover, the following properties are satisfied:

5. changing the normalization of we,, i = 1,2, is equivalent to rescaling the param-
eter U e C2;

n
6. for every n € N and every k € B, 10\ Z,0, Wk € ®logl (2)R[[z""]]. Further-

1=0
I i
more nglekz)(z) = WEllz,kl)(_Z) for every L € [0,n];
7. for every n € N* and everyk € =110\ E, 0,
Wi = 3 l kl ‘C.ll ) ~[0] 551
W= gy (2K) 2 log (2w (5.51)
i=0"
where 5 = (s1,52) = (-, ~%) s defined by:
— 1,702) — 127 12 Y.
a2 1 +1 1 57L 1 552
= 2 _ S, .
TP \PO) T21P(—28y) ) T 27 T 0T
9%F(z,0
whereas a is given by % =az 2 +0(z72). As a consequence, for every

ne N W €R[[z7Y]
8. for every k € N2\ {0}, val Wl[?] =2(|k|—1).

Proof. Once for all:

e the property 3] is easily derived by an argument of homogeneity;

e the realness and eveness in property [6] are just consequences of the realness of
equation and its property of being be invariant under the change of variable
Z+— —z, and to the chosen normalizations.

In what follows, we investigate the terms under the form wy withk € Z, 110\ Z, 0
and n € N. We first look at what happens when n = 0 and n = 1, step by step so as
to draw some conclusions, then we complete the proof by induction on 7.

Case n =0 and k =1 This is the first case where a resonance appears. However,
this case yields no surprise. Indeed, equation (5.37) for k = 1 reads

1 | IF (o

~ 82F(z,%)

o+ e, ey (5.53)

with Py(9) = Py(d) = 0> — 1. Therefore lemma [5.5|can be applied and one gets a

unique solution wy € C[[z~"]] with, moreover, val wy = 2 and wy (z) = Wz” +o0(z7%)
where a = 1 is given by: % =az 2+ 0(z72).
9 902139
Explicit calculati ields: w =2 _Z, 4 -6 _
xplicit calculation yields: wy(z) F4 g7 30000 °

Casesn=1landke =0\ &
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Cases k =1+e;, i = 1,2 These are the first cases of semi-positive resonances and
are more serious.
Let us concentrate on the case k = 1+ e for which equation (5.37) is

- ~ . _ _0%F Z,Wo
©l+e1 Wite, — (WlWel + Woe, Wez) %7
that is also, from lemma[5.9]and proposition [5.2]
De, (ZWite,) = &lters (5.54)
~ 82F(z,v’170)

~ 3 ~ o~ ~
1 = 7" (W1We, +W2e, W
81+ ( (S e ez) EI)

1 1 1 _ _
= (P(O) +2!P(—2M)>azz '1o(z™?)

5
—6Z71 + 0(272).

The conditions of application of lemma[5.11]are fulfilled: equation (5.54) has a one-
parameter family of formal solutions, depending on Uy ; € C, of the form

~ 3~ ~ ~[1 ~[0
Wite; = Wite + l][l],lZ 3Wel7 Wite = W[ljrﬂ 10g(Z) +W[14]re| ;

Wil =2 e, valiyl, >4, (5.55)

_ 4 1 1 1 _ 5
E PA) (W*if«—un) =1

Explicitly,
I, 197 5 23903 ¢

e @)= 555~ 5765+ roma?
1 72 576 82944

Also remark that the property val W[l(:]—el > 4 characterizes the particular solution
Wite, among the one-parameter family of solutions.

The case k = 1+e; is deduced from the above result from the invariance of
under the change of variable z — —z. One gets a one-parameter family of formal
solutions, depending on Uy ; € C, of the form

~ ~ ~ ~[1 ~[0
Wite, = Wite, + U[l],2W€27 Wite, = W[H]»e log(Z) + W[IJ]rez’

1 ~[1 3~ ~10 ~[0
A @ =l (-0 = ), @ = () (556
— & (1o 11 \__5
2 =PI \P(O) T 21P(—2hy) ) T T 12
In the sequel, we fix Uy = Ujyjp =0, that is we only consider the (well and
uniquely defined) particular solutions Wye;, i = 1,2.

We stress that adding terms of the form Uj;j ;We, and Ujjj2We, has the effect to rescaling
the parameter (U;,U,). In particular, changing the branch of the log has non consequence
for the formal integral.

Cases k =1+ ke; One step further, we consider the case k =1+ 2e;. We take i = 1
only for simplicity. From (5.37) and lemma[5.9] we get:

(5.57)

W W, n _ | 0°F Z,Wo
Daey (Z3W1+2e1) =27 (W1+elwel + Woe, W1 +W3e1Wez) #
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By proposition [5.2] and the above result, the right-hand side of equation (5.57) is
a formal series expansion of the type f = f[l] log(z) + ﬁo] with val fm =2 and

val ﬂo] = 3. Applying lemma . we get for Ii a unique formal solution of the
pplymg g q

~ 1 —T0 _ . 1
form Wy oe, = W[IJLZeI log(z) —kw[lJ]rzel € ®)_olog' (z)C[[z""]] with val w[liZel =5
and val W[ﬂzel = 6. Moreover, W[lllzel solves the ODE

2 ~
sl ) 3l 5 97F (2 )
Do (TWige,) = 2 Wite WVer ™5 5
9%F (z,wp)
~) P4 ]
e T
Comparing to (5.47), one concludes that
~ 1 ~0
Wig2e, = W[l-}—Zel log(z) + W[llzefa
1 3~ o
W[1]+2e1 =212 3W2e17 val wliZel =6.

We now reason by induction, assuming that for every k € [2,K — 1] with K > 3, one
has

~ ~|1 ~[0
W11+ke1 = W[lJ]rkel log(z) + W[likefo’
W[lj-kel = k312 Wye,, vl Wllkel =2(k+1).

Then, by (5.37) and lemma[5.9]

val sz azF(LWo)

3~ 3
Die, (T Wiike,) =2 Zl 3 (5.58)
ki +ky=1+Ke 2 w
ki|=1, [ka[>1
— Z3 ; W1tkie Wi azF(Z7W0)
- +kierWkoeq
ki +ky=K 8W2
ki >1,kp>1
9%F (z,wy)
3~ ~ ~ ~ y WO
+z (wlwke1 —|—w(1+K)e1we2) Tow?
w
With the above reasoning, one gets a unique solution

W1 Ke, = 7t e, 102(2) + 7y e, € Dl-olog!(2)Cl[e"]] where i} |, solves the
ODE
2
3-1] _ ~ . 0d°F(z,wo)
@Kel (Z W1+Ke1) = k1+;2=K lek1e1Wk2e1 7{9W2
k1 >1,kp>1

S 2

- K Wkiei Wke, d”F (z,wp)

- A ; 2 ow?
ki +ky=K

k1 >1,ky>1

Comparing to (5.48), one concludes that

W[IJK‘?] = W[llJrKel log(z) + W[IOJ-KeTO’]

Wiike, = Kz 3Wie,, val Witke, = 2(K+1).

Case k = (2,2) What remains to do when k € Z,\ &} ¢ is to examine the case

k = (2,2). By (5.37) and lemma[5.9]
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D1(3wy) = (5.:59)
~ ~ ~ ~ ~ - ~ ~ \ 9%F(z,W .
23 (Wl+e1 We, T Wite, We, + Wae, Wae, + %Wlwl) 3(\42/2W0) .

We observe from (5.53)) and (5.56) that

1l o~ Nl o~ A A
W[lj’el We2 +W[1le2We1 = 12 31/1}elWe2 + Vo¥4 3We2Wel =0.
Therefore the log-term disappears in the right-hand side of as a consequence
of the symmetries of the problem. Moreover

[0] (0]

- O]~~~ | .
Lie,Wer T Wiy, Wey + Wae, Wae, + —wiwy) > 4.

Ui
val (w 3

By lemmal5.10| we get w, € C[[z~']] with val w, = 6. Explicit calculation provides:
I 21771 5288521 1
60 4328 54000 10

Induction We assume that N is an integer > 2 and we suppose that the prop-
erties announced in theorem are true for any integer n € [0,N — 1] and any
ke En+1,0 \ En70-

We notice on the one hand that Ey1 0\ Evo =1+ Zn0\ Zn—1,0. On the other
hand, for every k € Zy o\ En—1,0.

wa(z) =

Wi, Wk, 02F (z,wp) (5.60)

D1k(W14k) =
K HoZ1k 2 ow?
[ki[>1, k| >1

We set X = log(z) and we consider X as an indeterminate. The right-hand side of
(5.60) is of the form f = ¥ fIX! with

Wkl sz 82F (Z, Wo)

oxf = dx 5 3,2
k;+ky=1+k w
ki|>T,[ka[>1
=N =\ 92
_ (8kal )sz + wi, (8ka2) 0 F(Z, W(])
K +Kr=1+k 2 ow?
k[>T, ko |>1

Using the induction hypothesis, when 1+Kk; € E,11 0\ &y, for any n € [0,N — 1],

n n—1
e (z wﬂklxl> ek Y X
=0

=1
that is Iy Wik, = (Jt.kl)z%vﬁ;1 . Therefore:

(92F(Z,W0)

xf=z2" K )W,
xf =z kl;:k (” 1)Wk1Wk2 w2

>
[k |>1, [ky|>1

\:\71(1 kaz 82F (Z, W())

-3
= (32k)z ™" ; .
k;+ky=k 2 ow?
ki[>1, [ka|>1

Thus dx f = (s¢.K)z >y (W) and (5.60) provides:

oy (@k(z%mk)) = (3eK) Dk (7).
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Observing that dyDydy ' = Dy, one easily gets Wy either from lemma or
lemma , with Wy, = (x.k)z738;1Wk.

The property for wy1 1 is easy and is left to the reader. This ends the proof of theorem

GBI O

Definition 5.9. The two-parameter formal solution defined by theorem is the
formal integral of the prepared ODE (3.6) associated with the first Painlevé equa-
tion. The coefficients A;, 7; and s¢;, i = 1,2, are the formal invariants.

(0]

The formal series w)~ are called the k-th series of the formal integral. We set
VT/k[O] = z‘f'kﬁl[{o] and Wy = z~ Ky for any k € N2,

Remark 5.8. Theorem @] can be compared to [24] and specially to [1], where the
calculations made there translate into ours up to renormalization. We also mention
obvious links between Theorem[5.1]and the instanton-type solutions of Kawai et al
(28 12].

Definition 5.10. For any k € N2, one denotes by & and Fy the following operators:

&= ZEP@-ak)+ ’Lk (Q’(a Ak - T'(Zk‘l)“P'/(a_a.k)>
7 2!
- z—(a 2 k)—’;—k( T.(2k—1)+4),
2
- <zz.;(> R

We need hardly mention the analogue of lemma 5.9}

Lemma 5.12. Foreveryn e N, k € N?,

@n+k — ZT.nQEkZ—T.n’ %anrk — ZT.nng—’Ln.
We finally give a corollary stemming from theorem [5.1]

Corollary 5.1. The formal integral (3.50) associated with the prepared ODE (3.6))
can be written under the form:

_ Z kal[?]’ VK :Uke—(l.k)z-&-(}t.k)U' log(z) ,~ Tk (5.61)
keN?

Equivalently, w(z,U) = ®(z,Uje M (71~ —aUl)log(2) Uze_lﬂ_(fz_”zUl)lOg(Z))where
®(z,u) = Yyere ukw][(]( ) € Cl[z~*,u]] is solution of the equation:

2 . oml - ~
Z(M—Fu%lu)ui&,ﬁ)@:F(z, &),

i=1
(5.62)

( 22: )u aul>¢+ Q(

i=1

The formal series Wl[?] € 7 2K2R[[z 1] satisfy:

-\ = 0]
o foranyke E1p\ Eopo, Diwy = ; ;
\ ’ k kK =k 2! ow?
[k;[>1
(0], [0] ~
Wi, Wi, 02F (z,W0)
2! ow?

° foranyke_,zo\_.lo, /Dkwl[(]—i-@kw[o] = ;
k]+ :k
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e otherwise, ’Dkﬁ][?] + kaWI[SII +Skwl[?],2 = ;
k;+ky=k

Proof. Let us examine more closely. The formal integral can be written as

follows: .
U)=Y) V() + ), Z Z VO e (2), (5.63)
n=0 i=1,2k=1n=

that is we consider the sums along the direction given by the vector (1,1) that de-

termines the resonance. We set TX = Uke~ (A k)z+(xk)Ul log(z) 7k

For the first sum we know that each wy(z) belongs to C[[z7']] and
Yo o V'Wn =Y, o T"wp because ».n = 0.

We now look at the other sums and we use the relations given by (5.51)). We get for
i=1,2,

o 0 n
Z Z Vn+keiwn+ke,- _ Z Vkel Z o Z %lkz 310g( ))l ~L0] Like,

k=1n=0 k=1
_ i nkae[e(u,-kUllog(z))w“[oJ]rk )
n-ke;
n=0 k=1 l
B o oo "
= Z ZT“ elwnJrkel

The equation is obtained by the arguments developed in remark The
reader will check that equation (5.62) is equivalent to the given hierarchy of equa-
tions. O

. 1 1

Let us write u;(z) = U e~ Mz—(n—smUT)log(z) up(z) = Upe P2z (n—mUN)log(2) and
observe that ’(u;,u;) provides the general analytic solution for a non linear differ-
ential equation that only depends on the formal invariants:

uj ﬁq-l—rl 0 up\ %]ulug 0 u
a<u2>+< 0 7L —‘r ) ( 2) N < 0 %ulug u ’ (5'64)

This means that corollary [5.1] can be written in term of formal classification and of
(canonical) normal form:

Corollary 5.2. There exists a formal transformation w = <1~f'(z,u) of the form

=Y wal@), wlecz), (5.65)
keN2

that formally transforms the prepared ODE (3.6) into the normal form equation:

du+By(z)u = By (z,u)u (5.66)

L+a 0 u! 1 0 1
B()_< 011,24—22)’ Bl(z, ) 7 0 0 , W =ujuy.

5.5 Comments

Analogues of proposition can be stated for differential equations, resp. differ-
ence equations, of order 1 and dimension n, with one level and no resonance, given
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in prepared form :
dv+By(z)v = g(z,v) (5.67)

with By(z) = EB (Ajl,,j —i—z_le), Yjnj=n, resp.

J

v(z+1) = Bo(2)v(z) +g(z,V) (5.68)

with By(z) = @ e %14z ") In each case, there exists a formal transformation
J

of the type v = T'(z,u), T(z,u) = Yy UV (2), Vi(z) € C*[[z~"]] that brings the
equation to the linear normal form du+ By(z)u =0, resp. u(z+1) = Bo(z)u(z).

To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level, see
[I31L 15, 18] and references therein. In particular, the whole set of formal invariants is
already given by the linear part (in Jordan form) of the equation.

When resonances occur and as we saw with the first Painlevé equation, the nor-
mal form equation is nonlinear and incorporates new formal invariants. This is es-
sentially a consequence of the Poincaré-Dulac theorem [3[]; for instance in @,
one recognizes the effect of the positively resonance of order 3 with the resonances
monomials u%ug and u 1u%. The classification is detailed in [[19], see also [21] where
the notion of (so-called) moulds and arborification are used (a good introduction of
which is [37]).

Acknowledgements I am indebted to my student Julie Belpaume for helping me to working out
this chapter. I thank Jean Ecalle for interesting discussions on phenomena induced by resonances.

References

1. I. Aniceto, R. Schiappa, M. Vonk, The resurgence of instantons in string theory. Commun.
Number Theory Phys. 6 (2012), no. 2, 339-496.

2. T. Aoki, T. Kawai, Y. Takei, WKB analysis of Painlevé transcendents with a large parameter.
1I. Multiple-scale analysis of Painlevé transcendents. Structure of solutions of differential
equations (Katata/Kyoto, 1995), 1-49, World Sci. Publ., River Edge, NJ, 1996.

3. V. I. Amol’d, Geometrical methods in the theory of ordinary differential equations.
Grundlehren der Mathematischen Wissenschaften, 250. Springer-Verlag, New York-Berlin,
1983.

4. W. Balser, Formal power series and linear systems of meromorphic ordinary differential
equations. Universitext. Springer-Verlag, New York, 2000.

5. B.L.J. Braaksma, Multisummability of formal power series solutions of nonlinear meromor-
phic differential equations. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 517-540.

6. E.A. Coddington, N. Levinson, Theory of ordinary differential equations. McGraw-Hill
Book Company 1955.

7. O. Costin, Topological construction of transseries and introduction to generalized Borel
summability. Analyzable functions and applications, 137-175, Contemp. Math., 373, Amer.
Math. Soc., Providence, RI, 2005.

8. O. Costin, Asymptotics and Borel summability, Chapman & Hall/CRC Monographs and Sur-
veys in Pure and Applied Mathematics, 141. CRC Press, Boca Raton, FL, 2009.

9. E. Delabaere, H. Dillinger, F. Pham, Résurgence de Voros et périodes des courbes hyperel-
liptiques, Annales de I’Institut Fourier 43 (1993), no. 1, 163-199.

10. E. Delabaere, H. Dillinger, F. Pham, Exact semi-classical expansions for one dimensional
quantum oscillators, Journal Math. Phys. 38 (1997), 12, 6126-6184.



112

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

5 Transseries and formal integral for the first Painlevé equation

E. Delabaere, F. Pham, Unfolding the quartic oscillator, Ann. Physics 261 (1997), no. 2,
180-218.

E. Delabaere, F. Pham, Eigenvalues of complex Hamiltonians with PT -symmetry, Phys. Lett.
A 250 (1998), no. 1-3, 25-32.

E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. Henri
Poincaré, Sect. A 71 (1999), no 1, 1-94.

E. Delabaere, D.T. Trinh, Spectral analysis of the complex cubic oscillator, J.Phys. A: Math.
Gen. 33 (2000), no. 48, 8771-8796.

P. Deligne, Equations différentielles a points singuliers réguliers. Lecture Notes in Mathe-
matics, Vol. 163. Springer-Verlag, Berlin-New York, 1970.

G. Dunne, M. Unsal, Resurgence and trans-series in quantum field theory: the CPY~! model.
J. High Energy Phys. 2012, no. 11, 170, front matter + 84 pp.

G. Basar, G. Dunne, M. Unsal, Resurgence theory, ghost-instantons, and analytic continua-
tion of path integrals. J. High Energy Phys. 2013, no. 10, 041, front matter+34 pp.

G. Dunne, M. Unsal, Uniform WKB, multi-instantons, and resurgent trans-series. Phys. Rev.
D 89, 105009 (2014)

J. Ecalle, Les fonctions résurgentes. Tome Il : I’équation du pont et la classification analy-
tique des objets locaux. Publ. Math. d’Orsay, Université Paris-Sud, 1985.05 (1985).

J. Ecalle, Fonctions analysables et preuve constructive de la conjecture de Dulac. Actualités
mathématiques, Hermann, Paris (1992).

J. Ecalle, Singularités non abordables par la géométrie. Ann. Inst. Fourier (Grenoble) 42
(1992), no. 1-2, 73-164.

A. Getmanenko, Resurgent analysis of the Witten Laplacian in one dimension. Funkcial. Ek-
vac. 54 (2011), no. 3, 383-438.

A. Getmanenko, Resurgent analysis of the Witten Laplacian in one dimension-1I. Funkcial.
Ekvac. 56 (2013), no. 1, 121-176.

S. Garoufalidis, A. Its, A. Kapaev, M. Marifio, Asymptotics of the instantons of Painlevé I.
Int. Math. Res. Not. IMRN, 2012, no. 3, 561-606.

U. Jentschura, J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions.
Phys. Lett. B 596 (2004), no. 1-2, 138-144.

U. Jentschura, J. Zinn-Justin, Multi-instantons and exact results. 1. Specific cases, higher-
order effects, and numerical calculations. Ann. Physics 313 (2004), no. 2, 269-325.

U. Jentschura, J. Zinn-Justin, Multi-instantons and exact results. II1. Unification of even and
odd anharmonic oscillators. Ann. Physics 325 (2010), no. 5, 1135-1172.

T. Kawai, Y. Takei, WKB analysis of Painlevé transcendents with a large parameter. 1. Adv.
Math. 118 (1996), no. 1, 1-33.

T. Kawali, Y. Takei, WKB analysis of higher order Painlevé equations with a large parameter.
IL. Structure theorem for instanton-type solutions of (PJ), (J =1,34,11 —2 or IV ) near a
simple P-turning point of the first kind. Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 153-219.
M. Kohno, Global analysis in linear differential equations. Mathematics and its Applica-
tions, 471. Kluwer Academic Publishers, Dordrecht, 1999.

G.R. Kuik, Transseries in Difference and Differential Equations. PhD thesis, Rijksuniversiteit
Groningen (2003).

M. Loday-Richaud, Divergent Series, Summability and Resurgence II. Simple and Multiple
Summability. Lecture Notes in Mathematics, 2154. Springer, Heidelberg, 2016.

M. Marino, R. Schiappa, M. Weiss, Multi-instantons and multicuts. J. Math. Phys. 50 (2009),
no. 5, 052301, 31 pp.

C. Mitschi, D. Sauzin, Divergent Series, Summability and Resurgence 1. Monodromy and
Resurgence. Lecture Notes in Mathematics, 2153. Springer, Heidelberg, 2016.

C. Olivé, D. Sauzin, T. Seara, Resurgence in a Hamilton-Jacobi equation. Proceedings of
the International Conference in Honor of Frédéric Pham (Nice, 2002). Ann. Inst. Fourier
(Grenoble) 53 (2003), no. 4, 1185-1235.

D. Sauzin, Résurgence paramétrique et exponentielle petitesse de I’écart des séparatrices du
pendule rapidement forcé. Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 453-511.

D. Sauzin, Mould expansions for the saddle-node and resurgence monomials. In Renormal-
ization and Galois theories, 83-163, IRMA Lect. Math. Theor. Phys., 15, Eur. Math. Soc.,
Ziirich, 2009.

A. Voros, The return of the quartic oscillator: the complex WKB method. Ann. Inst. H.
Poincaré Sect. A (N.S.) 39 (1983), no. 3, 211-338.

W. Wasow, Asymptotic expansions for ODE. Reprint of the 1965 edition. Robert E. Krieger
Publishing Co., Huntington, N.Y., 1976.

J. Zinn-Justin, Quantum field theory and critical phenomena. Oxford Univ. Press (1989).



Chapter 6
Truncated solutions for the first Painlevé
equation

Abstract In the previous chapters, we studied the unique formal solution of the
first Painlevé equation then we introduced its formal integral. In this chapter, we
show that formal series components of the formal integral are 1-Gevrey and their
minors have analytic properties quite similar to those for the minor of the formal
series solution we started with (Sect. [6.1)). We then make a focus on the transseries
solution and we show their Borel-Laplace summability (Sect. [6.2). This provides
the truncated solutions by Borel-Laplace summation (Sect. [6.4).

6.1 Borel-Laplace summability of the k-th series and beyond

We described with theorem [5.1] and its corollary [5.0] the formal integral
w(z,U) = Lyene Vkﬁ{? | associated with the first Painlevé equation. Our goal in this
section is mainly to show the following assertion.

Theorem 6.1. For every k € N2, the k-th series Wl[?] is 1-Gevrey, its minor Wl[?] de-

fines a holomorphic function on 2 with at most exponential growth of order 1 at
[0]

infinity. Moreover, W' can be analytically continued to the Riemann surface 17498
with at most exponential growth of order 1 at infinity on 2"

We already know by theorem and theorem that wy = v?([)o] enjoyes the
above properties. Our task comes down to studying the other k-th series. This is
what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in definition 5.3]

Lemma 6.1. We set P(9) = d*> — 1 and for every k € N?, P(d) = P(—A.k+0)
with A = (A1, 2) = (1,—1). Fori= 1,2, we denote by P, () the operator defined by
Pe;(0) = Pe;(9)9 so that Pe,(—2;) # 0. Then, for any p €0, 1, there exists M,, ) >0
such that, for every § € C\ U D(m,mp) :

mez*

1. fori=1,2,

=< < N
Rgl <o

113
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- . (C+A. k (0)
2. ke Z th k| > 2, = d.
for every k € By o with | |2_ for m A(—C < |k\—1 and, for
M
k£ (1,1), < 20

Moreover one can choose M, (o) = 4.

Proof. We only examine the case k € Z1 o\ {(1,1)} with |k| > 1. With no loss of
generality, we can assume that k = (k,0) with k > 2. Thus
A(-8) = +k—1)({+k+1), £+ Ak = § +k and we notice that
|{+k—1|>(k—1)p and | +k+ 1] > (k+ 1)p for { € C\ Uyez D(m,mp).

Therefore, \li(l O <@ 11 e for § € C\U,pez+ D(m,mp). Now either EK(C—i—k) >0,
thus |§ + &+ 1| > max{1,|{ + k|} and therefore m‘“‘{é(‘gz)}" Kl < (= )p; or else
R(E + k) <0, which implies |§ + k — 1| > max{1,|{ + k|} and finally
max{1,/{+A k[} < O
A=)l (k+1)P
Lemma 6.2. We follow the conditions of lemma |6.]] E We set Q(d) = =30, while

Ox(9), Rk(d) are given by (-) 2 with T = (—3,-3). Then Sor every
ke E10\{(1,1)} with |k| > 1, for every { Eﬁp ,

12l(1E]) _ R|(IE) 9,2 o
2 0

A0 =M R o)

Proof. We notice that lemma|6.1|can be applied for { € é,’(’o) .

We have |Qk|(§) =3(k| = 1)[& + A K| (see -) Therefore, by lemma
‘Qk‘ 1) . In the same way, one easily sees that |Rx(d)| < 3|k|(|k| — 1)

(cf @]}) thus the result by lemmal6.1] O

We eventually introduce the following notation that complements definition[3.10]

Definition 6.1. Assume that G({ Z a(g W is an analytic function on the
>0
open polydisc Ay = H, OD(O, ri). One defines the function |G|, analytic on Ay, by
GI(&,w) =Y lail(&
>0

6.1.2 The e;-th series

We start our proof of theoremby paying special attention to we, = WLO].

Lemma 6.3. The e;-st series We; is 1-Gevrey. Its formal Borel transform reads
B(We;) = 8 +We, and W, is holomorphic on e%.’w) with at most exponential growth
of order 1 at infinity. More precisely, for every p €]0,1], there exist A >0 and T >0
such that for every § € ég)), we, (§)] < Ae®l8l. In the above upper bounds one can

choose A =1 = 5;%. Moreover, we; can be analytically continued to the Riemann

surface ZV, with at most exponential growth of order 1 at infinity on V).

Proof. It is enough to study we, since we, (z) = We, (—z). We know that we, solves

(5.43), namely:
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15 1 aF(zﬂo))w
€

apel (a)ﬁ;el - <4ZZ T Fe. = a —2. (61)

i

The formal Borel transform of we, reads (we,) = O + We, Where the minor
we, (€) € C[[{]] satisfies the following convolution equation, deduced from (6. 1):

PO 15, 9F(C,w R
IPe, (0)We, = <4C+(8w0>> % (8 + e, ). (6.2)
In this equation, we use the notation:
OF (L, Wy) - - R
M) _F (@) +2hnin(@) = 4L+ m0) 63)

Equation (6.2) can be thought of as a linear differential equation with a regular
singular point at 0.

SRR 2
Instead of , consider the convolution equation dF, (9)w = <a1 ¢ +a2§—> *(0+w).

2!
Setg =B, (9)w= (L +2)i. For { #0, one gets g = (a1¢+a2§)* <5+L).
! ’ 2! C(C—I—Z)
g \O g O
This implies by differentiation that 3 = ay (——5— 2 h
1S lmples y 1rerentiation at g a1(§(€+2)> +a2<c(§+2)) where

. dig
?’) = d—gl The last ODE has a regular singular point at 0. One can apply the same trick to
(6-2) but for the fact of getting an infinite order differential operator.

Equation (6.2) can be analyzed with the tools developed in Sect.[3.3.2] We introduce

~ 1 F(¢,w ~

G(¢) = ZSQ’ + m = —% + ¢ *wy(&) and we remark that G belongs to the
w

maximal ideal .Z & (ég% of 0 (é;,o)) for any p €]0,1[, thus - 'Geo (ééo)) is

well-defined. We set e, = P"(&)&"@—kﬂ,l and (6.2)) becomes

€]
~ o~

Py (9)0e, = G+ (ﬁgll(a)a”é) +GxTe,. (6.4)

o~ o~

Observe that G * (13;1@)8’16) belongs to .4 O (é;,o)). Let R > 0 be any real

positive number, Ug be the star-shaped domain Ug = D(0,R) ﬁé’(o) and we set

B, ={ve O(Ug),||V|lv < r}, for r > 0 and v > 0. By proposition [3.9| and lemma
when v — oo,

171@)3 (6 (7,'3)3716)) I 0.
Explicitly
171@)37 (6+ (55! @0718)) I < 52197 6+ (51013761

My ) =~ 1~y a A A
< “2O 071G lol1 7 (8)9 Gl

Also, ||15e’11(§)/8\*l (G*ﬁel) v < MH;?\’]GHOH%I ||v, Equation (6.4) thus trans-

VR?
lates into a fixed point problem Ve, = N(Ve, ) where N : B, — B, is a contractive map-

ping for v large enough. This ensures the existence and uniquess of we, € € (é(o)).
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The same reasoning can be applied for showing that Wwe, can be analytically contin-
ued to 21, in application of proposition4.5/and theorem

To get upper bounds, we notice by 1} and lemma [3.3that for every { € %E)O),
’5’15(0 ‘ <i+lx Wo(|Z|) where W (E) = Ae™ stands for the majorant function
of wy given by theoremand corollary thus withA =4.22and 7 = 4%. View-

ing the Gronwall-like lemma one sees that for every § € 9.2;,0), [We, ($)] < We, (1C])
where Wel solves the convolution equation:

I - 1 ~ P

This means that l’AVe. has an analytic Laplace transform under the form!:

_ 1 /1 1 A\" 4.22
wel(z)=2”<+) , A=4221="".
1P 4z zz—7 p

p < 1), thus |[We, (z)| < 1. Therefore by lemma 3.5} for any 0 < p < 1, for every

. 5.81 . ~
fe %Ef”, [We, (£)] < S%e » || One shows in the same way that we, has at most

exponential growth of order 1 at infinity on Z(!), using lemma and theorem
O

6.1.3 The ke;-th series

We now turn to the ke;-th series, that is the terms wye, = W,[{(lli of the transseries,

fork > 2.

Lemma 6.4. For every integer k > 2, the k-th series wie, € z **VC[[z7"]] is I-

Gevrey, its minor Wie, defines a holomorphic function on 2 with at most expo-
nential growth of order 1 at infinity. Moreover, Wie, can be analytically continued
to the Riemann surface 2", with at most exponential growth of order 1 at infinity

on ZW).

Proof. Once again from the invariance of the equation (3.6) under the symmetry

z— —z, there is no loss of generality in studying only the ke;-th series Wy, .

We know that Wy, We, are holomorphic on é,(o) and can be analytically continued to
L] 0 ~ ~ ~ ~

M. Moreover, for every § € 5. [W0(§)] < Wo (&), [We, ()] < We, (§). & = ¢

—(1 - ~ . -
and for every £ € Zy . [0(£)] < Wo(&). [e, (§)] < We, (€). & = leng({), where
Wo and Wel are entire functions, real positive and non-decreasing on R™, with at

most exponential growth of order 1 at infinity.
We know from lemma[5.8]and (5.48) that for every k > 2,

Wie, (2) = Zakel,lzil ez 2N
>0

A
1 We recall that 2 <—) = Ae™,
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solves the differential equation
{/\V/klﬂwkzﬂ 82F<Z’ﬂ;0)

S=k 2! 8w2
ki >1,ko

. (6.6)

lel Wkel =

\%

We deduce that the formal Borel transform %(Wie, ) = dyge, 00 + Wie, has its minor
which satisfies the identity?:

le] w\ke] — ; <ak|t3|,06 +w\k191 ) * (akzehoa +w\k261) * azF(C;WO)
ko =k 2! aW
k1>1,ky>1
(6.7)
O2F (8, w -
where 9°F (G, W) =2f>(8) = {, whereas
ow?
_ S S IF (L, W _
lel Wke1 - Pke1 (a)wkel + 1 * lel (a)Wkel + (CRkel - (aCVVO)> * Wkel
6.8)

oF
with (S, %) given by (6.3).
w
These equations can be seen as linear differential equations with a regular
point at 0. They are all of the type

o~ ~ -~ N o~
p(0)i+1x[q()] = §+ [r()w] + Y f ™ (6.9)
n=0

investigated in Sect.[3.3.2]and Sect. f.5] We use the methods introduced there and
make a proof by induction on k, considering the operators N; defined as follows:

0 - F) N aﬁ 7/\ ~
Ni¥ = Py (9) [1 *[Qu0 (V] + (CR<k,0) + (§WW°)> v

N (asye,.08 +Wiye,) * (hge, 08 +Wige,) | O7F (£, 0)
k1+;2’:K 2' 8w2
ki >1,kp>1

Case k=2 Let R > 0 be areal positive number, p €]0, 1] and Uk, be the star-shaped
domain Ug = D(0,R) ﬂég)). We set B, = {v € O(Ug),|V|lv < r} for r > 0 and
v > 0, and we look at the mapping N» : v € B, — Nav. We know that w(, o) € 6"(9.?(0))

IF (§,w O2F (8, W .
(S, ) and (C’ZWO) belong to A O (%E,O)). Using lemma and ar-

w w
guments already used in Sect.|3.3.2.3] one easily shows that N, is a contractive map.
Thus equation (6.7), k = 2 has a unique solution in B,. This shows, by uniqueness,

while

that Wy, can be continued holomorphically on é(O).
When replacing Ug by the open set of L-points % = %, 1 C # (1) and arguing like
what have been done for the proof of theorem one shows that Wy, can be holo-

2 Remember that ake, 0 = 0 as a rule, apart from the case k = 1 where ae, o = 1.
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morphically continued to the Riemann surface Z2(!)

W()

To get upper bounds, we notice that for every ¢ € %p , ’ ’ (E,Wy)
°F

o) with & = [£]. %z@ww 21£21(8) = & and
2 (2.0 - \f1|(§)+2|fz|*wo(€)=4€+5*Wo(5)-Using temmaft.Jand the

L] ~
Gronwall lemma | we sees that for every { € %’;)O), [Wae, (§)] < Wae, (&) where
W2e1 is the entire function, real positive on R™, with at most exponential growth of
order 1 at infinity, satisfying the linear equation:

WO

<[5

and ‘

1 ~ 9 aF ~
Woe, = 3+ M ":‘F (é W()) * Woe, (6.10)
My (0) 4
(5+We)? |°F| . -
t e *lo2 (&, Wy).

When working on %", one rather argues with the Gronwall lemma thus get-
ting [Wae, (§)| < Wae, (&) for every ¢ € @E,l). In these estimates, & = leng(&), and

Wgel is the entire function, real positive and non-decreasing on R*, with at most
exponential growth of order 1 at infinity, satisfying the linear equation:

1 ~
—— W, = | 3+ M é—i— (é Wo) | % Wae, 6.11)
Mp )
(8+We, )2 [9*F|,,
+ T‘* T2 (&, Wy).

Induction Let K > 3 be an integer greater than 3. We assume that for every integer

k € [0,K[, Wge, is holomorphic on é(o) and can be analytically continued to Z(!).
Furthermore,

for every ¢ € Y, [Wie, ()] < Wi, (€), € =1,

for every CG@LI), [Wie, (§)] < Wie, (€), & =leng({),

where, in each case, Wkel is an entire function, real positive and non-decreasing on
R™, with at most exponential growth of order 1 at infinity.

One easily shows that the mapping Nk : vV € B, — NV is a contractive, either
working in (O(Ug), ||.|lv) orin (6(%).1),||.||v)- Thus, by uniqueness, Wge, is holo-

morphic on é’(o) and can by analytically continued to % M

We get upper bounds, either in ,ég)) with the Gronwall lemma or in @E)I)

with the Gronwall lemmam We get that for every § € %’,(,0) [Wke, (§)] < Wke, (€)
with & = |{], where WKel is the entire function, real positive on R™, with at most
exponential growth of order 1 at infinity, satisfying the linear equation:
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8F

1 9
Wge, = | 3+ *M 5 + =
Mpo) ( 4

(5 w0)> * Wee, 6.12)

0%F _
* M‘(é’WO)'

+ (ak|e| 706 + wklel ) * (akze] ,06 + szel )
krk; K 2!

k1 >1,kp>1

—(1) |~ ~ Lo
Also, for every { € %E, ), [Wke, (§)] < Wke, (&) where & = leng({), with Wge, an
entire function, real positive and nondecreasing on R™, with at most exponential
growth of order 1 at infinity, satisfying the linear equation:

1 -~ 9 oF PN
ke = (34 Mo )& +| 5| (6, W) |+ Wie,
p.(1)
+ (ak1e1,05+wk1e1)*(ak2e1,06+wk2e1) a F (é WO)
k]+;2:K 2' 8w2 '

k1>1,ky>1

This ends the proof of lemmal6.4 O

6.1.4 The other k-th series

Looking at (5.53)), one easily see that the above methods can be applied to study
the minor wy = W[IO] of the (1,1)-series wy. Thus, theorem [6.1|is shown for k = 0
anyk € 5,10\ Z,0 and with n = 1. The rest of the proof is made by induction on
n, using the hierarchy of equations given in corollary [5.1] and the reasoning made

above. This part holds no surprise and is left to the reader. This ends the proof of
theorem [6.11

6.2 Borel-Laplace summability of the transseries

We now restrict ourself to the transseries solution of the ODE (3.6), having in view
of analyzing their Borel-Laplace summability. From the invariance of the equation
under the symmetry z — —z, it is enough to only focus on the transseries
associated with the multiplier A; = 1, namely:

w(z,Uey) = Z Ve, (z), VK =Uke Mkiz—mk, (6.13)

6.2.1 A useful supplement

We complete lemma [6.4] with the following result.

Lemma 6.5. For every p €]0,1], there exist A=A(p) >0, T=1(p) > 0 and a se-
quence (Wkel) of entire functions, real positive on R, with the following prop-
erties:

k>2
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o forevery integer k > 2, Wye, (€) € EX*3C{E};
3 k
&)< <\2Fp) Ae™Sl and for every integer m € [1,2k—3],

Wi (§)] < (242) 4t (£ %) (2
ke (O] < Wi, (€) with & = |,

e forevery( e L%._’E,O),

27 . .
Moreover one can choose A = T = — in the above estimates.

Proof. We know by theorem [3.3] lemma [6.3] and lemma [6.4] that, for every integer
k € N, Wie, is holomorphic on é(o). Also, for every p €]0, 1], for every § € fégo),
[Wee, (§)] < Wkel(é) with & = |¢| where Wy (&) = Age™5 and/\l/AVel €) :Aelef‘*lg
are convenient majorant functions while, for any integer k > 2, W, solves the con-
volution equation ( - One first shows that for any integer k > 2, Wee , (&) belongs

to E2473C{&} and we reason by induction: using the fact that ’ 2°F (E, W) =0(&),

one sees that (8 + We, )*? awz ‘ (E,Wp) = O(&), thus Wae, (§) = O({); then,
by an induction hypothesis, we check that integer k¥ > 3 of the form k =k; +k»
with k1, k2 € N*, (ag,e,.08 + Wiye,) * (ahye; 08 + Wiye,) = O(E2*73) (we recall that
aye, 0 = 0 apart from ae, o = 1), thus Wkel (£) = 0(E%*3) by .

We then introduce the generating function W(E,V) = Z VEWie, (£) and we de-
k=2

duce from (6.12)) that W satisfies the identity:

1 9y
I <3+ &+

or ' €. w0>> W
p.,(0>

+ ivk (ak191706+wk161)*(akzel,06+wkzel)
= K ; k 2!

| 2F | (&)

+kyr=
ky>1,ky>1
This can be written also as follows (remember: age, o = 0 apart from ae, 0 = 1):

1

w
My (0) ,

9 IF |, — _ (V(8+We)+W)T |92F|,, -
<3+4MP~,(0)§+ > (§7W0)> * W+ 2!' 302 (&, Wo)

~ 4.22
Explicitly, one can choose M, o) = % (lemma i Wo(é) =420 ¢ (theorem

.b We, (&) = 581e o (lemma , and we recall that (5 Wo) = & while

aw (E,Wp) = 4E + & « Wy (). Therefore, W solves the convolution equation:

*2
oW = (3+ (4+43))é+4.22§*e%225> *Vv+§* (v(5+4'p“e4§35)+w> .

The generating function W(&,V) is thus the Borel transform of W({, V), solution
of the algebraic equation
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i (3 (e 1+4n L\
PW =17 4p z2 z—“%

1 581 1 _
VO+[)FA&>+W

22
2
with W(z,V) ~ 2p {7 <1 4 281 181 ﬂ when V — 0 with |z| large enough. We
) N

view as a fixed poTt problem W=NW). We set U = D(co, 27) x D(0, 3f)
we equip the space ¢'(U) with the maximum norm and we consider the closed
ball By = {W € 6(U), |[W| < 1} of the Banach algebra (&(U),||||). One easily
shows that N : By — Bj is a contractive map (remember that p < 1), hence the
fixed-point problem W = N(W) has a unique solution W = W(z,V) in B. Its Taylor

expansion with respect to V at 0 reads W(z,V) = Z Vkﬂ/kel (z), where (Wkel i>2
k=2
is a sequence of holomorphic functions on the disc D(eo, 27) and, by the Cauchy

inequalities, for every integer k > 2, Sup|,| 21 |Wke1 (2)| < (T‘F) . Moreover, since
D
Wie, () = O(E%*73), Wie, (z) = O(z"2*~1)). We end the proof with lemma

Wie, is an entire function, for every & € C, [Wye, (€)| < ( f) 27e4p|‘5‘ and for
every positive integer 1 <m <2k —3,

@< (32 (2)" (g eeh) i

This ends the proof. O

6.2.2 Borel-Laplace summability of the transseries

Before keeping on, we lay down a definition, see also [[11].

Definition 6.2. Let (g )r>0 be a a sequence of formal series gx(z) € C[[z""]]. One says

that the transseries g(z,V) Z ngk ) is Borel-Laplace summable in a direction

0cSif each 8k is Borel- Laplace summable in that direction and if the series of

functions Z vk9 gx(z) converges uniformaly on any compact subset of a domain
k=0

of the form I:I? x ¥ . In that case, one denotes by .7%g(z,V) € ﬁ’(ﬁg X ) its sum,

called the Borel-Laplace sum of the transseries.

In the sequel, we have in mind to analyze the Borel-Laplace summability of
the transseries given by proposition This means analyzing the Borel-Laplace
summability of the transseries } ;. Vkﬁkel (z), resp. Yip Vkaez (z), then substitut-
ingV=U e %3/2, resp. V=U ¢?z3/2, in the Borel-Laplace sum. Notice however
that the mapping z — e*%z%/2 is ill-defined on C but should be considered on the
Riemann surface of the square root or on its universal covering C. This justifies the
use of domains of the form IT; 9 cC,0eS! (see deﬁmtlon in what follows.
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Definition 6.3. Let g : C — Cand : R — R be two continuous functions, 6 € S!
and 7 € R. We set U%(g, 7, k) = U~ {z € T2, |g(z)| < k(c)} C C. Let I C S' be
an open arc, ¥ : I — R a locally bounded function and .#" : I — (R, R**) a con-
tinuous function. We denote by ¥'(1,g,v,#") the domain of C defined as follows:

VY (Lg,y.#)=|J0%(s.7(8),7(8)) c C.
el

Theorem 6.2. The transseries solutions of the prepared equation (3.6) associated
with the first Painlevé equation,

W(z,Ue) = Y. Vi(z,U)Wre (), Vi(z,U) =Ue ™ z7% i=1,2,  (6.15)
k=0

are Borel-Laplace summable and their Borel-Laplace sums are holomorphic solu-
tions of. More precisely, for any R > 0, for any open arc I; =] jx,(j+1)x[C S},
J €Z, the sum

iz, Ue;) := i[w(z,u)]kﬁfwkei(z), (6.16)
k=0

with IJ =n(l;) C Sy and z= n(z) € C*, converges to a function of (z,U) holo-

morphic on ”//(I],Vl( ), T, %) x D(0,R) where one can choose ©(0) = ‘H%?)\

2
and # (0) :c € R — —2— Moreover, the sum /'iw is solution of equa-
37(0)24/sin(0)
tion (3.6).
Proof. This theorem is a consequence of theorem [3.3] lemma [6.3] lemma [6.4] and

lemma Let us precise the reasoning for i = 1 and the open arc Iy =]0, [C St
We know from lemmas[6.4|and . 6.5| (applied with m = 2k — 3) that for any & €]0, 7|

and any integer k > 2, for every { € 36"(]6 ,m—9[),

; k _
|wke.<c>|s<3vs;“(‘”) 37 (o) @, E=lh @1

2k —4)!

withAg = 75 = We now fix a direction 6 € I and for k > 2, we consider

27
4sin(8)’

the Borel-Laplace sum
o ° wei@ 19 i
i @= [ e @at = [ e g e eag,
0

For any ¢ > 79 and any z € ﬁf, |e‘256i9| < e, for & > 0. Therefore, for z € ﬁf
and £ >0,

e (£

<3\/W> A28 ((‘3%4 *eT"‘:)(f)-

2k —4)!

The function .79 Wy, (z) := . 657 Wee, ( z) is thus holomorphic on IT® and, for every
z€ ﬁf,
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Fig. 6.1 The (shaded) domain 40
¥ (Ip,V1(0.5),7,.%) on pro-
jection, for 7(6) = m

((8))(c) = m "

and V;(z,U) = Ue353/2.

-20

-40

—60- B

k
~ 3/sin(0) A\ ¥ ¢
6 < -
7 Wkel(z)|< 2 > (c) c—Tp

We turn to the series of function Z (U el 2) 70 Wee, (2). From what pre-
k>2

cedes, for any R > 0, for any ¢’ > ¢ > 14, for every (z,U) € H9 x D(0,R), the

3142272(9) We end with theo-
sin

rem [3.3] and lemma for any direction 6 € Iy, for any ¢ > Ty, the series of
k
functions Z (U e i/ 2) 7% Wie, (z) defines a holomorphic function on the do-
k>0
s 7v0 : 0 _ 0 2.3/2
main 8% x D(0,R) with B° = U, {z € 1, [Re™*z 2| < SAZM} Making 6
varying on Iy, these functions glue together to provide a holomorphic function
Sy w(z,Ue) on the domain ¥ (Iy, Vi (R), T, %) x D(0,R) with 7(6) = % and

4|sin

series is normally convergent when |Re_zz3/ 2| <

) 22 . _ . .
H(0):ceR— o) (since Ag = Tg), see Flg. Finally, we encourage
the reader to show that .#/i# solves the ODE (3.6). O

Remark 6.1. The theorem [6.2] can be shown by other means, see the comments in

Sect.

6.2.3 Remarks

In what follows we set Wy i(z,U) = Ylfﬁ(z, Ue;).

1. We know by proposition [5.2] that Wye, (z) = Wre, (—2) for every k > 0. One de-
duces that for any j € Z, for any 0 € I}, for every z € Hf(;e_e), 2 € H{(fe) and
b Whe, (2) = R Wre, (ze'™). Therefore, for any 6 € I;,foreveryz € Hf(;fe) ,

ST0%(z,Uey) = .7 OW(ze'™, Ue™/%e,) and, as a consequence, for any j € Z:
for every z € ¥ (I;,Va(U), T, H), Weru,j2(2.U) = Wiruj-1.1(2e”, Ue™/?),

forevery z € ¥ (I;,Vi(U), T, ), Wiruj1 (2,U) = Wi j—1 2 (26", Ue™/?).
(6.18)



124 6 Truncated solutions for the first Painlevé equation

2. Here we adopt the convention : for z = re'® € C, we setz = r'* € C.
We know by propositionthat Wie; (z) € R[[z71]] forany k € N, i = 1,2. Thus,
forany j € Zandany 6 €1}, forz € Hf(e), SO Wie; (2) = SO Wy, (2). Therefore,
for any j € Z, for every z € ¥ (I;,Vi(U), 7, %),

me,j-,i(zv U) = th,(fjfl):i(zvv)
and with (6.18) we deduce that, for every z € ¥ (I;,Vi(U),r,.#) and
z€ ¥V (1;,V2(U), 7, ) respectively,

Wtru,j,1 (Z, U) = Witru,j2 (Zef(ZjJrl)in"ﬁef(jJrl/Z)in') (6.19)

Wirn2(2,U) = Wiruji1 (Ze—(2j+1)i7t’Ue—(j+1/2)izr).

6.2.4 Considerations on the domain

Viewing (6.18) and (6.19), it will be enough for our purpose to consider the
domain ¥ (Io, Vi, 7,.#) with Ip =]0,z[, (Vi(U))(z) = Ue 3z? with |U| > 0,

_ 7 _ 2c% . . _
©(0) = graman (A(0))(c) = R We would like to describe the bound

ary of this domain. As a matter of fact, we will restrict ourself to describing its
subdomain U (V;(U),7(6),.# (6)) with 6 = 7/2. Considered by projection on C,
this domain reads: z = x+ iy, (x,y) € R2, belongs to U3 (V1,7(%),# (%)) if and
only if there exists A > 1 so that

27
iy}
y< =7

2
Ule ™ (*+y2)Y* < 5/12.

(We take ¢ = 274 > 7(7/2)). We now fix y = —% A with A > 1 and we remark that
z=x+iy belongs to U3 (Vi (U),7(%),# (%)) iff x > X with X such that

[U]e ™ (X2 +y?)3/* = 2 (4y>2. (6.20)
3\ 27

Indeed, just see that the real mapping x — e ¥ (x? +-y?)? is decreasing when |y| > p,

and use an argument of continuity. With the implicit function theorem, these argu-

ments show the existence of a unique solution X :y €] — oo, —3 [ X (y) of

of class ¥* and increasing with y, which can be described as follows. The above

equality is equivalent to writing

i

3 4
(1+)y(22> =oy’e®, o= (218372|U|> . (6.21)
and we can remark that X (—o~1/2) = 0if —a~!/2 < —3. When assuming y* > X,
we get X = — ln((:yz) +¢&, € =0(1) as a first approximation. Plugging this in (6.21)),
one gets
x o) (o) o

4 42y2
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and one can keep on this way to get an asymptotic expansion at any order of the
solution®. To put it in a nutshell:

Corollary 6.1. In theorem the sum wy,01(z,U) = #W(z,Ue)) defines, for

any U € C*, a holomorphic function with respect to z on a domain which contains,

27
by projection on C, a subdomain of the form {z =x+iy, y< —7 X >X(y)}

where X is an increasing €* function on | — oo, —%[, whose asymptotics when
y — —oo is given by:

X(y)=-

In(ay?) In?(ay?) ,2 32 \*
3 (2 6.22
2 P o0 a= {5 (6.22)

and so that X (—o12) =0 if —a~1/? < 3.

6.3 Summability of the formal integral

We saw with corollary that the formal integral can be interpreted as a formal
transformation w = ®(z,u),

D(z,u) = Z ukv?][?] (2), (6.23)
keN2

that formally transforms the prepared ODE into the normal form equation
(5.66). It is then natural to wonder whether this formal transformation gives rise to
an analytic transformations @y (z,u) by Borel-Laplace summation,

Pg(z,u) =D (z,u) = )y ukjﬁeﬁ{(o](z),
keN2

with a definition of the sum similar to that of definition[6.2] One could give a positive
answer to this question, for the price of some further effort.

One has to extend lemma to the whole k-th series Wl[? | 1t is worth for this matter to
complete the Banach spaces detailed by proposition @] by other “focusing algebras” for

which we refer to [6]], in particular those based on L‘l,—norms.

This does not mean that the formal integral is Borel-Laplace summable : this is
wrong, due to the effect of the exponentials. Only the restrictions of the formal inte-
gral to convenient submanifolds is 1-summable, which means here just considering
one of the two transseries. However, the sums of the two transseries share no com-
mon domain of convergence and a fortiori the formal integral cannot be summed by
Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with the
truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional inverse of
the function xe*.
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6.4 Truncated solutions for the first Painlevé equation

We know from theorem that the sum wy, ;;(z,U) = Y’fﬁ(z, Ue), j€Z
and i = 1,2, is a holomorphic solution of (3.6), for z on a domain of the form
¥ (1;,V;(U),7,2 ). From its very definition and from corollary the domain
¥ (1;,V;(U),,2 ) contains a sectorial neighbourhood of infinity with aperture 1 i
where (see Fig.[6.1):

e wheni=1, 7131 =]— %n,—i—%n[—jn for j even, 7/-,1 =]- %n,—%n[—jn for j
odd;

o wheni=2, I;,=]—in,+4n[—jr for jodd, I;,=]—3n,—in[—jm for j
even.

To go back to the the first Painlevé equation (2.1)), we use the transformation .7 of
definition [3.20

Definition 6.4. The conformal mapping .7 sends the domain ¥ (1,g,7v, %) onto the
domain 7 (¥ (I,g,v,-#)) and we set

8,81 H) =T (V(Lg1.#)), B(Lgy.d)=n(S(Lgy. %)) 624)

The domain &(/;,V;(U),,.#") contains a sectorial neighbourhood of infinity with
aperture K ; (see Fig.[6.2):
7

e wheni=1,K;; =] fgir,f%n?[f%jﬂ for j even, K| =] f%n,f%n[fgjn for
i odd;
/ | — PR B S R i o= Uy Tpr 4

e wheni=2,K;p=|—sm,—sn[-3jn for jodd, K;» =] — 5 7, —sx[—5 jm for
j even.

In any case, the domains 8 (1;,V;(U), t,.%#") are in connection: for every j € Z,
B(Ij11,Va(U), 7, ) = e W PS(1;, Vi (U),7,.4).

From (3:4), (2.6), (2.7), the transformation
2€ V(I Vi(U), T, ) < x €B(1;,Vi(U), 7,2

.. . _ i%x% 4 Wrri.j,i(yfl(x),U)
Wir i@ U) -t U) = S5 \ U T ()

provides the solutions u;,,; ;(x,U) for the first Painlevé equation. These are the frun-
cated solutions.

The property (6.18) translates into the following relationships between truncated so-
lutions: for any j € Z, forevery x e 8 (1;,Vi(U), 7, ), resp.x € 8(1;,V2 (U ), T, ),

e j1 (6, U) = €50y, 101 2 (xe™7/5 Ue=im/2) (6.25)

2irn/5 —4in/5 y.—in/2
Upru,j2(x,U) = e / Upru,j+1,1(xe” " > ye i/ )

These are the symmetries discussed in Sect. [2.3] In the same way from (6.19), for
any j € Z, for every x € 85(1;,V, (U), 7, %), respectively x € 8(1;,Vo(U), T, %),

i U) = e%(2j+1)ifrutm j.z(xe—%(4j+7)in7Ue—(j+l/2)in)7 (6.26)
T2 (x,U) = e%(2j+1)i7rulm il (Xe—%(4j+7)iﬂ’Ue—(j+1/2)in’).
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Fig. 6.2 The (shaded) do-
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6.5 Comments

We mentioned in Sect. the existence of formal transforms of the type v = T(z, u),
T(z,u) = Yyenn U¥Vi(z), Vi(z) € C"[[z7!]] that brings differential and difference
systems to their linear normal form, under some convenient hypotheses. For differ-
ential equations of type , the series v are in general not 1-summable but mul-
tisummable [10]]. The first results in that direction, concerning the multisummability
of the formal series solutions, have been obtained by Braaksma [[1]] then by Ramis &
Sibuya [12]]. A resurgent approach for 1-level differential equations is undertaken by
Costin in [4]], with the proof of the 1-summability of the formal integral on restric-
tion to convenient submanifolds. These results have been generalized to differential
and difference equations, see e.g. [2,[9] [7, [5]] and references therein, at least for the
cases where no resonance occurs. The question of the (multi)summability of the
above formal transforms may be delicate, even for 1-level differential systems or
ODEs, when quasi-resonance occurs, giving rise to small divisors.

If A = (A1,---,A,) stands for the multipliers and in absence of resonance, it may happen
that A .k comes close to one multiplier, for some k € N”. Thus, the construction of the formal
integral gives rise to division by small factors. One has “quasi-resonance” when there exists
an increasing sequence (k; € N") such that lim;_,.. A .k; = 0 fast enough, a condition that
translates into diophantine relations on the sequence.

More details on this subject can be found in [§].

We finally mention a general upshot, that of the formation of singularities near the
anti-Stokes rays. Considering the Borel-Laplace sum of a transseries stemming from
(resurgent) 1-level differential or difference equations, it is possible, as shown in
(see also [6]) to analyze its behavior on the boundary of its domain of convergence,
by a suitable use of a multi-scale analysis. This is detailed in [S] for the first Painlevé
equation.

Acknowledgements I warmly thank my student Julie Belpaume who helped me to work out this
chapter.
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Chapter 7
Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence theory
which will be useful to study furthermore the first Painlevé equation from the resur-
gence viewpoint. We define sectorial germs of holomorphic functions (Sect.
and we introduce the sheaf of microfunctions (Sect.[7.3). This provides an approach
to the notion of singularities which is the purpose of Sect. We define the formal
Laplace transform for microfunctions and for singularities and conversely, the for-
mal Borel transform acting on asymptotic classes (Sect. [7.5). The main properties
of the Laplace transform needed in this course are developed to Sect. We then
introduce some spaces of resurgent functions and define the alien operators (Sect.

[77]to[T.9).

7.1 Introduction

In this introduction, we assume that the reader has a previous acquaintance with
1-summability theory, much discussed in [14] to which we refer.

At its very root, one can rely the Borel-Laplace summation scheme to the simple
formula

l_ge<€"“) _ /‘”ewe—zc S
bl I'(n) 0 L(n) >’ ’ 0

n—1

Let ¢ € O(D(0,R)) be a holomorphic function and Z anc— be its Taylor se-

n>1 F(n)
ries at the origin. We choose an open arc [ =] —a+ 0,0 +al, 0 < a < 7w/2,
bisected by the direction 6, and we set I* =] — o — 6,—6 + [C 6. For some

r >0, we set 8” = 47°(I*). For any cut-off k¥ €]0,R][, the truncated Laplace inte-
K.ei9

gral @x(z) = / e % $(£)d¢ provides an element of 7| (Z\"") whose 1-Gevrey
0

asymptotics T1 . 0« (z) in A is given by the 1-Gevrey series Z a—;’ e Cllz .
5 n>1 z
This is essentially the Borel-Ritt theorem for 1-Gevrey asymptotics. For two cut-off

points k1, k» €]0,R|, the difference @\, — @y, belongs to Cal (:S°°) the differential

ideal of 7 (4™) made of 1-exponentially flat functions on 4.
One gets this way a morphism .Z(I) : § € O — cl(@y) € o (I*) ) o/ <"1 (I*), where
here & stands for the constant sheaf (of convolution algebras) over S'. By (obvi-

129
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ous) compatibility with the restriction maps, one obtains' a morphism of sheaves
of differential algebras, & : Oy — o) /| &/ =~1 Wwhere the quotient sheaf 7 / o/ -1
over S! is known to be isomorphic to the constant sheaf C[[z~!]]; (Borel-Ritt the-
orem [3.4] see [[14} [17]). The formal Laplace transfom . is an isomorphism, the
inverse morphism being the formal Borel transform % : C[[z"!]]; — € (seen as a
morphism of sheaves).

One can extend the theory by considering Laplace integrals defined along Hankel
contours. For instance, standard formulae provide

1 e
Fﬂﬂ:=164m6A%zm e t¢°'d¢, oeC\N, (7.1)

where the integration contour ¥z 0) ¢ is the (endless) Hankel contour drawn on

Fig. while {91 = e(0=Dlogl and Jog ¢ is the branch of the logarithm so that
arg(log§) €] — 2m,0]. Performing a change of variable, one gets the identity

zi“:-foyo (z):/ e 1o (Q)dL, ze T, (7.2)

Y—27.,0,e

with 7% = e°1°2% where this time logz is the branch of the logarithm so that

arg(logz) €] — m, x|, while

£ 'log(¢)
lo(@)=4 2™
(1 _ ef2i7w>1"(0)

forc—1€N

foroc—1e€C\N.

v
The form of I, that we give for 6 — 1 € C\ N is well-defined when —o ¢ N. It can be
analytically continued to the case —o € N by the reflection formula.

This example provides another one that will be used later on : for any m € N, any

GGC\N* for *0 _1\m_,—0C m__ 0\/ V (9 m., .
’ ZGHO’( 1) 2 (logz) =Y Joms Jom= Jdo I with the

above convention for the logz. Remark however that .#° \I/gz & 0( ; o +hol) when
hol is any holomorphic function on a half-strip containing the origin, with at most
exponential growth of order 1 at infinity. This justifies the introduction of the spaces
of microfunctions and singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory developed in [18]].
For most of the materials presented here, we mainly refer to [7, 9} [10} [1} [18], see
also [4} 24} 21]. Another approach to resurgence theory is provided in [27].

Y[S—Zn,e] £

Fig. 7.1 The Hankel contour O ,——>------
Yo—2x.0],¢ for 6 =0.

! Modulo the quite innocent complex conjugation / — I*.



7.2 Sectorial germs 131

7.2 Sectorial germs

7.2.1 Sectors

We precise our notations for sectors on (((NI, ), the Riemann surface of the logarithm
(Compare these notations with definition[3.3)).

Definition 7.1. Let / C S! be an open arc. For 0 < r < R < oo, we denote by 4%(1)
the simply connected domain of C of the form AR( Yy={{=¢Ee%|0cl&<nR[}.
One denotes by 3R(I) the closure of 4R(I) in C We use abridged notations 49 (/),
B8o(I), 8=(I) and 8~ (I) for sectors, when R or r is unspecified.

For any continuous function R : St — —10, 40|, we denote by AO the simply connected

domain defined by 48 = {{ =rel® | 6 € S',0 < r <R(8)} C C. We simply write
A for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

Definition 7.2. Let/ C S' be an open arc. One says that two functions @ € & (Z&gl (1),
. Vv
|mel (A§2 (I)) define the same sectorial germ @ of direction I at 0, when ¢; and

@, coincide on a same domain of type ;50(1 ). We denote by 6°(I) = lim & (ng ()
R—0
the space of germs of direction / at 0, and by & the sheaf over S! associated with

the presheaf &°.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps are the
usual restrictions of functions. We warn the reader that the presheaf ¢° is not a sheaf
over S! (see for instance a counter example given in [14])) : for an open arc 1, a section

(PE O%(I) =T'(1,6°) is a collection of holomorphic functions ¢; € ﬁ’(AO (I;)) that glue
together on their intersection domains, the set {/;} being an open covering of /

Example 7.1. We denote by C{{,{~!} the space of Laurent series ¥,,c7 a,{" which
converge on a punctured disc D(0,R)*. This space can also be seen as a constant
sheaf over S! and the space 0°(S!) of global sections of ¢° on S' coincides with

C{¢.¢ '

For n € N* and a given direction 6y € S!, let us consider the sectorial germ
‘\l;eo (&)= %ﬁé@ € ﬁgo, for any given determination of the log. Here ﬁgo de-
notes the stalk at @y of the sheaf ¢°. When making 6 varying from 6y on
I=]— 7+ 6,0+ m[C S, the sectorial germs 9\696 0 glue together and defined a
section (736 I"(I,6°) which cannot be prolonged to a global section.

This last example illustrates the need for defining sectorial germs for functions

defined on sectors of C. The covering map T : S! — S! allows to consider the sheaf
7*0° over S!, that is the inverse image by 7 of the sheaf ¢° (see [} [12, [3]). For

~ vV
J an open arc of S!, an element @ of 7*¢°(J) appears as an element of the space

v
I'(J,0°) of multivalued sections of ¢° on J, that is = s(J) where s is a continuous
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00 = |—|9€S1 ﬁg

map such that the following diagram commutes: _*S - . We say
st 8

that in another way in the following definition:
Definition 7.3. Let J € S' be an open arc. One says that two functions @, € & (Ag' ),

V
|meD (Ag2 (J)) define the same sectorial germ ¢ of direction J at 0 when ¢; and
@, coincide on a same domain of type 4o(J). We denote by I'(J, &°) the space of
multivalued sections of germs of direction J.

Remark 7.1. For any @ € C and by translation, one can of course define 0°, the
sheaf over S! of sectorial germs at @, associated with the presheaf &'®.

7.3 Microfunctions

We introduce the sheaf of microfunctions €y, at @ € C, in the spirit of [1]] to whom
we refer. Since %, is deduced from € = % by translation, we make the focus on
the case w = 0.

7.3.1 Microfunctions, definitions

We complete definition [3.13]

Definition 7.4. Let 6 be a direction and I =], B[ be an open arc (of S! or S'). we
set:

1. 0* = —0 and I* =] — B, —a| the complex conjugate arc;

2. \6/:]7%76,76+§[and7:u(,€,\6/;

3.0 =0 —3m/2,0 — /2] the copolar of ;

4.1 =]a—3m/2,B —/2[= Uge; 6 the copolar of I;

5. when || > 7, Tf]OH—TC/Z,B —m/2[;when |I| < w,1=]B — /2, a0+ 7/2[. When

|| =7, wesetl ={B —m/2}.

We would like to define “microfunctions of codirection I at 0”. For any open arc
I C S' of length < 7, we notice that its copolar I is of length < 7, thus can be seens
as an arc of S!. For such an arc, we set °(I) = 0°(1).
We now remark Qat for two arcs I, C I of lengths < 7, one has I C I;. The restric-
tion map py, O0°(I)) — 0°(L) gives rise to a restriction map py, j, = Py, 5, from

o (Iy) into P (I,). This justifies the following definition.

Definition 7.5. Let / C S' be any open arc of length < 7.

One sets 0°(I) = 6°(I) and 6°(I) is called the space of germs of codirection I at 0.
We denote by 0 the corresponding sheaf over S'.
Viewing 0 as a constant sheaf over S!, we set € = 6° / Op. This quotient sheaf over
S! is the sheaf of microfunctions at 0 and €' (I) = I'(I1,%) is the space of sections
of microfunctions of codirection I at 0.

The sheaf of microfunctions 4 makes allusion to Sato’s microlocal analysis, see, e.g. [23}

131119]. We mention that microfunctions depending on parameters can be also defined, see
for instance [4] for a resurgent context.
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We mention that €' (I) = &°(I)/ 0y, that is the quotient sheaf coincide with the
pre-quotient sheaf, because 0 is a constant sheaf.

In what follows, we transpose with some abuse the notations for singularities
introduced in [18]] to that for microfunctions.

Definition 7.6. Let / C S! be any open arc of length < 7. We denote by
QY): sing(l) (\ée % (I) the microfunction of codirection I at O defined by the sectorial
germ (\lge o (I) of codirection 1.

When [ is an arc of length > 7, then [ is of length larger than 27 and should be
seen as an arc of S!. In that case, a microfunction (% of €(I) is represented by an

v v
element ¢ of I' (I, 0°).
For any arc I C S' of length > 7, one can define the variation map var :

var: 9 €(1) = ¢ € T'(1,6°%), $(5) =9 ({)— @ (Le 2,

(=1)" n!
207 CVH’]
seen as a global section of the sheaf ¢/°. The associated microfunction is equally

v
Example 7.2. 1. For any n € N, the sectorial germ [_, ({) = can be

v v
denoted by 7_,,, 8™ or by sing, I _,.
. Y
Notice that for any holomorphic germ ¢ € 0y, the sectorial germ ¢ [ defines a
~V ~ ~
microfunction sing, (@ Io) equal to §(0)5® = §(0)8.
2. More generally, the constant sheaf C{{,{ !} over S! can be seen as a subsheaf

v
of € (of vector spaces). Any microfunction ¥ of C{{,{ ™'} can be written as a
=D" _a

v v
Sum Y50 @n I —n= Yn>0 a, 8", where the Laurent series ¥ (§) = Yu>0an 5 ZiT

converges for |{] > 0.
3. We assume that ¢ € 0 is a germ of holomorphic function. For any given
v
direction 6y € S!, we consider the microfunction 09,= singg0 ((ﬁ;’—i) € o,
(where %y, is the stalk at 6 of the sheaf ¢’), represented by the sectorial germ

2im
not depend on the chosen determination). Making 6 varying from 6y up to

v . v
0g,= (,010—g € ﬁgo, for any given determination of the log (remark that ¢4 does

v
6 + 27 on S!, the microfunctions ¢ o= singg ((ﬁ ]2%%) € %y glue together and
v v v

¢ 9,=9 9,42z This provides a global section ¢= sing, <g3%gr) € I'(S',%) which
does not depend of the chosen determination of the log one started with.

It can be shown (through the variation map) that the space of global sections
I'(S',%) of the sheaf of microfunctions, is composed of microfunctions of the

v N LV Py
form ¥ +sing,, ((p%), with We C{¢,{ ™'} and @ € O, see [1].

4. We suppose 6 —1 € C\ N and let 8 € S! be a direction. The microfunction
Cofl
(1—e279)["(0)’
is well-defined once the determination of the log has been chosen. Let us now
fix the arc I =]0,2x[, consider the arc [/ =] —37w/2,37/2[ as an arc of S!

Vv Vv \
¢ o= sing ( 1 G) , represented by the sectorial germ [ (§) =

Vv Y Y
and o€ I'(I, ﬁo) as a (uniquely well-defined) multivalued section of 0°on I.

v
One can apply to its associated microfunction /€ %'(I) the variation map and

o—1
Var(;g) =1, €I'(1,0°),1=|n/2,3n/2], is given by I({) = lé:‘(O')'
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7.3.2 Microfunctions and convolution product

This subsection is devoted to convolution products of microfunctions. We start with
some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

Definition 7.7. Let € > 0 be a real psoitive number and I C S! be an open sec-
tor of length < m. We set S¢(I) = U D(n,¢), the “e-neighbourhood” in C of

nedz D)
the sector Ay (IA) When the open arc [ is of length = 7, then I= {0} and we set
Se(l) = U D(sel® €). We set S¢(I) = C\ Se(I) and we denote by

seRT
—96,(I) = 9Se(I) the oriented boundary. We denote by I} e n ., the curve that
follows the oriented boundary —d&,(I) from 1; to 1. We denote by I; . the end-

less curve that follows the oriented boundary —9dS,(1).

Lemma 7.1. Let { — S¢(I) be the convex domain deduced from Se(I) by the point
reflection centered on {2 € C. If dist({,Se (1)) > 2&, then { —Se(I) € Se(I). In
particular, for every § € Gy (I), for every n € (—9G¢ (1)), one has § — 1 € Se(I).

Proof. We only consider the case where I C S' is an open arc of length < 7. We
pick an open sector :SF;(IA) and § € (C\:&}’f(IA) Then §/2 € (C\:S‘(’f(IA) as well. We
denote by { — 26"(7) the convex domain deduced from :SB"(IA) by the point reflection
centered on §/2 € C. One sees that for every & € C—ZE(IA), for every 1 € zj(IA),
dist(& ,Lg(IA)) < dist(&,n) (dist is the euclidean distance). Indeed, by the projection
theorem for convex sets, there exist a unique point 1o on the closure of ;56°(IA) so that

dist(£,1mo) = dist(C,ZB"(f)), see Fig. (7.2l One easily shows that the perpendicular

Fig. 7.2 The domain Sg(/)
(left-hand side shaded do-
main), the domain ¢ — Se (1)
(right-hand side shaded do-
main.
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Fig. 7.3 Picture associated
with the proof of lemma[7.2]

bisector of the segment [, 7] separates the two convex sets :SB" (I) and £ — :SBC'(IA)
Therefore, if dist({, Se (1)) > 2¢, then & —Se(I) C &¢(I). O

Lemma 7.2. Let I =], B[C S! be an open sector of length < © and € > 0. We

consider 1 € (—Gég(l)) and we set r = |N|. We suppose that (€/r) < 1 and we
set & = arcsin(e/r) €]0,7/2].

1 if 7 =]B — /2, 0+ m/2+ 8| is an open sector of length < T, we set h = rsin(J).

Then, for any § € D(0,h), { —n; € x.3(°)°(i)
2.if I =|B—m/2, Oc—|—7t/2—|— O[ is an open sector of length < 1/2, then, for any

£ eD(0.r), &~ e 85

Proof. Left as an easy exercise. Just look at Fig. O

7.3.2.2 Convolution product of microfunctions

v \
We pick two microfunctions ¢ and ¥ of codirection /, where [ is an open arc of
length < 7r For any strict subarc I} € I, these microfunctions can be represented by

functions (P and ll/ belonging to & (AR“( )) with R > r > 0 small enough.
In what follows, we choose € €0, 5 sin(7 —[7])[. We remark that both 628( YND(0,r)
and & ¢(11)ND(0,R) are non empty domains and 6 (L)ND(O,R) C AR+r(1 )

We consider a path I = I, ¢ n, 5, that follows the oriented boundary 7865 (h)
from 1y to > with r < || <R, r <|n2| < R, drawn on Fig.[7.4]

Forany 1 € I}, ¢ n, n, and any & € Sy (I) N D(0,7r), | < R+rand we know
by lemma(7.1|that { — 1) € S¢(I). Therefore, the function
v v v
Xiyenm (8) :/ ¢ (n) v (&—mndn (7.3)

F1| €M1,M2

is well-defined for all { € Gy:(I) N D(0,7) and is holomorphic on this domain
(which is non empty since 2¢ < r).
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Fig. 7.4 The path of integra-
tion Fll EMM2

&

v . v
Notice that Xy, ¢ 5,1, can be analytically continued to & (1) UD(0,r) when ¥
is holomorphic on D(0, R+ r), because |§ — 1| < R+ r for 1) on the integration con-

v

tour and € D(0,r). Thus, by linearity, adding to ¥ an element of & (D(0,R+r))
v

results in the addition of an element of &(D(0,r)) for X, ¢.5,.n,- Similarly when

v v

¢ is holomorphic on D(0,R+r), then X, ¢ 5, n, can be analytically continued to

S2¢(1)UD(0, r) : through an homotopy in D(0,R), just deform the contour I, ¢ 5, 1,

~

into an arc I’ running from 1; to 1y in {n =se'? |s €|rR[, 0 € I} C Se(I); by
% v v v
Cauchy, the two functions/ @ (n) v ({—m)dn and/ ¢ (n) Vv (L—n)dn
Ienpm r
coincide for § € Gy (1) N D(0,r), while the second integral is holomorphic on
D(0,r).
Replacing 11, 12 by 11, N5 on =9S¢ (1), with r < [nj| <R, r < |n}| < R, results

v
in modifying X7, e, n, by an element of & (D(O,h)) for & > 0 small enough: the
difference

v v, | m\ v v
Enemm © Znema= [+ [T )oY C-man a4
I )

can be analytically continued from &y (I) N D(0,r) to D(0,k). Indeed, using the
condition on € and by lemma we see that for 1) on the two segment contours
and for ¢ € D(0,h) with 0 < h < rsin(I), { — 1 remains in 85 () ND(O,R+7)
V
where ¥ is holomorphic. R
Finally replacing & by a another &' €]0, 5 sin(m — |I|) yields the same conclu-

sion : for § on the intersection domain Sy, (I) N Syer (1) N D(0, 7), one can compare

v v
the two functions Xy, en, n, and X 1,e'n! - By Cauchy, the difference reads like
with the same conclusion.

In particular, we can let € — 0 in the above construction: the family of functions

v
X1,.em,.m, glue together modulo the elements of &, thus providing a microfunction
of codirection /;. Making the arcs I} C I recovering I, one sees that these micro-
functions glue together to give a microfunction of codirection /.
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Definition 7.8. Let be 7 an open arc / of length < 7. We consider two microfunc-
v v vV
tions of codirection /, ¢ and VY, represented by the sectorial germ of codirection 7, ¢

v
and VY respectively. For a covering of / by open arcs [; C I, the family of functions

Qi) = [ 9 w(E-man 75)

LENM
with I = I}, ¢ n,.n,» glue together modulo &) and provide a microfunction of codi-

v \ v v
rection I denoted by @ x W. It is called the convolution product of ¢ and Y.

Proposition 7.1. The sheaf of microfunctions € is a sheaf of C-differential convo-
v v v
lution algebras, for the derivation 9: singh (V) — singh(—{ V). These algebras are

commutative, associative and with unit 0 = sing, ﬁ% .

v v
Proof. In what follows we use the previous notations : ¢ and ¥ are two microfunc-
tions of codirection /, an open arc of length < 7. One pick a subarc I; € I and the

% v : .
microfunctions can be represented by functions ¢ and ¥ belonging to & (A(I)Hr(l 1 ))
with R > r > 0 small enough.

v
We consider the microfunction Vo= § € %(S') that we represent by
v o~ o —~

Yo (&) = @o(8) ;0 (&)= (g(l);? with @y € &(D(0,R+r)) and subject to the con-

dition @y(0) = 1. Thus (Y) *r ‘\I/’o reads:
g o 1 YN ())
5V :f/ o &=
P © =gz [ e

By Cauchy and the residue formula, one easily gets that for all § € 35 (I;) N D(0,r),

v VooV

@ x Yo=0 +hol, where hol can be analytically continued to D(0, r). This implies
v v

that @ 6 =0.

We then consider the integral:

4 Vo 1 (- (& +&) v v
(P*rxr' ‘I’(C) = 27 Jror C—(§1+§2) ‘P(él) ‘V(éZ)d‘gldfgh (7-6)

@0 € O(D(0,R+7)), #(0)=1,
where I' = I}, ey o I =T}, e 1 - We remark that for any (1,8;) € I' x I'' one
. v v
has (&1 + &) € Sey e (1) ND(0,2R). Thus @ xp, - V defines a holomorphic func-

tion on the simply connected domain &, () : just apply the Lebesgue dominated

convergence theorem for ¢ on any connected compact subset of &, o/(1;). This also
allows to use the Fubini theorem:

S b [ -G ;
bera ¥ @)= [ (5 [ LS @an) 0 @oes
(

PR e
B F’(ziﬂ'/r [ (&+&) ‘9(51)d§1>ll’(§2)d§2.
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v Vo v
From the previous considerations, we recognize @ s, Y= xr ¥ +hol for the

v VooV v
first equality, @ * . V=V x @ +hol for the second equality, where hol is a holo-
morphic function that can be analytically continued to a neighbourhood of 0. As a
consequence,

v VvV vV v

P+ Y=Y 0,
that is the convolution product of microfunctions is commutative. One easily shows
in the same way that the convolution product of microfunctions is associative. The

v
fact that 9 is a derivation is obvious. O

V \
We have previously seen two kind of integral representations, @ - ¥ (equation

V V v v
|| and @ xp, ¥ (equation l) for the convolution product @ * ¥ of two
microfunctions. Other representations can be obtained under convenient hypotheses
as exemplified by the next proposition.

v
Proposition 7.2. Let ¥ be a microfunction of codirection I, an open arc of length

v v
< 7, represented by the sectorial germ W of codirection I. Let be 9 I'(S',%) a
. ~ v v
microfunction of the form sing ((p;%gr) with ¢ € Oy. Then, the microfunction @ x Y

of codirection I can be represented modulo Oy by a family of functions of the form

m

~

GV (E-mdn ad [CGmVE-man @)
0 0

with M1, M2 as for definition[7.8]

The proof is left as an exercise. (See [24]). Starting with the integral representa-
tion (7.5), the idea is to decompose the path I, ¢ 5, 1, as on Fig. and to use the
integrability of the log at the origin.

7.4 Space of singularities

The reader will recognize in what follows classical notions and notations in resur-
gence theory already encountered in [18]], see also [9, [10} 24} 21]].

Fig. 7.5 Decomposition of
the path I}, e n, 1, -




7.4 Space of singularities 139

7.4.1 Singularities

Definition 7.9. Let 6 € R be a direction and o > 0. We denote by ANAg (, the space
of sections I'(J, ©°) where J =]0 — a — 27,0 + «[C S', and by ANA =T"(S', 07)
the space of global sections.

Thus, ANA is the space of sectorial germs at O that are represented by functions
v
¢ holomorphic on a simply connected domain of the form 4.
Definition 7.10. One sets SINGg o = ANAg o /0) and SING = ANA /). The el-
ements of these quotient spaces are called singularities at 0. One denotes by sing,
the canonical projection,

) ANA — SING ) ANAg ¢ — SINGyg o
singp @ q Vv v ,  singg:g Vv ' v o
= @ = @
vV.ov v v

If sing(P) =9, then @ is called a major of the singularity ¢.

In particular, with these notations:

Proposition 7.3. The space of singularities SINGg o can be identified with the
space I'(J,€) of multivalued sections of € by m, withJ =] = 5 —a+ 6,0 + o+ 3.

Definition 7.11. One defines the spaces SING, resp. SING, g o of singularities at
o € C, by translation from SING, resp. SINGg 4.

It is of course enough to study the spaces of singularities at 0 and this is what we
do in what follows.
Notice that SINGg o and SING are naturally €p-modules.

v v
Definition 7.12. Let f € 0 be a germ of holomorphic functions and let ¢= sing,, ¢

v

be a singularity in SING, resp. SINGg . One defines the product f @ in SING, resp.
v v

SINGg o, by f @=singy(f ).

Definition 7.13. The so-called variation map is defined by:

_ {SING — ANA
9= singy(9) — §, B(L) =0 ()= P (Ce ),

v v
and @ = var(®) is called the minor of the singularity .

v
The variation map var operates similarly on every element @ € SINGg o, with
-~ v . = = -t
¢ = var(9) inI'(J,0°), where J =]0 — o, 0 + [C S'.

A minor is said to be regular when it belongs to 0.

We illustrate the notion of singularities by the following examples. (The reader
will recognize sectorial germs used in the introduction of this chapter).

vV Vv
Definition 7.14. The singularities /4,Js € SING, 0 € C, m € N are defined as
follows.
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v Vv v o
e For o € C\N*, J5=sing,(Is) where 5 ({) = (176*%"7’%'

_] n !
In particular, ;_n: 8 = sing <( ' n ) , neN.

2T CnJrl
v v V n—1
e Forn e N*, [,=singy(1,) with I,, ({) = CZifrlfo(gn()C)'

m v

v
e FormeNando €C, J5u= (%) ls.

It is useful to define the following subspaces of “integrable singularities”,
SING™ C SING and SINGg‘fa C SINGy .

Definition 7.15. An integrable minor is a germ ¢ € ANA holomorphic in the do-
main 49 C C which has a primitive ¢ such that ¢ — 0 uniformaly in any proper
subsector 56 € Ao. The space of integrable minors is denoted by ANA™,

v v
An integrable singularity is a singularity ¢ € SING which admits a major ¢ holo-
~ v
morphic in the domain 49 C C such that éim ¢ ¢ (&) = 0 uniformaly in any proper
—0
subsector 56 € 4. One denotes by SING™ the space of integrable singularities.

There is a natural injection & < ANA™ from the space of germs of holomor-
phic functions to the space ANA™ of integrable minors. The space ANA™ can be
equipped with a convolution product, by extending the usual law convolution on &.

It is not hard to show that integrable singularities satisfy the following property:

Proposition 7.4. By restriction, the variation map var induces a linear isomorphism
SING™ — ANAI™. The inverse map is denoted by * - § € ANA™ — "% € SING™™.

This allows to transports the convolution law from ANA™ to SING'™ by the
variation map.

Definition 7.16. The convolution product of @), P, € ANA™ is defined by
P SN
o1+ (8) = / ©1(n)®1 (& —n)dn. The convolution of two integrable singular-
. v /\ OV b A . v v A Y
ities @1= "¢, P,= "¢, € SING™ is given by : @; x P,="(P; * P).

Quite similarly:

Definition 7.17. A minor ¢ holomorphic on the domain A()(T) c C is said to be in-

tegrable if @ has a primitive (E such that a — 0 uniformaly in any proper subsector
30 € 8o(I). One denotes by ANA‘é‘fa the space of these integrable minors.

v v
An integrable singularity is a singularity ¢ € SINGg o which has a major ¢ holo-

o~ v
morphic in the domain 8¢ (/) C C and such that %im ¢ @ (£) = 0 uniformaly in any
—0

proper subsector 3, € 49([). One denotes SINGII', the space of these integrable
singularities.

Proposition 7.5. By restriction, the variation map var induces a linear isomorphism
SINGy", — ANAY", . The inverse map is denoted by »ipe ANAY', = "¢ € SINGy',.
We end with further definitions.
v v Ly . -~ . .
Definition 7.18. Any singularity @ of the form ¢= a8 +"® with @ € 0 is said to

be simple. The space of simple singularities is denoted by SINGS™P.
The space SING*™™ of simply ramified singularities is the vector space spanned by

. v
SING*"™ and the set of singularities {/_,, n € N}.
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7.4.2 Convolution product of singularities

The resurgence theory asserts that the space of singularities SING can be equipped
with a convolution product [7, 8, [18]], see also [1},22]. Since SINGyg ¢ can be identi-
fied with the space I'(J,%4) of multivalued sections of 4 by m, with
J=]-%—a+6,0+ o+ %], the convolution product for microfunctions (propo-
sition allows to transport this product to SINGg q : for any two singularities

(Y), l7/€ SINGg ¢ and any strict subarc I € J of length < 7, one can find two ma-
jors (I) IY/G ANAg  that can be represented by holomorphic functions on a sector

A0(I). By projection on C, one can think of (,0 llf as belonging to & (Ao( [)), that is
sectorial germs of codirection /. By restriction, (P 1l/ are seen as microfunctions of

v v
codirection I, whose convolution product ¢ = Y& I'(I,%’) can be represented either
by

@<V (©)= [ 0 (n) W(C—man (78)

v v _ by M
Pxrar V(6) =7 rxr §—(&1+&)

with f € 0y and f(0) = 1 (cf. (7.5) and (7.6} -) where I' = I} ¢ p, , is as in def-
inition [7.7} When considering a covermg of J by such arcs I, these sections glue

&)V (§2)d51d527 (7.9)

together to give the convolution product (P * lI/ as a multivalued section of % over J.

Proposition 7.6. The space SING can be equipped with a convolution product de-
noted by x that makes it a commutative convolution algebra, with unit

1 v
8 =sing, (ng> =]o. Moreover:

1. the linear operator, 5: (lv): singo((y)) € SING HSQY): singy (=& (Iv>) € SING, is a
degivatiog. v o

2. if @ and W belong to SING™, then ¢ s W belongs to SING™ and "¢+ ° ¢ =" (¢ * ).
In particular, the space of simple singularities SINGS™P is a convolution subal-
gebra.

Theses properties remain true when one considers SINGyg ¢ instead of SING.

Proof. We have already shown that SINGg , (thus SING) is a commutative convolu-
tion algebra for the convolution product with unit §. The equality *@ % °¢ =" (¢  §)
for integrable singularities, emerges from considerations on integrals and is left as
an exercise. (Start with proposition[7.2] See [24]). O

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions

We start with the following definition.
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Definition 7.19. Let 7 C S! be an open arc and r > 0 be a nonegative real number.
we denote by:

1. 330(5‘;"([ )) the C-differential algebra of holomorphic functions ¢ on 2‘;"(1 ) that
satisfy the property : for any proper subdomain i"" S A‘;"([ ), for any € > 0, there
exists C > 0 so that for all z € A:s°°, 0(z)| < Ce?ll;

2. 7<) = hjm ESO(B‘;"(I)). This defines a presheaf .27 =0;

frared)

3. .o7=0 the sheaf over S! associated with the presheaf .oz <.

Remark 7.2. The fact that &7 = is indeed a sheaf of differential algebras is an exer-
cise left to the reader. (We stress that the derivation considered is the usual one for
holomorphic functions).

The sheaf .27 =0 should not be confused with the sheaf .27 <C of flat germs at infinity
(definition [3.17). As a matter of fact, &/ <°(I) C &/ (I) C &/=(I) where </ stands
for the presheaf of asymptotic functions (see definition[3.17and [14} [16, 17]).

We mention that our definition of .7 < differs from that of Malgrange in [[16] where
/<9 is defined as the sheaf of sectorial germs that admit an asymptotics belong-
ing to the formal Nilsson class, that is of the form ZW(z)lOgZ&, occC, meN,

w € C[[z7!]]. Our sheaf <7< contains this sheaf as a subsheaf. However, the con-
structions in the sequel resemble in much aspects to that of Malgrange [16].

The following Lemma is left to the reader as an exercise. This will allow us in a
moment to properly define the quotient sheaf &7 <?/.c7 <=1 over S'.

Lemma 7.3. The space </ <! (:S°°), resp. o/ <~ \(I), of 1-exponentially flat functions
on A%, resp. of 1-exponentially flat germs at infinity over I, is a differential ideal of
I =0(8=(I)) —resp. of 7 =°.

Definition 7.20. Let 6 be any direction (of S! or S!). We denote by Ry the ray
10,e!%0][. For k > & > 0, we set Rg ¢ =]€e'®, e!%o[ and Ry ¢ =]ee'®, ke[

For any closed arc J= [61,6,], we denote by Yies YeSD- Vieoxer the Hankel contour,
resp. truncated Hankel contour, which consists in following:

1. Rg, ¢, resp. Ry, ¢.x, backward, '
2. then the circular arc 87, = {€¢'? | € J} oriented in the anti-clockwise way,
3. finally Ry, ¢, resp. Rg, ¢, forward.

v
Let us pick an open arc 7 of S! of length < 7, and a microfunction 9€ €(I) of
Vo
codirection I, represented by the germ @< &°(I). For any open arc I| =)o, B;[ with
_ Voo
I} €I, 0ne can find R > 0 so that the restriction of ¢ to I} =]a; —37/2, B — n/2[C S!

V v
is represented by a function (still denoted by ¢) holomorphic in the sector Ag(ll).

We consider another open arc I =], ], L C I, so that I; \fg has two connected
components. We choose one arbitrary direction in each component,
0, €]oy —37/2,0p —37/2[, 62 €|B—7/2,B1 —w/2[. For R > k > € > 0, we con-

v
sider the truncated Laplace integral @, 6, i (2) = / e % @ (£)dC, see Fig.[1.6
Y6y.6).e:x
The function @g, g,  satisfies the following properties:
® (g, 9, 18 an entire function, since one integrates on a (relatively) compact path

v
of the domain of holomorphy of @.
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Fig. 7.6 Formal Laplace
transform. The open arcs
L, b, il, fz, and the path
Y= Ye6,.6:).&:x-

I I

e for & >0 chosen as small as we want, we set M = supzx 1, g, 1 (P |. then:

— forallzeC, < e|l}|Mef where |I)| = B1 — a1 +

2 v
/5[91.92]‘; ¢ ()¢

< kMe ¥ Similarly,

e (0)dg

[ ]
— forany r >0, forevery z € d

01,6k

. V
for every z € 12 e % @ (0)dl| < kMe ¥,

R92.S;K'

~ the domain IT® contains any closed sector of the form 4%(J;) with J; an
open arc so that J; C] —Z — 0;,—0; + ”[ and v > 0 large enough. Since

B—Z% < 91 <op+1Z 7, one deduces that Hr contains any closed sector of
the form A 2 (13) w1th ¥ > 0 large enough. Similarly, H % contains any closed
sector of the form A %(I3) with ¥’ > 0 large enough.

From this analysis, since € > 0 can be chosen arbitrarily small, we retain that

®0, 6,.x belongs to the space BSO(:S‘S(IZ* ), r > 0 large enough.
e Furthermore, looking at the above analysis and by Cauchy, we may observe that
for two cut-off points k, k¥’ €]€, R], for two directions 8] €]a; —37w/2, 0 — 371:/2[

) €]1B2— /2, Bi — 7 /2| the difference @g, g, i = Qo 0. belongs to .o/ =~ ( (1))
with r > 0 large enough. We finally remark that adding to (P a function holo-
morphic on D(0,R) only affects @g, 6, x(z) by the addition of an element of
o ST 1( *(13)), r > 0 large enough.

v - _
In this way, one obtains a morphism, £ (I, 1) : 9€ € (I) —9c Z=°(I}) [/~ (I3),

A
= cl(@q, 6,,k), Which is obviosuly compatible with the restriction maps.

This allows to move up to stalks, £y : Gy — (sz <0 124 S_1) o and finally? to a
morphism of sheaves £ : ¢ — o7/ =0/a7="1.

Definition 7.21. One calls formal Laplace transform for microfunctions at 0, the
morphism of sheaves .Z : € — /=" /.&7=~!. The quotient sheaf o7 <0/.c7 =~ over

2 Modulo complex conjugation
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S is called the sheaf of asymptotic classes. An asymptotic class is usually denoted
by (?7.
The term “sheaf of asymptotic classes” is borrowed from [[I] where the sheaf «#=0 is de-
noted by &, and the sheaf ..7=~! is denoted by &~. The notation é is own.
Example 7.3. For (6,m) € CxNand I =] —x/2,7/2[€ S, we consider the micro-

v v
function Jg = singf) (Jg,m> € €(I) represented by the sectorial germ

v v .
Jom= (%) 1€ 0°(I) and the branch of the log such that arg(log §) € I =] —2x,0].

By standard formulae recalled in Sect. one readily gets that its formal Laplace

A v
transform Jo = -Z(I) J5m is an asymptotic class that can be represented by the

(sectorial germ at infinity of) holomorphic function(s) (—1)" =5z~ log?() ¢ o7 o =0(I"),
I* =] — /2, /2| with the determination of the log so that arg(logz) er.

The following proposition is a straight consequence of the very construction of
the formal Laplace transform.

Proposition 7.7. The formal Laplace transform £ : € — =" Y24 <=1 satisfies the
A
identity : Lo 9= 0do.%.

7.5.2 Formal Borel transform for asymptotic classes

Let I* C S! be an open arc with length < 7 and ¢ € &7=<°(I*) be a sectorial germ
at infinity. For any open arc I € I*, one can find r > 0 so that the restriction of
¢ to I} is (represented by) a holomorphic function (still denoted by @) on the do-

. Vv 1
main 47 (I7). We set @, o (§) = —ﬁ/ ¢ @(z)dz forany z; € A (I}) and any
Ra.:
direction o € I}, see Fig. We can make the following observations about this

vV
Laplace integral @, 4:

. smce [0) belongs to o <0( 2(I7)), we know that for any proper subsector
A7 (J*) € 87(IF) and any & > 0, there exists C > 0 so that, for all z € A (),

|@(z)| < Ceflel. Therefore (p21 o belongs to ﬁ(I‘Ig‘*”) when z; € A "(J*) and
o € J*. Making a varying in J* and since € > 0 can be chosen arbltrarlly small,
these functions glue together by Cauchy, and provide a holomorphic function

(Pa j* on _@(J* 0) = 45 (J). Notice that for two points z1,22 € A7 (J*), the differ-

ence (PZL = (PZ1 J~ defines an entire function (with at most exponential growth

Ce

)1* “
Fig. 7.7 Formal Borel trans-

form. The open arcs I*, and
the path Ry , .
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of order 1 at infinity). Therefore, localising near the origin, we get a sectorial
v Y .

germ @, «€ O(I) = O(I), defined modulo the elements of &y, that is a micro-

function of codirection /;

_ vV

e when ¢ belongs to <7 <~!(I*), one easily sees from the above analysis that Q.1
is holomorphic on a domain containing a full neighbourhood of the origin, thus
by localisation, an element of 0.

To conclude, we have defined a morphism (of C-differential algebras),

A v V
BI*) 0 =) /=7 (I") = 9= cl(@,, 1+) € € (I) whose compatibility with
the restriction maps is easy to check.

Definition 7.22. The morphism of sheaves 2 : .&7=/.c7=~! — % is called the for-
mal Borel transform

The formal Laplace transform for microfunctions and the formal Borel transform
for asymptotic classes are isomorphisms of sheaves, as shown in [1]] to whom we
refer:

Proposition 7.8. The morphisms £ : € — =° /=" and B : 7= ) 7' = ¢
are isomorphisms of sheaves and £ 0o %A =1d, Bo ¥ =1d.

Remark 7.3. The morphism of sheaves ¢ € 0 »—>(7): sing)) ((ﬁlz(l’—f;) e %) is in-
jective as already mentioned. The following commutative diagram makes a link be-
tween the formal Laplace transform for regular minor, resp. formal Borel transform
for 1-Gevrey formal series, and the formal Laplace transform for microfunctions,
ﬁo — %
resp. formal Borel transform for asymptotic classes: & |1 & A 1| L
| A< =0 )=,

7.5.3 Formal Laplace transform for singularities and back to
convolution product

In the sequel, we translate to singularities what have obtained so far for microfunc-
tions.

7.5.3.1 Formal Laplace transform for singularities

We start with two definitions.

Definition 7.23. Let 6 € S! be a direction and & > 0. We denote by ASYMPg
the space of asymptotic classes defined as multivalued sections of .&7<°/.e7<~! on
J=|-n/2—a—0,-0+ o+ m/2[. We denote by ASYMP the space of asymp-
totic classes given by global sections of .&7<°/.o7=~! on St

Definition 7.24. Let 6 € C be a complex number and m € N. We denote by
A A
1€ ASYMP the asymptotic class represented by 1/z°. We denote by J 5 € ASYMP

the asymptotic class represented by (—l)mlogz#. We often simply write 1/z° in-

A A
stead of /s and similarly for J .
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We have already said that the space of singularities SINGg o, can be identified
with the space I'(J,4) of multivalued sections of ¥ by m, with
J=]-%—a+6,0+a+ %[ The formal Laplace transform for microfunctions
thus extends to singularities, by inverse image:

£
Upest G = Upeest (=) /=)
s/ 1
ngJaﬁ?SISﬁ - S's p*

When returning to the very construction of the formal Laplace transform (Sect.
v

, one sees that for any singularity @€ SINGg, for any direction

B eJ=]—oa+6,0+al, setting B* =]— % +B,B + %[ the formal Laplace trans-

—

form Z(B*) (7) is given as the class (?J: cl(@g_ozp.x) € dﬁo(ﬁ)/dg_l (B) where

- v v

B=I—-%—-B,—B+3[and @p_ozp«(2) = /y e ¢ (§)d¢, with @ any
[B—2m,Bl.e:x

v =
major of @. This introduces the following definition. (Notice that J = J*).

Definition 7.25. The morphism £F = £(B*) : SINGg ¢ — & <°(B)// <" (B) is
called the formal Laplace transform in the direction f € J =] — a4+ 0,60 + o]

v ~V
For any singularity ¢< SINGyg ¢, one denotes by .Z* T pc ASYMPy 4 the asymptotic

v
class given by the collection (Z Bo ) el

Example 7.4. We continue the example but for the fact that we now consider
v v
Jom as a singularity in SINGq ;. The formal Laplace transform Fl-mal Jom

A
is the asymptotic class J5,€ ASYMPy ; seen by restriction as an element of
r(-3n/2,3n/2[,<0/7="1).

v .
We linger for a moment at the cases of singularities of the form @= " ¢ SINGY",,.

A v
For any direction B €] — a+ 6,6 + af, the formal Laplace transform ¢= ZF ¢,
A - =

¢oc /=%(B)/a/="1(B), can be represented by the function

Pg_27.8,x(2) = /

cEOQC= [ EpOag, 110
MB—2m.Bl.ex Rp 0.k

and we thus recover the “usual” formal Laplace transform (see Sect. . In par-

ticular, we recall that we have extended the convolution law to SINGy", by the

- e B DD o b Nt B e D (B B
variation map: for 1= "@;, P,= "¢, € SINGY",, | * ®,="(| * ¢,). The above

6,00°
v v v v
remark (7.10) shows that ZB (@ x ¢,) = (ZP ¢,)(£P 9,), by the properties of
the “usual” formal Laplace transform.
v v .

We now assume that @ is a simple singularity, 9= ad +°¢ € SING*™ with
@ € 0). For any open arc J =] — o + 6,0 + af, the formal Laplace transform
A ~ v
¢= %’ (a8+ @) is an asymptotic class which belongs to I'(J*, .o /«/=~1). This
again comes from (an analogue of) the identity and classical arguments re-
called in the introduction of this chapter.
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Definition 7.26. One denotes by ASYMPSI™P _the subspace of asymptotic classes
obtained by injection of the global sections I'(S', .27 /7<) into ASYMP.

Proposition 7.9. The restriction of the formal Laplace transform £ to SING®ImP
has ASYMPS'"™ for its range.

Remark 7.4. Consider a formal series ¢ € C[[z"!]] and an open arc of the form
J*=]—-m/2—0—0,—6 +a+m/2[C S!. By the Borel-Ritt theorem, there are in-
finitely many ¢ € o7 (J*) whose Poincaré asymptotics T (J*)@ is given by ¢ on J*.
These various ¢ differ by flat germs, that is elements of .7 <°(J*). Therefore as a

rule, these germs ¢ represent different asymptotic classes (IA>€ ASYMPy 4.

Now suppose that @ is 1-Gevrey and choose a (good) covering (I;) of J* where each
I; is an open arc of length less than 7. By the Borel-Ritt theorem for 1-Gevrey
asymptotics and for each subscript i, there exists ¢; € <7 (I;) whose 1-Gevrey
asymptotics T (I;); is ¢. Moreover, each ¢; is uniquely defined this way up to
1-exponentially flat germs, that is up to elements of /<~!(I;). One thus gets a

A
uniquely defined section 9 I"(J*, o7 /7<) that can be thought of as an asymp-
A .
totic class. One can characterize another way this asymptotic class ¢ ASYMP*"™P
A v v B . - . ~ . . .
by settling @= £ (ad+ @) where 9="9 with @ the minor of ¢ while a is its con-
stant term.
~ AL )

Definition 7.27. The mapping ?: ¢ € C[[z7']]; —@=""¢ € ASYMP* ™ is defined

A v v Y /\ . - .
by ¢= Z(ad+ @) where ®="9, whereas @ stands for the minor of @ and a its
constant term.

Obviously, the mapping ? is an isomorphism, the inverse map being the 1-Gevrey
Taylor map. This allows to merge “@ with @ in practice.

7.5.3.2 Back to convolution product

We have said without proof that .Z and % are morphisms of sheaves of algebras. It
is thus certainly worthy to prove the following proposition.

v v
Proposition 7.10. For any two singularities ©1,9>€ SINGg o and any direction
B €] — o+ 0,0 + a, the following properties hold:

v v v v vy v
(ZP 01)(LP 01) = LP(91 % 01) and LP(991) = dLF ).

v v

Proof. (Adapted from [1]). Let @1,9>€ SINGg o be two singularities with ma-
VoV ~

jors @1,9,. We pick a direction f €J=]—a+0,0+ o[ and we consider the

A v A v
formal Laplace transforms @= B ®; and Q= R ®,. These are elements of
/<O(B) /<" (B) which can be represented respectively by

01(2) = /y o 91 (0)dC e =47 (B)), ¢a(2) = /n e 9, ({)dL € T (57(B)),

with Y = Yig2r.8].e,:60 72 = V[p—27.8].2;%, and some r > 0 large enough. The prod-
A A ~ -
uct 910, o7<9(B)/a/<"1(B) is thus represented by

0102(2) = /y e 01 (&) 92 (L)dL1dE € =257 (B)).
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- A A -
Let us look at the formal Borel transform Z(f3)(9,9,) € €(B*). This Borel trans-

v 1
form can be represented by the integral (@1¢2), o (§) = _E/R e 010(2)dz
o121

. i - \
withz; € 47 (B), r1 > r, and for any direction a; € §*. The function (¢1¢,),, 4 ()

is holomorphic on Ha‘ &

Sect. i Taking { € HO‘1+ with € > €] + &, we can apply Fubini.

(go back to the construction of the formal Borel transform,

Remark that { + { (or rather {;, + {,) remains in the bounded strip
{{eC| dist(é’7 ¢Bl0,K]) < & + &}, for (§1,4) € 71 X 5. Thus { — (& + &) remains
Dt1+7T forCeHlX1+7'E

in the domain T, and this ensures the integrability conditions.

This way, we get:
v 1

(010),, 0 () = —f/R e (/Wyzez@ﬁ‘?” 91 (8) 92 (Cz)dcldg) dz

2im

-6y v
B /ylx,@ =G =g 16 P2 (G)dbide

etC—6-8) v y
=), ( 20 G) @2”52) o1 (61)d¢

Returning to the very construction of the convolution product for smgularltles we

see that ((p] (Pz)z .oy 18 nothing but a major of the singularity sing, (2 ﬂ§> * (Pl * (Pz

21,0 :(pl * (Pz- From Proposi-

tion we know that % 0. = Id (when considering % and .Z as morphisms of
sheaves), thus the conclusion. The last statement as been already seen. 0O

But sing, (%) = 6 and therefore sing,, (((plq)g)

Example 7.5. We know by theorem n that the formal series w(o 0) solution of the
prepared ODE (3.6) associated with the first Painlevé equation, is 1-Gevrey. Its mi-
nor wyo,) = e%’w(op) is thus a germ of holomorphic functions at the origin and we

. v
set vvv<0,0): bv?(oyo) € SING®*™P., We now consider the singularity [ & * vvv(qo)e SING,
for any o € C. By proposition , for an arbitrary direction € S!, the formal
Y — -
Laplace transform .27 ( I %(01’0) ) € /=°(B)/</=""(B) is the asymptotic class

of direction B which reads also as:
v v
LP (1% w0 ) =2P (1) LP (Wo) )-

v A ~

On the one hand, .ZP [ is the asymptotic class [ o€ I'(B,2/=0/27/=<~"). On the
v A

other hand, .Z# vvv(o,o): "W(0,)- Therefore, £P ( I vvv(o,o) ) =15%W(0 ) that can be

identified with = W(0,0) With the branch of z° determined by the condition argz € E .

Example 7.6. We now use the notations of Sect.[3.4.2.2]but for the fact that we con-

sider arcs on S'. We write Iy =]0, [ and I =] — 3m/2,m/2[C S! and in what follows
with think of the Laplace-Borel sum wy,; o = Sk OW(0,0) as (representing) a multival-
ued section of 7 on I. Similarly, we set I =], 27| and I} =] —57/2, —71/2[C St

and think of w1 = yllﬁ(oyo) as an element of I'(If,<s). Notice that
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IynIf =] -3m/2,—7/2] on S!. Since both werio and w4 are asymptotic to the
1-Gevrey series W<0’0), we know that the difference wy,; o — w1 1s a multivalued

1 1
section of &7="! on Iy NI5. Therefore, for any ¢ € C, —Wirip and —wyyi 1 glue
z ’ Z ’
together to give a multivalued section of &7<°/.e7=~! on Iy U}, that can be identi-
A
fied with the asymptotic class [ hW(O,O) € ASYMP;; ;. The formal Borel transform

B ( ?5 ”W(QO)) is the multivalued section of € on Iy =] — 7/2,37 /2] which can
be thought of as a singularity in SINGg; 7, and is given by
B(I; )( ?G hW(O"O)) :;G * vvti(070>. Similarly, the formal Borel transform
B ( ?G hﬁ(oqo)) is the multivalued section of & on I} =|r/2,5m/2[ which pro-
vides a singularity in SING3z/5 72, of the form B ( ?6 hW(()’O)) :;5 * vvv(o'ro).

v
These two singularities glue together as the element /5 * vvv(o,o) of SINGg 7.

7.5.3.3 Formal Laplace transform for singularities at ®

The spaces SING, resp. SING, ¢ ¢ of singularities at @ € C are the translated of
SING, resp. SINGg . (See definition [7.TT). By its very construction, the formal
Laplace transform brings the translation into the multilplication by an exponential.

Definition 7.28. The formal Laplace transform .’ sends SING, resp. SING, g ¢,
onto the space denoted by e"“*ASYMP, resp. e " **ASYMPyg , made of asymptotic
classes with support based at .

We mention the following result that can be thought of as an analogue of the
Watson’s lemma [/14]].

Lemma 7.4. For any o € C*, the sum of the two C-vector spaces ASYMPg o and
e”®*ASYMPy q is direct.

A
Proof. We consider an asymptotic class @€ ASYMPg ,. By definition, one can
find a (good) open covering (J;) of J* =] —7w/2—0t—6,—0 +a+ /2] and a “0-
cochain”  (@; € &=°(J;));  with  associated  “I-coboundary”

A A
(@j1—@j € 7= (Jj OJ;))j that represents . Now assume that ¢ also belongs

to e~ “?ASYMPy . Considering a refinement of (J;) if necessary, one deduces that
@; € o/="1(J;) for at least one j, since J* is an arc of length > 7. This implies that

v v
the formal Borel transform @& SINGg , has a major ¢ which can be analytically

v A
continued to 0, thus = 0 and as a consequence ¢=0. 0O

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general nonsense
on Laplace transforms in the framework of resurgent analysis, see [l 2} 7} I8} 16].
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7.6.1 Laplace transforms

Definition 7.29. Let / C S! be an open arc and » > 0. We denote by:

1. &<(I) the C-differential algebra of holomorphic functions ¢ on 36"(1) with
I-exponential growth at infinity on the direction I : for any proper subsector

87 € :35°(1), there exist C > 0 and T > 0 so that, for all z € 3%, |@(z)| < Ce*F!;
2. when I is of length < 7, &£<!(I) = &='(I) is the space of holomorphic functions

@ on ;35" (I), with 1-exponential growth at infinity on the codirection /.

3. &1, resp. &=, the sheaf over S' corresponding to the family (§='(I)), resp.
E<N(1);

4. 0(C)=! the space of entire functions with I-exponential growth at infinity on
every direction.

Voo %

Pick an open arc I C S! of length < 7, and a function € &=!(I). Thus @ is

holomorphic on A8°(f ) and for any open arc I; so that I; C I, for any € > 0, there
e v

exist C > 0 and T > 0 so that, for all { € 32(1)), | ¢ (§)| < Ce™¢l. We consider the

following Laplace integral,

Vv

me=| e%(@)d«::(—/&’ oo e )w(a:)dc,

where I =161, 6, (for the contour of integration, see definition . This Laplace
integral can be decomposed as follows:

V
e by classical arguments, the integral e %@ (£)dE defines a holomorphic
Rel K

L]
L] P
function on IT ?1 and we observe that for any r > 7, for every z € I1 f‘,

< / e ST Ce™ ds < Lefs(rfr).
r—7T

roo
€

| etowue
Rel,s

V
In the same way, the integral e %o (£)d& defines a holomorphic function
R92,£
C efs(rf‘l?).

S 5
r—7T

[ ]
[ ] _
on ng and for any r > 7, forevery z € IT 92,

| e® o
Rez.s

- Y
e the integral / e % @ ({)d{ defines an entire function and
d
61,6

,€

€

vV v
/ el g (g)dg| < C|i|ee™eect.
[61,6,]

e by arguments already encounter (see Sect. , both I.I i" and 1'122 contains any
proper subsector 4% of :5‘;"(1{‘), once r > 0 is chosen large enough.

Therefore, ¢y, belongs to the space BSO(:S‘;‘; (7)) for r; > 0 large enough, because

€ > 0 can be chosen arbitrarily small.

v
It is easy to see that adding to ¢ any element of &'(C)=!, does not affect the function
¢y, (just deform the contour of integration, by Cauchy).
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The family of functions (¢, ), obtained this way glue together analytically, by
Cauchy.

The above construction gives a morphism, Z(I) : &5'(1)/6(C)S! — & =0(1"),

compatible with the restriction maps, which provides a morphism of sheaves>.

Definition 7.30. The morphism of sheaves . : £=!/0(C)=S! — &7=0 is called the
strict Laplace transform®.

We return to the construction we did to get the formal Borel transform, Sect.
We pick an open arc I* C S! of length < 7w and ¢ € 7=°(I*). For z; € 47°(I*),

v
r> 0 large enough, for any direction o € I*, we set @, o (§) = — %n / e p(2)dz.
' 7L JRo

¥ v
We have seen that, making o varying, one gets an element of &=!(I), while P .0
depends on z; only modulo an element of ¢(C)<!. We thus get a morphism of

sheaves % : o7=" — &=!/0(C)=! which has the following property (we refer to
[LL] for the proof):

Proposition 7.11. The morphisms of sheaves £ : E< o) = =0 and
B A= — &1/ 0(C)S! are isomorphisms of sheaves of C-differential algebras,
and L oA =1d, Bo ¥ =1d.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We recall that SINGg ( can be identified with the space I'(J, %) of multivalued
sections of € over J =] — /2 — o+ 6,0 +a+n/2[CS'. In particular, any sin-

v v .
gularity @€ SINGy  can be represented by a major € ANAg o = I'(J, 0°), with
J=]0 —a 27,06 +a[CS.

\Y v
Definition 7.31. An element ¢ ANAg o =1'(J,0 0) is said summable in the direc-
tion B € J =] — 0.+ 0, 6 + o[ if there exists a neighbourhood J; C J of B so that the

% ~ v ~ v ~ ~ ~
two restrictions 91 € I'(J1, 0°) and @,€ I'(J3, ﬁo)gf ¢ overJ; and /o = -2 +J
respectively, can be represented by elements of I"(J;,&<") and I'(J,,&<") respec-

v ~ ~

tively. A singularity € SINGyg ¢ is summable in the direction J if for any B € J,
v v

the singularity ¢ has a major < ANAg  which summable in the direction 3. We

v
denote by SINGy';; the space of singularities ¢€ SINGg ¢ which are summable in
the direction J.

7.6.2.2 Laplace transforms of summable singularities

v ~
We consider a singularity € SINGy'y and a direction § € J =] —a + 6,0+ af. Let

v v N v o
¢ be a major of ¢ which is summable in the direction § and set ¢ = var ¢. Using

3 As usual, modulo complex conjugation
4 We abide a notation of [I]], although the construction therein slightly differs from ours.
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the notations of definition we consider the following Laplace integral where
€ > 0 is chosen small enough:

0p(2) = / e 9 (£)de (7.11)

Yp-2mple

[ @ [ e | oo

Op_2n.ple . Rﬁ—2n£

_ e ¢ (O)dC + / e G(0)d.
Rg .

Bip—2mpl.e

From the arguments used in Sect. @, we see that @g defines an element of
ESO(B). Moreover, if llv/ is another major of qv) which is summable in the direc-
tion B (for instance (\l; — llvle 0(C)="), then its Laplace integral Wp coincide with
@p as elements of ESO(E ). Thus ¢p 1s independent of the chosen summable major
and only depends on (7)6 SINGY'y. This allows us to write ¢ = B (/v).

Making B varying in J, the functions £P (73 obviously glue together analyti-
cally (by Cauchy and using the independence of .## (7) with respect to the chosen
summable major), to give and element 2 (7> of I'(J*, .o/ =9).

Definition 7.32. The morphism . : SING}'y — Z<O(B) is called the Laplace
transform in the direction B € J =] — o+ 6,6 + af.

The morphism £7: SIN b= I <0) is called the Laplace transform in the
direction J =] —a + 6,6 + a[.

We recover with the following proposition the examples given in the introduction
of the chapter, see also [[18]].

Proposition 7.12. The singularities I o and JG .m belong to SINGsum for any direc-
tion 0 and any o > 0. Moreover, for any direction 3 € s!,

v 1 v log™ Z ~
PP la)= s L Jem(@)= ()" L8 enfcE
Z Z
This has the following consequences:
v v v
Proposition 7.13. For all 61,0, € C, for all m;,my € N I, * I6,=16,+0, and

v v v
Joi,m * Joymy=J 61+05,m +my-

v 1 v 1
Proof. From proposition|7.12} we deduce that .Z [ = e and .Z [ 5,= e Thus
Z z

v v
by proposition|7.10, £ I o, * I 5,= and one concludes by formal Borel trans-

ZG] +0y
form. Same proof for the other equality. O

In definition [7.32] we meant morphisms of vector spaces. As a matter of fact,
these are morphisms of C-differential algebras. This is the matter of the following
proposition.

Proposition 7.14. The space SIN %“‘&‘ is a commutative and associative algebra

with unit 8. The Laplace transform £P : SIN o BSO(B) is compatible
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v v v v

with the convolution of singularities: LB o« y= (.,?B ¢ ) (.fﬁ v ) Moreover,
vy v

ZLPae)=02F ¢.

Proof. We go back to the Very definition of the convolution product of microfunc-

tions and s1ngular1t1es For (P llfe SINGg ¢, for any 8 e J=]—a+6,0+a the

convolution product (P * ll/ can be represented, for § € ng(]ﬁ 2w, B[) withe >0
as small as we want, by

V] vV 1 ev(C7<él+§2)) \Y \ déd 712

(P*Fxl"W(C)—ﬂﬁxrm¢(él)W(éz) 51 52, (7.12)
VoV

(see , where I' =I5 ¢, n, 1s as in deﬁnition and where @, ¥ are thought of

as belonging to ﬁ(;&o(}ﬁ —2m,B[)). In 1i v € C is a free parameter which can
be chosen at our convenience.

v v VoV
We now assume that @, Y€ SINGy'(; and that ¢, ¥ are summable majors in the

direction B. In that case, choosing v = |v|e " with |v| large enough to ensure

v \%
the integrability, one can rather consider the convolution product @ % ¥ as rep-
resented by (7.12), but this time with an endless path I' =1Ip . (see definition

v v
. This construction gives a major of @, ¥ which is summable in the direction
B. Moreover, the arguments used in the proof of the proposition show that

v v v v
LPosy=(2Po)(LPv) O
Example 7.7. We consider the formal Borel transform w o gy = 2w (g o) where w(q )

is the formal series solution of the prepared ODE (3.6) associated with the first
Painlevé equation. We know by theorem that wo ) can be analytically con-

tinued to the star-shaped domain Q(O) with at most exponential growth of order 1

at inﬁnity along non- horizontal directions. We set vvv(o’o): bW(O,O) € SING™. Then
(0 0)€ SINGY /2 )2 (or W(O 0)€ SING_“E/2 7r/2) : just consider the major
vvv(oﬁo) (&) = w0 (&) 10gl) The Laplace transform .Z10-7l y"(o,o) is well-defined and

2im
gives a section of .&7=% on | — 37 /2, /2[. As a matter of fact,

X]O,TC[ W(O 0= Z]O J'C[ y]O 717[ 0.0)

and Z107l yt/@,o) can be thought of as belonging to the space of sections

v
I'(]—3n/2,m/2[, 2% ). We now consider the singularity s * vvv(o 0)» forany o € C.
Using proposmons-andn 7.14] this singularity belongs (for instance) to SINGZ' - »

and £107 16 * w(o,()): (Z Lol [6 )(.,2”]0 oy W(0,0) )= z—(,yioﬂiﬁ(o’o), this time
viewed as a multivalued section &< on ] —3m/2,m/2[C S!.
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7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader to [1] (Pré 1.3, lemme 3.0) for the proof of the following key-
lemma, the idea of which being due to Ecalle.

Lemma 7.5. Let Ry > 0 be a real positive number and I C C be an embedded curve,
transverse to the circles |{| = R for all R > Ry. Let @ be a holomorphic function
on a neighbourhood of I'. Then, for any continuous function m : RT™ — R* so that
inf{m([0,&])} > 0 for all & > 0, there exists ¥ € O(C) such that, for all { € T,

|2(8) +¥(5)| < m([E]).

In what follows, we use the notations introduced in definition [7.7] [7.7} We also recall
that C \ Z stands for the universal covering of C\ Z. One may also think of C \ Z as

the universal covering of C \ U {me'® | m e N*}.
0=mk,keZ

v
Lemma 7.6. Let ¢ € SING be a singularity which can be determined by a major
analytically continuable to C\ Z. Then, for any direction 0 and any € > 0 small

v v
enough, the singularity © has a major @ with the following properties:

v
1. the restriction of @ as a sectorial germ of codirection  =| — /24 6,0+ 1 /2],
can be represented by a function P holomorphic on the cut plane

C\ [0,ei00[= 43(1), =] —27+6,6];
2. @ is bounded on S, (1), for every € > €.
3. @ can be analytically continued to C\ Z.

vV v —
Proof. Let ®1 be a major of ¢ which can be analytically continued to C\ Z. This
major can be represented by a function ®; holomorphic on 8% (F) U S (T) \ [0, ¢ o],
for R > 0 and € > 0 small enough, and &; can be analytically continued to C\ Z.

The boundary I7 = —d &, () can be seen as an embedded curve Hy : R — C that
fulfills the condition of lemma : one can find a function ¥} € ¢(C) so that
Py = @) + W satisfies |P2(n)| < exp(—|n|) for all n € I} . One can also assume
that |H|)(s)| is bounded and these conditions ensure the integrability for the integral
1 P, (n
@(¢)= :

2in Juy ¢ —
Moreover, one easﬂy sees by Cauchy that @ = &, + ¥ where ¥ € 0. One ob-

dn which thus, defines a holomorphic function on S¢(1).

serves that | —n| > €&’ —efor ({,n) € S (I) xIj ¢, with €' > €. Thus @ is bounded

on Sy (I). Notlce that @, inherits from @; the property of bemg analytically con-

tinuable to C \ Z. Thus one can analytlcally continue ¢ to C \ Z by Cauchy, by de-
formation of the contour by isotopies® H : (s,t) € R x [0,1] = H(s,t) = H,(s) € C\ Z
that are equal to the identity in a neighbourhood of infinity, Fig.

Finally, from the fact that @ = &; +¥ with ¥} + ¥ € 0}, we see that P defines a

v
sectorial germ @ of codirection I =] — w/2 + 6,0 + 7/2[ whose associated micro-

v
function coincides with the restriction of @ to the codirection /. O
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o g
&

Fig. 7.8 Deformation of the contour I ¢ by an isotopy equal to the identity in a neighbourhood of
infinity, for 6 = 0.

v
Lemma 7.7. Let ¢ € SING be a singularity which can be determined by a major
analytically continuable to C\ Z. Then, for any direction 6 and for any € > 0 small

v v
enough, the singularity @ has a major Q with the following properties:

v
1. the restriction of @ as a sectorial germ of codirection I =| — /24 6,0+ 1 /2],
can be represented by a function ® holomorphic on the cut plane

C\ [0,e100[= a2 (J), [ =] 27+ 6,8];
2. |@(n)| <exp(—|n|) forallm € I ¢, where I} ¢ = —9S¢(I) C :SBC’(IV)
3. @ can be analytically continued to C\ Z.

Proof. Just consider first the function @; given by lemma(7.6] then use lemma
to define @ from &;. O

The above lemmas and motivate the introduction of new Riemann sur-
faces that will be used in a moment.
Definition 7.33. Let 6 € S' be a direction. We set 57%(©) = C\ [0,e!%[. Let & be
a complex number in é)&,(o) \ Z. We denote by g ¢, (resp. By,) the set of paths

in ée,(o) (resp. C\ Z) originating from {y, endowed with the equivalence relation
N o) (resp. ~¢\z) of homotopy of paths with fixed extremities.

74
We set Rg ¢, = g ¢, UB, and we denote by 6:%)

follows. For any two ¥1,7% € Rg ¢, Vi 050 7> when one of the following conditions
is satisfied: either y; ™~ 26.0) %2 Or Y1 ~c\z Y2 Or else there exists 73 € g ¢ N By,

such that { N~500 B or { i~z s

the relation on Ry ¢ defined as

B~z B Voo B
Let y be an element of Ry ¢ . We denote by clg ¢ (7) its equivalence class for the

relation (GN.{O. We finally set:

RY ¢ ={clo.g, (1) | YERe g} and po g, :clg g (v) = ¥(1) € #%.(7.13)

3 That is H is a homotopy and for each ¢ € [0, 1], H, is an embedding. Remember that we see Ije
as an embedded curve Hy : R — C.
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Proposition 7.15. The space %Ze g can be equipped with a separated topology
which makes (%2 Co’pe-,Co) an étalé space. The space %Ze. % is arc-connected and
simply connected, thus defines a Riemann surface by pulling back by Po.c, the com-

plex structure of C. Moreover; for two points §y, 1 € %%\ Z, the two Riemann

9 9 . .
surfaces Z£% . and ZY . are isomorphic.
I Z,% Z,% P

The proof of proposition is left as an exercise. (Just copy what have been
done in Sect.[d.2.2). We complete the above proposition with a definition.

Definition 7.34. The class of isomorphisms of the Riemann surfaces (%’Ze_ 2P, %)

is denoted by (%’g,pg). We often use abridged notation (%?,p). We call principal
sheet the unique domain Z%(©) ¢ % so that the resctriction ple.0) realizes a

homeomorphism between Z 9.00) and the simply connected domain ée,(o).

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be defined and used according
to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

v
Definition 7.35. A singularity @ € SING is said to be Z-resurgent when it can be

v —
determined by a major ¢ € ANA which can be analytically continued to C\ Z. We
denote by RESyz or simply RES the space of Z-resurgent singularities.

A Z-resurgent singularity is often simply called a Z-resurgent function. Throughout this
course we will usually write “resurgent singularity” in place of Z-resurgent singularity.

Remark 7.5. It is important to keep in mind that the minor ¢ of any resurgent singu-

—_

v ~
larity @€ RES, can be analytically continued to C\ Z, since the minor ¢ does not
depend on the chosen major.

v v
Definition 7.36. One says that ¢ € RES is a resurgent constant when ¢ has a ma-
jor which can be analytically continued to C. The space of resurgent constants is
denoted by CONS.

A
Definition 7.37. An asymptotic class € ASYMP is called a Z-resurgent asymp-

totic class, resp. a resurgent constant, when its formal Borel Egnsform O is af\Z:
resurgent singularity, resp. a resurgent constant. We denote by RESy7 or simply RES

the space made of Z-resurgent asymptotic classes. We denote by CONS the sub-
space of resurgent constants.

A Z-resurgent asymptotic class is often simply called a Z-resurgent function or even a
resurgent function.

v v
Example 7.8. The singularities /s and J ,, are resurgent constants, as well as their

A A
associated asymptotic classes I and J g .
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7.7.2.2 Resurgent functions, resurgent series

We recall the following simple definition, for objects much discussed in [18].

Definition 7.38. The C-differential commutative and associative convolution alge-
bra Cé & Xy, with unit J, is called a space of Z-resurgent functions. We denote

v
by #7C RES the C-differential commutative and associative convolution algebra

v A
made of resurgent singularities of the form @= a8 +°¢ with ¢ € %y,

Since C8 @ %y, is a convolution algebra, the identity *® * *® =" (¢ x @) (proposition

v v
implies that %7 is indeed a convolution algebra. One usually uses abridged notation % in
this course.

Definition 7.39. A series expansion ¢ € C[[z"!]] is a Z-resurgent series when its
formal Borel transform %@ is a Z-resurgent function or, equivalently, when the
asymptotic class ?@ belongs to IﬁEJSZ. We denote by QTZ the C-differential commu-
tative and associative algebra made of Z-resurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent series”

instead of Z-resurgent functions or Z-resurgent series, since there is no risk of misunder-
standing.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1. The space RES is a C-differential commutative and associative con-
volution /a\lgebra with unit 8, and CONS C RES is a subalgebra. Therefore, the
space RES is a C-differential commutative and associative algebra and

CONS C RES is a subalgebra.

Proof. (Adapted from [8 [1]]. The reader should look before at the reasoning made
for the proof of proposition §.6).
It is enough to only show that RES is a convolution space. We take two singularities

v v
@,y e RES, we choose a direction 8 and we suppose 0 < € < 1.

v \4
By lemma resp. lemma @, resp. Y, has a major such that its restriction as
a sectorial germ of codirection I =] — w/2+ 6,0 + m/2[, can be represented by a

Vv V .
function @, resp. Y, holomorphic on 2%, that can be analytically continued to
the Riemann surface (%?,p) and moreover, satisfies the condition:

v
1. [@(n)| <exp(—|n|) forall n € I} ¢, where I} ¢ = —9G,(I) € %%;
iV, .
2. Vis bounded on &¢(1).
We know by lemmathat —I1e C Ge(I) forevery § € Gog(I). We also think of

I} ¢ as an embedded curve Hy : R — C with |H/(s)| bounded. Therefore, the above
properties and the dominated Lebesgue theorem, ensure that the integral

Vv V

1) = 05, W() = [ @MV —m)an (7.14)

defines a holomorphic function on G,¢(I) C 2% which by || represents the

v v
convolution product @ * Y. We want to show that } can be analytically contin-
ued onto the Riemann surface (%?,p) (thus to C\ Z as well). We choose a point
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& € ézg (I) so that {{o — Hy} NZ = 0, and we view ) as a germ of holomorphic
vV, oV
functions at {y: for € € C close to 0, x({o+&) = / e(n)V(E+ G —mn)dn. We
JH,

take a smooth path y: [0, 1] — C\ Z starting from { = y(0). We fix R > € so that
v([0,1]) € D(0,R) and length(y) < R. We will get the analytic continuation of ¥
along ¥y by continuously deforming Hp through an isotopy
H:(s,t) e Rx[0,1] — H,(s) € C\Z which is equal to the identity for |s| large
enough. We pick a ¢! function 17 : C — [0, 1] satisfying {{ € C | n({) =0} =Z.
We also set a ¢’ function p : C — [0, 1] with compact support so that the conditions
Plp(o,sr) = 1 and p|c\p(o,er) = O are fulfilled. In what follows, we see Hy as an em-
bedded curve R — C and there is no loss of generality in supposing the existence of
so > 0 so that Hy(s) € D(0,3R) for |s| < so, else Hy(s) € C\ D(0,3R).

One considers the non-autonomous vector field X({,¢) = MY (t). We

(&) +n (v(0)-¢)

denote by g : (to,t,%0) € [0,1]* x C > g(to,t, &) = g0 (&) € C the (well-defined
global) flow of the vector field, that is ¢ € [0,1] — §(z) = g"'({p) is the unique
integral curve satisfying both % = X({,r) and the datum {(ty) = {y. One finally
sets ¢ (£) = g%/ (). Notice that any integral curve {(¢) of X has length less than
length(y) < R, since |X(&,1)| < |y (¢)|. With this remark and arguments detailed in
[18]], we can observe the following properties, for every ¢ € [0, 1]:

1. ¢(y(0)) = ¥(¢), that is 7 is an integral curve. (Notice that p(y(z)) = 1 because
7([0,1]) € D(0,R)).

2. ¢:(C\Z) Cc C\Z. (One has ¢;(w) = o for any o € Z since n(®) = 0).

3. ¢.(8) = ¢ forany § € C\ D(0,6R) (since p|c\p(o,6r) = 0)-

4. for every § € D(0,3R), ¢(7(0) — &) = y(t) — ¢:(&). Indeed, if 7 +— £ (¢) is an
integral curve starting from £(0) € D(0,3R), then {(¢) € D(0,4R) for every

t €[0,1] (the integral curve have length < R), thus fif = %V (7).
n
Consider & (t) = y(t) — {(t); one has dé = 1P /() because |E(f)| < 5R

n(&)+n (r(0)-¢)
for every ¢ € [0, 1], thus & is an integral curve of X.
5. forevery { € C\D(0,3R), |(t) — ¢ ()| > R. As a matter of fact, observe that if
t + {(¢) is an integral curve starting from £(0) € C\ D(0,3R), then |{(¢)| > 2R
for every ¢ € [0, 1] and therefore |y(r) — ¢, ()| > R.

We define the isotopy H:(s,t) e Rx[0,1] — H(s,t) =H,(s) by setting
H,(s) = ¢, (Ho(s)). Since Hy avoids Z, one has H;(s) € C\ Z by property [2| By
property we remark that for |s| large enough, H is a constant map. Notice also that

Hy C ,%’940) can be lifted uniquely with respect to p on the principal sheet 290 of
9. We note .7 this lifting. We can use the lifting theorem for homotopies [11[5] to
get the continuous mapping 7 : (s,1) € R x [0,1] = 7 (s,t) = £(s) € %° which
%9
H P
Rx[0,1] — C.
H
We now set K : (s,¢) € Rx [0,1] — K(s,2) = K;(s) = y(¢t) — H;(s). We know that

Ko(s) = y(0) — Ho(s) € S¢(I) C 2O for every s € R. In particular, one can lift
Ko uniquely with respect to p into an embedded curve .%; on the principal sheet
%) of 2°. Moreover Ky(s) € C\ Z, for every s € R. Property [5| ensures that
K;(s) stays in &,(I) for |s| > so, otherwise by property , K;(s) belongs to C\ Z.
This implies that K; can be lifted uniquely with respect to p into an embedded

makes commuting the following diagram:
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curve #; which lies on the principal sheet 2% of %#° for |s| > so. Apply-
ing again the lifting theorem for homotopies, one obtains a continuous mapping

K (s,t) ER X [0,1] = H(s,t) = H(s) € % that makes commuting the follow-
N7

o ) AL

ing diagram: Rx[0,1] — C.

K
We finally introduce the two holomorphic functions @,% € ¢(%#%) such that

() = (YJ(p(C)), Y(() = IY/(p(é’)) for { € %) With these notations, the germ
of holomorphic functions y at §y = y(0) reads

1(r0) +8) = [ D)W (E +H6(s) Hy(s)ds

and its analytic continuation along Y is obtained by
00 +8) = [ () ¥ (E+ () H](5)ds. 1.15)

Indeed, remark that for |s| large enough, ®(H#(s)) = §Y>(H, (s)) and
v v
|©(Hi(s))| < exp(—|H;(s)]). Also, for |s| > so, ¥(& + #(s)) = ¥(Ki(s)) which

is bounded since K;(s) € G¢(I). Thus the integral (7.15)) is well-defined. The fact
that (7.15)) provides the analytic continuations comes from the Cauchy formula, see
analogous arguments in [18]. O

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The space RES(®¥ (L) The space Z(%%)(L) was introduced by definition M
and we know by proposition that C8 &2 %@ (L) is a convolution algebra. The
following definition thus makes sense.

Definition 7.40. We denote by %(9"")@) D,%’ the C-differential commutative and
associative convolution algebra made of singularities of the form (Y>: ad +’~(/ﬁ € SING
with ¢ € 2(%%)(L). The associated space of formal series is denoted by Z(%®)(L).
By its very definition, any element § € %(®-%) (L) is a germ of holomorphic func-
tions at O that can be analytically continued to the Riemann surface %(%-®)(L). This
means that any (7)6 %(9’0‘) (L) is a simple singularity that has a major (77 which can be
analytically continued to the universal covering 9?(9";(\[,7\ {0} of 2% (L)\ {0}.
Since %(9‘“)(L) is a convolution algebra, we know that for any two singularities
(7), 1716 gv?(e’“) (L), their convolution product (77 * llv/ belongs to. %(9,0!) (L) as well,

thus has a major that can be analytically continued to %(¢-®) (L) \ {0}. In substance,
this comes from the property that " * *® = (¢ * @) for two integrable singularities

.. . v v .
(proposition . Now, what about the convolution product @ * ¥ of two singular-

v v v
ities Ve %% (L) and @ RES ? To give the answer, we prefer to shift to a more
general case and we introduce a new definition.
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Definition 7.41. Let be 0 € {0,7} C S!, & €]0,7/2] and L > 0. We denote by
RES(%:%) (L) the space made of singularities that have majors that can be analyt-

ically continued to the Riemann surface %2(8:®)(L)\ {0}. The associated space of

— (6,
asymptotic classes is denoted by RES( ) (L) C ASYMP.

Proposition 7.16. The space RES®%)(L) is a C-differential commutative and as-

v
sociative convolution algebra with unit 8, contained RES and %(e*a)(L) as subal-
gebras.

Proof. The proof follows that of theorem but for the fact that one adds the
arguments used at the end of the proof of proposition 4.6

The spaces RES® The spaces 2 were introduced by definition They pro-
vide new spaces of singularities which are worthy of attention.

v
Definition 7.42. For k € N*, we denote by %) the space of singularities of the

v ~ . ~ = . . .
form Q= a8 +"¢ € SING with ¢ € #*). The associated space of formal series is
denoted by 2%,

v
Remark 7.6. Notice that the set of spaces (%(k))keN provides an inverse system of

. s Y V) i ) .. . .
spaces whose inverse limit lim %2\ = ﬂ% is #. This is why we sometimes write
—
k

2™ =2.

v v
The space %) is of particular interest since, from propositions 41| and 2
makes a convolution algebra.

v
The space 2" is made of simple singularities that have majors that can be ana-

lytically continued to the universal covering Z(*) \ {0} of () \ {0}. We now con-
sider larger spaces of singularities.

Definition 7.43. Let kK € N* be a positive integer. We denote by RES® the space
of singularities that have majors that can be analytically continued to the Riemann

surface Z(K) \ {0}. We denote by RES®) c ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES "),

Remark 7.7. Notice again that imRES®) = (JRES®) = RES, and we sometimes
P
k

write RES(®) = RES.

We will have a special interest in RES) because of the following analogous to
proposition [7.16
Proposition 7.17. The space RES() isq C-differential commutative and associative
v
convolution algebra with unit 8. It contains RES and 2V as subalgebras.
We omit the (rather lengthy) proof of this proposition. The main idea is to con-

sider the integral representation (7.14) used in the proof of theorem[7.1]and to adapt
the construction made in Sect. .3

Conjecture 7.1. We conjecture that any space RES®) makes a convolution algebra
as well.
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7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resurgent func-
tions. These operators are carefully defined and discussed in [18]], especially when
they operate on the algebra Co & F5™P of simple resurgent functions. Most of the
arguments there can be easily adapted for alien operators acting on RESy, once the
study of singularities had been made. This is why we introduce the alien operators
in a rather sketchy manner in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains definitions

v
We consider two directions 8y, 6, € S!, a point @ € Z and a sectorial germ Q€ ﬁgl of

V .
direction ;. We can think of @ as a sectorial germ on a sector Agl (I)forO<R; <1
and I; C S! an open arc bisected by 6}, and this is what we do in what follows.

V —
We now assume that @ can be analytically continued to C\Z. We consider a
path v:J — C\ Z starting from {; € Zgl (1) and ending at &, close to @ so that
L-—we Zgz (L) with 0 < R, < 1 and I, C S! an open arc bisected by 6,. See

Fig.

v v
By hypotheses, the analytic continuation (cont, @) of ¢ along y is a well-defined
germ of holomorphic functions at £, that only depends on the homotopy class of ¥
(for the relation of homotopy of paths in C\ Z with fixed extremities). Moreover,

v
if Ve O, _, stands for the germ of holomorphic functions at & — o defined by
v v v

V (&) = (cont, @ )(w+ &) then, still by analytic continuations, ¥ determines a
unique sectorial germ on Zgz (I,) and thus, by restriction, a unique sectorial germ

v
Ye ﬁgz. This justifies the following definition adapted from [18]].

Definition 7.44. Letbe 6;,6, € S!, ® € Z and (\ée ﬁgl a sectorial germ of direction
0, that can be analytically continued to (a/Z Let y:J — C\ Z be a path starting
from a sufficiently small sector 20(11) bisected by 0; and ending close to ® in
a sufficiently small sector of the form w + ;30(12) where I, bisects 0,. Then, one

) V
denotes by o7 (6,,01) e ﬁgz the sectorial germ of direction 6, represented by

‘lv/ (&) = (conty (\l; J(w+&)for & e :30(12).

0,

Fig. 7.9 A triple (y, 61, 6,) defining the operator </} (6;,6,) at @ = —2.
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~ v
We now consider two directions 61,8, € S! and a singularity ¢ RESy. Think-

v ~
ing of @ as a singularity of SINGg, 4, (for some o > 0), its minor ¢ can be seen as

L]
representing a sectorial germ @ € &0 of direction 8; = 7(6;) € S' which can be an-
01

alytically continued to m Therefore, under the conditions of definition , the
V . e o .
sectorial germ II/(; = 75(02,01)9 of direction 9, = 1(6;) € S is well-defined.
2

v
Even, by analytic continuations, one can deduce from ll/é a sectorial germ of direc-
2

. . \%
tion Is =] — 7+ 62,02 + w[C S! denoted by ¥;, € F(Ié ,00). By inverse image
2 6, 2

v
by 7 of the sheaf ¢°, this sectorial germ ¥;, determined a uniquely defined secto-
02

~ v
rial germ of direction g, =] — 7+ 65,6, + 7[C S! denoted by V1, - Still by analytic
continuations, this sectorial germ gives rise to a (multivalued) section on any arc of

~ V
the form | — & — 27+ (62 + 1), (62 + ) + a[€ S!, ¢ > 0, that is to an element ¥ of
v
ANA = N4~ ANA (g, 4 1),a» Whose singularity Y belongs to RESz.

Definition 7.45. Let be 6,6, € S! and @ € Z. Let }/ J — C\ Z be a path starting
from a sufficiently small sector Ao(ll) bisected by 91 = 7(6;) and endlng close to
o in a sufficiently small sector of the form @ + Ao(lz) where I, bisects 62 = 7t(92)

For any singularity (PE RESy, one denotes by .7} (65, 6;) (P the singularity II/ which
can be represented by a major l\l/fe ANA =TI (gl, 0"), whose restriction llvfgz € ﬁgz

V ] o o R
is the sectorial germ of direction 6, determined by ll/é = 71 (02,01)9, where @ is
2

v
the minor of @.

The linear operator .<7},(6,,0;) : RES7, — RESy, is called the alien operator at ®
associated with the triple (7,01, 6,).

The alien operators have their counterparts on asymptotic classes through formal
Borel and Laplace transforms.

Definition 7.46. The alien operator <7},(6,,60;) at @ associated with the triple
(7,6, 6,) is defined on asymptotic classes by making the following diagram com-
o o(861)

RES RES
muting: £ |1 # LT A.

P Y —

REs %% REs

7.8.1.2 The spaces RES(®-%) (L) and RESW)

Alien operators acting on RES(6-%) (L) We would like to define alien operators

acting on the space RES(®%) (L). We suppose 6 € {mk,k € Z} C S!, a €]0, /2],

L>0and me{l,---,[L]}. We set 6= 7(0) € {0,7} and we consider a singu-
v . . o

larity Qe RES(B*“)(L) whose minor is @. By the very definition of the space
> V . o o

RES(6:%)(L), the sectorial germ llfé = o75(62,0)9 € 09 is well defined under the

2 02

following conditions:
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1. ® = me'® and the path 7 is of type y? with € = (£),,_1 € {+,—}""!. In that
case, éz should be é — T

v
2. however, starting from II/(; and be analytic continuations, one can consider as
-

V . o o
well sectorial germs Vs with 6> € I =]-2m+0,0[CS".
2

\%
By a construction already done, the various sectorial germs llfé glue together and
2

v

provide a sectorial germ Y, € I (Ié’ 0°) of direction Ié' Still by analytic continua-
[¢]

tions and moving to multivalued sectorial germs by inverse image by 7 of the sheaf

\% .
0", one eventually gets an element ¥ of ANAg o with (0) = 6. This gives sense
to the following definition.

Definition 7.47. Let be 6 € {mk,kc Z} CS', o €]0,7/2] and L > 0. We set
6= n(0) € {0,7} CS'. We pick m€ {1,---,[L]}, we set ® = mei® and we as-
sume that the path 7 is of type y(éi)nm' For any singularity (7)6 RES(‘;’“)(L), one
denotes by </} (6,6) (7) the singularity llvfe SINGy ¢ which can be represented by a
major I\I//E ANAg o whose restriction Jle_ﬂe ﬁgfn is the sectorial germ of direction
0 — 1 determined by llvfg,,r: Q}Z)(é -, é)(ﬁ where @ stands for the minor of (Y).

This gives rise to a linear operator 7 }(8, 6) : RES(®:¥ (L) — SINGg 4, still called
the alien operator at @ associated with the triple (v, 6, 0).

Alien operators acting on RES®) We now work on the spaces RES®) given by
definition We want to prove that alien operators can be defined on RES®), as-

sociated with triples of the form (7, 8,8) with y of type y<9+)m or y(e )

We start with RES(). Letbe 8; € {nk,k € Z}  S' and set @; = ei®! with §; = 7(6)).
The very definition of RES(!) and the above reasoning lead straight to the following
linear operators, for any integer m; > 2 and any € € {—,+}:
7 ”(55
E)my—1

g (61,61):RES") — SINGg, z. Fmyay ' (61,61) : RES) — SINGg, , 1/2.2/2

(7.16)
We move to the next case k = 2, that is we consider the space RES® c RES().
Of course the above operators (7.16) still act on RES® but, however, their ranges
can be made more precise. By the very definition of RES?, the minor ¢ of any

v
singularity @& RES(®), when considered as a sectorial germ, can be analytically

continued along any path ¥ of type yg..‘] with
e e {((H)", (Fm—1), ()", (m—1) | (nr,m) € (N*)?}.

Moreover, introducing éz = él +(n—1)x, 0 =1, and @ — @) = €2, the ana-
lytic continuation conty @ of @ along ¥ is a germ of holomorphic functions whic can
be analytically continued onto the simply connected domain
p(#"0) = C\ {] =0, p] U[p+1,+eo[} where p, (p+ 1) [=]@1, @[ whenm; = 1,
1P, (p+ 1)[=](m1 — 1)@2,m @[ when m; > 2. Considering only odd values for n;

(thus 6, = él on SY), one immediately sees that l) becomes:
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01
/) (61,61) :RES® — RES(), (7.17)

91
o
91
(E myp—1

L e (01,61) :RES® — SINGg, 4 z/22/2, m1 > 3.

'(61,61) : RES?) — SINGg, »

2601

6,
L. . Y
Notice in particular that the operator 7 aﬁ: (62, 6;) now acts on RES® as well, for
any direction 6, € S!.
The reasoning generalizes and we give the result.

Lemma 7.8. Let be 6, € {mk,k € Z} C S'. For any integer k Z L, any e € {—,+}
791

and any m| € N*, setting @ = ei91 the alien operator Jz{mlcffl 1! (61,0)) is well

defined on RES™) with the range:

91
(£)m| 1

A o (01,601) :RESW — RESE—) 1 <my <k—1 (7.18)
9|
'J/ Imy—1 k

gf,mwl‘ (61,61) : RESY) — SINGg, 5, m; =k
91

Ye)m
%mlwl‘ '(61,6)) : RES® — SINGg, , 2.2/, 1 >k+1.

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very definitions.

Proposition 7.18. For any alien operator of the form o, (92, 01) : RESz — RESy,
acting on RESyz, RES(G @) (L) or RESW, for any singularity (P

vV v v
F(6,61)(99) = (9 —0) A 5(6,,61) ¢ (7.19)

Vv
In other words, [<7},(62,6)),9] = —0.2/1,(6,, 6,).
We introduce new definitions before keeping on.

Definition 7.48. For any k € Z, one denotes by py € Aut(x) the deck transformation
of the cover (C, ), defined by: p; : { = rel® € C — p({) = rel®+27% ¢ C.
v % %

For any singularity of the form @ = sing,® € SING, @ € ANA, we write

v v
Pir.® = singy (P o pi) € SING. _ N
More generally, for any r € R, one sets p, : { = re'® € C s p,({) = rel®+t27 c C

v %

and p,.¢ = sing, (P o p,) € SING.
Remark 7.8. With this notation, the variation map var : SING — ANA reads
var=Id—p_;.

The alien operators associated with a triple satisfy some identities as can be easily
observed:
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Fig. 7.10 Two triples (7, 6;,6,) and (YA, 61, 6) for the point @ = —2, with A, a closed path of
winding number windy, (Ae) = 1 at o.

Proposition 7.19. For any given alien operator </}(6,,6;) : RES; — RESy,
(62,0, +27k) = o/ },(02,01)pr and < (6, + 27k, 0,) = p_i./ (65, 61), for
any k € Z.

Let us consider a point @ € Z and a given triple (7, 8;,6,). One can extend the
path 7 into the path yl{f, where 7L(’f, is a closed path near @ that surrounds that point
like on Fig. with winding number windg, (1X) = k € Z at that point. One can
as well consider the path lé‘}/ where l(’)‘ is a closed path surrounding the origin with
winding number windy (A§) = k € Z. A little thought provides the following result.

Proposition 7.20. We consider a triple (y, 01, 6,) defining alien operator < }(6-,61) :
RESz — RESy at ®. We assume that YAK, resp. 2.6‘}/ is a product of paths so that
),(’f), resp. AKX is a closed path surrounding ®,resp. 0, and close to that point, with
winding number windg (AL) = k, resp. windy(AX) =k, k € Z. Then,

Ayy _ g _ Y
A (62,01) = (62,01)p.,  F®(62,01) = . 5(62,61).  (7.20)
In particular,
% My ¥ _ Mot
%w(92,91+27rk)—ﬂw (92,91), 427@(924-2717]{791)—%@ (92,91). (7.21)
We end with the following property.

Proposition 7.21. For any alien operator of the form <f Z,( 0,0) acting on RESy, or
. v v
RES(®-%)(L), for any singularity ® and any resurgent constant conste CONS,

v v v v
2/ 1(6,0)(const* ¢ ) = const (7/1(6,0) ¢). (7.22)
We stress that in proposition , only alien operators of the form .27} (6,,6;)

with 8; = 6, are considered. We omit the proof of this proposition which relies on
a careful reading of what have been done for showing theorem|/.1

7.8.2 Composition of alien operators

7.8.2.1 Alien operators on RES,

The following definition is adapted from [[18]].

Definition 7.49. One calls alien operator at ® € 7Z associated with the couple
(611, 07") any linear combination of composite operators of the form
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Fig. 7.11 The triple (71,8}, 8;) for the point @, = —2, the triple (12,6, ,67) for the point @, —
o =4, with 67 = 8] + 7.

M (08,00 0.

B (07,60) 0./l (6;,0]) : RES; — RESy,

where (@, ,®,) € Z™, m € N* with = 0, = ZT:I ®; — ®;_1 and the conven-
tion wy = 0.

Example 7.9. We exemplify the above definition. We set w; = —2 and @, = 2. The
alien operator .«7%} (65,6 ) at the point @ is associated with the triple (71,6/,6J)
drawn on Fig. The alien operator .7 232—0)1 (67,62) at the point &, — @ = 4
is associated with the triple (71,6, ,6, ) drawn on Fig. We furthemore assume
that 62 — 8} € [0,27] to fix our mind.

From the very definitions of the alien operators and of a minor, one easily checks
that the composite alien operator .2/ Zz,r o (67,02) 071 (6),6]) at @y, can be writ-
ten as the difference of two simple alien operators, namely

d?’z

N .
N 0 (05.60) 0l (6,,6]) =7, (65,0])— 1, (65.6]).

In this equality, I'* and I" ! stands for the (homotopy class of the) product of paths
I'" = nAg (o1 +7) and I'™ = 144, (@1 + 1) respectively, where the paths Ay,
and A, drawn on Fig. are homotopic to small arcs so that (4, )_11&; makes
a loop around ®; counterclockwise.

Typically, the end point of ¥ is {} = @) + rei®l while the starting point of 7 is &= reit
with 0 < r < 1. Then, A} : 6 € [63,62] — @ +re'® while (15 )~': € [~27+ 62,6} —

W] + rei.

From this result, one deduces from proposition [7.20| that for any k € Z,

) 2

Fig. 7.12 The paths I'" = nAg (01 + %) and 't = nA~ (@1 + 1), 0 = —2.
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42772

s I~
(65,67 +2mk) 0./ 1} (6,,0]) = /5, (65,6]) — 4 (65,0)).

with F,f =M /'L(’f,l 7La+,] (01 +7p)andI;” =y A(’f,l 7%1 () + 1) respectively, where k(’f,l
stands for a closed path around ®; = —2 with winding number wind, (l(]f,l )=kat
that point.

What have been done in the above example can be generalized. This is the matter
of the next proposition.

Proposition 7.22. We consider the two alien operators /1y (61,6}, </ &—wl (07,6%)
and we assume that 912 - 921 € [0,2x|. Then, for any k € Z,

2 52 Nl oy — A% a2 aly_ ok (a2 ol
(67,07 +2mk) o 5, (6,,0) = A, (65,0,) — o5, (67,6;).

)23
'Q{wz—wl

withI;" =y QLC’f,l Aoy (@1 4+7) and I;” = QL(’f,I Aw, (@1 + ) respectively, where Mf,l
stands for a closed path around ®, with winding number windg, (l(’f,l) =k at that
point, whereas Ag and Ag follows small arcs so that (Mg )_12,;,’1 makes a loop
around @, counterclockwise.

As a consequence, any alien operator at a point @ € 7 associated with the couple
(01, 6,) can be written as a linear combination of alien operators at @ associated
with triples of the form (Y, 6, 6,).

We now focus on paths of type J/EB“. For m € N*, we take a (m — 1)-tuple of signs

e= (e, ,&n1) €{+,—}"and n = (ny, - ,n,u_1) € (N*)""1. We choose a

direction 6, € {mk,k € Z}. Following definition , to a path of type }/gn' one asso-
ciates a sequence of points and directions defined as follows :

0j+1 = 9‘,-+s‘,-(n.,-f 1)71' 1<j<m—1 (7.23)
wj+l*wj:ei9j+l 0<j<m—1
ay = 0.
oy

These data thus provide a uniquely defined alien operator .o/ Lﬁ: (6, 01), once the

direction 6,, € S', ém = 71(6),) is chosen.

Theorem 7.2. Let m € N* be a positive integer, € € {+,—}""!, n€ (N*)"! and
0, € {mwk,k € Z}. Let y be a path of type yf,.l, ,, and ém given by (7.23), and ,, € S!

so that ém = 7t(6y,). Then the alien operator o Z,m (B, 61) at oy, associated with the

triple (7, 01,6,,) can be written as a Z-linear combination of composite operators
of the form /™, (6,,,6])0---0/®, _(6]65)0.", (6],6]) that satisfy the
k 2 1

k—1

u
properties:
. (a){,--~;a),’c) € Z¥, k € N* and o, = @y;
e 0= ek;
o/
° fgrevgry ] = 1’ ce ,k, thepath YJ is oftype '}/(GJF,) . m; S N*;
mj* :

k
° Zj:lmj <m.

This theorem is of a purely geometric nature. We omit its proof (see [1]] Sect. Rés II-
2, see also [18} 22]]) and we rather produce two examples that explain the algorithm.
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Example 7.10. We consider a path y of type 17! for € = (+, —, +) and we set él =0,
see Fig. [4.2] To the path ¥ one associates by (7.23)) the sequence of points and direc-

tions: § 01 =0, 1=j=4 . .Onesets; = 6’ =0forany j € [1,4].
wy =0, (l)j+1—(!)j=10§j§3
We want to decompose the alien operator .o/ %4(94, 01). From the very definition of
the alien operators, one observes that
93 51 51 61

YE Y Y

%m w,(04,63) 0 ﬂfa(g)(Gz,@l):JZf 3(64,01) — o o7 (64,01),

and therefore

i 7 #)
Yo _
A 5 (04,01) = A, 2 (6/,0) — o ) (

0',6") o ﬂﬁ” G

Example 7.11. A bit more difficult, we consider a path y of type yenl fore = (+,—,+),
n=(1,3,1) and él = 0, see Fig. The algorithm still provides

;=0 l=<j=<4 ‘ . One sets again 0; = 0’ =0 forany j € [1,4].
=0, 0 1-—0j=10<j<3
Since
753 €| )’91 yel 2
dw4 (02(94’63 271?)0,!2/ (92,91)=JZ{ (9 91) JZf + +(9 61)

one deduces with the first example that

y"l 7(54: +) ! n/ 7(54:) ! n/ 7(54:) I !/
Ay (04,01) = A 57 (0,0") — A ), (0/,0) —2m) 0ot ) (6, 0)
Y‘;/ ® ®
:ﬂ;j>3(e’,e’)—ﬂﬁ 0,(0',6')0 dﬁ“(e’,e’)
- @%Z %(e’,e’—zn)owﬁ(e’,e’).

Example 7.12. A step further, we consider a path 7y of type yfnl for
=(—,+,+,+,—),n=(1,2,1,1,1) and take 6; = 0, see Fig. [4.3] Using (7.23),

we define:
01=02=0
a)():(),wl—a)():(l)z :1
= = gy = L
Weset ) =6, =0] =0, 63 =--- = 6 = 0, = . We start with the identity:

Fig 7.13 A path of type

A dor o=, 0), G O b Ul
n=(1,3,1)and §; = 0. 0 1 2 3 4
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.
96 9] 91

% Yo 2
427(06 0)5(66a96)0’da)5 #bh) (95,91) :,;afagﬁ‘+ ’+'+’+)<95,91) —%&(96,91).

Next, a little thought yields:

53 . 51 95
" Y_
A ) (66,05) 0.7 o5, (92,91) = o &) (06,01) — o ) (86, 05),
y" 91 yel N yas
”‘ycss++a>z(95763)°d (92761):42‘7655+ ++)(9 61) — Wa(); (65, 65).

92 61 91 01
Finally, /) g (62,0) 0 Z4) (01,01) = 74 (62,01) — a5, (62,6)). Putting
things together, one concludes:

92

A 15 (66,61) = A . (65,65)

0 o i
" sz; 0 (05,00) 0. (6].60) — ) (85,6 0./ L) (64,00)
/ (;/
e (%ﬁﬁo% o (6,600 (6].6))
Yé/z Y./l
— A s (63,09) 0 szf(s;z,z<62762> o ) (6],6])
75/2 Vez 79 75/1
+d( ws(ezaez) @7@; @(92792)0«%((2 m1(91791) ﬁa()]) (61,61).

7.8.2.2 Alien operators on RES (%)

We saw with lemma [7.8] that the alien operators associated with triples of the form

(7,61,6;) act on RESX) for y of type y(e_;)m and y(e_‘)m. We keep on this study accord-
ing to the guiding line of this section.
We assume 6 € {0,7} and pick two integers [,k subject to the condition
v
2 <1 < k. By the very definition of RES®, the minor @ of any singularity Q€ RES®),
once considered as a sectorial germ, can be analytically continued along any path y

of type yf.,‘, with

€™ e {((£)1 (E)m—1) €€ {+, =}y = (ny,-- ,m_1) € (N my e N*}

With the notations of (7.23), the analytic continuation conty @ of @ along ¥ is a germ
of holomorphic functions that can be analytically continued onto the simply con-
nected domain p(7°"9) = C\ {] oo, p] U [p+ 1, +eo[} where . (p+ 1)[=J 11,
when m; = 1, |p, (p+ 1)[=](m; — 1) @), m; ;| otherwise. These properties translate
into the next statement (the details are left to the reader).

Proposition 7.23. Let be 6, € {mk,k € Z} C S' and (1,k) € N with the condition
1 <1 < k. The following alien opemtors are well- deﬁned for any € 6 {—,+}, any

n; € N1 and any m; € N*. Setting el,co, by and 6, € S! with 9; =n(6)),
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7‘;'
(@) )y

A a1 (6),0)) : RES® — RESE—=m+D | <y < k—1
75‘
m € —
T a7 (0),6)) : RES® s SINGg, 7, my=k—1+1
91
Y
((i)[ 1Em . (k)
“Qfmla’l (9[761) :RESY — SING91+E/2771:/27 my >k—1+2.
(7.24)
<9[> 752 751
Equivalently, ,Q/mla;'zl o (61,6;)0- da(,; wl((-)g,eg)o(;a/w1 (61,91)are well-defined

alien operators, with 9,, ; given by (7 (‘) and 0; € St with 9, = 1(6;), with the
following ranges:

.
91 9]

,;z%ni/s();;] o, (01,61)0 oo/ (61,6)): RES® — RESKT=m+D) | <y <f—1
8 o

o O o 9)0...03/01(9 0,): RES®) — SING =k—1+1
myoy—ay_ \Vl Yl o \Y1,V1) - o,m; M= +
51 0

g avo o0 (6 0): RES® s SING >k—142
m o —o)_ 1( 1,6p)0--0 ) (61,61) : - 0+5.5, M= +e

(7.25)

We would like now to discuss a kind of converse of proposition with the
next two propositions.

v
Proposition 7.24. Let k € N* be a positive integer and P& RES®). We suppose

-t v KJ
that for any 0 € {wk,k € Z} C S' one has df’(e,e) oc RESK), with @ = €9,
. v
0 = 1(0). Then @ belongs to RES*+1),

v
Proof. There will be no loss of generality in assuming that @ is a simple singularity
v .V o A
and this assumption is easier to handle : ®= a8 +’¢ € ¥ with ¢ € A,

v - . .
We consider a singularity 2. Thus, ¢ can be analytically continued to 708
Equivalently, for any 6; € {mk,k € Z}, @ can be analytically continued along any

path y; of type 7(651),,,,1’ m € N*, £ € {—,+} and conty, @ is a germ which can be
analytically continued to the star-shaped domain p (%’ (E)m-1,61 )
5 " .
Let us assume that for any 6, 6 {mk,k € Z}, 42{ (61,6;) @ belongs to RES(!),
where w; = e‘91 We claim that (,0 belongs to RES®@.

Our assumptlon results in the following property : for any n; € N* and any

path 7 of type y(e 4y

(conty contMml )(p is a sectorial germ which can be analytically continued along

n; >, denoting by lwl a clockwise loop around @, the difference

any path 9, of type y<982) ome N*, e e {-,+}, éz = él + (n — 1)m. Moreover
conty, (conty—conth )@ is a germ of holomorphic functions which can be ana-
|
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Iytically continued to the star-shaped domain p (%((iy{l A(E)m-1).61 )

Start with n; = 1 and a path y of type }/&)l , resp. 7(9_1)1 . Take a path » of type y(ej)

m—1’
éz = él, resp. y(ef) _,- Notice that 7 =y, is a path of type y&‘)m Therefore from
the above property, cont,, (conty (ﬁ) = conty, ¢ is well-defined and gives a germ that
can be analytically continued to the domain p(%2(H)m01) = p(Z(F)1:(m1).01),

resp.  p(#ImO) =p(#((m-001) But  this  implies  that
conty, (cont,, -~ @) = cont,, .  is also well-defined and provides a germ that can
0] !

be analytically continued to the domain p(Z2(H)m01) = p(Z(1Hm-1)01) regp,

p(%(_)m’él) = p(%((’)?’(’)wmél). (Notice that the path yA,, 7 is a path of type
.1 él
W5 P Y

Of course, one could have chosen a path 7y of type }/<9+1)l and a path p of type 1/(9 _1)

m—1

The path y, = }/JL(;I Y. is a path of type }/(Bj) and we conclude for the analytic con-

tinuation of @ along the path yy, of type 7/(6(‘+)1 )’
One can pursue this way by induction on n; to show our claim. Here, we just
add the case n; = 2 so as to deal with a subtlety. We thus consider a path y of

type }/(GJF')% and a path 9> of type JQG;)WI, éz = é1 + 7. Notice that the path yA, 1

is homotopic to a path of type y(é)' when m = 1, of type y(iz)miz when m > 2.
Therefore, cont,, (contyml (ﬁ) is well-defined and one concludes that @ can be
analytically continued along the path y; = )y of type }/(é(ir P (ehmr)
over the germ cont,, @ can be analytically continued to the star-shaped domain
p(g«ﬂ%,(e)mf.),é])'

The same reasoning can be generalized and gives the proposition. O

and more-

A quite similar (and even simpler) reasoning gives the next result.

v

Proposition 7.25. Let be k € N* and @c RES®. we suppose that for any
751 v

0, € {mk,kcZ} C S! and any n € N¥1, the singularity ;zia(,ii)k’l)(ﬂk, 01) ¢ be-

v
longs to RES(), where wy is given by . Then @ belongs to RESK+1),
We eventually use theorem[7.2]to reformulate proposition

v
Corollary 7.1. Let k € N* be a positive integer and P& RES®). We suppose that

v
%Zl;rwkq (6, 6;)o- - odayz)rwl (62,62) 0.1 (61,61) @ belongs to RES") for any

composite operator that satisfies the properties:

o forevery j=1,--- k the path y; is of type }’&i) omie N*;

mj
k
o Y _mj=k

v
Then @ belongs to RES(*+1),
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7.8.3 Alien derivations

We now specialize our analysis to some particularly interesting alien operators.

7.8.3.1 Definitions

Definition 7.50. Let be 6 € {mk,kc Z} CS', o €]0,7/2] and L > 0. We set

é:n(e) €{0,n} cS'. Letbe @ =me® € C form e {1,---,[L]}, resp. m € N*.
The alien operators A;; and Ay at o,

A}, Ay :RESY(L) = SINGg 4, resp. Aj,Aq:RES — RES,

are defined as follows:

AL @ = o/ (9,0) @ (7.26)

v

v €)lq(e)! b
Ao = y plelate)! g 4) 9,
8:(517"':€m—1)€{+77}m_| " @
where p(g), resp. q(€) = m—1— p(€), denotes the number of “+” signs, resp. “—”
signs in the sequence €.

Definition 7.51. The alien operators A}, Ay : RES — RES for asymptotic classes
+
RES “24° RES
are defined by making the following diagrams commuting: . |1 % LT AB.

— + —
RES ““4° RES

7.8.3.2 Properties

Theorem 7.3. Under the hypotheses of definition the alien operators
A} :RES(®% (L) — SINGg 4, resp. A} : RES — RES, satisfy the identity:
v v vV % v % v
AS(@+W)=(Ag @)« W+ Y (AS @) (Ag V)+@x(AS W) (7.27)
®+Dy=0
where the sum runs over all @, = m1e'®, @, = mye'®, with my,my € N* such that
my +nyp =m.
The alien operators Ay : RES(97"‘)(L) — SINGg ¢, resp. Ay : RES — RES, satisfy
v v v v v v
the Leibniz rule, Ap(® x V) = (A0®) x ¥V + @ % (ApV). Moreover,
vy Ve v
Ap(09?) = (0 — ®)(Ap ®). Eventually, A} cons= Aw cons= 0 for any resurgent

\
constant cons.

Proof. We give the proof for the identity (7.27) only, so as to exemplify the use of
v .
singularities. Moreover we work on the space 2(6:%)(L).

The reader is invited to compare with the proof made in [[18]] for simple resurgent functions.
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There is no loss of generality in assuming that (Y):b(ﬁ, 17/:%;7 with @, 7 € Z2(©-%)(L).
By proposition one has @ % *® =" (¢ = @), therefore we can use arguments de-
veloped in chapter [4] (see in particular the proof of theorem [4.I)), which allow us
some abuse of notations.

The analytic continuation of the convolution product @ x ¥ along a path y of type
y(9+)m—1 = 717(}/((1)"171), ending at { = ® + & near |(m — 1)e'®,me'®[, is the germ of
holomorphic functions defined as follows:

L 4 L] L é*éo L]
(conty §+ ) (@+E) = [ BTM+E-E)+ |7 HE+mFE~Eg—man.

Here H; (= po ) is a symmatrically contractile path deduced from 7,

(1) = contyy o, P(H1(5)), (M2 +& —&g) = conty 10 g W(H ' () +& — &)

and @({ + 1) = conty, @(H; (1) +1n). To get the associated singularity, that is
v v

AL (@ V), one only needs to consider the restrictions:

1. of the first integral near the “pinching points” (see Fig.[7.14), where one easily
recognizes convolution products for majors and these provide the contribution

v v v Vv
Lo s (A, @) (Ag, W) to the singularity AS (¢ * V);
2. of the two integrals near the end points, which provide the missing contributions

(use proposition [7.2)).
This ends the proof. O

Definition 7.52. The linear operators A, are called alien derivations and RES is
called a resurgent algebra (since stable under alien derivations).

We refer to [[L8] (see also [[1]) for the proof of the next statements.
Theorem 7.4. For any 6 € { kn,k € Z}, ® € C with arg(®) = 6,
_ (=" + + +
Ao=Y A o, 000y oAy, (1.28)

sEN* $ arg(o) )=-=arg(@;1)=0
0<w) < <0<w

1
AS = Z Z Ap—w, 0 0Agy—a, ©Aw,, (7.29)

M
seN+ 5* arg(o))=-=arg(@;1)=0
0<w| < <0;<0

In the above theorem, < stands for the total order on [0, @] induced by 7 € [0,1] — tw € [0, @].

The alien derivations own the property of generating the whole set of alien oper-
ators. We precise this claim with the following upshot from theorem and theo-
rem[7.4]

Fig. 7.14 Symmetrically con-
tractile path H; and contribu-
tions to Agy (@ * ) for ® = 3.
Pinchings occur between 1

and § — 2, and between 2 and

1.




174 7 Supplements to resurgence theory

Theorem 7.5. Let m € N* be a positive integer, € € {+,—}""!, ne (N*)"! and

0, € {nk,k € Z}. Let y be a path of type }/gn‘, @ and ém given by (|7.23), and

0, € S! so that ém = 71(6y,). Then the alien operator <", (O, 01) at &)m associated
,

m

with the triple (Y,01,6y,) can be written as a Z-linear, resp. Q-linear combination
of composite operators of the form

Pry- (A 0 -0Ag 0AS), resp. pr,.(Aw, 0 0Ap, 0Ag,),
that satisfy the properties:
. ((I)l,--- ,(:)n) € (Z*)", ne N* and 7'5(2?:1 coj) = (I)m
. ém = arg(@,) + 27tky, k,, € Z;
o Yiilojl<m
Example 7.13. We continue the example The path yis of type 9¢ for & = (+, —,+)

,J/)
and we know that &7, " (0,0) = Ay — A 0 A", (On the right-hand side of the
equality, (4,2) stands for (4el’,2¢!%)). Using theorem one gets:

v
o 77(0,0) = Ay + L (A3 0 Ay + Ay 0 Ay + Ay 0 A3)

+4;(A20410A1+Ajo A0 Al +Aj oA 0 A) + 1 Aj 0 A0 Ay 0 A
—(A2+%A1 OAl) o (Az—f—%Al OAI).

Example 7.14. We continue the example[7.11| The path yis of type yf.} fore = (+,—,4),
n = (1,3,1) and we have shown the identity:

72
A FT(0,0) = A — A 0 AT —p_1.A) s.04s

This can be expressed in term of alien derivatives as well.

v v

We end with an observation. By its very definition, any singularity @< 22(%-®) (L)
has a regular minor. This property involves the following relationships for the ac-
tion of the alien operators. (These are essentially consequences of propositions

and[7.20).

Proposition 7.26. We suppose a €]0,7w/2), L >0 and m € {1,---,[L]}. The fol-
lowing equalities hold for any k € Z.:

v \ v v v v
o forany 9 Z OV (L), At O=p (AT 10 @), Ainrk O= Pt (Ayeimo P )
v v v v v v
o forany e ZTO(L), At o O=p (AT @), A, nori) P= Pt (Dyin @ );
Y
e moreover, if Q¢ %(0*“)@) N %(”’M(L) and if its minor Q is even, then
v v v v .
AL O=p_12-(A] @), Az P=p_12.(A1 @) with | = €°, while if ¢ is odd,
+ v + v v v
then Aei” o= —p71/2.<A1 (0} ), Aein o= _pfl/z.(Al [0} )

Example 7.15. We consider ¢({) = %1 € %. This is a meromorphic function
esns —

with simple poles at Z* whose residue at m € Z* is tes,;; = m. Introducing the

v -~ .
singularity (P:b(p, one easily deduces that for every k£ € Z and every m € N*,
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v + v k
A,eink P= Ameink o= (_1) mo. (7.30)

The formal Laplace transform .# (P 1s an asymptotlc class (P* 19 that can be repre-
sentend by a Z-resurgent series ¢ € ,%’Z and 0] translates into

A + A &
Apiric 9= A 0= (—1)m. (7.31)

v v v
We now look at the singularity Vs ,=Jo , * @ for (o,n) € C x N. By the Leibniz

v
rule and since J o.n 18 a resurgent constant,

Y v v k v
Apeirk Yo n=Jon *Apeime P=(=1)m J5 € () SINGzy - (7.32)

a>0

v
The asymptotic class associated to ¥s, by formal Laplace transform is

‘l/g n—J o, n(pe RES. The identity || provides:

A k A
Apeirk Yo n=(—1)mJgn€ (| ASYMPyy q. (7.33)

a>0

7.8.3.3 The spaces RES®)

We have already describe the action of the alien operators on the spaces RES®). We
can draw some consequences from theorem [7.3]

Corollary 7.2. Let be k € N* and o € C such that @ is an integer and |o| < k. The
alien operator Ay acts on RES® and

Ay : RES®W — RESK1D " yphen 1< || <k—1

7.34
Aw : RESW) — SING 4(@) 7, When |0] = (7.34)

v v
Moreover for any @, Y € RESW®) :
vy Ve v
o Ay(d9P)= (9 — 0)(Ap ?);
v v
o Ay (9 *V) belongs to RES() when 1 < |®| <k—1 and to SINGyrg(w),x When
. v v V. V vV \ '
|w| = k and furthermore Ay ((P * II/) = (Aa,(P) * W+ Qx (Aa, ll/) (Leibniz rule).

Proof. The 1dent1ty is a consequence of proposition [7.23] The commutation
formula [Ag, a] =~ Ay ensues from proposition Notice now that for any
k € N*, any L €]k — 1,k] and any & €]0,7/2], one has REs(W)( L) D RES™. Pick
v v .
two singularities @, ¥ € RES™® and consider them as belonging to RES(Q’O‘)(L).
v v v, V v v
One can apply theoremto get: Ay (P V) = (Ap®) x V4 @+ (Ao V) € SINGg 4.

v \%
Also, we know that A, @ and A,V belong to RES*=) or SINGg ; depending on
|o|. Finally when 1 < |®| < k — 1, one can work in RES(") > RES*~") which is a
convolution algebra by proposition and this provides the conclusion. 0O
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Definition 7.53. The alien operators A, A, : RES® — RES*-1o)  for
1< |o| <k—1, resp. A, Ag : RES®) — ASYMP, 4 ) 7. for |@| = k, for asymp-
totic classes are defined by making the following diagrams commuting:

°
RES®H) 4odo REglk-|o) RES® 24 SING, () 2

LT & LINAB ,resp. LT B L&
— + — — +

RES®) 4940 REg(K-(o)), RES®) “25° ASYMP,y(0) 2

We add a property that will be useful in the sequel.

v
Corollary 7.3. Let k € N* be a positive integer and 9 RES®). we suppose that for
anyn € N*, Ay, 0---0Ag, 0Ag, (P belongs to RES(! for any composite operator that
satisfies the properties: (0)17 e ,a)n) € (Z*) and Yt_, |@j| = k. Then (P belongs to
RES(+D),

Proof. This is a direct consequence of both corollary|/.1|and theorem o

7.9 Ramified resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly to the
problem under consideration. We introduce some of them.

7.9.1 Simple and simply ramified resurgent functions

We start with the resurgent algebra of simple resurgent singularities, much discussed
in [18] (see also [1}7]) and we make use of proposition

v
Definition 7.54. A Z-resurgent singularity @< RES is said to be a simple resurgent
v .
singularity when ¢©=ad +"p  SING*'™ and, for any alien operator <7/, (6,6} ),
' (6,01) 90 belongs to SING™. The minor @, resp. the 1-Gevrey series
¢ = a+ £, associated with a simple Z-resurgent singularity is a simple resurgent
function, resp. a simple resurgent series, and one denotes by RS resp. %)mep
the space of simple Z-resurgent functions, resp. series. The resurgent subalgebra
made of simple resurgent singularities is denoted by RESblmp and the corresponding

space of asymptotic classes is denoted by RESZ

As usual in this course, we use abridged notations. One can make acting the alien
operators on the space Z5™P.

Definition 7.55. The alien operators A}, Ay : RSP s Z75MP are defined by making

—— simp Aa, Ap

RES RES
the following diagrams commuting: 7; |1 Ty 117 .

Zsim A$ Ao S
GpSimp GpSimp

—— simp

Obviously (from proposition , for any @ € Z5™P | the alien derivative Ap®
only depends on (;), thus one could define A, Ay : R s J5MP for @ € 7F.
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Before introducing the simply ramified resurgent functions, we need to state the
following straightforward consequence of proposition

Lemma 7.9. The space SING*™™  of simply ramified singularities

v v -
(0ES ):fy:o ay [, +b(p, ¢ € Oy, is a convolution subalgebra.

Definition 7.56. One denotes by ASYMP*™™ the space of asymptotic classes asso-
ciated with SING*™™. The restriction of the Taylor map to ASYMP*™™ is denoted
by 7. One denotes by #*™™ its composition inverse, that is the natural extension
of the mapping  to C[z] ® C[[z~!]];.

v
Definition 7.57. A Z-resurgent singularity @< RES is a simply ramified resurgent
v v . . .
singularity if @=YN ja_, I, +°@ € SING*™™ and if, for any alien operator
v
A (6,,01), o (6,,01) @ belongs to SING*™™. The resurgent subalgebra made
of simply ramified resurgent singularities is denoted by RES3;™" to which corre-

sponds the space of asymptotic classes I@JSj'ram. The space of the associated formal
series Q(z) = Yo _yanz " is denoted by Z7°™™

One can define the alien operators A}, Ag : E5TM s 75T i the same manner
than in definition and, again, for any ¢ € Z*™™, the alien derivative Ag @ only
L]
depends on .

7.9.2 Ramified resurgent functions

The following definition makes sense by propositions [7.6and

Definition 7.58. We denote by SING'™™ C SING the convolution subalgebra gener-
v
ated by the simple singularities and the set of singularities {J5 , (0,m) € C x N}.
v
An element of @€ SING™™ is called a ramified singularity and reads as a finite sum

v v v v .
o= Z Jom * Q(cm With @5, € SING™™P. The associated space of asymptotic
(o,m)

classes is denoted by ASYMP™™ C ASYMP.

v \ v
To a ramified singularity ¢= Z Jo.m * (5 ) 1s associated, by formal Laplace

(o,m)

A A A A
transform, an asymptotic class ¢ ASYMP™" of the form ¢= Z Jom®P(o,m) With

(o,m)
A _ 4
Qom)= u(p((;’m) € ASYMP®™P_ This asymptotic class provides a formal expansion

of the type

50 = ¥ "5, e @ e,

() 2 (o.m)

through the Taylor map, for any given arc of St

We have encountered such formal expansions when we considered the formal integral for
Painlevé I (theorem[5.1).
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In the same way that C[[z!]]; can be thought of as a constant sheaf on S!, the

space B (g m) Z':;(Z)(C[[z*l]]l can be seen as a constant sheaf on S'. This justifies

the followmg definition.

Definition 7.59. Let be 6 € S! and a > 0. We denote by Nils;, resp. ﬁilisl’(g’a).

the space of global sections of the sheaf @ s ) lo‘iZ(Z)C[[z’l]]l, resp. section on

J=]-n/2—0—0,—0+a+r/2[. We call Nils; the differential algebra of I-
Gevrey Nilsson series.

The restriction of the Taylor map to ASYMP™™ is denoted by 77*™. One denotes
by

cram . NilSy — ASYMP™™®
D ~ _ A
¢ =YiomIomPom = "0 =Y(m Jom" ¥om)
mlog"(z)

its composition inverse, where Jg (z) = (—1) =

One can define the space Nils as well, made of formal expansions of the form
=Y (om ]G_Vm(p(c,’m with @5 ) € C[[z~ "]]. Let us consider an element ¢ € Nils

under the form ¢ = Y7, %, ¢ € C[[z"']]. We can of course assume that for

any i # j, 0; — 0 ¢ Z. We denote w = e~ 2% and we remark that @; — w; #0
for any i # j. We set p.@(z) = @(zez‘”) and more generally p;.@(z) = @(ze%7)

for any k € Z. We notice that p;.¢ = Za) . Therefore, ' (@,01.Q,-+ , pn.Q) =
Al <<p1 QP

,—,--+,— | where A stands for the n x n invertible Vandermonde ma-
701" 7% Z0n

1 --- 1
W - O =~

trix A = . . |- This implies that for each integer i € [1,n], %’ is a linear
: : <t
combination of @,p.¢, -, p,.@. This observation can be generalized:

Lemma 7.10. Let ¢ = Y, Z;’;é J;l._ym@(%m) be an element of Nils. Then the series
(p((;“m) € C[z7Y] are uniquely determined by ¢ and its monodromy (that is p.Q,
P2.9, etc.) once one imposes that 6; — G; ¢ Z whenever a(cm ?(6;.m) ) # 0.

Proof. This is a well-known fact and we follow a reasoning from [20]. We only
show how @ determines the series (ﬁ(c,-.m) since we will use this result in a moment.

. log™ m—1 1 )
If ® = e 2179, observe that (p — @) ( 08 (Z)> ) Z (m> (ziﬂ)m*liog (2) and

o =\ 2°
log™ o™ log™
therefore (p — @)™ <0g(z)) = m!— while (p — 0)""! (()g(z)) =0.Asa
2° 2° z°
consequence, for any ¢ € Nils one has P(p)op e Nils for any polynomial P € C[X],
and there exists a polynomial P € C[X] such that P(p)@ = 0. We denote by d(9)
the degree of the minimal polynomial of the action of p on ¢. We then make a rea-
soning by induction on d(@). ‘
Suppose that d(¢) = 1. This means that there exists @ = e 2"° ¢ (C such that

o'l()

(p— )@ =0, thus p (z°@) = z°@. Therefore @ is of the form @ = o~ with
(p((;1 0) € C[[lz""]] and a convenient choice of o7 € C so that 61 — ¢ € Z. (Thus
P(,.0) = P (2°19)).

Suppose now that for any ¢ € Nils such that d(®) < d, its decomposition is
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(uniquely) determined by 0,0.0,- ,p4.0Q.
Let be ¢ € Nils with d(¢) = d + 1. The minimal polynomial of the action of p on
Qis P(X) =T[;(X — @)"" with ¥;r; = d + 1. Write:

ﬁ(X) =X- a)l)”_1 H(X —w)"=(X- a),-)”_lQ(X).
i#1

From the fact that (p — @;)P(p)@ = 0, we deduce the identity P(p)¢ = 0 with

_Z?l

¢ € C[[z"']]; and a convenient o; € C such that @; = e 2% Since

r|7l

ri—1 ri—1
7o) ()~ 0tp) <<r1 - 1)!"%) = ()~ 1 i

ad

rlfli

and
Z01

we see that necessarily P(p) (fc’url—l‘ﬁcl,rl—l) = (-1)

¢
(r1— 1o O(w))
We finally observe that P(p) (q;—fgm_l 6617,1_1) = 0 and we can apply the in-

aﬁlﬂ—l = (_l)rlil

duction hypothesis on ¢ — J;hrl,l @61 —1. This ends the proof. O

We are in good position to define the ramified resurgent functions [24, 7, 8], see
also [15].

v
Definition 7.60. A Z-resurgent singularity < RESy is a ramified resurgent singu-

v v
larity when @€ SING™™ whereas, any alien operator .7 },(62,0;), 7% (6,,6;) @
belongs to SING™™. The space of ramified resurgent singularities makes a resur-
gent subalgebra denoted by RES7™. The corresponding space of asymptotic classes,

——— ram ~
resp. formal expansions, is denoted by RES,, , resp. Zz™™.
We state a result that derives directly from lemma[7.10]

Proposition 7.27. The formal expansion ¢ = Z(o,m)j:r,ma(o,m) € Nils belongs to
Fpram if and only if each of its components a(d,m) belongs to R,

Definition 7.61. The alien operators Aj, Ay : R s ZM are defined by making

—ram  AjAp S=cram
RES — RES
the following diagrams commuting: 771%™ L fram et gram
@ram AM‘” @ram

We eventually lay down a direct consequence of proposition (We warn to
the change of sign).

Proposition 7.28. Let ¢ be an element of Z™ Then, forany o € C with @ € 77,
foranyk € Z,

A pe2ink @ = P (Awp—k-ﬁ), Apein® = Pi/2- (Awpq/z@) .

Example 7.16. Suppose that ¢ € C[[z~!]]; belongs to Z™™ with Ay = loféz) v,

¥ € Clle"]). For k € Z, p_i.(z) = $(2). then Ayeimp(z) = L2 ().
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Suppose furthermore that @ is even, so that p_;/,.¢(z) = ¢(z). On deduces that

Aein®(2) = LD (),

7.10 Comments

We mentioned in Sect. the generalisation of the resurgence theory with the no-
tion of “endlessly continuable functions” [[1} 8]]. The whole constructions made in
this chapter can be extended as well to this context.

We of course owe the main ideas presented here from the work of Ecalle, who
started his theory in the 1970’s [6]. We have borrowed most of the materials to Pham
et al. [1]], in particular the microfunctions and the sheaf approach. To compare with
other written papers devoted to resurgence theory, we have paid more attention to
the sheaf and associated spaces of asymptotic classes. Finally, the responsability for
possible mistakes is ours.
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Chapter 8

Resurgent structure for the first Painlevé
equation

Abstract We show the resurgence property for the formal series solution of the
prepared form associated with the first Painlevé equation. The detailed resurgent
structure is given in Sect. Its proof is given using the so-called bridge equation
(Sect. , after some preliminaries (Sect. . The nonlinear Stokes phenomena
are briefly analyzed in Sect.[8.2]

8.1 The main theorem

8.1.1 Reminder

The formal integral of the prepared ODE (3.6) associated with the first Painlevé
equation was described with theorem and its corollary It can be written
under the following equivalent form:

w(z,U) = Wo(z) + i Z Uke Ak (2), 8.1

n=0ke&, 1 0\Z,0

where Wo =wp = W([)U] and forany n € Nand any k € &, 10\ &0,
~ n 1 1 ! ~ [0] ~ [0] _tk ~[0]
Wi = Zﬁ(%k) log' (D)W, W' =z "k (8.2)
1=0""

The formal series wy € C[[z™!]] solves (3.6), namely

1
P(&)%JFEQ((?)%:F(;%) = fo+ fiwe + LWy, (8.3)
, 392, » 1,
P(d)=0"—1,0(d) = -39, fo(z) = a25° i) =—4277, fol2) = 57 while

the Wi satisfy a hierarchy of equations given by lemma that we recall:

Wkl sz azF (Za ‘:170)

Pk = k1+>;;:k X G (8.4)
[ki|>1
Pk = Pk (wo) = P(—AL.k+9)+ %Q(—l.kJrB) — W

183
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To what concerns the k-th series v?l[? le C[[z"']], we have a result that ensues directly
from theorem [6.TE

Proposition 8.1. For any k € N?, the k-th series Wl[? ) belongs to % ()| the asymptotic

A ~ — (1 v A
class Wi="""W, belongs to RES( ) and the singularity Wx= % Wy belongs to
RES(V.

n
~ ~ 1 ~ |
Notice that I_z W = Z I (—x.k)lj_f_l_ylw{?]fl. forany n € Nand any k € Z,110\ En0.

1=0""

v LS| v —~ .
Therefore, Wx= Z il (7}{.1{)[ J_z1i *yvk,l[o] where VVVL?] = 6 +"we, fori=, 1,2, otherwise
=0t

(0]

_b~[0]
Wk = Wk

8.1.2 The main theorem

We formulate the main result of this chapter.

Theorem 8.1. The formal integral w(z,U) of the prepared form associated
with the first Painlevé equation, is resurgent. More precisely, for any k € N2, Wi
belongs to the space #7"™*™ of ramified resurgent formal expansions.

We set a){ = 2™ (6:){ = A1) and a)é = e2in(j+1/2) ((I)é = Ay) for any j € Z. Then,
forevery o € C of the form @ = k()a)lj, resp. @ = ko(x){, with ko € N*, there exist two
sequences of complex numbers (A,,(a)))n oy and (Bn(a)))n o uniquely determined
by @ such that, for any k = (ki,k») € N> and any n € N,

n

AoWicin = ) ((kl +m+ko)Ay—m(®)+ (k + m)anm((D)) Wictm-+koe,

m=—1

resp. (8.5)

n
AoWicin = Y (ka4 ko)Aun(©) + (k1 +m)Byn (©) ) Wi s

m=—1

where by convention W(k. k) =010 k1 <0ork, <O.

The sequences (A,,(oo))nEN and (B”(w))neN are subject to the conditions:
An(®) =0 when |@| > n+2 and B,(®) = 0 when |®| > n+ 1. Also, (A”(w))neN
and (B,, (w))neN are known for every @ € C once they are known for arg @ = 0 only.
In particular, Ag(@!) = (—1)/A¢ () while Ag(@3) = —iAo(®]).

The proof of this theorem will be given in Sect.

8.1.2.1 Remarks

We detail (8.5) for n = 0. For any j € Z and any kg € N*,
Akow{WO = Ao(koa)lj)Wel = Ao(koa)f)f/zﬁel (8.6)

Ay o0 = Ao (ko)) We, = Ao (ko3)2" *ive,

and Ag (ko) = 0 when ko > 2.
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When k € | o, we use abridged notations wyi, = Wl[? I

By proposition (728, A jwy = pj.(Ampp,j.Wo), i = 1,2. Therefore,

Ao(wij) = (—1)/A¢(®?). Remember that wy is even, thus Wy = p_1/2-wo, while

We, = P1/2-We, - By proposition [7.28 again, Am{% = P12 (Aw{-p_l/z.v%) and we

deduce that Ao(a){) = —iAo(a)f).
Now for any k; € N*,

Ayt Wirer = (k1 +Ko) Ao (Ko@) Wie 110 8.7)
Akoa){ﬁ/klel = kOAO(kOwé)Wklel+k0€2 + (kl - l)Bl (kowé)wklel +koer—1+

and Bl(kga);) = 0 when ko > 2. We have in particular Aw{VT/el :Ao(w{)Wl, thus

A e = Ao(@])Z3/*Wy. Also, for ky > 2,
Aa)é.Wklel :Ao(wg)w(kl—l)e1+l + (kl - 1)Bl (wé)W(kl—l)el

and using (8.2),

~ i _3/9~ [0
Awgwklel = A()((J){) ((kl — 1)1 log(2)z 3/2W(k1—1)el +Z3/2W£k]171)e1+1>

+ (k= 1D)B1(@) 7 Wity - 1)e, -

By proposition|7.28 Aw{WZel =p;. (Awlpp,j.ﬁgel), therefore

A 26, = (=1)/Ao(09) (51 tog(z+ 21 )z e, + 22, )

+ (~1/Bi(@))z i,

and one deduces: B (a)é) =(-1) (31 (09) + 2i77:j%1A0(w§)). Of course, by sym-

metry: By (0]) = (—1)/ (Bl(co?) +2in mAO(w?)).

In the same way, ijWZel =P1/2- (ijpfl/z'Wm) and we know that p_; /5. Wae, =
2 1

(0]

~ ~ ~ ~ ~[0
Waeys P1/2-Wey = Weys P1/2-Wey ] = WL1]+]. Thus,
A e, = —iA (a)j)(f% log(z+im)z 2, + /2 )
w% 2eq 0\ Wy 2108 €] e +1
+ iBy (0] e,

and By (0]) = 1(81 (@) +i7r%on(wf))-

8.1.2.2 Resurgence coefficients and analytic classification

Definition 8.1. The coefficents A,(®) and B,(®) given by theorem [8.1| are called
the resurgence cofficients for the first Painlevé equation. The coefficient Ag(@?) and
Ao(@?) are the Stokes cofficients.

The resurgence coefficients are also called higher order Stokes cofficients in exponential
asymptotics.
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As a rule and apart from some integrable equations, the resurgence cofficients
are seldom known by closed formulas but can be calculated numerically : see for
instance [9] and specifically [26] for hyperasymptotic methods, see also [1]]. For
the first Painlevé equation and its Stokes cofficients, an explicit expression has been
obtained by Kapaev [17, [18| [19] using isomonodromic methods, see also [33} 20]
for an exact WKB offspring. This result has also been founded by Costin ez al. [§]]
by means of resurgent analysis and we give this expression.

6
Proposition 8.2. In theorem the Stokes coefficients are Ag(®)) = —iy/ i and

Ao(@) = \/g

The Stokes coefficients are also known for the second Painlevé equation, see [[15] and ref-
erences therein. It is likely that the method of Costin et al. 8] can be used to get the other
resurgence cofficients for the first Painlevé equation.

We saw with corollary [5.2] that the formal integral can be interpreted as a formal
transformation w = @(z,u), ®(z,u) = Y2 ukﬁl[? ) (z) € C[[z',u]] that formally
conjugates the prepared equation (3.6) to its normal form (5.66). We mentioned
(without proof) in Sect. [6.3] that this formal transformation gives rise to analytic
transformations through Borel-Laplace summation. In other words, equation (3.6)
and the normal form (5.66)) are analytically conjugated.

It can be shown (see for instance the arguments given in [3]]) that for any two
differential equations that are formally conjugated to (5.60), then these differential
equations are analytically conjugated if and only if their resurgence coefficients are
the same. Therefore in this way, the resurgence coefficients are also called the holo-
morphic invariants of Ecalle. See [11] for further details.

8.2 Stokes phenomenon

Knowing the Stokes coefficients Ag(®) provides a complete description for the
lower order Stokes phenomenon. In what follows, we use the notations of theo-
rem and we denote 6/ = arg(®/), i = 1,2, j € Z. We simply refer to [23] for the
notion of “symbolic Stokes automorphism” A’gj and of “symbolic Stokes infinites-

i

imal generator” Ae ;» for a given direction Qlj . We only recall their expressions and

1
relationships, in our frame:

+ . —k2Aiz ., —kAiz o
A5LA @Dt (e,

o/’
i i
keN keN
. .

A=1d+ Y A" A=Y A,

J J J kow!

9i ko EN* kowi 91 koeN* 0% (88)

—koAiz

+ = . f— e . oo .
Ae.j = exp <A9i,) —Id+/§\?* 7 k]+..;[:k0Akf“’iJ o OAklw-"

i i

1=

Let us consider the formal series wy. From theorem .1] one sees that

&R =i ¥ do(a))fe W, 9)
i eN*
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where, on the right-hand side, one recognizes the transseries solutions. The action of
the symbolic Stokes automorphism allows to compare left and right Borel-Laplace
summation: in their intersection domain of convergence,
J— J+ i 1 hn J+ ~
S Hy =% W+ Y Ao(0))re SO W, (8.10)
keN*

This allows in particular to analytically continue the sum . 6/~ wo, thus the tritrun-
cated solutions, onto a wider domain.

The same calculation can be made for the (convenient) transseries as well, and
one easily gets, fori =1,2:

2 [+ ¥ Ure Wi, | =% [+ ¥ (Ui +Ao(@))) e W,
keN* keN~*
8.11)

Once again, this provides analytic continuations of the truncated solutions onto a
wider domain.

It is a good place to mention medianization, since the ke;-th series Wye, are all
real formal series. For instance, since wy belongs to R[[z7!]], its left and right

. 0+ ~ 0- ~ ,_

Borel-Laplace sum are complex conjugate: . wy(z) = .79 wy(z). However,
. 0+ ~ 0— ~ . .

neither .79 wo nor .91 Wy are real analytic functions, because of the Stokes

phenomenon. The question is therefore the following one : can we construct from
wy a real analytic function by a suitable morphism of differential algebras ?

The naive idea of taking their mean does not work (why ?).

The answer is “yes”, by medianization or good averages, and is not unique. We refer
to [24}114] for this question and its subtleties, see also [6]].

Remark 8.1. The fact that the Stokes coefficient Ao(a)?) is nonzero can be deduced
from the identity s if Ao((o?) = 0, then necessary the associated trituncated
solution would be holomorphic on C\ K where K is a compact domain. This would
mean that this trituncated solution has only a finite number of poles and that con-
tradicts theorem The fact that A()((D?) is pure imaginary can be seen also from
(8.10) and from the realness of wy. For arg(z) = 0 and |z| large enough, one can
write

SN Wo(2) = 7 W)+ Y Ao(f)re MO Wi, (2), (8.12)
keN*

and Ag(®)) = —Ao(®)) comes as an upshot.

As already said, the resurgent coefficients can be numerically calculated by hy-
perasymptotic methods. In return, resurgent coefficients and higher order Stokes
phenomena play a crucial role in the hyperasymptotic approximations to Borel-
Laplace sums, see for instance [9, [26] and references therein.

8.3 The alien derivatives for the seen singularities

The idea that leads to theorem relies on the following observations. We know
v
by proposition that the singularity Wy belongs to RES(), for any k € N2, and
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we can apply corollary : for any w € C so that @ = +1 (the so-called seen
v
singularities), the alien derivative A, Wi is well-defined. If these alien derivatives

belong to RES(), then we see with corollary that the singularities “v/k belongs
to RES?). A reasoning by induction allows to conclude.

In this section, we explain how to calculate these alien derivatives with various
methods and we direct our efforts towards wy.

8.3.1 Preparations

The formal series wy being solution of the equation (8.3, we introduce by proposi-

~ v ~ v
tlonthe singularities Wo_ wo fo— fo, f1 ’f1 and fo= bfz. Notice that f,
f { and f2 obviously belong to CONS
v . . .
Equation ( ) translates into the fact that wy satisfies the following convolution
equation:

\

(&, wo) (8.13)
v v V*2
= fo +f1*W0+f2*W0 :

v v v

Yo + 11 %[0(3) W | =

SBRY
Tiq

P(

One can rather introduce the asymptotic class vAvo: o € ASYMP*™ (cf. definition

[7.27) and equation (8.3) becomes:

P() o +20(9) o = F(z, i) 5149

A a2
= fo+fiwo +f2w,

— (1
As already said, we know that vvvo belongs to RES(I), resp. vAvo belongs to RES( ),

v
and corollary|7.2|can be applied : with the notations of theorem , W=A ! vvvo isa

A
well-defined singularity of SINGy z, resp. W= A ! vAvo is a well-defined asymptotic

class of ASYMPy .
v v
The singularities f(, f1, f, and I are all constant of resurgence. Therefore, they

vanish under the action of any alien derivation. Adding to this remark the fact that

v
Ao satisfies the Leibniz rule and the commutation rule [A 0> d=-4 ! (corollary

. v
and remember that a)(l) = 1), one deduces from lb that W solves in SINGg 7
the following associated linear convolution equation:

v v v v v av " v
P@—UW+M*@@—DW]:—E%¥@*W (8.15)
v v v \
= <f1+2f2*W0>*W-

A
For the same reasons, the asymptotic class W is solution in ASYMPq  of a linear
ODE:
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A
PO—1)W +L0@—1)w= 2EEY) (8.16)
Z ow

Of course, (8.16) can be deduced also from by formal Laplace transform (definition
[7.23]and proposition[7.10).

The differential equation (8.16) is nothing but the equation

Be, (Wo) W=0 (8.17)

where e, is the linear operator recalled in (8.4). We know by lemma that the
differential equation Be, (Wp)# = 0, that is |i through the Taylor map, has its

general formal solution that belongs to the direct sum Nils; & e2ZNEs1, under the
form

W (z) = Cmgﬁe1 (2) +C2ezzz%v7e2 (2) (8.18)
= C1We, (2) + C2e%We, (2),

where Wel and V~Ve2 belong to the space ml of 1-Gevrey Nilsson series.

One should precise what we mean by “general formal solution”. The linear operator
e, is of order 2 in z and the particular solutions VT’el and eZZWeZ are two indepen-
Wel e2zﬁ/e2
OWe, 0(e¥We,)
belongs to a differential algebra that contains Nils 10 ezzlﬁl/sl as sub-vector space,

for instance the direct sum H e*kzﬁ\il/sl and if B, (WO)W =0, then W is of the form
keZ

dent formal solutions : their wronskian is —273¢%. Thus, if #

VoW
W W,

8.18) with Cy,C; € C given by the Kramer’s formulas: C; = —753;722

b}

14 ezZWez

OW 9 (e We,)

We claim that the general solution of equation || in [Tieze ASYMP ,
A A

is a linear combination of We, € ASYMP™™ and e* We,€ e2*ASYMP™" with

A ~
We,= gram . .. Consequently:

3.2
_ 3™
C = 5

Lemma 8.1. There exists Ao(a)?) € C such that the singularity A o vvvoe SING 1 is
of the form

v v v v
Aw? Wo= Ao((x)?) I 3% WeIZAO(w?) We,,

3
2

thus can be extended uniquely to an element of SING. In other equivalent words,
& = ~ ~ —
Ay Wo= Ao(@)) We, € ASYMP™™, AgoWo = Ao(@?)We, € Nils;.

As promised, we show proposition[8.1|by two different approaches in the sequel.

8.3.2 Alien derivations, first approach

We follow here ideas developed in [16}27], see also [30, 29/ 23]
We start with the following results that come from general nonsense in 1-Gevrey
theory and its proof is saved for an exercise.
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Lemma 8.2. Let w € 7 'C[[z7']]; be a 1-Gevrey series with vanishing constant
term, and w € O its minor. The following properties are satisfied.

1. The formal series (1+w) € C[[z" Y]]y is invertible. Its inverse (1 +w)~! is I-
Gevrey and has a formal Borel transform %(1+w)~' € CS @ 0y of the form
(6+‘j‘;)*—1 — 5+Zn21(71)nv’&*n.

2. The formal series log(14+w) =Y,>

(71 n+1

-—w" is a 1-Gevrey with vanishing con-

PR _1yntl
stant term, whose minor is given by log, (8 +w) := ¥~ %w*".
3. The formal series w is exponentiable in the sense that its exponential
eV = Z,,Z]%Wl is a I-Gevrey series, whose minor is of the form

exp, (W) : =0+ Y,>1 %W*". Moreover, logoexp = expolog = Id.

Remark 8.2. More general results along that line in resurgence theory can be ob-
tained, see [3, 125] and specially [32].

. L. v v
We are now ready to calculate the alien derivative W= A ! wo€ SINGg ;. We

consider the 1-Gevrey Nilsson series Wel =7/ 2%1 € ﬁiﬁl solution of
(more precisely its transform through the Taylor map), and its associated singu-

A v v ~ ~
larity We, :17% * We, € SING, where we, = 6 + bweI . (Remember that we, has 1 for
. . SO . v .
its constant term). Since we, is invertible in Cl[z~Y]], so does We, in SING, its in-

v
verse being given by W i1 =8+" (L1 (=1)"w;"). Accordingly, W, is invertible

€]

v v v
in SING and W ;‘1_1 =13 * W :I_l We now introduce the singularity S€ SINGo 5
defined by
v v v
W=S* Wk, (8.19)

v
and we want to show that = A¢(®)5 for some Ag(@?) € C. Plugging (8.19) into

v
8.15)), using the property that ¢ is a derivation in SINGg 7 (cf. proposition@l) and

v v
that We, solves (8.15), one easily gets for § the following equation:

v v Y Y
(92— 9) 8 )+ We, +2( 98 )+ (9 We, ) =3 11 (98 )« We=0.  (8.20)

. vV v 3V v v Vy . .
Since 9We, =3 I 1 *We, + 1 _3 *( dWe, ), equation (8.20) reduces to the equation
2 2

v v vy

925=[6-22]%3S, A=wy k(e ), (8.21)

v . . . . . . A~
where X = °Y is the singularity associated with the minor ¥({) of

The formal series ¥ has a unique primitive ¥o(z) = 0~ ¥(z) = log (We, (z)) in the
maximal ideal z~!C[[z7']]; of C[[z~!]]; and, thus, X, as well as its associated sin-

v
gularity X is exponentiable in SING. (Lemma i
More simply, exp, (Xo) = 8 + "i¥e, , thus exp, (22) = 8 + (207, +We2).

v
We introduce So& SINGg » given by the identity:
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vV Vv

v
dS5=So xexp,(—2Xo). (8.22)

By construction, gexp*(—Z 7%0) = —ZJVC xexp, (—2 JVCO). One deduces from
that g‘o solves the convolution equation o z'o — g‘(): 0. This translates into the fact
that ({ +1) z’o is holomorphic near { = 0, where Eo stands for any major of g‘o.
Therefore §0 is holomorphic as well near { = 0, thus z‘o: 0. From (8.22)), this means
that SX‘: 0, thatis §(§ ) is holomorphic near § = 0 for any major § of g. This allows
to conclude that there exists a constant Ag(@!) € C such that z‘: Ao(0))8. Thus,

v
A o yvo: Ao(co?) We, which implies that A vvvo can be continued to an element of
SING. This ends the proof of proposition with the first approach.

8.3.3 Alien derivations, second approach

The second approach We now propose another approach, based on the notion of
asymptotic classes, that uses tools akin to Gevrey and 1-summability theories.

A A
We know that W= Aw? vAvoe ASYMPy ; satisfies the condition ‘Iiel(vAvo) w=0.

We look at the equation Pe, (Wo)W = 0. The operator Pe, (Wp) is of order two
in z and has two linearly independent formal solutions Wel = Z%Wel € Nils; and
2 We, = ezzz%v?ez € e®Nils;.

Let us represent the asymptotic classes vAvo: W, vAve = “Wel and v%/ez = ”Wez onre-
striction to ASYMPy,. We pick a (good) open covering (I;) of
J*=]—=3m/2,37/2[ with open arcs [; of aperture less than . We use the Borel-
Ritt theorem for 1-Gevrey asymptotics to get, for each subscript i: wg;, We, i,
We, i, € 1 (I;) whose 1-Gevrey asymptotics is given by o, We, ,We, respectively.
We know that each of these 1-Gevrey germ is uniquely defined up to 1-exponentially
flat germs, that is up to elements of .27=~!(I;). As a consequence, the collections
(Wo,i), (Wey,i), (We,,i) represent the asymptotic classes we have in mind.

For each subscript i, observe that

T3 (1) (Do (wo,)Wey 1) = Dey (7o) e, =0

with De, the linear operator given by definition because the 1-Gevrey Taylor
map T7(/;) is a morphism of differential algebras. This ensures that D, (wg.;)We, i
belongs to .7 <~1(I;).

A
We draw a first conclusion : De, (vAvo) vAvel =0in ASYMPy ; and thus, B, (v%) We, =0 as
A
well with We, = 2/ We, € ASYMP 1.
We add a property that ensues from an analogue of the M.A.E.T. (theorem

and for which we refer to [14 [16]]: one can even find h;e, € /<" !(I;) so
that De, (wo ;)(We, i — he, i) vanishes exactly, for each subscript i. Thus, one can

find a representative we, ; € () of V%’e1 so that De, (wo;)we,,i =0 and thus,
Ve, (Wo.)We, i = 0 as well with We, ; = 23w, ;.

The same reasoning yields: one can find a representative we, ; € £2 () of vAvez SO
that De, (Wi 0)We,; = 0, thus P, (w07i)ezzwe27,- =0 with We,; = 2 We, i-
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A
Therefore D, (Wp) We, = 0in ASYMP  and thus B, (Wg)e* We, = 0. The key point if that
A

e We, belongs to e2ZASYMP0,,T which is a vector space in direct sum with ASYMP, 7.

Putting things together, keeping the same notations, we see that the kernel of the
linear differential operator Pe, (w; ) in the space of sectorial germs of direction J;
is spanned by W, ; and eZZWeN.

A
We now go back to the asymptotic class W& ASYMPy ; that satisfies

A
PBe, (\/Atio) W= 0. Considering a refinement of (I;) if necessary, one can find for each

_ A
subscript i a representative W; € &/ <O(I) of W and a l-exponentially flat germ
b; € &/ =<"1(I;) such that PBe, (wo,i)W; = b;. To get W;, we apply the usual variation
of constants method. One gets W; under the form

Wi = Bi(2) + C1We, i + C26"We, i, C1,C2 € C, (8.23)
ZBi(Z) = Wez,i/Zi3Welﬁi.b,'—Wei’i/Z73We27i.bi.

Itis a simple exercise to show that B; belongs to o/ =<~1(I;) and one easily concludes
that W; has to be equal to C;We, ; modulo <7<~ 1(I;).

Depending on the arc, the term CzeZZWeM- either belongs to Eﬁ’l(li) (so one can take
C; = 0) or escapes from W; € &7<0(I;) (thus one has to impose C; = 0).

This ends the second proof of proposition the general solution of the linear
. A [ . . [ .
equation P, (W) W= 0 in ASYMP 5 is C| We, and, consequently, there exists a

A A A
constant Ag(@?) € C so that Ay Wo= Ao(0)) We, in ASYMP, 5. Thus, Ay wo can
be uniquely continued to an element of ASYMP.

Conclusion What we have shown amounts to the following upshot. The solutions

of the equation B, (WO)V}/V: 0 in the differential algebra H ¢ &Nils; are spanned
keZ

by the independent solutions Wel € Iﬁi/sl and eszNVe2 € e2ZNEs1 . This implies that the

A
solutions of the equation P, (vAvo) s =0 in the differential algebra H e “ASYMP,
keZ

A
resp. H e_kZASYMPo,ﬂ, are spanned by the independent solutions We, € ASYMP
keZ

A
and €% We, € e2*ASYMP, resp. their restrictions in ASYMP, » and e2*ASYMP,
respectively. This result can be generalized as follows.

A
Lemma 8.3. For k € N2, we denote by W€ ASYMP™™ the asympotic class defined
A . o ~
by W= """""Wy where Wi € Nils satisfies . Let 0 € S! be any direction, o >0
A
andk € N>\ {0}. If # € [1yez. e “ASYMPg o solves the linear differential equation

A A A
L Wi, W, 9°F (z,wo) _q (2
P W = kl;;,:k T 2 Pk= Pk (o), (8.24)

[ki|>1
then there exist uniquely determined constants C1,C € C so that

A

A A A
W =W etk (Cle’llz We, +Coe ™7 Wez) . (8.25)
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Proof. The general formal solution for the equation (8.4) is of the form
W = Wk +ehke (C 16’7“1‘7[/el +C2e’}”22VT/e2). We already know that

Akz Mz —hz i : . i
e Cie We, +Coe We, | provides the general solution for the homoge

A A
neous equation ‘Bk(vAvo) #=0in [[jcze “ASYMPg o. This asymptotic class W
is of the form (8.2)), namely

A 1 a0l Al0] N
Wk:;f!(”~k)llogl(z)z ok Wk, Wk :uWk )

with WLO ) Cl[z~"]]1 satisfying as linear differential equation given in corollary

A
This allows to conclude that W is a particular solution for the equation || and
one ends the proof with the arguments of the above second approach.

8.3.4 A step further

What have been previously done works as well for the other alien derivatives

. v A
A, yv(): Ao(@]) We,, resp. A, \/AVO: Ao(@]) We,, forany i = 1,2 and j € Z. Since

A A — (1
We, and We, belong to RES( ) (proposition , one infers from corollary [7.3|that

~ ~ . . L. v
wo belongs to Z? . In particular, the alien derivatives Azw i Wo€ SINGoyz; 7, resp.
1

A,; WoE ASYMPy; and A, wee SINGop(iijpya  resp.

20 20
A, vAVOE ASYMPy(;11/2),2, are well-defined. As a matter of fact, these alien
] ;

derivatives are quite simple !

Lemma 8.4. For any @ € C so that ® = 42, one has Ay yvo: 0. Equivalently,
Ag Wo=0, Agivg = 0.

A
Proof. We only calculate W= A, , vAvo. Through the alien derivation A, ,, equation
1 1
(83) is transformed into the linear ODE
s 1 s JdF( W ) &
<,
P(O—2)W +-0(0 —2) W= ——= 2 W (8.26)

z ow

A
as a consequence of corollary We recognize the equation JPoe, (VAVO) w=0. By
lemma [E], the general formal solution for the linear equation
Pae, (Wo)# =0 is of the form Cie*W, 4—Cze3ZWez and we either conclude with

. . . . v v v v

the reasoning made in Sect. (still write W under the form W=S * We, and
v

show that S= 0) or rather directly with lemma : the solutions of the equation

A A . —kz v 3 v
Pae, (Wo) #=0in He ASYMP are Cie* We, +Cre°* We, and one concludes
keZ

A . . .
that Azw-’ wo= 0 since the alien derivative belongs to ASYMP,y; . O
1

We can keep on that way to get the complete resurgent structure for wy and, at
the same time, to analytically continue its minor wy. Let us see what happens a step
further.
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To show that wy belongs to 927(3), we have to complete the informations given

by lemma Following corollary , we would like to show that Ag, 0 Ag, vAvo
— (1 ~ . L]

belongs to RES( ) for any @y, @, € C so that @; = £+1 and @, = +1. From what we

A — (1
know, this amount to showing that the alien derivatives Ag, We, belong to RES( )

Let us look at W A o We € ASYMPy ;. From the identity 3, (Wo) We ,= 0 (equa-
tion (8.16)) and corollary [7.2] we draw:

A A
P(O-2)W +%Q(a —2) W= W W+ We, Agp o %,
that is
Pe, (W) W= Ao(e) v@z % (8.27)
where Ao(w?) is the resurgent constant given in lemma. Observe that the general

8 F(Z WO)

formal solution for the equation e, ( WO)W Ao(w; )W2 , deduced from

(8:27) through the Taylor map, reads:
72/: ZA()((D?)erI +C ezﬁ/el +C2€3ZW32 € H e"‘zﬁl/s]
keZ.

A A
with C;,C; € C. By lemma one gets Aw? We, = 2A0(a)?) We,, which thus be-

lon ) .\ .
gs to RES" * by proposition 8.1

Of course, one can keep on that way, by induction. However, a lesson has to be
learned from what precedes : the resurgent structure is closely coupled to the formal
integral and it is much time to introduce the bridge equation.

8.4 The bridge equation and proof of the main theorem

We go back to the formal integral

w(zU) = Y Uke i e [ Nils [[U]] (8.28)
keN? keZ

and we consider its derivatives with respect to the indeterminate U;, i = 1,2:

ow

A Y kU e Mk e [T e Nils [[U]] (8.29)

keN2 keZ
= We, +O(U, ).

Since the formal integral w  solves the differential equation
P(d)w + %Q(&)W = F(z,w), one deduces that the following identity holds for
i=1,2:

IF(z, w)) ow Iw _ (8.30)

(P@)+20@) - 2 ) S5 =0, i, B 31
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The formal solutions for the equation ‘Bo(ﬁo)iﬂv* 0 is spanned by 6_7“12We and

”IZZWeZ Therefore, are two linearly independent solutions for the

9 U 190, Uz
order two linear differential equation %0@)7/ =0, explicitly (wronsk stands for
the wronskian):

ow ow ~ ~
wronsk <(?Lv;1’ 8;]1;) = wronsk (e*’l‘ “We, 7e*)LZZWeZ) =27

Lemma [8.3] translates into the fact that for any series of the form

A A A
¥ (U0)= Y Uy, wie[]e “ASYMPg,,
keN? keZ
A
which satisfies the second order equation ‘Bo(VAV) W= 0, there exist uniquely deter-
mined constants A(w,U) € C[[U]] and B(®,U) € C][U]] such that
A A A
A aw aw Idw aw
U)=A(0,U +B(0,U)=— = rm 8.31
P @U) =AU B SE SE=mmts 83

To the formal integral w(z, U), one associates its analogue through the mapping "™:
A A -
W(EU) = ¥ URe M W= (8.32)
keN?

We pick o € C and we assume for the moment that @ = +1. By proposition
and corollary the alien derivation Ay acts on the formal integral W (z,U). As

a matter of fact, it will be easier to use the dotted alien derivation, Ay = € “%Ag
which has the virtue of commuting with the derivation d. Therefore,

. . A L] A
Aw w (z,U) = Z Ukeil'kZAw Wk, Aw WkE einASYMParg(w),n
keN?2

We deduce that the decomposition || holds for A.w . This decomposition
A A

W J
Ao W= A0,0) 55+ B(o U)a—lZ

is a link between ahen derivatives and the usual partial derivatives.
Let & C N? be the set defined by Z = Zj = {ke|,ke;|k € N} andset &, =n+ &
for any n € N*. With these notations, the formal integral can be written as follows:

is the so-called bridge equation of Ecalle, that

(Z,U _ Z Z Uk /lsz ( Z Z Uk+n —A. kZWk+n( ) (8.33)

n=0kekx, n=0kek

To fix the idea, suppose that o= koA1 with ko = 1 at the moment. We get from the
decomposition (8.31)) the identity:



196 8 Resurgent structure for the first Painlevé equation

=

A
Z Z Uk+nefl.(k+k0e1)zAw Wiin=
n=0kex

A(w,U) Z Y (k+n).e Ukmeigdke gy, (8.34)
n=0kex

+B(w,0) Z (k+n).e; Uk €2¢~ Ak yy Wktn

SC)

A
Each component Ukte—4-(ktkoer)zp yyy e e”'l"(k*k()el)ZASYMPE,Ig(a,)_’,r has its
counterpart on the right-hand side of the equality. Necessarily,

A, U) = U Y 4 (0 (8.35)
n>0
B(®,U0) = U2 % Y B, (0)U"
n>0

This implies on the one hand hand that A, (@) = 0 when |®| > n+2 while B, (©0) =0
when |@| > n+ 1. On the other hand,

A ” A
Ao Wiin = Y, An-m(®)(K+m+koer).e; Wiimkpe, (8.36)

m=—1

+ Z By (@) (k+m +Koe1).€ Wictm ige,

m=—1

with the convention used in theorem The case @ — koA, with kg = 1 is obtained
by symmetry.
A ~ — (2
This result implies that the asymptotic class W= "W belongs to RES( ), asa
consequence of corollary[7.3] An easy induction on kg € N* allows then to conclude

that the Wy belong to %2™™. The rest of the theorem is shown by arguments used in
remark[8.1.2.1} This ends the proof of theorem

8.5 Comments

For differential systems of level 1 of the type (5.67), the resurgent study of the
Stokes phenomenon and of the action of the symbolic Stokes automorphism AJer on
transseries solutions have been obtained by Costin [4]], under some conditions. This
has been later extended to more general differential equations (with no resonance),
and also for difference equations of the type (5.68), in particular by Braaksma and
his students (see [2, 21]). These works make use of (so-called) “staircase distribu-
tions” [4, |6] and do not make appeal to alien derivations. The method explained
in this chapter is closer to the ideas of Ecalle, leading to the bridge equation and
the full resurgent structure. Also, as we saw on the particular example of the first
Painlevé equation, this method provides (theoretically) the whole set of Ecalle’s
holomophic invariants and passes the resonance cases under some conditions (no
quasi-resonance, no nihilence [11]).
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