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a b s t r a c t

The current work presents a finite element approach for numerical simulation of the incremental sheet

metal forming (ISF) process, called here ‘‘ISF-SAM’’ (for ISF-Simplified Analysis Modelling). The main goal

of the study is to develop a simplified FE model sufficiently accurate to simulate the ISF process and quite

efficient in terms of CPU time. Some assumptions have been adopted regarding the constitutive strains/

stresses equations and the tool/sheet contact conditions. A simplified contact procedure was proposed to

predict nodes in contact with the tool and to estimate their imposed displacements. A Discrete Kirchhoff

Triangle shell element called DKT12, taking into account membrane and bending effects, has been used to

mesh the sheet. An elasto-plastic constitutive model with isotropic hardening behaviour and a static

scheme have been adopted to solve the nonlinear equilibrium equations. Satisfactory results have been

obtained on two applications and a good correlation has been shown compared to experimental and

numerical results, and at the same time a reduction of CPU time more than 60% has been observed.

The bending phenomenon studied through the second application and the obtained results show the reli-

ability of the DKT12 element.

1. Introduction

Conventional sheet metal forming processes such as stamping

and hydro-forming are realized with dies. The basic requirement

is that the production volume is large, but the tools cost is very

high. The recent market requirements tend to vary quickly and

the conventional sheet forming processes with dies become less

competitive for low volume production. Consequently, new flexi-

ble manufacture methods have to be developed. To achieve the

changing requirements of the market, the ISF process has been sug-

gested as a fabrication process with good potentialities. In addition,

several adaptations for this process are introduced and explored,

including the use of one or two dies, a mobile support, a rotating

tool, and the use of water jet instead of the forming tool [1]. In

the concept illustrated in Fig. 1a, the process is nowadays referred

to as SPIF (Single Point Incremental Forming): a flat blank is

clamped around its edges and is deformed progressively by a sim-

ple hemispherical tool which moves according to a known path.

Another variant of this process (Fig. 1b), called nowadays Two

Points Incremental Forming (TPIF) in which the flat blank is

deformed by two contact points. According to the historical review

made by Emmens et al. [2] about the ISF technological develop-

ments through the years and the state of the art given by Jeswiet

et al. [3], the TPIF is older than SPIF and both process are two com-

mon types of Asymmetric Incremental Sheet Forming (AISF).

Today, the ISF process is well suitable and highly recommended

for small volume and varied productions, and also is considered as

a rapid prototyping technique. The principal goal which motivates

the development of ISF is the flexibility of that process as it has

been shown by Ambrogio et al. [4] for medical products manufac-

turing. In fact, different components can be made without the need

to manufacture new tooling: the tool path defines the geometry of

parts, so a new tool path can be planned and used without incur-

ring additional costs of tool development. Generally in ISF, the

most commonly used materials are aluminium and steel alloys,

although investigations performed by Jackson et al. [1] have been

shown that the ISF process can be successfully applied to form

sandwich panels composed of propylene with mild steel and alu-

minium metallic foams. Furthermore, that process has an impor-

tant aspect concerning the formability: It gives higher forming

limits compared to conventional sheet metal forming processes

[5]. A simplified process was proposed by Allwood et al. [6] to gain

insight into this phenomenon for a broad class of incremental
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forming processes. They claimed that the forming limit is increased

when through thickness shear is present. It was observed that in a

plane perpendicular to the tool path the deformation of the sheet is

mainly by stretching and bending. In a plane parallel to the tool

path, significant through thickness shear was observed. To study

and give explanation concerning the higher forming limits for ISF

process, solid finite elements are used by Eyckens et al. [7] but

the simulation time was found extremely high. On the other hand,

this process suffers of two major drawbacks which limits its indus-

trial application and requires additional studies:

– the geometrical accuracy is one of the most relevant point of

weakness, although many investigations have been focused on

this topic. Guzmán et al. [8] studied a two-slope SPIF pyramid

with two different depths and they concluded that the shape

deviations is linked mainly to the elastic strains due to struc-

tural elastic bending, plus a minor contribution of localized

springback. Micari et al. [9] presented different strategies to

reduce geometrical error, taking into account the influence of

the most relevant parameters, and concluded that the optimiza-

tion of the tool path is the most promising solution. The inves-

tigations, carried out by Azaouzi and Lebaal [10], and Rauch

et al. [11], confirm that a tool path optimization leads to an

improvement of the geometrical accuracy;

– the production rate is not very high compared to other sheet

metal forming processes, due to the characteristic of point-to-

point forming process. In fact, the sheet is deformed locally by

the tool which moves progressively on a very long trajectory

in order to form complex shapes.

Several researchers have focused their attention on modelling

and numerical simulation of the ISF process. Finite element analy-

ses, using an explicit method, have been performed by Hirt et al.

[12] to investigate two major limits of the ISF: the limitation on

the maximum achievable wall angle and the occurrence of geomet-

ric deviations. These drawbacks have been investigated and two

methods are proposed to enlarge the range of process applications:

a multi-stage forming strategy to produce steep flanges of up to

81’’, and a correction algorithm to enhance the geometric accuracy.

In addition, a Gurson–Tveergard–Needleman damage law has been

applied to investigate the effect of process parameters such as the

tool size and the vertical pitch on the fracture risk. Through a num-

ber of case studies Duflou et al. [13] have demonstrated that the

use of multi-stage strategies allows to form geometries exceeding

conventional single-stage forming limits. From these case studies it

was concluded that there is no reason to consider 9000 wall angles

as the ultimate process limit. In addition, the thinning of the sheet

during multi-stage forming can exceed the maximum reduction of

the thickness observed in single-stage processing. Bambach et al.

[14] have shown, through benchmark parts, that the multi-stage

forming gives an increased accuracy compared to the single-stage

forming and that the multi-stage forming strategies could be con-

sidered as an alternative to the overbending strategies.

Despite the progress achieved, modelling the ISF process con-

tinues to be a challenging task. An implicit scheme could lead to

a high CPU time compared to an explicit one, mainly due to the

point-to-point alternating contact conditions [15]. With explicit

schemes, thanks to mass-scaling technique, it is possible to signif-

icantly reduce the computational time. However, it is not trivial to

find the right mass-scaling factor according to [16]. Despite their

high CPU time, implicit schemes are unconditionally stable and

will always give a better solution compared to explicit schemes.

In summary, the literature shows that several research investi-

gations performed numerical modelling of the process based on

static or dynamic, implicit or explicit approaches, using membrane,

shell or solid elements and considering classical or micro–macro

models. Most of these models can be very precise, but lead to very

high computational times and need expensive computer resources.

It is incontestable that some numerical methods may not be desir-

able for complex applications if they involve very significant com-

putational times. In order to overcome that problem, techniques

such as adaptive remeshing [17], and substructuring approach

[18] have been proposed for implicit simulations. A simplified

model for ISF based on a purely geometrical approach to the kine-

matics of material points has been developed [19] and a more

accurate calculation of the sheet thickness was shown compared

to the sine law. However, it seems necessary to enhance the pro-

posed model because it is based only on membrane deformation,

but without taking into account the mechanical equilibrium, the

material behaviour, and the bending effects.

The present investigation is a continuation of work that started

using an incremental deformation theory [20,21]. Satisfactory results

are obtained during the European project FLEXFORM [22] and shown

by Yu et al. [23]. The main goal is focused on the development of a

simplified numerical approach to simulate the ISF with precision

and with reduction of CPU time in mind. Firstly, the kinematics

and the elasto-plastic constitutive model constitutive law are pre-

sented. Then, the discretized equations governing equilibrium states

of the structure and the formulation aspects of the shell element

DKT12 including the bending effects, are briefly presented. Finally,

a simplified procedure to manage the contact between the tool

and the sheet is developed. The results obtained for a pyramidal

shape benchmark test are compared to experimental results. Other

numerical results carried out using the commercial finite element

code Abaqus confirm the validity of the proposed simplified

approach. The bending phenomenon is investigated through a

square box test that confirms the potentiality of the present FEM.

2. Kinematic of the DKT12 element and constitutive law

In this section kinematic aspects concerning the DKT12 element

will be briefly summarized. The shell element called DKT12 (Dis-

crete Kirchhoff Triangle), which is implanted in our FE model

was previously developed by Batoz et al. [24,25]. A Kirchhoff

assumption has been considered to define the position vectors of

(a) (b)

Fig. 1. Process variants: SPIF (a) and TPIF (b).



material points at the initial flat blank Co and the kth 3D configura-

tion Ck of the workpiece (Fig. 2).

The deformation gradient tensors at points q0 and q with re-

spect to p are defined in the local coordinate system by:

dxq0 ¼ ½F0�
�1dx and dxq ¼ ½Fz�dx ð1Þ

Then, the inverse of the Cauchy–Green left tensor between q and q0
is defined as:

½B��1 ¼ ½F��T ½F��1 ð2Þ

where [F]�1 is the inverse deformation gradient tensor, which is ob-

tained from Eq. (1):

½F��1 ¼ ½F0�
�1½Fz�

�1 ð3Þ

with:
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�1 ¼ xp;x
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[F0]
�1 and [Fz]

�1 are the membrane and bending deformation gradi-

ent tensors, respectively, k3 ¼ z=zo ¼ h=ho is the thickness stretch.

The thickness stretch is assumed to be fixed through the thick-

ness. So, the tensor [B]�1 takes the following simple form:

½B��1 ¼
a b 0
b c 0
0 0 k�2

3

2

4

3

5 ð6Þ

The eigenvalue calculation of [B]�1 gives two principal plane

stretches k1, k2 and their direction transformation matrix [M]. Then,

the thickness stretch k3 is calculated by the assumption of constant

volume. Finally, the logarithmic strains are obtained as:

½e� ¼ ½M�½ln k�½M�T ð7Þ

In the current work, the yield stress function is written using the

Hill criterion and considering a plane stress condition for a planar

isotropic sheet:

Fðfrg; �epÞ ¼ �r� ryð�e
pÞ ð8Þ

where ry is the yield stress which is in function of the effective plas-

tic strain �ep, and �r is the effective stress:

�r ¼ ðhri½P�frgÞ1=2 ð9Þ

with hri ¼ hrx ry rxy i and the matrix [P] is in function of the

mean planar isotropic coefficient �r:

½P� ¼

1 � �r
1þ�r

0

� �r
1þ�r

1 0

0 0 2ð1þ2�rÞ
1þ�r

2

6
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7
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r0 þ 2r45 þ r90
4

ð10Þ

where r0, r45 and r90 are the Lankford coefficients.

At each iteration, and for each integration point, a discrete

strain increment {De} is computed and additively decomposed into

elastic and inelastic parts:

fDeg ¼ fDeeg þ fDepg ð11Þ

Then the increment of stress {Dr} will be evaluated and the stress

vector is updated:

frnþ1g ¼ frng þ fDrg ð12Þ

The increment of stress is given by the generalized Hooke’s law as:

fDrg ¼ ½C�fDeeg ð13Þ

where [C] is the elastic stiffness matrix.

When the material deforms elastically, the elastic strain part is

equal to the total strain increment ({De} = {Dee}) and the inelastic

strain increment vanishes. Otherwise, the inelastic part of the

deformation is defined by the flow rule (or normality rule) as:

fDepg ¼ D�ep
@F

@frg

� �

¼ D�ep
½P�frg

�r
ð14Þ

For plastic deformation, the following consistency condition (dF = 0)

should be satisfied and leads to the increment of the effective plas-

tic strain:

D�ep ¼
h @F
@frgi½C�

h @F
@frgi½C�

@F
@frg

n o

þ @�r
@�ep

fDeg ð15Þ

Substituting (Eq. (14)) and (Eq. (15)) into (Eq. (13)) gives:

fDrg ¼ ½C� ½I� �
@F

@frg

n o

@F
@frg

D E

½C�

@F
@frg

D E

½C� @F
@frg

n o

þ @�r
@�ep

0

@

1

AfDeg

¼ ½Hep�fDeg

ð16Þ

where [Hep] is the material tangent matrix.

Finally, the updated stress vector (Eq.12) should satisfy the sec-

ond consistency condition (F = 0). An algorithm based on a radial

returns predictor [26,27] was implemented in order to return the

stresses to the yield surface. In fact, for an increment strain {De},

an initial elastic prediction step {DrE} is carried out. If the yield

function is greater than zero an iterative correction procedure uses

the normal of the last yield surface is used until that the yield func-

tion vanishes.

3. Formulation aspects and equilibrium relationships

The DKT12 element is a triangular facet element resulting from

the superposition of the CST membrane element and the DKT6

plate element (see Fig. 3). It has twelve DOF (nine translations

(u, v, w) at the corner nodes and three rotations hs at the mid-side

nodes).

The virtual strain is composed of membrane and bending parts:

fe�g ¼ fe�g þ zfv�g; �
h

2
6 z 6 þ

h

2

� �

ð17Þ

Fig. 2. Kinematics of a thin shell in sheet forming.



where the thickness h is assumed to be constant per element.

The virtual membrane strains {e�} on the mean surface are

expressed in terms of the virtual displacement components

(u� and v
�) of the element:

fe�g ¼

u�
;x

v
�
;y

u�
;y þ v

�
;x

8

<

:

9

=

;
¼ ½Bm�ð3x9Þfu

�
ng

with hu�
ni ¼ hu�

i v
�
i w�

i . . . iði¼1;2;3Þ

ð18Þ

The virtual bending strains are expressed in a simple form consid-

ering the Discrete Kirchhoff Triangular plate element called DKT6.

The DKT6 element has six DOF (three transverse displacements w

at the corner nodes and three mid-side rotations hs along the ele-

ment sides:

fv�g ¼ ½½Bw�½Bh��fw�
ng ¼ ½Bf �ð3x6Þfw

�
ng

with hw�
ni ¼ hw�

1 w�
2 w�

3 h�s4 h�s5 h�s6 i
ð19Þ

The relations (17)–(19) lead to the strain operator of the element

with 12 DOF:

fe�g ¼ ð½Bm� þ z½Bf �Þfu
�
ng

with : hu�
ni ¼ hu�

i v
�
i w�

i h�3þi . . . iði¼1;2;3Þ
ð20Þ

The equilibrium of the structure, at the unknown configuration Ck

(or Ci+1 at the iteration i + 1), is expressed by the principle of virtual

work (PVW) in terms of quantities defined on the last known con-

figuration Ci (iteration i). The PVW is written in function of the sec-

ond Piola–Kirchhoff (PK2) stress {S} and the virtual Green–Lagrange

strain hE*i as:

W ¼ W int �Wext ¼

Z

hE�ifSgdV �

Z

hu�iffgdV ¼ 0 ð21Þ

where hu*i the virtual displacement and {f} the external force.

The virtual work of the unknown configuration Ck (or Ci+1 at the

iteration i + 1) is linearly approached as follows:

Fig. 3. DKT12 shell element (CST + DKT6).

Fig. 4. Principle of the contact management procedure.

Fig. 5. Subdivision of the tool path (1st step).

Fig. 6. Flow chart of the ISF-SAM.



Z

ðhE�ifDSg þ hDE�ifSgÞdV �

Z

hu�ifDfgdV

¼

Z

hu�iffgdV �

Z

hE�ifSgdV ð22Þ

Since the two successive configurations (Ci and Ci+1) are very close,

the PK2 stresses and the virtual Green–Lagrange strains are numer-

ically equivalent to the Cauchy stresses and virtual linear strains,

respectively. Thus, the relation (22) can be written as follow:

Z

ðhe�ifDrg þ hDE�ifrgÞdV �

Z

hu�ifDfgdV

¼

Z

hu�iffgdV �

Z

he�ifrgdV ð23Þ

where the Cauchy stresses increment {Dr} is defined by the elasto-

plastic constitutive law (see Section 3 {Dr} = [Hep]{De}).

Finally, the relation (23) and the DKT12 formulation lead to the

global discrete finite-element system:

½K i
T �fDUg ¼ fF i

extg � fF i
intg ð24Þ

½K i
T � ¼

X

elements

½T�Tð½kep� þ ½kg � � ½kf �Þ½T� ð25Þ

½kep� ¼

Z

½Bm�
T þ z½Bf �

T
	 


½Hep� ½Bm� þ z½Bf �
� �

dv ð26Þ

½kg � ¼

Z

hDE�ifrgdv ð27Þ

where {DU} is the nodal unknown (displacements and rotations)

vector.

fF i
intg and fF i

extg are the global internal and external force vec-

tors. ½K i
T � is the tangent stiffness matrix, [T] is the transformation

matrix. [kep], [kg] and [kf] are the element elasto-plastic stiffness

matrix, geometric stiffness matrix and the load following matrix.

We note that [kg] is obtained using only the quadratic part of the

Green–Lagrange membrane strains which lead to the following

expression:

Z

hDE�ifrgdv ¼

Z
X3

k¼1

½Mk�
T ½r�½Mk�dv ð28Þ

with:

½M1� ¼
1

2A

y23 0 0 0 y31 0 0 0 y12 0 0 0

x32 0 0 0 x31 0 0 0 x21 0 0 0

� �

½M2� ¼
1

2A

0 y23 0 0 0 y31 0 0 0 y12 0 0

0 x32 0 0 0 x31 0 0 0 x21 0 0

� �

½M3� ¼
1

2A

0 0 y23 0 0 0 y31 0 0 0 y12 0

0 0 x32 0 0 0 x31 0 0 0 x21 0

� �

ð29Þ

½r� ¼
rx rxy

ryx ry

� �

ð30Þ

The matrix [kf] and the external force vector fF i
extg vanish according

to the assumptions introduced via the contact procedure.

4. Contact assumption and tool path control parameter

In the ISF process, the contact zone between the tool and the

sheet is small and is continually changing with the movement of

the tool along its path. Standard contact algorithms, used in com-

mercial finite element codes, give good results but the computa-

tional times can be very large. This is due to the nonlinearity of

the contact between the sheet and the tool, and also due to the

very small tool displacement increments necessary to correctly

manage the contact. To correctly model the ISF process in which

Fig. 7. Incorrect geometry if too many nodes are kept (or forced) in contact with the tool.

Fig. 8. Contact with the tool and critical radius.

Fig. 9. Tool position strategy.



the tool trajectory can be very long and complex, a very large

number of tool displacement increments is required. The major

simplification introduced in our ISF-SAM approach consists in

replacing the tool action by imposed displacements. An algorithm

is developed to find the nodes supposed to be in contact with the

tool and to estimate their imposed displacements during a tool dis-

placement increment (Fig. 4). This is done by taking into account

the geometry of the blank at the beginning of that increment and

according to the geometric assumptions.

This algorithm was tested through the commercial code Abaqus

and satisfactory results have been obtained by Robert et al. [28].

The goal is to simplify the management of the contact between

the tool and the sheet which leads to a reduction of the CPU time.

The procedure is composed of three main steps. The first one con-

sists to subdivide the given tool path according to a user parameter

called a. This parameter controls the size of the displacement

increment between two successive positions of the tool along a

given direction by defining a maximal value Ddmax (Fig. 5):

Ddmax ¼ a � R ð31Þ

where R is the tool radius.

In the second step geometric assumptions are used to identify

the nodes on which displacements will be imposed. For each

node identified in contact with the tool, only one DOF (vertical

displacement W) is computed and imposed. The mid-side nodes

and their DOF are not concerned by the identification procedure.

The DOFs U and V will be predicted through the resolution of the

global discrete finite-element system (relation 24) which de-

scribed the equilibrium of the structure. This choice avoids to

force nodes to be in contact with the tool and to lock locally

the sheet, which could lead to impose the strains of some ele-

ments in the tool vicinity.

The third step is performed after the resolution of the equilib-

rium system and consists to verify if there are one or several nodes

which were forgotten and were not identified in the second step. If

it is true, we move to the next increment. On the other hand, the

boundary conditions must be updated and an intermediate equi-

librium step of the structure must be carried out and then we pass

to the next increment. The flow chart of the ISF-SAM is shown in

Fig. 6.

The second step is performed through two complementary

methods which are described in sections (4.1 and 4): At each incre-

ment and for each node a critical radius (Section 4.1) is computed

according to an intermediate tool position (Section 4.2). These

methods allow us to use a tool displacement increment as large

as possible, and to find the needed displacement ‘‘W’’ to impose.

4.1. Nodes in the contact

The interpenetration between both surfaces (tool and sheet) for

a given tool position, is not sufficient to determine nodes in the

contact zone, particularly when the tool displacement increment

is large. In fact, if too many nodes are kept (or forced) in contact

with the tool surface at the end of the increment, the geometry

of the deformed flange is not correct (see Fig. 7). Only some nodes

in the interpenetration zone must be considered to be in contact

with the tool surface.

A criterion based on a geometrical assumption has been devel-

oped to obtain a more realistic deformed shape. A critical radius is

computed in order to limit the contact zone and used to consider

(or not) that the node is in contact with the tool. For that two cir-

cular arcs are used to define the assumed deformed flange (see

Fig. 8). The first arc C1, of center P4 and of radius R1, passes through

P1 and P2 and it represents the non-constrained surface of the

flange. The second arc C2, joining P2 and P5, represents the contact

zone with the tool (it has a radius R2 and a center P3). The point P1
is sufficiently far from the contact zone and the blank is considered

to be fixed. The two arcs are assumed to be tangential at the point

of intersection P2.

The angle a is defined as the angle between the line P4P3 and

the Z axis (or P4P1). Therefore, the distance L and the algebraic

value h are defined as follows:

Plane 1: X=0 

Plane 2: Y=0 

(a)

(b) (c)

Fig. 10. Geometrical parameters.



h ¼ P1P3
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The contact zone between the tool and the sheet is defined through

the projection of the line P2P5 on the X axis. This distance is referred

as Rimp (see Fig. 8) which is computed as follow:

Rimp ¼ R2 sinðaÞ ð32Þ

The angle a could be computed using the following relationships:

R1 ¼
ðR2 þ hÞ

2
� L2

2ðR2 þ hÞ

a ¼ tan�1 L

R1 þ h

� �

8

>
>
<

>
>
:

ð33Þ

This distance L is limited to 5 times the tool radius R2. This value has

been chosen based on our house experience.

Fig. 11. Thickness distributions.

Fig. 12. Thickness distribution using ISF-SAM (a) and Abaqus (b).



Fig. 13. Major strains distributions in lower surface using ISF-SAM (a, b) and Abaqus (c).

Fig. 14. Major strains distributions in upper surface using ISF-SAM (a, b) and Abaqus (c).



4.2. Intermediate position of the tool

To allow a tool displacement increment as large as possible, it is

necessary to position the tool judiciously. Let us define Pk and Pk+1

as two different tool positions at the beginning and the end of an

increment, respectively. For a node between both tool positions,

it is incorrect to use this algorithm with the tool in the Pk+1 posi-

tion. In fact, some intermediate nodes will (or will not) have an im-

posed displacement as shown in Fig. 9-a.

To avoid this issue it is possible to use small tool increments

however this involves a long computation time. An alternative

solution has been proposed, which consist to find an intermediate

position of the tool between Pk and Pk+1 for each node. This position

minimizes the distance between the tool center and the node as

shown in Fig. 9-b. Then, the imposed displacement will be esti-

mated if the node is considered in the contact zone which is lim-

ited by the critical radius (Section 4.1).

5. Results and discussion

In this section, two applications of ISF were investigated and the

results carried out with the ISF-SAM code were compared to

numerical and experimental results.

5.1. Pyramidal part

The first benchmark is a pyramidal part (see Fig. 10) [16]. Two

of the opposing walls have different inclinations. One wall has a

changeover from a steep angle (55�) to a shallow angle (35�). The

other wall has an inverse changeover (from shallow angle to steep

angle). The remaining two walls have same angle (45�). The

frustum of pyramid has a depth of 36 mm and a base area of

Fig. 15. Thickness variation.

Fig. 16. Major strain variation.

Fig. 17. Tool path and geometry of the final shape (mm).



120 � 120 mm. The bottom area is 43.4 � 43.4 mm. Fig. 8c shows

the trajectory of the tool and two cutting planes on which experi-

mental results are provided.

The initial dimension of the sheet is 200 � 200 � 1 mm, the tool

has a diameter of 10 mm. The tool path follows the CAD surface at

a constant depth, followed by an increase in depth of 0.5 mm. The

starting point is at an exterior edge. The material is an aluminium

alloy (AA1050). The isotropic hardening behaviour is modelled by

the Swift law:

ry ¼ 119:5ð0:000142þ �epÞ0:235

The material AA1050 has a Poisson’s ratio of 0.33 and a Young’s

modulus of 70,000 MPa. The Lankford coefficients are: r0 = 0.51,

r45 = 0.75 and r90 = 0.48.

A static FE code (Abaqus/standard) has been successfully used

to simulate the ISF process, as it is very suitable for highly non-lin-

ear problems. In the FE model, the tools are assumed as rigid

bodies and the sheet has been meshed with 4394 triangular shell

elements called S3R and considering five integration points

through the thickness. The same discretization of the sheet has

been used to carry out the analysis with the ISF-SAM, and the sheet

part under the die has been assumed to be fixed.

Four tool path increments were tested: Dda = a
* R(a = 0.5, 1, 2,

3). A stabilization of results in term of thickness distribution has

been observed when the tool path increment value is smaller than

one time the tool radius R (Fig. 11a–d).

The sheet thickness prediction obtained using ISF-SAM with a

tool path increment of 1R is compared to the Abaqus result and a

good agreement is shown in Fig. 12a and b. The results are given

in the same scale using Gid Postprocess interface developed by

the International Center for Numerical Methods in Engineering

(CIMNE) [29].

To quantify the bending phenomenon, numerical results ob-

tained with ISF-SAM code on lower and upper surfaces have been

compared to these of Abaqus. Fig. 13a and b shown that the major

strain distributions obtained on lower surface with ISF-SAM are in

good agreement with these of Abaqus (Fig. 13c), despite that the

maximum values are slightly different when a tool path increment

of 1R is used. However, the ISF-SAM results obtained with a tool

path increment of 0.5R are very close to Abaqus results. The max-

imum values are: 0.6198, 0.62054 and 0.59016 for Abaqus, ISF-

SAM with Dd1 = 0.5R and ISF-SAM with Dd2 = 1R respectively. This

result shows that the ISF-SAM code covers sufficiently the bending

phenomenon and that the error is reasonably acceptable. However,

the parameter, called a, which control the displacement increment

has a significant role. In fact, the accuracy of the FE modelling can

be increased by considering a small value of the tool path incre-

ment, but this leads to very expensive analysis in term of CPU time.

In addition, the increment is also in function of the tool radius. To

correctly manage the contact (tool/sheet) under Abaqus (or ISF-

SAM), the mesh size of the sheet must be less than 1/2, 1/3, (or

1/4) of tool radius. Thus, if the tool radius decreases, the mesh size

decreases, and consequently the CPU time increases. With the ISF-

SAM, the parameter a is given by the user and the increment does

not depend of the mesh size. If the tool radius decreases for the

same application, the parameter a could be increased in order to

keep the same increment, and consequently the CPU time will be

improved compared to Abaqus, but the quality of the ISF-SAM re-

sults could be degraded.

The analysis performed using the ISF-SAM with the incre-

ments, Dd1 and Dd2, were carried out in 23h38min and 50h7min

of CPU times respectively on an Intel Xeon workstation and in

63h50min using the Abaqus/static finite element code.

On the upper surface (Fig. 14), the major strain distributions ob-

tained using ISF-SAM and Abaqus were compared and again show

Fig. 18. Thickness distributions.



that the ISF-SAM code, takes into account the bending phenome-

non. According to the results obtained in lower and upper surfaces,

it has been concluded that the bending phenomenon for this exam-

ple is not significant. Thus, a second application was proposed to

investigate this phenomenon, which is presented in Section 5.2.

Numerical predictions carried out using ISF-SAM and Abaqus

are compared to experimental results and shown in Figs. 15 and

16. The thickness variations along the X = 0 and Y = 0 cut, presented

in Fig. 15 shows a good correlation between numerical and exper-

imental results. Also, the same conclusion regarding the major

strain variations presented in Fig. 16. Finally, the numerical results

obtained with the ISF-SAM code, the comparison with these of

Abaqus and the experimental validation confirms the potentiality

of the present FEM analyses.

5.2. Square box

A second application, called square box, has been proposed in

order to investigate the bending phenomenon and to illustrate

the capabilities of the ISF-SAM to take into account this phenome-

non. The material parameters of the sheet and the tool diameter

are the same as those used for the pyramidal benchmark. The ini-

tial dimensions of the sheet are 200 � 200 � 1.5 mm. The frustum

of the square box has a depth of 10 mm and a base area of

80 � 80 mm. The tool path and the dimensions of the desired

shape are shown in Fig. 17.

The sheet is meshed using 5422 triangular elements (DKT12 for

ISF-SAM and S3R for Abaqus) with five integration points through

the thickness. The sheet thickness distributions obtained using

Fig. 19. Major strain variations obtained in lower and upper surfaces.



ISF-SAM with increments of Dd = 0.5R and Dd = 1R (Fig. 18a and b)

are compared to the Abaqus result (Fig. 18c) and a best agreement

of results was observed for an increment of Dd = 0.5R. An excessive

thinning of 51.5% was obtained at the end using Abaqus code. The

same value was obtained for ISF-SAM with Dd = 0.5R and an

excessive thinning of 50.3% with Dd = 1R. The thickness variations

obtained along the line defined by the cut plane (Y = 0), which are

reported in Fig. 18d, show that the displacement increment of 0.5R

allows more accuracy result for ISF-SAM. In fact, significant gaps

are observed in the vicinity of ±40 mm when a displacement

increment of Dd = 1R is used.

In Fig. 19 are compared the major strain distributions obtained

by Abaqus and ISF-SAM with an increment of Dd = 0.5R. Fig. 19a

and b show the distributions obtained on the lower surfaces. It

could be noted that the distributions are not symmetric and signif-

icant deformations are located principally along the contour of the

square box base. Despite the gap between the maximum values a

good agreement of the results is observed. Fig. 19c compares the

evolution of the major strains along the line defined by the cut

plane (Y = 0) where the maximum values are 0.38 and 0.43 for

ISF-SAM and Abaqus respectively.

The major strains distributions obtained on the upper surfaces

are reported in Fig. 19e and f and they again confirm that the

ISF-SAM approach provides results in good agreement with Aba-

qus. Significant deformations have been again located along the

contour of the square box base but it should be noted that there

are also minor deformations on the borders near to the clamped

shape. Fig. 19d presents the evolution of the major strains along

the line defined by the cut plane (Y = 0) and shows that the solici-

tations obtained on the upper surface of the sheet are slightly dif-

ferent than these observed on the lower surface, and within the

both cases the solutions of ISF-SAM tend toward these of Abaqus.

Finally, the CPU time was reduced by more than 50% for this

application. The analysis performed using the ISF-SAM with

Dd = 0.5R was carried out in 13h24min of CPU times on an Intel

Xeon workstation and in 30h50min using Abaqus code.

6. Conclusion

A simplified numerical approach called ISF-SAM has been

developed to simulate the ISF process. A shell element DKT12

was implemented and coupled with an elasto-plastic model based

on a classical flow rule. A procedure to manage the tool/sheet con-

tact conditions in the context of the ISF process simulation has

been presented. A reduction of CPU time about approximately

63% has been obtained and at the same time good simulation re-

sults are achieved and compared to experimental results. A square

box test including more significant bending effect is investigated

and shows again the potentiality of the ISF-SAM. Also, we intend

to replace the DKT12 element by a rotation free triangular shell

element, again with hope to reduction the simulation times. Fur-

thermore, optional parameters will be added to the current ISF-

SAM in order to expand the application field and to study others

benchmark tests of the incremental sheet forming process such

as: ISF with double points and/or including a combination of mul-

ti-stage forming.
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