
HAL Id: hal-01067052
https://hal.science/hal-01067052v1

Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPIDER: A Synchronous Parameterized and Interfaced
Dataflow-Based RTOS for Multicore DSPs

Julien Heulot, Maxime Pelcat, Karol Desnos, Jean François Nezan, Slaheddine
Aridhi

To cite this version:
Julien Heulot, Maxime Pelcat, Karol Desnos, Jean François Nezan, Slaheddine Aridhi. SPIDER: A
Synchronous Parameterized and Interfaced Dataflow-Based RTOS for Multicore DSPs. EDERC, Sep
2014, Milan, Italy. pp.167. �hal-01067052�

https://hal.science/hal-01067052v1
https://hal.archives-ouvertes.fr

SPIDER: A SYNCHRONOUS PARAMETERIZED AND INTERFACED
DATAFLOW-BASED RTOS FOR MULTICORE DSPS

Julien Heulot*, Maxime Pelcat*, Karol Desnos*, Jean-François Nezan*, Slaheddine Aridhi**

* IETR, INSA Rennes, UMR CNRS 6164, UEB
20 Avenue des Buttes de Coësmes, 35708, Rennes, France
email: jheulot, mpelcat, kdesnos, jnezan@insa-rennes.fr

web: www.ietr.fr

** Texas Instrument France
5 Chemin Des Presses, 4 Allée Technopolis,

Cagnes-Sur-Mer
email: saridhi@ti.com

web: www.ti.com

ABSTRACT

This paper introduces a novel Real-Time Operating System (RTOS)
based on a parameterized dataflow Model of Computation (MoC).
This RTOS, called Synchronous Parameterized and Interfaced
Dataflow Embedded Runtime (SPiDER), aims at efficiently schedul-
ing Parameterized and Interfaced Synchronous Dataflow (PiSDF)
graphs on multicore architectures. It exploits features of PiSDF to
locate locally static regions that exhibit predictable application be-
havior. This paper uses a multicore signal processing benchmark
to demonstrate that the SPiDER runtime can exploit more paral-
lelism than a conventional multicore task scheduler. By comparing
experimental results of the SPiDER runtime on an 8-core Texas In-
struments Keystone I Digital Signal Processor (DSP) with those ob-
tained from the OpenMP framework, latency improvements of up to
26% are demonstrated.

1. INTRODUCTION

The current limitation of the processing power of individual Pro-
cessing Element (PE) due to power consumption considerations is
fostering the integration of more and more PEs into Multiprocessor
System-on-Chip (MPSoC) devices such as Texas Instruments’ Key-
stones and other multicore devices. This trend is even more marked
because of the rising complexity of applications in the signal pro-
cessing systems domain.

Concurrently, signal processing applications are becoming in-
creasingly dynamic which leads to more complex hardware re-
source requirements. Data dependencies between different subsec-
tions of an algorithm can also change over time. This fact is due
to the growing number of conditional operations in algorithms so
as to achieve better performance in terms of latency and reliability.
For example, the variation of the number of User Equipments (UEs)
scheduled to be transmitted by a base station implementing the 3rd
Generation Partnership Project (3GPP) Long Term Evolution (LTE)
needs to be taken into account to process each UEs data reliably
and efficiently. The modification in the number of scheduled UEs
between iterations (in this case with a period of 1ms) leads to high
variations in the complexity of uplink and downlink data stream
processing [10].

When designing and implementing multicore signal processing
systems, one of the main challenges is to dispatch computational
tasks efficiently onto the available PEs while also considering dy-
namic changes in application functionalities and resource require-
ments. The process of assigning, ordering and timing actors on PEs
in this context is referred to as multicore scheduling.

In multicore scheduling, inefficient use of the PEs leads to addi-
tional costs ranging from longer processing times to higher energy
consumption. Data dependencies and dynamic signal processing
algorithms make multicore scheduling an interesting and difficult
challenge [6].

This paper describes a new RTOS called SPiDER runtime to
address these challenges. The SPiDER runtime takes scheduling

This work is supported by the ANR COMPA project.

decisions at runtime as soon as it gets information on the current
algorithm topology. In relation to the scheduling taxonomy defined
by Lee and Ha [4], this RTOS implements a fully dynamic schedul-
ing strategy.

Instead of Tasks and Threads as in other RTOS, applica-
tions managed by SPiDER runtime are described using the PiSDF
dataflow MoC, which is a specialization of the general Dataflow
Process Network (DPN) MoC. The DPN MoC decomposes al-
gorithms into pieces of computation, called actors, that exchange
data, decomposed into tokens (atomic data element), through First
In, First Out data queues (FIFOs). Actors and FIFOs compose a
directed graph called dataflow graph.

The PiSDF model is obtained through the use of Parameterized
and Interfaced dataflow Meta-Model (PiMM) over a Synchronous
DataFlow (SDF) graph. PiMM integrates two main features: an
acyclic graph of parameters to transmit control values between ac-
tors, and an interfaced hierarchical scheme ensuring schedulability
over hierarchy exploration [2]. The SPiDER runtime exploits these
features of the PiSDF model to efficiently extract parallelism and re-
duce the overall latency of a dataflow graph execution. The SPiDER

runtime is an open source project1.
This paper is organized as follows. After Section 2 which

presents related works, Section 3 describes the SPiDER run-
time components and Section 4 details its implementation on the
TMS320C6678 platform. Finally, Section 5 presents our experi-
mental results.

2. RELATED WORKS

To address the multicore scheduling challenge, various frameworks
based on OpenMP [1] and OpenCL [13] language extensions are
currently proposed. However, these extensions are based on imper-
ative languages (e.g., C, C++, Fortran) that do not provide mecha-
nisms to specify signal algorithms with complex task parallelism.

The Open Event Machine (OpenEM)2 is a multicore runtime
for Texas Instruments Keystone platforms. It allows dispatching
tasks on several working cores following prioritized queues of tasks
called events. It can be seen as hardware abstraction layer for
the SPiDER runtime as it mainly proposes tools for multicore pro-
gramming but does not provide complex scheduling strategies. The
OpenMP framework implementation for Keystone platforms is im-
plemented over OpenEM.

Dataflow MoCS are widely used for specification and imple-
mentation of data-driven signal algorithms in many application ar-
eas [5], telecommunication [10], and computer vision [11]. The
popularity of dataflow MoCS in the design and implementation of
signal processing systems is largely due to their analyzability, their
predictability and their natural expressivity of task parallelism in
signal processing algorithms.

In [2], Desnos and al. define a meta model called PiMM that
can be applied to an SDF MoC to obtain PiSDF. This meta model

1http://github.com/COMPA-Runtime/COMPA-Runtime
2http://sourceforge.net/projects/eventmachine/

brings multiple features such as hierarchy interfaces and parame-
terization. Hierarchy interfaces make possible to explore one hier-
archy level entirely without any information on the inner parame-
terization of the subgraphs. Parameterization introduced by PiMM
can mix data flow and parameter flow making possible complex pa-
rameterization of the application. The meta model also introduces
configuration actors having a dedicated firing rule and able to set
parameter values dynamically for the current subgraph.

The SPiDER runtime is an evolution of the work in [10]. In [9],
Oliva and al. propose an RTOS based on this previous work. It uses
the µC/OS II Operating System (OS) and a Master/Slave pattern for
the runtime architecture. This work takes as input dataflow MoC
a Parameterized Cyclo-Static Directed Acyclic Graph (PCSDAG)
that does not consider application hierarchy and feedback loops.
This work was also focused only on a specific application, the 3GPP
LTE Uplink Physical Layer data processing (PUSCH) algorithm.
The method presented in this paper is based on another dataflow
MoC called PiSDF. This MoC allows more flexible parameteriza-
tion schemes, not only as preprocessing. This MoC also handles
hierarchical programming and feedback loops.

Nollet and al. define a taxonomy of MPSoC runtime archi-
tectures in [8]. They define terms such as Quality Manager, and
Runtime Library. The SPiDER runtime introduces a Quality Man-
ager called Global Runtime based on PiSDF MoC and a Runtime
Library called Local Runtime. These both components are platform
independent.

In [7], Neuendorffer, et al. define quiescent points as points
where parameters influencing an execution are allowed to change.
Between two quiescent points, the application can be considered
static. In this paper, decisions taken by the SPiDER runtime on
actor ordering and mapping are taken after the quiescent points are
reached.

The Jade (Just-in-time adaptive decoder engine) scheduler from
Gorin, et al. [3] is a scheduler based on dataflow methods. The dif-
ference between the Jade scheduling method and the SPiDER run-
time is that Jade is based on the CAL language implementing the
dynamic dataflow MoC. This model gives knowledge on quiescent
points only after graph execution, providing a posteriori informa-
tions rather than predictability information.

In [12], Singh presents a survey on multi/manycore mapping
methodologies. The SPiDER runtime can be classified as “On-the-
fly” mapping, targeting heterogeneous platform with a centralized
resource management strategy. This survey does not reference any
“On-the-fly” mapping method based on dataflow.

3. SPIDER RUNTIME

3.1 DataFlow MoC

The SPiDER runtime is based on a Dataflow MoC. The MoC cho-
sen for this RTOS is PiSDF for its parameterization and hierarchy
properties. The predictability of this MoC allows taking relevant
scheduling decisions a priori without a strong penalty on its expres-
sivity.

An example of a PiSDF graph can be seen in Figure 1. The pa-
rameters are variables that can influence production and consump-
tion of data tokens by actors in the graph. They can be static such as
NbS which is constant for the whole graph execution or they can be
set dynamically; e.g. N and M are set by the config and setM actors
respectively. These actors are called configure actors because they
have special firing rules related to their use in updating parameter
values. Configuration actors (the ones marked a small white circle
in Figure 1) are fired only once at the beginning of the execution
of the hierarchical graph containing them. The FIR Chan actor
is hierarchical and contains, as a nested subgraph, the graph shown
under it. More details about PiSDF can be found in [2].

In order to use most of the parallelism of a PiSDF represen-
tation, the method developed in this paper transforms the PiSDF
graph into an single rate Synchronous DataFlow (srSDF) graph at
runtime as soon as parameters are resolved. An srSDF graph is an
SDF graph where token production and consumption rates are equal

on each edge. This is achieved by replicating actors that need to be
fired more than once, thus meaning that each actor of srSDF graph
is executed only once in the graph execution. Doing so, the sched-
uler has a global view of actors dependencies for the whole graph
iteration.

Since parameters are resolved after all configuration actors have
been executed, the PiSDF to srSDF transformation cannot be com-
pleted at once. Each hierarchy level has to be configured sequen-
tially as the lower hierarchy level depends on parameters and/or data
coming from the upper one. To perform this transformation, multi-
ple steps of scheduling need to be completed, each step configuring
a hierarchy level and then revealing a part of the srSDF graph.

Once this srSDF graph has been generated, the scheduler can
dispatch actors onto the MPSoC. To do so, the process is separated
into: task ordering and mapping. The task ordering consists of sort-
ing all non-executed tasks of the srSDF graph into one list. This list
is then used to dispatch tasks onto each PE of the MPSoC. This task
is called mapping. Both the tasks of ordering and mapping can be
optimized to improve different metrics such as: latency, throughput,
memory utilization or energy efficiency.

3.2 RTOS Topology

One of the uses of the SPiDER runtime is on heterogeneous plat-
forms. In this usage, a local decision on actor firing may lead to a
bad global decision, as there may be another PE available for this
actor which could have permitted earlier completion of the task. In
order to ensure efficient global decisions, a Master/Slave execution
scheme is thus preferred for heterogeneous platforms.

The SPiDER runtime uses a PiSDF graph as an input algorithm
graph. This MoC defines parameters as integer values that influence
algorithm execution. Since configuration actors can be executed on
any PE of the MPSoC, it is important to send parameters back to
the Master. It will then take scheduling decisions based on these
parameters.

The runtime (Figure 2) requires the following elements:

• Local RunTime (LRT): low footprint OS that processes actors. It
can be implemented over multiple types of PE: General-Purpose
Processor (GPP), DSP, accelerator, etc...

• Global RunTime (GRT): This is the master of the system, and
knows the algorithm topology and takes multicore scheduling
decisions. It is usually implemented over a GPP core but can
also be a DSP core. The GRT can also process actors.

• Data tokens: atomic data exchanged by actors. A data token has
a predefined size: it can be one bit, one byte, a data structure,
etc... A data FIFO can be implemented over any data medium
(e.g. a shared memory or a network on chip).

• Jobs: a job embeds all data required to execute one instance
of an actor. In particular, it includes information on actor code
location, which FIFO receives input data and which FIFO sends
output data. Each LRT has a job queue.

N

FIR_Chan

in out

MSrc
srcN

Snk
N

snk

config
N

M

NbS N*NbSN*NbS Nbs

In

Out

MM

1

Nmax

MFilter

M

N

M
NNmax

NbS

NbS

NbS

NbS

NbS

NbS

NbS

NbSNbS NbSNbS

Figure 1: PiSDF representation of HCLM-sched benchmark

• Parameters: A parameter influences the algorithm graph topol-
ogy or the execution timing of actors. When it is set by a con-
figuration actor processed by a LRT, its value is sent to the GRT
via a dedicated queue.

• Timings: To have timing feedback on the previous and the
current execution, LRTs send back actor start and end times
through low priority timing FIFOs. All timing information is
based on the same timing reference.

4. IMPLEMENTATION ON C6678

The experimental platform used is the Texas Instruments Keystone
I architecture (EVM TMS320C6678) composed of 8 c66x DSP
cores. They are interconnected by a Network-on-Chip (NoC) called
TeraNet which accesses an internal shared memory called MSMC.
The Keystone platform also provides an external memory access to
DDR memory.

Control queues for parameters, timings and jobs are imple-
mented using the hardware queues present in the Keystone Mul-
ticore Navigator [14]. It embeds 8192 hardware queues for mul-
ticore synchronization. These queues exchange data through de-
scriptors stored in memory regions. We allocate one memory re-
gion in cached MSMC for the descriptors of these control queues.
Since control data sent through these queues are relatively small,
descriptors are configured monolythic, i.e. all data is present in the
descriptor.

For data token communication, data is stored in MSMC or DDR
(depending on the memory allocation). Synchronizations between
cores is performed using one hardware queue for each data trans-
fer. A descriptor present in a hardware queue means that the corre-
sponding data is available in shared memory. This makes access to
shared memory predictable and suitable for enabling caches.

For timing information, the keystone architecture provides 16
shared timers. One of these shared timers is used for global times-
tamp information. This ensures relevant (global) timing information
on current and previous executions.

Figure 3 represents the implementation of the SPiDER runtime
on a c6678 keystone architecture. The hardware independent GRT
and LRT need services from hardware which are provided by an
abstraction layer called Platform Library.

5. EXPERIMENTS

This paper describes an RTOS used to distribute efficiently at run-
time signal processing applications. In this context, experiments
will focus on comparison with another widely used framework
called OpenMP. Results have been acquired by studying single and
multi-iteration latencies of a benchmark application on the Texas
Instruments c6678 multi-core DSP platform.

GRT

LRT

Parameters

Jobs
Jobs

Parameters

Data

Tokens

Timings

Timings
LRT

Figure 2: Runtime execution scheme

Hardware
Independent

Layer

Hardware
Specific
Layer

QMSS
Shared

Timer
DDR MSMC

CorePack 0 CorePack 1

GRT
Graph

Transfo.

Mapping

Task
Ordering

Actor
Execution

...

...

...

LRT

Actor
Execution

Platform Library
Timing
Queues

Data
Queues

Job
Queues

Time
Manager

Hardware

Platform Library
Timing
Queues

Data
Queues

Job
Queues

Time
Manager

Figure 3: Hardware arch. of SPiDER Runtime on c6678

5.1 Benchmark

To compare our approach and the OpenMP frameworks, we chose
a generic benchmark of signal processing. This benchmark is an
extension of the MP-sched benchmark [15]. The MP-sched bench-
mark can be viewed as a two-dimensional grid involving N chan-
nels, where each channel consists of M cascaded Finite Impulse Re-
sponse (FIR) filters of NbS samples. Here, we extend the MP-sched
benchmark by allowing the M parameter to vary across different
channels. We refer to this extended version of the MP-sched bench-
mark as heterogeneous-chain-length MP-sched (HCLM-sched).

The OpenMP framework cannot implement the HCLM-sched
as a double nested loop since FIRs are pipelined on each channels,
this data dependencies is not suitable for an OpenMP “parallel for”.
However, OpenMP framework is used to parallelize channels mak-
ing them monolithic tasks.

In PiSDF, the HCLM-sched description can be found in Fig-
ure 1. To handle the versatility of the application, two parameters,
called N and M, are used. The N parameter corresponds to the
number of channels of FIRs. The M parameter corresponds to the
number of FIRs in each channel. Following the PiSDF semantic, as
M parameter is inside the hierarchical actor FIR Chan , it can be
different for each channel of FIR. To represent the HCLM-sched
application, many control actors have been added:

• config : Configuration actor defining the parameters of the
whole graph. The N parameter is set and a list of corresponding
M values is sent to MFilter .

• MFilter : This actor is used to filter the M values to only N
values. This will lead to the N executions of the FIR Chan
hierarchical actor.

• Src and Snk : These actors are used respectively to retrieve raw
data and to send results.

• setM : A basic configure actor used to set the M value of the
current chain of FIRs.

• Switch: This actor is used to select the input data of the FIR
actor. Depending of the select input, it chooses data from inter-
face or feedbacked data.

• Init : This actor sets select values. It will make the Switch
actor choose input data from the interface on the first iteration
and feedbacked data on other iterations.

• Broadcast(Br): This actor duplicates data for the output inter-
face and for the feedback edge.

This implementation of the HCLM-sched algorithm exploits the
Round Buffer (RB) behavior of interfaces in PiSDF MoC. As ex-
plained in [2], to maintain schedulability of the upper graph with-
out regarding a lower graph, input and output interfaces behave like
RBs. If too much data is sent into an output interface, only the last
one will be returned to the upper graph. If not enough data is pro-
duced by an input interface, data will be duplicated. However, rep-
etition number in one graph iteration for each actor is computed in

such a way that all data from an input interface is consumed at least
once and at least enough data are produced to output interfaces. In
the HCLM-sched graph, the RB behavior of the output interface of
the lower graph is used to keep only the result of the last execution
of the FIR actor.

For these experiments, and to be compliant with the default
implementation of the OpenMP framework for this platform, both
cached and uncached shared L2 memory have been used by the
SPiDER runtime to allocate data FIFOs.

5.2 Results

We have proceeded with two experiments in our comparison be-
tween SPiDER runtime and OpenMP.

For the first experiment (Exp. 1), we fixed M = 12 for all stages.
512-tap FIR filters of NbS = 4000 samples have been implemented
using the dsplib library of Texas Instruments. Latencies for each
iteration have been measured for N varying from 6 to 17 and dis-
played in Figure 4.

6 8 10 12 14 16

1

1.5

2

2.5

3

3.5
·106

N value

E
x
ec

u
ti

o
n

T
im

e
(c

y
cl

es
)

OpenMP

SPiDERCache

SPiDERNoCache

Figure 4: Exp. 1: Latency vs N

The OpenMP implementation latency curve displays a step
shape when increasing N. This is due to channels distribution on
the platform. Since each stage is implemented as a monolithic block
with OpenMP, as soon as 9 channels are reached, 2 channels have
to be completed on one PE making the overall latency double. The
execution Gantt chart for N = 9 can be found at Figure 5. In the
Gantt charts, FIR of same level on all channels have the same color.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
kcycles

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

Figure 5: OpenMP Gantt chart for Exp. 1 (N = 9)

With the SPiDER runtime, the graph transformation and
scheduling phases introduce a visible overhead. This overhead can
be seen in Figure 6 where GRT first red tasks represent scheduling
overhead. However, the transformation to srSDF extracts more par-
allelism than OpenMP from the subdivision of channels into multi-
ple FIRs. These choices make SPiDER runtime suitable for applica-
tions that do not fit to the architecture topology. In the HCLM-sched
benchmark with 9 channels, the overall latency is reduced of up to
26%.

0 200 400 600 800 1000 1200 1400 1600
kcycles

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

Figure 6: SPiDER Gantt chart for Exp. 1 (N = 9)

The second experiment (Exp. 2) is based on multiple iterations
of the HCLM-sched benchmark. As the first experiment, 512-tap
FIRs of 4000 samples have been used. We fix the number of chan-
nels N = 8 and the number of FIRs pipelined in each channel varies
with : M = 8−Chan Id . Then, multiple iterations of the applica-
tion are launched with a fixed period of 700 kcycles.

2 4 6 8 10

0.8

1

1.2

·106

Iterations

E
x
ec

u
ti

o
n

T
im

e
(c

y
cl

es
)

OpenMP

SPiDERCache

SPiDERNoCache

Period

Figure 7: Exp. 2: Latency vs iterations

As we can see in Figure 7, if the latency of the OpenMP imple-
mentation is superior to the period, the latency is growing at each
new iteration. This is due to the global synchronization at the end
of each OpenMP parallel blocks which occurs on the Gantt chart at
Figure 8 around 800 kcycles.

0 200 400 600 800 1000 1200 1400 1600
kcycles

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

Figure 8: OpenMP Gantt chart for Exp. 2

For the SPiDER runtime, the latency remains constant over it-
erations. By having prior knowledge on how the application will
behave, the GRT can start an execution on LRTs which have already
finished the previous execution. It can then start the following iter-
ation as soon as the next period tick occurs, see Figure 9. With a
knowledge of the application execution, the SPiDER Runtime can
pipeline iterations.

0 200 400 600 800 1000 1200 1400 1600
kcycles

PE 0
PE 1
PE 2
PE 3
PE 4
PE 5
PE 6
PE 7

Figure 9: SPiDER Gantt chart for Exp. 2

6. CONCLUSION AND FUTURE WORKS

This paper presents a novel multicore RTOS called SPiDER run-
time. SPiDER runtime exploits parallelism from a PiSDF dataflow
graph for a multicore execution. It enables efficient assignment and
ordering of actors into PEs with a better knowledge of actor inter-
actions. Experiments conducted on an 8-core Texas Instruments
DSP demonstrate on a benchmark that the SPiDER runtime pro-
vides more parallelism to the execution than the OpenMP frame-
work. Results have shown that the SPiDER Runtime reduces the
execution latency by up to 26% and allows handling multiple exe-
cutions.

REFERENCES

[1] Dagum, L., Menon, R.: Openmp: an industry standard api
for shared-memory programming. Computational Science &
Engineering, IEEE 5(1), 46–55 (1998)

[2] Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S.,
Aridhi, S.: Pimm: Parameterized and interfaced dataflow
meta-model for mpsocs runtime reconfiguration. In: Embed-
ded Computer Systems: Architectures, Modeling, and Simu-
lation (SAMOS XIII), 2013 International Conference on, pp.
41–48. IEEE (2013)

[3] Gorin, J., Yviquel, H., Prêteux, F., Raulet, M.: Just-in-time
adaptive decoder engine: a universal video decoder based on
mpeg rvc. In: Proceedings of the 19th ACM international
conference on Multimedia, pp. 711–714. ACM (2011)

[4] Lee, E., Ha, S.: Scheduling strategies for multiprocessor real-
time DSP. In: Global Telecommunications Conference and
Exhibition’Communications Technology for the 1990s and
Beyond’(GLOBECOM), 1989. IEEE, pp. 1279–1283. IEEE
(1989)

[5] Lucarz, C., Mattavelli, M., Wipliez, M., Roquier, G.,
Raulet, M., Janneck, J.W., Miller, I.D., Parlour, D.B., et al.:
Dataflow/actor-oriented language for the design of complex
signal processing systems. In: Conference on Design and
Architectures for Signal and Image Processing (DASIP 2008)
Proceedings, pp. 1–8 (2008)

[6] Marwedel, P., Teich, J., Kouveli, G., Bacivarov, I., Thiele, L.,
Ha, S., Lee, C., Xu, Q., Huang, L.: Mapping of applications
to MPSoCs. In: Proceedings of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis, pp. 109–118. ACM (2011)

[7] Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of
dataflow models. In: Formal Methods and Models for Co-
Design, 2004. MEMOCODE’04. Proceedings. Second ACM
and IEEE International Conference on, p. 179188. IEEE
(2004)

[8] Nollet, V., Verkestt, D.: A quick safari through the mpsoc run-
time management jungle. In: Embedded Systems for Real-
Time Multimedia, 2007. ESTIMedia 2007. IEEE/ACM/IFIP
Workshop on, pp. 41–46. IEEE (2007)

[9] Oliva, Y., Pelcat, M., Nezan, J.F., Prevotet, J.C., Aridhi, S.:

Building a rtos for mpsoc dataflow programming. In: System
on Chip (SoC), 2011 International Symposium on, pp. 143–
146. IEEE (2011)

[10] Pelcat, M., Nezan, J.F., Aridhi, S.: Adaptive multicore
scheduling for the LTE uplink. In: NASA/ESA Conference
on Adaptive Hardware and Systems, pp. 36–43 (2010). DOI
10.1109/AHS.2010.5546233

[11] Sen, M., Corretjer, I., Haim, F., Saha, S., Schlessman, J., Lv,
T., Bhattacharyya, S.S., Wolf, W.: Dataflow-based mapping of
computer vision algorithms onto fpgas. EURASIP Journal on
Embedded Systems 2007(1), 29–29 (2007)

[12] Singh, A., Shafique, M., Kumar, A., Henkel, J.: Mapping
on multi/many-core systems: survey of current and emerging
trends. In: Proceedings of the 50th Annual Design Automa-
tion Conference, p. 1. ACM (2013)

[13] Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel program-
ming standard for heterogeneous computing systems. Com-
puting in science & engineering 12(3), 66 (2010)

[14] Texas Instruments: KeyStone Architecture Multicore Nav-
igator. URL http://www.ti.com/lit/pdf/sprugr9. (accessed
06/2014)

[15] Zaki, G.F., Plishker, W., Bhattacharyya, S.S., Clancy, C.,
Kuykendall, J.: Integration of dataflow-based heterogeneous
multiprocessor scheduling techniques in gnu radio. Journal of
Signal Processing Systems 70(2), 177–191 (2013)

