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Abstract 

Due to its higher degree of control and its scalability, catalytic chemical vapour deposition 

is now the prevailing synthesis method of carbon nanotubes. Catalytic chemical vapour 

deposition implies the catalytic conversion of a gaseous precursor into a solid material at the 

surface of reactive particles or of a continuous catalyst film acting as a template for the 

growing material. Significant progress has been made in the field of nanotube synthesis by 

this method although nanotube samples still generally suffer from a lack of structural control. 

This illustrates the fact that numerous aspects of the growth mechanism remain ill-understood. 

The first part of this review is dedicated to a summary of the general background useful for 

beginners in the field. This background relates to the carbon precursors, the catalyst 

nanoparticles, their interaction with carbonaceous compounds and their environment. The 

second part provides an updated review of the influence of the synthesis parameters on the 

features of nanotube samples: diameters, chirality, metal/semiconductor ratio, length, defect 

density and catalyst yield. The third part is devoted to important and still open questions, such 

as the mechanism of nanotube nucleation and the chiral selectivity, and to the hypotheses 

currently proposed to answer them. 

1. Introduction 

The last two decades have seen a burst of synthetic nanomaterials stimulated by the 

prediction of novel properties stemming from their nanoscale dimensions. Among them, 

carbon nanotubes (CNTs) are particularly attractive nano-objects notably because of the 

strong influence of their structural features on their electrical and optical properties. However, 

controlling these structural features soon appeared to be a particularly challenging task. 

Various synthesis approaches, such as arc discharge and laser ablation, were developed 

aiming at producing pure and well-controlled CNT samples in large quantity. Due to its 
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higher degree of control and its scalability, Catalytic Chemical Vapour Deposition (CCVD) is 

now the standard synthesis method of CNTs. CCVD is at the crossing of two important 

chemical methods: thin-film growth by Chemical Vapour Deposition (CVD) and chemical 

conversion by Gas-Solid Heterogeneous Catalysis (GSHC). CCVD consists in the catalytic 

conversion of a gaseous precursor into a solid material at the surface of catalyst particles or of 

a continuous catalyst film. Novel aspects specific to CCVD arise from the combination of 

CVD and GSHC. For instance, the template effect of the catalyst surface on the shape of the 

growing material is central in CCVD: in the case of catalyst nanoparticles, one-dimensional 

objects such as CNTs and semiconducting nanowires can be grown; if the catalyst is in the 

form of a continuous film, two-dimensional materials such as graphene can be prepared. 

Compared with GSHC, the catalyst in CCVD is not only in contact with the gas phase (and 

sometimes a support), but presents an additional interface with the growing material. This 

imposes a supplementary difficulty because both interfaces have to be preserved in order to 

continuously grow nanotubes/nanowires without disrupting the gaseous precursor supply. 

Since the first reports of the catalytic formation of nanotubular carbon filaments in the 

1950s [1,2] and 1970s [3-7] and the seminal papers of Sumio Iijima in the early 1990s [8,9], 

significant progress has been made in terms of synthesis yield, nanotube alignment and 

sample purity. However, CCVD-grown synthesis of nanotubes still generally suffers from a 

lack of structural control over the nanotube chirality, the semiconducting/ metallic ratio, and 

the nature and density of defects, highlighting that numerous aspects of the growth 

mechanism remain ill-understood. The scope of this paper is to present a review of the current 

understanding of the growth mechanism of CNTs by CCVD. There have been previous 

reviews in this field [10-16], with different objectives (e.g. chronological description of the 

evolution of the methods and achievements, focus on simulation works, on the role of the 

catalyst particles or on a particular type of CCVD such as plasma-enhanced). Compared with 
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them, the present review primarily focuses on the fundamental aspects of the CNT growth by 

CCVD. It first aims at summarizing background knowledge derived from neighbouring fields 

and that is relevant to the understanding of CNT growth by CCVD. The first tutorial part is 

therefore primarily aimed at beginners in the field. Beginners may also rapidly realize the 

difficulty arising from the huge number of publications in the field and the variety of studied 

systems. The second part of this review aims at providing a synthesis of the most relevant 

works addressing the experimental dependence of CNT features on CCVD conditions. Finally, 

the third part is devoted to describe important questions that are still open and discuss the 

hypotheses proposed to account for these experimental dependences and that currently 

participates to the building of a general growth mechanism of CNTs in CCVD.  

2. Background knowledge 
The simplest system to grow CNTs by CCVD consists of catalyst nanoparticles brought to 

high temperature in presence of gaseous carbon-containing molecules. The nanoparticles are 

commonly made of a transition metal such as Fe, Ni or Co, but other elements and 

compounds have recently proven to be efficient catalyst as well. In many cases, the catalyst 

particles are deposited on a support material such as SiO2 or Al2O3. It is apparent from the 

beginning that the size and shape of the catalyst particle and its interactions with the other 

components of the system play central roles in CCVD. Generally speaking, it is commonly 

accepted that CCVD catalyst particles should fulfil the following functions [10-13].   

1) Catalyze the dissociation of the gaseous carbon-containing molecules. 

2) Allow diffusion of carbon intermediates and their chemical interaction. 

3) Provide a nanoscale template for the nucleation and growth of a nanotube. 

4) Keep a reactive nanotube rim. 
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Functions 1 and 2 are also found in heterogeneous catalysis and justify the use of the term 

catalyst particle, i.e. a particle that helps in rapidly achieving the chemical equilibrium 

between the carbon-containing molecules and a graphene-type material. Functions 3 and 4 are 

unique to CCVD catalysts and impose additional or somehow different constraints compared 

with GSHC catalysts, which justifies the use of the alternative term seed particle. 

In this chapter, we aim at providing some background knowledge useful for understanding 

the catalytic growth of CNTs. This knowledge is mostly derived from chemical vapour 

deposition, heterogeneous catalysis and metallurgy. The chapter is divided in five parts: i) 

nature of the most common carbon precursors used for CNT growth and their chemical 

reactivity, ii) nature of the nanoparticles used to grow CNTs in CCVD and influence of their 

nanometric size on some of their physical properties, iii) interactions of transition metals with 

carbon, iv) catalytic activity of transition metals, v) interactions of transition metal 

nanoparticles with the environment (reactive atmosphere, oxide support). 

2.1. Carbon precursors 

2.1.1 Chemical nature 

A large number of carbon-containing molecules can be used as a carbon source to grow 

CNTs in CCVD: hydrocarbons (gaseous [17] or liquid [18]), alcohols [19], aromatic 

compounds [20] or even naturally-occurring carbon resources [20]. Ethylene, acetylene, 

methane, carbon monoxide and ethanol are presently the most frequent precursors of CNTs in 

CCVD (Figure 1). It is important to keep in mind that such gaseous carbon precursors not 

only bear carbon but also other elements such as hydrogen and/or oxygen. These elements are 

not compulsory since CNTs can be grown from pure carbon [21,22] as commonly achieved in 

arc discharge and laser ablation syntheses by sublimation of graphite [23]. However, the by-

production of hydrogen- and oxygen-bearing molecules such as H2 and H2O may impact the 
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formation of CNTs. H2 and H2O are actually common additives in CCVD with recognized 

influence on CNT growth as discussed hereafter. Nitrogen- [24], phosphorus- [25] and boron-

bearing [26] precursors are known to form substitutionally doped CNTs. However, the 

influence of oxygen and hydrogen on the defects of CCVD-grown CNTs is still poorly known. 

 

Figure 1. Common carbon precursors of CNTs in CCVD: carbon monoxide, methane, acetylene, ethylene 

and ethanol from left to right (black: carbon, red: oxygen, white: hydrogen). 

2.1.2 Reactivity 

Thermodynamic stability is an important feature of a precursor. Figure 2 shows the 

standard Gibbs energy of formation for different carbon precursors as a function of 

temperature in the Ellingham approximation (data from [27]). Except for methane, all 

precursors decompose exothermally. It is seen that methane is more stable than graphite for 

temperatures lower than 600-700°C. At atmospheric pressure, acetylene, ethylene and ethanol 

are less stable than graphite at all temperatures while carbon monoxide is more stable than 

graphite at temperatures higher than about 700°C. It is important to remember that the 

conversion equilibriums and the inversion temperatures will vary with the partial pressures of 

the involved gaseous species.  

This being said, some general comments can still be drawn. The pyrolysis of methane 

requires high temperatures to become thermodynamically allowed. Its conversion into higher 

organic compounds is thermodynamically restricted: experimentally, the main products of 

methane decomposition are simply carbon and dihydrogen [28]. If coupled with oxygen, 

methane can form other compounds such as CO2, CO [28], C2H4 and C2H6 [29,30]. At the 
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opposite, the decomposition of acetylene, ethylene and ethanol is thermodynamically allowed 

at all temperatures and occurs readily provided a sufficient activation. Due to their high Gibbs 

energies of formation, these latter compounds can self-decompose into carbon, dihydrogen 

and a large variety of volatile organic compounds and polycyclic aromatic hydrocarbons [31-

34]. The disproportionation of CO into carbon and CO2 (i.e. the Boudouard reaction) is the 

main reaction path in the absence of other reactants (e.g. H2 [35]). The reaction being highly 

exothermic, the reaction equilibrium shifts toward the reactants when increasing the 

temperature. Since the number of gaseous molecules decreases in the Boudouard reaction, the 

equilibrium conversion also increases with increasing pressure. 

 

Figure 2. Gibbs free energies of reaction per mole of carbon for the formation of common metal carbides 

and carbon feedstocks. “cr” and “g” respectively stand for crystalline and gaseous. Data from [27,36]. 

The stability of a carbon precursor is also illustrated by the strength of its chemical bonds. 

Table 1 presents the dissociation energy of the weakest C-H bond of different hydrocarbons. 
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It is apparent that the strength of the C-H bond decreases with increasing the number of 

carbon neighbours. A similar trend is observed in the case of a carbon-metal bond as 

described in §2.3.3. 

Hydrocarbon Weakest C-H bond 
C-H bond dissociation energy 

(kJ/mol) 
Atomic charge on H 

Methane Primary 440 +0.087 

Ethane Primary 420 +0.002 

Propane Secondary 401 -0.051 

Isobutane Tertiary 390 -0.088 

Table 1. Dissociation energies of C-H bonds and charge on H of some light hydrocarbons. From [37]. 

2.2. Catalyst nanoparticles 

2.2.1 Chemical nature 

Nickel, iron and cobalt are the most common catalysts for CNT growth by CCVD. Over 

the years, many other elements have been proven suitable. Beside Fe, Ni and Co, MWCNT 

growth have been reported using nanoparticles of Pd [38], Pt [38], Au [39], Mn [38], W [38], 

Ti [38], TiC [40], Mg [38], Al [38], In [38], Na [38], K [38] and Cs [38]. These nanoparticles 

were usually larger than 3 nm. Beside Fe, Ni and Co, SWCNT growth was reported using 

nanoparticles of other late transition metals (Pd [41], Pt [41], Ru [42]), noble metals (Cu 

[41,43], Ag [41], Au [41,44]), early transition metals (Mn [45], Cr [46], Mo [47]), elements of 

the carbon family (diamond [48], Si [49], Ge [49], Sn [46], Pb [46]), lanthanides (Gd [50], Eu 

[50]) and other mixed compounds (FeSi2 [51], SiC [49,52], SiO2 [53,54], Al2O3 [54], TiO2 

[54], Er2O3 [54], ZnO [55]). These nanoparticles were usually less than 3 nm. 

Binary mixtures of active catalysts such as Ni, Fe and Co are frequently used and often 

observed to display a higher activity than individual elements [56]. Non- or weakly active 
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elements are also frequently mixed as co-catalysts, notably to prevent or control the 

coarsening of the catalyst. They notably include Mo [57,58] and Mg [59] mixed with Fe or Co. 

Considering this wide variety of active elements and compounds, one may wonder which 

properties are actually required to promote the growth of CNTs. Hereafter are summarized 

some important physical and chemical properties of the nanoparticles used to grow carbon 

nanotubes. 

2.2.2 Vapour pressure and melting point 

The physical state of the catalyst during CNT growth (i.e. solid or liquid) is important 

because it influences several properties of the catalyst such as the solubility of carbon and its 

diffusion rate. It is still a highly debated issue (see §4.1) whose resolution is complicated by 

three effects. 

First, in the presence of carbon, the melting point can be decreased by up to a few hundred 

degrees for the elements displaying a eutectic point in their phase diagram with carbon (e.g. 

Fe, Co, Ni, Pt, Pd, Rh, Ru, Ir, Re). Second, for particles in the range of 1-10 nm, the 

equilibrium vapour pressure is significantly increased which is usually approximated by the 

Kelvin or Gibbs-Thomson equation. The equilibrium vapour pressure of a particle of radius r 

in contact with a vapour phase can be written as: 











kTr
V

pp sg2
exp0  

where p and p0 are the equilibrium vapor pressures over curved and flat surfaces, respectively; 

sg is the surface tension at the particle-gas interface, V is the volume of an atom in the 

particle, k is the Boltzmann constant and T is the temperature. The relation reflects the fact 

that particles with a higher surface/volume ratio are less stable. A practical consequence is 

that particles tend to evolve toward larger sizes as first described by W. Ostwald (see Ostwald 
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ripening in §2.5.2.2). In the case of a liquid or solid environment, an analogous equation can 

be written to express the equilibrium concentration in the outer environment surrounding the 

nanoparticle. Another consequence is that the melting point of nanoparticles is significantly 

depressed. The melting point of a nanoparticle in its own liquid can be approximated by: 













rH
TrT

f

slbulk
mm 
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1)(  

where Tm(r) and Tm
bulk are, respectively, the particle and bulk melting points, sl is the surface 

tension at the solid-liquid interface, Hf is the bulk latent heat of fusion per volume unit and 

is the density of the particle. All these effects originate from the large contribution of 

surface atoms to the total energy of the system. If the nanoparticles are deposited on a 

substrate, the interaction is therefore also expected to modify their melting point, which is the 

third effect to consider. As an example, Shibuta et al. [60] calculated that the melting point of 

a nickel cluster increased by up to 200°C with increasing catalyst–substrate interaction. 

2.3. Interaction of carbon with transition metals 

2.3.1 Affinity for carbon: carbon solubility and formation of carbides 

In general, the ability of transition metals to bond with carbon atoms increases with the 

number of unfilled d-orbitals. Metals without d-vacancies in their electron configuration, such 

as Zn or Cu, display a negligible affinity for carbon. Metals with few d-vacancies such as Ni, 

Fe and Co exhibit a finite carbon solubility. Transition metals with many d-vacancies such as 

Ti and Mo can form strong chemical bonds with carbon and highly stable carbide compounds. 

For transition metals, the affinity for carbon therefore increases from the right to the left of the 

periodic table [61-63]. For example, the solubility of carbon at 700°C (a typical synthesis 

temperature for CNTs) is below detection limit in Zn, 0.01% at. in Cu, 0.3-0.5% at. in Ni and 

1.2% at. in fcc-Co. Elements from Mn to Ti form carbides of increasing stability and 
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increasing carbon share (Figure 3). Fe is an intermediate case: Fe forms a metastable carbide 

(Fe3C), the solubility of carbon is relatively low in -Fe (~0.1%at. at 700°C) but substantial in 

-Fe (~4%at. at 800°C). The solubility of carbon in metals generally increases with 

temperature. 

 

Figure 3. Ellingham diagram for carbides of 3d transition metals. Adapted from [36]. 

Graphitic carbon will be allowed to form if the carbon concentration overcomes the 

solubility of carbon in the catalyst particle. For elements that do not form stable carbides (e.g. 

Cu, Ni, Co, Pb, Sn, Au, Ag, Zn, Cd, Pd, Pt) [64], the critical concentration for the segregation 

of graphitic carbon is therefore the solubility limit of carbon in the metal. For carbide-forming 

elements, the carbon concentration must exceed the carbon content of the highest stable 

carbide (e.g. Mn3C for Mn, TiC for Ti) for graphitic carbon to form. 
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A complicating factor is the influence of the particle size on the solid solubility of 

impurities such as carbon and the stability of mixed compounds (i.e. carbides) [65-67]. The 

solubility of carbon in nanoparticles is not well established and is still a subject of controversy. 

Experimentally, there are many reports of increased solubilities inside nanoparticles [66-70], 

including a giant increase of carbon solubility in Au nanoparticles [71]. A Kelvin-type 

relation has sometimes been used to explain the experimental observations although this 

relation actually describes the solubility in the medium around the nanoparticle as already 

stressed by A. Harutyanyan [13] and not the solubility inside the nanoparticle. Over the last 

years, thermodynamic models specifically addressing the solid solubility of impurities inside 

nanoparticles have been devised based on different assumptions: size-dependent entropy [72], 

regular solution theory [73], quantum confinement of elementary excitations [74], size-

dependent melting enthalpy, entropy and atomic interaction energy [75] or linear 

concentration dependence of the surface energy [76]. In general, these thermodynamic models 

predict an increase of the solubility of impurities inside nanoparticles of decreasing size. In 

certain models, however, both solubility increase and decrease are possible depending on the 

relative binding strengths between atoms in the system. The matter is therefore not well 

established yet in both the general case and the particular case of carbon dissolution inside 

metal nanoparticles. Recently, Diarra et al. [77] reported Grand Canonical Monte Carlo 

simulations to calculate the adsorption isotherms of carbon on nickel nanoparticles of varying 

size: they found that at a given carbon chemical potential and temperature, smaller nickel 

nanoparticles dissolve a larger fraction of carbon than larger ones due to the larger carbon 

solubility in subsurface than in the bulk. 

Experimental observations long supported that catalysts having intermediate carbon 

solubilities (between 0.5 and 1.5 wt.%) and not forming stable carbides were required to 

promote CNT growth [40] although the reason for that was unclear. The reports of novel 
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catalysts displaying both low (e.g. Cu) and high (e.g. Ti) affinities for carbon probably should 

lead to reconsider this conclusion. 

2.3.2 Carbon diffusion: bulk, surface and subsurface 

The diffusion mode of carbon atoms during CNT growth (bulk versus surface diffusion) 

has long been and still is a highly debated issue. The solid-state diffusion of impurities (such 

as carbon) has been studied for many years, notably for metallurgy purposes. Figure 4 shows 

the solid-state diffusion constants of carbon in various bulk metals and metal carbides as a 

function of temperature. Despite the absence of a simple rule, some general trends can be 

given [78]. 

i) The bulk diffusion of carbon atoms is much faster than that of the atoms of the solid metal 

host since the former ones diffuse interstitially while the latter ones diffuse substitutionally. 

ii) Interstitial diffusion depends on the geometry of the host lattice and is faster in more open 

structures. For instance, the activation energy for carbon diffusion is 1.53-1.57 eV in close-

packed fcc Fe while only 0.83 eV in bcc Fe [79,80]. 

iii) The higher the melting-point of the host, the smaller the diffusion constant of the solute 

atoms. For instance, in the case of -Fe, V and Mo that are all bcc metals, but with 

significantly different melting points, the diffusion constants inversely follow the order of 

melting points, that is Fe (Tm=1808 K) > V (Tm=2160 K) > Mo (Tm=2890 K). 

iv) The diffusion constant depends inversely upon the solid solubility, being least for metals 

which form a continuous series of compounds (i.e. carbides in the case of carbon diffusion). 

For instance, in the case of Pd, Ni and -Fe that are all fcc metals with close melting points, 

the diffusion constants inversely follow the order  of carbon affinity, that is Pd > Ni > Fe. 
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Figure 4. Bulk diffusion constants of carbon in various metals and metal carbides as a function of 

temperature. The activation energies for bulk diffusion of carbon was measured to be 1.44-1.74 eV in Ni 

(fcc) [80-83] (at the exception of Massaro et al. [84] who found 0.87 eV in the range 350-700°C), 1.50-1.68 

eV in Co (hcp) [80,85], 1.53-1.57 eV in fcc Fe [79,80], 0.83 eV in bcc Fe [79,80], 1.20 eV in V [80,86,87], 

1.37 eV in Pd [88,89], 1.44-1.78 eV in Mo [80,90] and 1.58 eV in Zr [91]. 

Studies on the diffusion of carbon have revealed a strong dependence of the diffusion 

coefficients on the carbon concentration [78,92,93]. For instance, the activation energy for 

bulk diffusion of carbon in fcc-Fe decreases from 1.55 eV to 1.24 eV if the amount of 

dissolved carbon is increased by 6 at. % [94]. In Ni, calculations predict that for carbon 

concentrations above 50 at. % in the first subsurface layer, the carbon diffusion barrier would 

decrease from 1.6 eV to below 1.0 eV [82]. This effect is usually explained by the lattice 

expansion caused by the addition of carbon. It has also been proposed that the repulsion 

between carbon atoms at close distance could enhance the diffusivity of interstitial carbons 

[95]. 

However, for very high carbon contents as encountered in carbides, it is commonly 

observed that the activation energies for carbon diffusion are much higher than in the 
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corresponding metals (see Figure 4). This is tentatively explained by the fact that carbon 

diffusion in carbides is no longer interstitial but mediated by thermal vacancies in the metal 

and carbon sub-lattices [96]. For instance, the activation barrier is 1.60-1.92 eV in Fe3C [97-

99], 3.4 eV in TiC [100], 3.1 eV in VC [101] and 2.9-3.6 eV in Mo2C [102] and 2.6 eV in WC 

[101]. As a consequence, the bulk diffusion constants of carbon in metal carbides are usually 

much lower than in the corresponding metals as visible in Figure 4. It is worth noting that the 

diffusional mobility of the metal atoms in carbides is still several orders lower than that of 

carbon atoms [103]. 

Addition of other elements also influences the diffusion rate of carbon. For instance, the 

diffusion constant of C in fcc-Fe increases with the concentration of Ni and Cu, but decreases 

in the presence of carbide-forming elements such as Cr, W, Mo and others [92]. Other 

elements like Si and Co raise or lower the diffusion coefficient of carbon, depending on the 

temperature and their concentration [92,104]. In agreement with these measurements, 

calculations predict that the addition of small amounts of Au would reduce the activation 

barrier from 1.6 eV for pure Ni to 0.07 eV for Ni with 6 at. % of Au [81]. 

Much less data are available concerning the surface diffusion of carbon. In general, the 

activation barriers are found to be significantly lower than for bulk diffusion. For instance, 

calculations on the surface diffusion on Ni(111) and Ni (110) yielded a barrier of 0.4-0.5 eV 

[105] in good agreement with the experimental value of 0.3 eV measured on a polycrystalline 

Ni surface [106]. First-principles calculations by Yazyev and Pasquarello [62] on Ni, Pd, Pt, 

Cu, Ag and Au yielded that bulk diffusion has systematically a higher activation barrier than 

surface and subsurface diffusions. Surface-to-subsurface diffusion is another interesting case 

to consider: Xu and Saeys [82] calculated an activation barrier for carbon on Ni(111) of 0.7 

eV at low carbon coverages, a value that is intermediate between surface and bulk diffusion. 
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Like solubility, the diffusion rate of carbon in nanoparticles may be dependent on the 

particle size. Despite some experimental observations [107], such a possible effect is still 

insufficiently documented. 

2.3.3 Theoretical aspects of carbon structures interactions with metal 

surfaces 

For the CCVD growth of CNTs, a key aspect is the carbon-metal interaction that 

obviously depends on the nature of the catalyst considered. A large number of papers have 

been devoted to the theoretical study of this metal carbon interaction, mostly using quantum 

chemistry (QC) or Density Functional Theory (DFT) based calculations. As usual in such an 

instance, the general trends are rather robust (e.g. early TMs tend to make too stable carbides, 

late TMs are better for catalytic purposes) but differences exist in the details. The problem is 

indeed complex, especially because of the unique ability of carbon to form various structures 

with different bonding characters. As described hereafter, we can qualitatively consider that 

the interaction of carbon with a metal surface is stronger for isolated atoms and decreases 

when C-C bonds with neighboring carbon atoms, corresponding to strong lateral interaction, 

are formed. The ultimate limit is the formation of a full graphene layer of a flat metal surface 

that has weak adhesion energy. 

The interaction of atomic carbon with different metallic surfaces or bulk metals has 

been extensively studied. A thorough study of the applicability of DFT for computing key 

quantities such as the heat of solution of C in Ni is reported by Siegel and Hamilton [108]. A 

useful reference state is the stability of the ideal C sp2 structure such as graphene. Referred to 

it, and neglecting the energy difference due to the finite diameter of a tube and its curvature, 

the adsorption or solution energy of a carbon atom directly tells us whether a C atom will 

prefer binding to the tube or to the metal. The adsorption energy depends on the different 
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surface sites available on different structures (flat surface with different orientations, steps, 

clusters …). Interstitial subsurface and bulk sites have been considered, too, as well as carbon 

dimers. For Ni, Pd, Pt, Cu, Ag and Au [62,82,109-111], the adsorption of a single C atom is 

less stable than its incorporation in a graphene layer, with energy differences of the order of 1 

eV/carbon atom for Ni, Pd, Pt and 2-4 eV/carbon atom for noble metals. Subsurface sites are 

more favorable than bulk incorporation or adsorption on various surface sites. For Ni and Co 

hollow (100) semi-octahedral sites are more favorable than compact facets [112,113]. When 

suitable surface coverage is reached, this leads to the (2x2) P4g “clock” surface reconstruction 

observed on Ni (100) [114,115]. Complex behavior is also predicted on different facets of Fe, 

an important catalyst for NT growth. Carbon adsorption on the different facets of bcc Fe has 

be shown [116-118] to substantially modify their surface energies, thus potentially explaining 

changes of the nanoparticle shape observed during growth. At low surface coverage, C atoms 

are separated from each other and their binding on late transition metal surfaces is stronger on 

open sites than on compact facets. On a bcc Fe (100) facet with a somewhat larger (2/3) 

surface coverage, carbon chain structures have been experimentally evidenced and found to 

be strongly interacting with the surface [119,120]. 

Carbon dimers are found to be the most stable adsorbed species on noble metals, and 

close to it on Ni [108]. More precisely, acetylene which can be consider as a prototype of 

carbon dimer is more strongly adsorbed on Ni than on Pd, Pt and Rh (111) surfaces [121] in 

agreement with the chemisorption model of Nørskov (see 2.4.1). Tight binding calculations, 

allowing the relaxation of large simulation boxes, indicate, in agreement with experiments, 

that dimers can be stabilized in subsurface, involving strong local distortions [122].  

During nanotube growth, carbon does not interact with a flat surface but rather with a 

cluster. Attempts have been made [123,124] to take this finite size effect into account, but one 

rapidly faces difficult challenges. DFT based calculations are better suited to deal with 
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periodic systems and calculations of interaction energies of carbon with metallic clusters are 

therefore limited to small cluster sizes, below 100 atoms. In addition, the stability of these 

small size clusters results from a balance between bulk and surface energies, leading to magic 

numbers sizes, for which calculations have been done. However, the strong chemisorption of 

carbon that can modify the surface energy contribution and the presence of a substrate that 

also strongly interacts with the clusters cast some doubts on the relevance of this approach. 

Starting from individual atoms, dimers and chains on the metal surface, the next step is 

the study of the interaction of caps or tubes with flat surfaces or metal nanoparticles. In this 

case, carbon atoms have already formed bonds with other neighboring carbons, and, as 

consequence, the interaction with the metallic surface is weaker. This kind of calculations is 

in principle more relevant to the experimental nanotube growth situation, but still rely on 

some assumptions, concerning, in particular, the structure of the metal catalyst, generally 

taken as pure (no carbon dissolved in) and crystalline. Ding et al. have underlined the 

importance of a strong carbon metal interaction [125], to sustain a continuous growth by 

preventing the closure and detachment of the tube: they show that Fe, Co and Ni bind stronger 

to the tube, and hence perform better than Pd, Cu and Au. Larsson et al. [126] calculated that 

the adhesion energy between metal clusters and SWCNT caps follows the order Fe~Co>Ni. 

Depending on the tube chirality, bond strengths are in the (-2.5; -1.5) eV/bond range for the 

former. In the context of trying to explain chiral selectivity, Reich et al. [127] calculated the 

interaction of caps with different chiralities on a flat Ni (111) surface, showing small energy 

differences between them.   

Much weaker interaction energies are expected for carbon structures (flakes, flat 

caps…) lying almost flat on the surface. Fan et al. [128] calculated the adhesion energy and 

stability of small C flakes on Ni to propose a model for the cap nucleation. Lacovig et al. 

[129] studied the evolution of the binding energy of carbon flakes on Ir (111) as a function of 
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the flake size, starting from almost zero (graphene layer) to -1.2 eV / C atom for a C6 ring, 

emphasizing the role of the edge atoms contribution in the binding.  

When the flakes grow larger, we tend towards a graphene structure that generally 

interacts weakly with metal surfaces. This pushes DFT calculations to their limits, since Local 

Density Approximation results in an overestimation of the adhesion energy, while 

Generalized Gradient Approximations result in near zero adhesion energies. Recent 

developments try and include non-local corrections to the DFT approximations [130-132]. It 

may be expected that the adhesion strength of the graphene sheet also depends on the amount 

of carbon dissolved in the metal particle although this dependence is rarely addressed in the 

literature. 

2.4. Catalytic activity of transition metal nanoparticles 

2.4.1 Dissociative adsorption on transition metal surfaces 
The role of a catalyst is to accelerate a thermodynamically-allowed chemical process (e.g. 

the decomposition of carbon-containing molecules) by creating a transition state of lower 

energy [133]. The corresponding decrease of activation energy depends on the strength of the 

adsorbate-substrate bond which experimentally reflects in the heat of adsorption. There is a 

general trend for the heats of adsorption to decrease from the left to the right of the periodic 

table. For instance, the heat of adsorption of CO on polycrystalline Ti is 6.5 eV, but only 0.9 

eV on polycrystalline Cu [133]. This trend can be explained by the chemisorption model 

developed by Nørskov [134] stipulating that molecules adsorbing on transition metals 

preferentially interact with the d-states near the Fermi level that give rise to bonding and 

antibonding levels. The d-electron contribution to the bonding is therefore proportional to (1-

fd) where fd is the degree of filling of the d-band. 



 21 

When a molecule is adsorbed on a metal surface, the activation barrier for its dissociation 

is lowered. For instance, the activation barrier for the dissociation of acetylene was measured 

to be 1.4 eV on Ni(111) instead of 5.58 eV for self-decomposition [105]. If the surface bonds 

are too strong, the reaction intermediates will remain on the surface and block the adsorption 

of new reactant molecules. Forming adsorbate-substrate bonds of intermediate strength is an 

important property of a good catalyst. The catalytic activity of transition metals for a given 

reaction often displays a volcano-shaped pattern across the periodic table [135]. For instance, 

acetylene and ethylene are observed to be very weakly adsorbed on noble metals such as Au, 

Ag and Cu [133] while, on other transition metals, the adsorption of unsaturated hydrocarbons 

is generally strong and dissociative. When one adsorbs an unsaturated hydrocarbon onto a 

transition-metal surface at low temperature and then heats the surface, the molecule 

decomposes and leaves the surface covered with partially dehydrogenated fragments (e.g. 

ethylidyne) or carbon, rather than desorb from the surface. At higher temperatures, polymeric 

carbon chains with the general formula CxH are formed, which eventually results in a 

graphitic monolayer [133]. 

It was also demonstrated that dissociative adsorption of hydrocarbons often leads to the 

population of subsurface sites even in metals having low carbon solubility. For instance, 

Teschner et al. reported a carbon content of 35 to 45 at % in the three top layers of Pd under 

alkyne exposure at 350 K while the bulk solubility of carbon in Pd is less than 1 at. % at this 

temperature. The surface carbide was found to be stable only in the reaction ambient. 

Interestingly, the degree of subsurface population by carbon was found to strongly influence 

the catalytic activity and the conversion selectivity [136]. 

2.4.2 Catalytic activity of transition metal carbides 
Many metal surfaces will form carbides when exposed to carbon-bearing molecules at 

high temperatures (see Figure 2 for examples). It is important to judge their catalytic activity 
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since nanoparticles of carbides (e.g. TiC) or of carbide-forming metals (e.g. Ti, Mn, W, Cr, 

Mo, Fe) were reported to be active for CNT growth in CCVD (see 2.2.1). Compared with 

pure metals, carbides generally display lower adsorbate-surface bonds [137-139] and are 

therefore often considered as having no or weak catalytic activity. Carbides of the group 4-6 

metals have been studied for their catalytic activity in oxidation, 

hydrogenation/dehydrogenation, isomerisation and hydrogenolysis, and in many cases have 

been found to rival the performance of metals of the Fe-group [140,141]. While refractory 

carbides do not display high activity for oxidation reactions, they are often as active as 

transition metals for hydrogenation and dehydrogenation reactions. As a consequence, carbide 

surfaces are used for catalysis in extreme conditions due to their remarkably high hardness 

and melting points, as compared to transition metals. 

2.4.3 Catalytic activity of oxide surfaces 
Nanoparticles of different oxide compounds (e.g. SiO2 [53,54], Al2O3 [54], TiO2 [54], 

Er2O3 [54], ZnO [55]) have been recently shown to be efficient catalysts of SWCNT growth. 

In addition, many oxides that are commonly used as catalyst supports in CCVD display 

catalytic activity. For instance, Yoshihara et al. [142] observed that Al2O3 and TiO2 could 

catalyze the decomposition of acetylene (but not that of methane). Although heterogeneous 

catalysis mostly involves metal catalysts, many processes make use of oxides [133,143] such 

as zeolites (cracking of crude oil), chromium oxide (polyethylene synthesis), vanadium oxide 

(NOx reduction), copper oxide, zinc oxide (water-gas shift reaction), and molybdenum oxide 

(acrylonitrile synthesis). Overall, oxides have lower heats of adsorption than the 

corresponding metals [144,145], but polar oxide surfaces (e.g. Cr203(0001), NiO(111)) display 

higher adsorption energies than non-polar ones (e.g. MgO(100), NiO(100)) [146]. An oxide 

catalyst is often referred to as acidic or basic according to the propensity of the metal ions to 

donate or accept electrons (Lewis acidity) or protons (Brønsted acidity) [133]. In the field of 



 23 

CNT growth by CCVD, Magrez et al. [147] notably observed that the growth was 

dramatically activated when the surface of the support is made basic or when the acidity of 

the support is modified from Lewis to Brønsted using water molecules. 

2.4.4 Nanometric size effects on catalytic activity 
It has long been recognized that the size and the surface structure of the catalyst can 

influence the catalytic activity. A catalytic reaction is defined as structure-sensitive if its 

conversion rate changes markedly as the size of the catalyst particles is changed. For instance, 

while bulk gold has no catalytic activity, Haruta et al. reported that gold nanoparticles can 

catalyze the oxidation of carbon monoxide [148]. Using size-controlled gold nanoparticles, 

Tsunoyama et al. observed a relationship between the particle size and the catalytic activity 

for the oxidation of alcohol, the smaller nanoparticles being more active [149]. This is 

correlated by the observations that Pd nanoclusters of decreasing size display larger heats of 

adsorption [150].  

The reactivity of a metal surface is generally associated to both its geometric features and 

its electronic structure. Classically, the structure sensitivity of a catalytic reaction is associated 

to a modification of the population of reactive sites (terrace, steps, kinks, surface defects) with 

decreasing particle size. For instance, the probability of H2 dissociation decreases from 0.9 on 

a stepped Pt(332) surface to less than 10-3 on a defect-free Pt(111) surface [151]. Several 

authors reported that reducing the nanoparticle size modifies their electronic structure (i.e. 

decrease of the density of states at the Fermi level, modification of the shape and position of 

the valence band) [150]. The decrease of the density of states at the Fermi level has 

sometimes been proposed to explain size effects in catalysis. In the case of very small 

particles of a few tens of atoms, the electronic properties can be dramatically changed 

relatively to bulk material due to quantum confinement effects. Meier et al. notably proposed 
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that the increase in heat of adsorption and the onset of catalytic activity coincide with the 

metal to non-metal transition that occurs in gold clusters of approximately 3 nm in size [146]. 

Small catalyst particles are also in closer interaction with their environment and are 

therefore more sensitive to support effects as detailed below. 

2.5. Interactions of metal nanoparticles with their environment 

2.5.1 Redox interactions between metal nanoparticles and gas species 

Aging of nickel, cobalt and iron thin films in air results in oxide and hydroxide formation 

accompanied by a modification of the surface morphology [152,153]. Frequently, catalysts 

are subjected to an oxidative pre-treatment (i.e. calcination) to remove carbon contaminants or 

to reduce the surface mobility and the coarsening of catalyst particles. 

The propensity of an element to be oxidized or reduced as a function of the gaseous 

atmosphere is apparent in an Ellingham diagram for oxides (Figure 5). Oxides and hydroxides 

of iron, cobalt and nickel are generally reduced under hydrogen [154], ammoniac [155] or 

hydrocarbon [156] atmospheres. It is apparent from Figure 5 that oxides commonly used as 

supports (SiO2, Al2O3, MgO) are extremely stable and are not expected to be reduced in 

standard growth conditions. Other oxides such as TiO2, MnO, Cr2O3 and ZnO are also very 

stable. At some exceptions, the affinity for oxygen among transition metals generally 

increases from the right to the left of the periodic table, like the affinity for carbon. FeO, for 

instance, is more difficult to reduce than NiO and CuO. Ellingham diagrams based on bulk 

thermodynamic values are often useful to predict the stability of oxides at a given temperature 

and in a given atmosphere.  

However, when dealing with nanoparticles, surface and interface effects come into play. 

The chemical stability of nanoparticles can be modified by the interaction with a support. For 
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instance, an XPS analysis by J. Lu [157] indicated that under similar reducing conditions, 

Fe(III) nanoparticles on silicon oxide were substantially reduced to Fe(0), but failed to do so 

when supported on silicon nitride. The different interactions of metal nanoparticles with oxide 

substrates are discussed in more detail in the following part. 

 

 

Figure 5. Ellingham diagram for oxides. After [158]. 

2.5.2 Interactions of metal nanoparticles with oxide supports  

The chemisorption behaviour of a metal cluster not only depends on its size and surface 

structure but also on its interaction with the substrate [150]. For example, gold clusters are 

found to be catalytically active when deposited on Fe3O4, FeO or TiO2 but inactive when 
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deposited on Al2O3 [146,148,150]. Strong metal-support interactions (SMSI) is the term 

commonly used to refer to the reduction of catalytic activity of metal particles on certain 

supports. SMSI are commonly attributed to two different effects: i) the modification of the 

electronic structure of the catalyst particle by the oxide support (notably by charge transfer) 

and ii) the physical encapsulation of the particles by a thin layer of oxide support. Generally 

speaking, two aspects should be considered when dealing with the interactions of metal 

nanoparticles with oxide supports: (i) the electronic interaction corresponding to the charge 

redistribution at the metal-oxide interface and (ii) the chemical interaction corresponding to 

atom diffusion at the metal-oxide interface [159]. As described hereafter, the difference of 

electronegativities and the conduction properties of the oxide support strongly influence the 

phenomena at the metal-oxide interface. 

2.5.2.1 Electronic interaction: charge redistribution 

Contact between a metal particle and an oxide surface results in charge redistribution at 

the interface [159]. Local charge redistribution occurs within the first few atomic layers at the 

interface. This local electronic interaction is the dominant effect in the case of insulating 

oxide supports such as Al2O3, MgO and SiO2 since electrons are strongly localized and the 

production and diffusion of ionic defects are limited. Local charge redistribution is driven by 

the difference of electronegativities between the metal and the oxide but is also affected by 

the surface properties of the oxide (surface stoichiometry, defects and terminations). The 

electronic interaction affects the catalytic properties of the particles. For instance, Yoon et al. 

[160] observed that, due to charge transfer, Au8 clusters are catalytically active when 

supported on defect-rich MgO(100) surfaces but inert when deposited on a virtually defect-

free MgO surface. The modification of the electronic properties and reactivity of the metal 

particles by the support is only significant for particles smaller than 2 nm [150]. In the case of 

conducting oxides such as TiO2, ZrO2 and ZnO, charge redistribution is long ranged and 
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driven by the difference of Fermi energies similarly to metal–semiconductor junctions [159]. 

In this case, the electric fields generated at the interface can significantly enhance the 

diffusion of ionic defects and promote long-range chemical interactions (see 2.5.2.2 and 

2.5.2.3).  

2.5.2.2 Atomic diffusion: wetting, coarsening and encapsulation 

From Bauer’s criterion [161], a thin metal layer deposited on a substrate will 

preferentially form 3D islands rather than a 2D layer if metal + metal–substrate > substrate where i 

denote surface free energies. Metal oxides generally have lower surface energies than metals 

which favors the growth of 3D metal islands on oxide surfaces. Conversely, oxidizing metal 

particles generally leads to a flattening of the particles on the oxide support [162]. The 

interface term metal–oxide has also to be taken into account. Because metal and metal–oxide are 

usually difficult to estimate directly, metal is usually approximated by the heat of sublimation 

metal which also reflects the strength of metal/metal lateral interactions while metal–oxide is 

approximated by heat of formation of the most stable oxide of the metal since it reflects the 

strength of the metal-oxide interaction. Figure 6 displays the wetting behavior of different 

metals on TiO2 as a function of their heat of sublimation and of oxide formation. It is apparent 

that transition metals with high electronegativity and high cohesion to dewet oxide surfaces 

while the more electropositive and lower cohesion metals tend to wet them [163]. 
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Figure 6. Description of the growth mode of metals on TiO2(110) versus the heat of formation of the most 

stable metal oxide (fH0 oxide) and the heat of sublimation (fH0 metal), in which  and  represent 

experimentally observed 3D island and 2D layer growth modes, respectively; and  represents the 

positions of metals whose growth modes have not been determined. In Zone I, metal/metal lateral 

interactions are stronger than metal/TiO2 interfacial interactions so that metals tend to grow in the 3D 

island mode. In Zone III, metal/metal lateral interactions are weaker than metal/TiO2 interfacial 

interactions so that metals tend to grow in the 2D layer mode. Zone II is a transition domain where metals 

show either 3D island or 2D layer growth, depending on secondary factors. From [164]. 

Surface energies can also be dramatically modified by adsorption of molecular 

compounds present in the gas phase [165]. In general, adsorbates increase the anisotropy of 

surface energy between crystal planes, resulting in strong faceting. Encapsulation (or 

decoration) is another way to minimize surface energy. It involves mass transport from the 

oxide support onto the surface of the metal particle and results in the covering of the particle 

by a thin layer of reduced oxide support or even its immersion into the oxide support [159]. It 

preferentially impacts metals with high surface energy deposited on oxide surfaces of low 

surface energy. Typical examples are Pt and Pd particles on TiO2 and CeO2 supports. From a 

kinetic point of view, encapsulation is also favored when the outward diffusion of oxide 
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cations is promoted by the surface electric field, which is the case when the Fermi energy of 

the metal is lower than that of the oxide. 

 If one now considers an ensemble of interacting particles on an oxide support, 

coarsening (or sintering) is another possibility to minimize the energy of the system [166] 

[167]. Coarsening of supported metal particles can occur in essentially two ways: either by the 

diffusion of single metal atoms (or metal-bearing molecules) from small particles to large 

ones (which is termed Ostwald ripening or interparticle transport), or by the migration and 

coalescence of whole particles (which is sometimes referred to as Smoluchowski ripening). 

Ostwald ripening is driven by the fact that vapour pressure varies inversely with particle size 

(see §2.2.2). It follows that metal atoms escape more quickly from small particles than from 

larger ones, resulting in a net flow of matter from the former to the latter. The nature of the 

diffusion process (surface, gas phase) and of the diffusing species (individual atoms, 

molecular species) can vary from one system to another. In numerous cases, it was found that 

the presence of oxygen greatly enhanced particle coarsening possibly due to the formation of 

more mobile metal oxide compounds [168]. The likelihood of particle coarsening by the 

migration-coalescence mechanism increases with the surface density of particles and their 

migration coefficients which increase with temperature, but also depend on the diameter, 

shape and nature of the particles. In practice, the different coarsening modes are characterized 

by different kinetic laws of the type: 

Ktdd nn  0  

where nd  is the mean diameter after time t, nd0  the initial mean diameter, K a temperature-

dependent constant and n an integer which is characteristic of the type of coarsening 

mechanism. Such studies on SiO2-supported Ni particles [169], Al2O3-supported Ni particles 

[170] and Al2O3-supported Pt particles [171] indicated a change in the predominant 
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coarsening mechanism from migration-coalescence at low temperatures (i.e. typically less 

than 700°C) and short times (i.e. typically less than 1h) to Ostwald ripening at higher 

temperatures and longer times. 

2.5.2.3 Chemical reactions: redox, alloy formation 

Silicon wafers are standard substrates for nanotube growth. However, metals tend to 

diffuse into silicon and to form metal silicides which have much lower surface reactivity. For 

instance, for nickel, cobalt or iron deposited on silicon, formation of silicides were observed 

to occur at temperatures as low as 225°C for nickel [172,173], 450°C for cobalt [174] and 

800-850°C for iron [175,176]. The propensity of a given metal to form silicides is apparent in 

the silicide formation enthalpies as those shown in Figure 7. In first approximation, such bulk 

thermodynamic data are useful to predict interface reactions. For instance, the Ellingham 

diagram for oxides in Figure 5 predicts that a silicon substrate tends to reduce the particles of 

most transition metal oxides deposited on its surface. However, in the case of nanoparticles, it 

should be kept in mind that the contribution of the surface energy to the total free energy of 

the system can be dominant.  

 

Figure 7. Standard enthalpies of formation of some 3d transition metal silicides (from [177]). 

This explains why pure silicon supports are rarely used for the growth of CNTs. To 

circumvent the problem of silicide formation, a diffusion barrier of SiO2 or Al2O3 is 
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commonly employed. Simmons et al. reported that a 4-nm silicon dioxide layer is the 

minimum diffusion barrier thickness to prevent iron silicide formation below 900°C [175]. 

The efficiency of the diffusion barrier depends not only on its thickness and structural quality, 

but also on the nature of the metal, the processing time and the gas ambient. For instance, 

silicide formation at metal/SiO2 interface was reported for many metals after prolonged 

heating under hydrogen atmosphere (e.g. Ni3Si formation at Ni/SiO2 interface [178]). At 

elevated temperatures, even low reactivity metals (such as Pt, Pd, Rh, Cu and Ni) deposited 

on SiO2 and Al2O3 can form silicide and aluminide layers [179,180] while highly reactive 

metals (such as Ti, Zr, Hf) tend to form a thin layer of aluminide or silicide sandwiched 

between a top layer of metal oxide and the oxide substrate [181,182]. 

Pauling electronegativity is a good indicator to predict the chemical affinity of transition 

metals for oxide surfaces. Metals with electronegativity lower than 1.5 tend to form strong 

chemical bonds with SiO2 [159]. The more electronegative metals do not reduce a TiO2 

surface whereas the more electropositive metals can reduce one or more TiO2 layers, thereby 

forming an interfacial bond that increases their adhesion energy [163]. Mattevi et al. [183] 

observed that metallic Fe on Al2O3 formed Fe(II) and Fe(III) interface states making the 

interaction of Fe with Al2O3 much stronger than with SiO2 in agreement with the lower 

electronegativity of Al compared to Si. They proposed that these interface states anchor Fe 

particles to the oxide surface and limit their coarsening. 

Finally, metal thin films on silica/alumina can also form surface silicates/aluminates when 

heat-treated [184-189]. In presence of oxygen, a mixed oxide interlayer of NiAl2O4 can form 

by interdiffusion between Ni and Al2O3 [190]. A Mössbauer study by Oshima et al. [191] 

showed that a quarter of -Fe deposited on SiO2/Si changed to Fe2SiO4 when heat-treated at 

840°C for 10 min under an hydrogen/argon/water atmosphere. Upon ethylene exposure at 

high temperature, Fe2SiO4 was observed to be predominantly carbonized into Fe3C. At least 
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for cobalt, silicate formation is activated by water vapor [192,193] and was observed to occur 

at temperatures as low as 220°C [192]. In Fischer-Tropsch synthesis, silicate formation during 

catalyst ageing is a major cause of catalyst deactivation [193]. Following silicate formation, 

the catalytic activity can be partially recovered by a reducing treatment. For instance, cobalt 

silicates and aluminates can be partially reconverted into cobalt using hydrogen, but this 

requires higher reduction temperatures (~700-900°C) than Co3O4 and CoO (~300-400°C 

under H2). Accordingly, Li et al. [184] reported that following a high-temperature reduction 

treatment, surface cobalt silicates can form well-dispersed Co nanoparticles highly efficient 

for SWCNT growth. 

2.6. Summary 

CNTs can be grown using a large variety of carbon sources and catalyst nanoparticles. 

When going from the right to the left of the periodic table, transition metals display a stronger 

affinity for carbon as explained by the d-band model of Nørskov. This results in higher carbon 

solubility, higher propensity to form stable carbides and higher adsorption energy. Because a 

good catalyst forms adsorbate-substrate bonds of intermediate strength, the catalytic activity 

of transition metals for a given reaction generally displays a volcano-shaped pattern across the 

periodic table. Compared to the corresponding metals, metal carbides and metal oxides 

generally have lower but non negligible catalytic activities for hydrocarbon dissociation. The 

thermodynamic stability of gaseous precursors and solid compounds at a given temperature 

and in a given environment can be estimated by using Ellingham diagrams. 

Bulk diffusion of carbon through metals proceeds interstitially, making it much faster 

than the bulk diffusion of metal atoms but still slower than the surface diffusion of carbon on 

the metal. Bulk diffusion of carbon through metal carbides is always slower than through the 

corresponding metals. Qualitatively, the interaction of carbon atoms with a metallic surface is 
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stronger for isolated atoms and decreases with the number of C-C bonds formed with 

neighboring carbon atoms. The ultimate limit is the formation of a full graphene layer of a flat 

metal surface which has weak adhesion energy. 

Due to the large number of interfacial atoms, nanoparticles have size-dependent 

properties that can significantly differ from their bulk counterparts: increased vapor pressure, 

depressed melting point, modified carbon solubility, increased catalytic activity, and increased 

sensitivity to the environment. 

The reactivity of supported metal nanoparticles is strongly influenced by the electronic 

and chemical interactions with the oxide support. For insulating oxides, the electronic 

interaction is localized at the interface and driven by the difference of electronegativities. For 

conducting oxides, charge redistribution is long range and driven by the difference of Fermi 

energies. For insulating oxide supports such as Al2O3, MgO and SiO2, chemical reactions 

(redox, alloy formation) are confined at the interface and are notably driven by the differences 

of electronegativity between metals. For conducting oxides such as TiO2, ZrO2 and ZnO, the 

spatial extent of the interfacial reaction can be strongly increased by the electric field created 

at the metal/oxide interface. 

Since metal oxides generally have lower surface energy than metals, the growth of 3D 

metal islands is favored on oxide supports. The more electronegative transition metals tend to 

dewet oxide surfaces while the more electropositive metals tend to wet them. The oxidation of 

metal particles generally leads to a flattening of the particles. Particles can coarsen by Oswald 

ripening or migration-coalescence, which are both dependent on the particle sizes, the nature 

of the support and of the gas phase. Experimentally, the different coarsening mechanisms can 

be differentiated by their kinetic behaviors. Metal particles can also get encapsulated by a thin 

support oxide layer, a phenomenon which preferentially impacts metals with high surface 

energy deposited on oxide surfaces of low surface energy. 
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3. Synthesis-structure relationship in carbon nanotubes 

grown by catalytic chemical vapour deposition 

The structural features of carbon nanotubes grown by CCVD strongly depend on the 

experimental conditions which include the preparation and pre-treatment of the catalyst and 

the synthesis conditions (Figure 8). This part aims at summarizing the synthesis-structure 

relationship in CNTs grown by CCVD as reported in the current literature. Considering the 

huge amount of articles published in the field since the mid-90s, an exhaustive summary is a 

nearly impossible task, and probably a useless one considering the diversity of experimental 

systems. Instead, this summary focuses on the most significant studies with respect to a 

particular experimental dependence. For each structural feature, the experimental dependence 

is summarized trying to highlight the most influential parameters and the dominant trends. 

 

Figure 8. Input parameters and output features of carbon nanotube growth by CCVD 

3.1. Nanotube outer diameter 
A correlation between the size of the catalyst particles used in CCVD and the diameter 

of the resulting nanotubes is often observed. For instance, Cheung et al. [194] reported that 

iron nanoparticles of average diameters dNP of 3, 9, and 13 nm produced multi-wall carbon 

nanotubes with average diameters dNT of 3, 7, and 12 nm, respectively, which corresponds to 

a ratio dNT/dNP close to 1. Schäffel et al. [195] obtained a similar ratio dNT/dNP using iron 
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particles of 3 to 18 nm. Chen et al. [196] reported that the diameter distribution of SWCNTs 

was correlated with the size of the used SiO2 particles with a ratio dNT/dNP ~ 0.8-0.9. 

Such correlations based on the initial and overall size distribution of catalyst particles 

raise the concern of certain particles being inactive for CNT growth. An improved approach is 

based on the direct observation of particle-tube connections by post-growth HRTEM analyses. 

In the case of Fe particles of 1.3-2.0 nm, Nasibulin et al. [197] measured a consistent dNT/dNP 

ratio of ~0.6-0.7 within a given batch. Using a similar approach, Hiraoka et al. [198] 

measured a dNT/dNP ratio of ca. 0.3-0.5 in the case of Fe particles of 2-3 nm and Zhang et al. a 

dNT/dNP ratio close to 1 in the case of Fe particles of 1-3 nm [199]. In the case of Co particles 

of 1-10 nm, Fiawoo et al. [200] actually observed that two configurations of nanotube-

nanoparticle junctions coexisted: a perpendicular configuration corresponding to dNT/dNP ratio 

lower than 0.75 and a tangential configuration for dNT/dNP ratio higher than 0.75. Interestingly, 

they observed that the perpendicular configuration is dominant at short synthesis times 

(typically less than 2 min) and the tangential one at longer times. 

The direct observation of CNT growth by in situ TEM [201-207] is probably the best 

approach to address the question of the size relationship between a nanotube and its catalyst 

particle. A first result of in situ TEM studies is that active particles are rarely spherical during 

CNT growth: a dynamic reshaping of the particle occurs, at least in the case of the standard Fe, 

Co and Ni catalysts. In many cases (in particular for MWCNT growth on large particles), the 

catalyst particle displays a pear-like shape, the top of which top fits the inner diameter of the 

tube and bottom fits the outer one (Figure 9). To date, all in situ TEM observations on 

MWCNTs showed a direct correlation between the nanotube outer diameter and the largest 

diameter of the catalyst particle. In the case of SWCNTs, this conclusion has to be somehow 

tempered by the small number of in situ TEM observations. In the case of SWCNT growth on 

a Ni particle, growth simulations performed by W. Zhu et al. [208] support that the dNT/dNP 
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ratio must be lower than 0.8-0.9 to prevent the nanotube rim to spontaneously close and to 

support continued growth. 

 

Figure 9. In situ ETEM observation of the growth of a four-wall CNT from a fluctuating catalyst 

nanoparticle of (Fe,Mo)23C6-type structure. From [205]. 

Based on the observed relationship between the nanotube outer diameter and the 

particle size, controlling the size distribution of catalyst particles is the most standard way to 

tune the nanotube diameter distribution. This is commonly achieved by controlling the 

thickness of the deposited catalyst [209,210], its coarsening [154,211] or its evaporation [212-

215] during the thermal pre-treatment preceding the growth. However, the observations of 

Fiawoo et al. [200] of two coexisting configurations of nanotube-particle junctions and the in 

situ observations that catalyst particles rapidly rearrange during the growth and adopt an 

equilibrium shape by interaction with the growing nanotube [201-207] suggest that 

parameters other than the particle size influence the size relationship between the particle and 

the nanotube. Growth parameters such as the growth temperature and the carbon precursor 

supply notably influence the final CNT diameter distribution. 
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In general, increasing the growth temperature is reported to shift the CNT diameter 

distribution toward larger diameters [216-221]. By analogy with the influence of the thermal 

pretreatment, such results are often explained by an increased catalyst coarsening when 

increasing the growth temperature [217]. Yet, a study of Yao et al. [222] showed an opposite 

effect of temperature at the level of individual SWCNTs. Following the same nanotube, Yao 

et al. found that changing the temperature during growth resulted in a change of the nanotube 

diameter even though the catalyst particle remained the same: the SWCNT diameter increased 

when decreasing the growth temperature and inversely. A similar trend was reported by 

Mahjouri-Samani et al. [223]. Yao et al. [224] found that the diameter change was highly 

related to the initial nanotube diameter and that the range of variation mediated by the 

temperature was limited. As an example, for an initial nanotube diameter of 1.6 nm, the 

maximum diameter variation was found to be 0.4 nm. 

The dependence of the diameter distribution on the carbon supply is the subject of 

even more controversy. Lu et al. [225] initially reported that small-diameter SWCNTs are 

preferentially grown at low carbon feeding rates even when highly polydisperse nanoparticles 

are used as catalyst. Tanioku et al. [218] and Geohegan et al. [226] also reported that the 

proportion of small-diameter SWCNTs increased as the feedstock pressure or flux were 

reduced. At the opposite, Saito et al. [227] and Wang et al. [228] reported that increasing the 

flow rate of ethylene or the pressure of carbon monoxide resulted in SWCNTs of smaller 

diameter. At least in the case of nickel, Picher et al. [229] found that the diameter dependence 

varied with the studied range of precursor supply and that, for each growth temperature, there 

was an optimal precursor pressure for the growth of small-diameter SWCNTs. 

Gaseous additives can also influence the diameter distribution of SWCNT samples. 

For instance, Tian et al. reported that the mean diameters of SWCNTs grown from CO can be 
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shifted from 1.2 to 1.9 nm by increasing the CO2 concentration [230]. They attributed this 

effect to the selective etching of small-diameter tubes by CO2.  

3.2. Nanotube inner diameter 

In 1983, Gary Tibbetts [231] studied a sample of tubular carbon filaments grown by 

CCVD and reported a linear relationship between the inner and outer diameters of the 

filaments. For the sample studied by Tibbetts, the proportionality coefficient di/do was ~0.6. 

More recently, a statistical analysis by Chiodarelli et al. [232] of MWCNT samples grown in 

different CVD conditions also yielded a linear trend between the average number of walls 

NWalls and the average outer diameter do of each MWCNT sample: NWalls  do(nm) - 2, which 

corresponds to di/do ~ 0.3-0.4. This explains why adjusting the size of the catalyst particles (or 

the catalyst thickness) is among the most popular methods to tune the outer diameter and 

hence the walls number of CNTs. As an example, using catalyst nanoparticles of controlled 

sizes, Schäffel et al. [195] and Chiang et al. [233] showed that increased catalyst sizes lead to 

increased wall numbers. Zhao et al. [210] reported that CNTs of larger outer diameters and 

larger wall numbers were obtained by increasing the catalyst thickness. Yamada et al. [234] 

even showed that high selectivity for double-walled CNTs could be achieved by precisely 

controlling the thickness of the catalyst film. However, the statistical analysis of Chiodarelli et 

al. [232] yields a quite large standard deviation N which increases with the average outer 

diameter: N  0.17 do. This suggests that the inner diameter is not only related to the outer 

diameter, but is also influenced by other growth parameters. 

The precursor supply notably influences the inner diameter. Sharma et al. [235] 

observed that the number of walls decreased at lower precursor supply. Zhang et al. [236] 

reported that low ethylene supply leads to CNTs with small diameters and few walls and that 

selective synthesis of single- and double-walled CNTs could be achieved by tuning the flow 
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rates. These results suggest that a decreased carbon concentration of the catalyst particle (i.e. 

lower carbon chemical potential) leads to a decreased number of walls, as can be deduced 

from the model originally proposed by Tibbetts [231]. In situ TEM observations during CNT 

growth of Gamalski et al. [206] showed that, in certain cases, the number of walls of a 

nanotube could decrease during its growth. In the experiments of Gamalski et al., the thinning 

of the wall finally led to the detachment of the nanotube from the catalyst particle and the 

nucleation of another CNT displaying the same behaviour. Similarly, studying the growth of 

MWCNTs displaying periodic fluctuation of their inner diameter and periodic inclusion of 

catalyst material, Jourdain et al. [237] found that the size evolution of the carbon units along 

the MWCNT could be quantitatively accounted for by periodic fluctuations of the carbon 

concentration of the catalyst particle. Together, these results support that the inner diameter is 

influenced by the instantaneous carbon concentration of the catalyst particle which depends 

on both the carbon supply and consumption. 

Concerning the temperature dependence of the inner diameter, there is no general 

agreement in the literature. For instance, Mudimela et al. [238] reported larger wall numbers 

(and larger outer diameters) with increasing growth temperature, while Sharma et al. [235] 

reported that both the number of walls and the outer diameter decreased with increasing 

temperature. The lack of agreement on the temperature dependence of nanotube structural 

features is a quite general trend; this maybe explained by the variety of catalyst systems and 

growth conditions experimentally studied and by the large number of thermally-activated 

processes involved at the different CCVD stages. 

Additives were also reported to influence the nanotube inner diameter. Adding sulphur 

to the catalyst particles has been reported by several authors to reduce the inner diameter and 

increase the wall number [239-241]. For instance, Ci et al. [240,241] reported that the 

addition of sulphur favoured the formation of DWCNTs with small inner diameters at the 
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expense of SWCNTs. At the opposite, Pan et al. [242] reported an enlargement of the inner 

diameter of CNTs by adding boric acid (HBO3) to the catalyst. 

3.3. Nanotube chiral angle 

Many authors reported a higher occurrence of high-chiral-angle CNTs (i.e. near-

armchair) in nanotube samples [243-250]. The fact that both indirect (i.e. photoluminescence 

excitation) and direct methods (i.e. electron diffraction) of structural determination led to the 

same result strengthens this conclusion. In more detail, all authors agree on the higher 

occurrence of near-armchairs among relatively small-diameter CNTs (i.e. diameter ca. less 

than 3 nm). However, Hirahara et al. [248] observed that this preferential occurrence 

disappeared for CNTs larger than 3 nm while Arenal et al. [250] reported a preferential 

occurrence of near-armchairs even for few-walled CNTs of diameters between 3 and 8 nm.  

 Beyond this general trend, highly-selective synthesis of SWCNTs of high chiral angles 

were reported using specific catalyst systems such as Co-MCM41 [251], , CoSO4/SiO2 [252], 

Co–Mo [253,254], Fe-Ru [255], Fe-Co [245], Fe-Cu [256] or Al-Cu-Fe [257] (Figure 10). He 

et al. [256] notably reported the predominant growth of (6,5) SWCNTs using Fe-Cu 

nanoparticles at low synthesis temperature. Using NixFe1-x catalyst nanoparticles of controlled 

sizes, Chiang and Sankaran showed that the chirality distribution could be influenced at 

constant particle size by varying the Ni/Fe ratio of the particles [56]. Lolli et al. [258] 

reported that changing the catalyst support from SiO2 to MgO resulted in nanotubes with 

comparable diameters but different chiral angles. 

Optimized gaseous feed are usually required to achieve SWCNT synthesis with high 

chiral selectivity. Lolli et al. reported that increasing the synthesis temperature resulted in an 

increase in nanotube diameter without a change in the chiral angle while varying the 

composition of the gaseous feed modified the (n,m) distribution [258]. Wang et al. confirmed 
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the influence of the gaseous feed by reporting that high-chiral-angle SWCNTs were 

preferentially obtained at high pressure of CO [228] (or under vacuumed ethanol or methanol 

[254]. Similarly, M. He et al [259,260] found that using CO instead of CH4 as carbon 

precursor led much smaller diameter SWCNTs with a higher occurrence of large chiral angles. 

Ghorannevis et al. [261] reported that an appropriate hydrogen concentration was the critical 

factor in achieving a narrow chirality distribution of (6,5) tubes when using a gold catalyst in 

plasma-enhanced CVD. Despite this general trend, there is no satisfying explanation for it. 

 

Figure 10. Contour plots of normalized photoluminescence emission intensities under various excitations 

for the Fe-Ru SWNTs grown at various temperatures. From [255]. 

Additional factors were reported to affect the chirality distribution. For instance, 

Koziol et al. [262] observed that the addition of a nitrogen-containing compound in the 

hydrocarbon feedstock leads to the growth of large MWCNTs in which all the walls are either 

of the armchair or zigzag structure. Recently, the same authors showed that nitrogen 

interacted with the catalyst in the form of ammonia, causing a restructuring of the catalyst 
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surface and stabilizing the iron catalyst in its Fe3C carbide phase [263]. Such a restructured 

catalyst is proposed to be at the origin of the epitaxial growth of MWCNT with only armchair 

and zigzag walls. The growth support may also be influential: using monocrystal sapphire as 

growth substrate, Ishigami et al. [219] reported the preferential growth of near-zigzag tubes 

on the A-plane and of near-armchair tubes on the R-plane. 

3.4. Metallic / semiconducting nanotube ratio 

Structurally, two-thirds of SWCNTs are semiconducting and one-third is metallic. In 

the absence of selectivity, a nanotube sample would be expected to present such proportions. 

Actually, there are several reports of synthesis conditions yielding SWCNT samples enriched 

in semiconducting or metallic tubes. 

Several examples of semiconductor-enriched SWCNT samples were notably reported 

using plasma-enhanced CVD (PECVD). Based on electrical measurements, Y. Li et al. 

reported a percentage of semiconducting tubes of 89%.  Later, they found that higher 

percentages of semiconducting SWCNTs are especially obtained when the growth parameters 

are adjusted to produce SWCNTs of small diameters, i.e. of the order of 1.1 nm [264]. 

Electrical measurements preformed by Mizutani et al. [265] confirmed that most CNTs grown 

by PECVD display a semiconducting behaviour. However, their Raman characterization also 

revealed several radial breathing modes corresponding to metallic SWCNTs. Scanning gate 

microscopy measurements suggested that the semiconducting behaviour observed for CNTs 

fabricated by PECVD process may actually result from the opening of a band gap due to 

defects caused by irradiation damage during the PECVD growth. Also using Raman 

spectroscopic assessments, L. Qu et al. [266] found at the opposite that arrays of SWCNTs 

grown by PECVD combined with fast heating, contained ~96% of semiconducting tubes. 
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These results support a higher reactivity of metallic SWCNTs in plasma conditions leading to 

a modification of their electrical properties or even to their selective removal.  

Other examples of selective removal of metallic tubes in reactive environments can be 

found in the literature. Hong et al. [267] found that applying a UV irradiation during the CVD 

growth of SWCNTs on quartz increased the proportion of semiconducting tubes up to 95% 

(as assessed by Raman and electrical measurements). Similarly, Yu et al. [268] reported that 

introducing a small amount of oxygen during the CVD synthesis of SWCNTs by the floating 

catalyst method led to the selective removal of metallic SWCNTs (based on Raman 

characterization). Parker et al. [269] found that the semiconducting SWCNT percentage 

peaked at 85% using isopropanol as carbon source while 2-butanol and methane yielded 70% 

and 32% of semiconducting SWCNTs, respectively. Using different alcohols as carbon 

precursors, Wang et al. [270] observed that the proportion of semiconducting tubes grown 

from an Fe–Co/MgO catalyst increased when decreasing the ratio of carbon atoms to oxygen 

atoms in the precursor composition. Similarly, L. Ding et al. [271] observed that increasing 

the proportion of methanol in the ethanol precursor increases the proportion of 

semiconducting tubes grown on quartz. Both groups proposed a selective etching of metallic 

tubes by hydroxyl radicals to explain the semiconductor enrichment. However, Che et al. 

[272] reported that isopropanol yielded a much higher fraction of semiconducting tubes (up to 

97%) than ethanol suggesting that a too high amount of water may be detrimental to 

semiconducting tubes. Recently, W. Zhou et al. confirmed the higher chemical reactivity of 

metallic tubes to water etching and detailed rules for choosing the appropriate water 

concentration for selectively removing metallic tubes during CCVD [273].  

Harutyunyan et al. [274] also reported that the M/SC ratio was highly sensitive to the 

composition of the atmosphere used during the annealing stage preceding the introduction of 

the carbon source and notably to the presence of water: the presence of water in Ar ambient 
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favoured the growth of semiconducting tubes whereas the same amount of water in He 

ambient promoted the growth of metallic tubes. Using an optimized atmosphere, these authors 

could increase the proportion of metallic tubes up to 91%, as shown by both Raman and 

electrical measurements. 

Finally, the nature of the catalyst was also reported to affect the M/SC ratio. Using Ni-

Fe catalyst particles of controlled size and composition, Chiang et al. [275] showed that the 

semiconducting content (assessed by optical absorption and Raman spectroscopy) 

significantly changed with the Ni-Fe ratio and could reach 90% for Ni0.27Fe0.73 nanoparticles 

of 2.0 nm mean diameter. Using europium oxide (Eu2O3) catalyst particles, Qian et al. [276] 

found that 80% of the as-grown SWCNTs were semiconducting based on Raman 

measurements.  

3.5. Defect density and carbonaceous impurities  

Several methods exist to quantify the defect density of CNTs, including microscopic 

observations (HR-TEM [277], STM [278]) and electrochemical labelling [279]. Most usually, 

the crystalline quality of CNT samples is assessed by Raman spectroscopy which provides a 

rapid and statistical assessment of the defect density based on the intensity ratio of the defect-

induced D-band to the graphitic G-band [280-285]. A difficulty of this approach is the 

potential contribution of carbonaceous impurities to the D-band, even though these 

contributions can often be distinguished by their positions and linewidths [286-293] or by 

their deposition kinetics [294]. For instance, Yasuda et al. [294] performed Raman 

measurements of the G/D ratio at different synthesis times showing that the level of 

carbonaceous impurities solely depends on the cumulated time of exposure to the carbon 

source (i.e. ethylene). 
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Figure 11. (a) Time evolution of the calculated weights of SWCNTs (red line), carbonaceous impurities 

(black line), and forest (blue line and squares). (b) Time evolution of the absolute purity in SWCNT. From 

[294]. 

By analogy with standard crystal growth, the crystalline quality of CNTs is expected 

to increase with decreasing supply and increasing mobility of the elementary building blocks. 

Qualitatively, in situ TEM observations of Sharma et al. [235] confirm that straight nanotubes 

tend to form at high temperatures and low precursor pressures while bent and defective 

nanotubes form at low temperatures and high precursor pressures. More quantitatively, the 

Raman measurements of the D/G ratio reported by Picher et al. indicate that the defect density 

that the defect density of CNT sample follows a power law with precursor pressure [295]. 

The dependence of D/G on the growth temperature as reported in the literature is more 

complex. Studying CNT samples grown at increasing temperatures, Vinten et al. [296], Kwok 

et al. [297] and Picher et al. [295] observed three different regimes: with increasing growth 

temperatures: D/G first exponentially decreases, then decreases less markedly for an 
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intermediate range of temperatures and finally increases strongly. Concerning the high 

temperature regime, Kwok et al [297] and Picher et al. [295] observed that the increase of 

D/G was proportional to the growth duration which they both attributed to the deposition of 

pyrolytic carbon activated at high temperatures in agreement with the conclusions of Yasuda 

et al. based on coupled TEM-Raman studies [294] and of Feng et al. based on coupled TEM-

thermal analyses [298]. Concerning the observation of two different regimes at low and 

intermediate temperatures, different explanations have been proposed (e.g. predominance of 

non-SWCNT carbon impurities at low temperature, change of the catalyst state) but there is 

still no agreement in the literature. 

Certain molecular species were also reported to act as defect-promoters. Noda et al. 

notably reported that the addition of water to ethylene degrades the quality of CCVD-grown 

SWCNTs [299]. Similarly, Gao et al.[279] found that using an oxygen-containing precursor 

such as ethanol yielded a higher linear density of defects than using methane. Using a 

nitrogen-containing additive (acetonitrile), Thurakitsereea et al. [300] showed that the density 

of defects by nitrogen incorporation into the sp2 carbon network could reach one atomic 

percent. 

A remaining question is the influence of the catalyst on the defect density of CNTs. 

Theoretical works [301] support that the catalyst may strongly influence the processes of 

defect creation and annealing, but dedicated experimental studies are still missing. 

3.6. Proportion of catalyst particles active for nanotube growth 

After growth, it is commonly observed that many catalyst particles did not yield 

nanotubes. Different denominations are used in the literature for the ratio of the number of 

synthesized nanotubes by the number of catalyst particles, such as “catalyst activity” or 

“synthesis yield”. To avoid confusion with other features of the catalyst or of the synthesis 
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process, we will use here the term proportion of active particles (PAP). The PAP is best 

evaluated when using well separated catalyst particles deposited on a support. For instance, 

using individual Ni particles of 4.71.5 nm in different growth conditions, Paillet et al. 

[302,303] measured PAP ranging between 0.5% and 20%. Using spatially ordered Fe particles 

of 1.70.6 nm, Ishida et al. [304] measured similarly low PAP of ~10%. Y. Li et al. [305] led 

post-growth HRTEM observations to understand the low PAP obtained with discrete Fe 

particles of 1-2 nm and 3-5 nm. They observed that inactive particles yield only single 

spherical graphitic shells around them and that smaller nanoparticles (<1.8 nm) tend to be 

more active in producing SWCNTs with appreciable lengths. In agreement with the 

observations of the group of J. Liu that particle activity for nanotube growth was strongly 

size-dependent [225], Li et al. proposed that the disparity in particle size was the likely cause 

to the low PAP. The encapsulation of inactive particles by a graphitic shell is commonly 

observed during post-growth HRTEM analyses (Figure 12) and often invoked to explain the 

inactivity [306]. Rümmeli et al. [307] proposed that the nucleation of a carbon cap proceeds 

by precipitation of carbon from a supersaturated catalyst particle. They suggested that the 

biggest particles displaying a too large volume to surface area ratio would therefore be 

encapsulated by the precipitating carbon. Using the same argument and based on the 

observation that the ratio of the number of encapsulating graphitic layers, NL, to the particle 

diameter, DP, is typically 0.2-0.3 nm-1, Ding et al. [308] even suggested that encapsulating 

layers were formed by precipitation of carbon from a carbide particle of composition M3C 

(e.g. Fe3C). Experimentally remains the question of whether these encapsulating shells were 

formed during the exposure to the carbon precursor (therefore causing the inactivity) or at a 

later stage (e.g. during cooling). In situ TEM observations frequently reveal inactive particles 

larger or smaller than some active neighbours [206] but, up to now, the origin of their inactive 

could not be directly assessed. 
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When considering a possible encapsulation of the catalyst particle by carbon, the exact 

nature of the carbonaceous material has to be considered since their reactivity can greatly vary 

with their composition (e.g. H or O contents) and structural disorder. For instance, Davis et al. 

[309] showed that the dissociation of ethylene on a Pt(111) surface leads to the formation of a 

carbonaceous overlayer containing a large fraction of hydrogen. With increasing time, 

increasing temperature or decreasing hydrogen partial pressure, the hydrogen concentration of 

the overlayer decreases, finally leading to a graphitic layer that is irreversibly adsorbed and 

displays no catalytic activity [310]. In the case of propylene conversion on Mo at 600°C, Wu 

et al. [311] also confirmed the slow transformation of an easily removed hydrogen-rich 

overlayer into an inactive and irreversibly adsorbed graphitic layer. In the case of nanotube 

growth, Schünemann et al. [312] observed that the carbonaceous layer deposited by pyrolytic 

decomposition of cyclo-hexane did not prevent the growth of CNTs, but acted indeed as a 

carbon source. Interestingly, after monitoring the growth of an individual tube by in situ field 

emission imaging, Marchand et al. [313] found that increasing the temperature by a few tens 

of degrees reactivated the nanotube growth. This observation suggests that at low 

temperatures, deactivation is mainly caused by the encapsulation of the catalyst particle by a 

disordered carbonaceous layer whose structure is temperature-dependent. 

 

Figure 12. Nickel particles encapsulated by a thick (a) or single-layer (b) graphitic observed after 

nanotube growth together with active catalyst particles. From [306]. 
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Accordingly, preventing the particle encapsulation and reducing the catalyst 

coarsening are the two main ways used in the literature to grow high-density CNT samples. 

The vertically aligned CNT (VACNT) forests prepared by the so-called “super-growth” 

reported by Futaba et al. [314] are among the best examples of high-density samples. Using 

iron on alumina as catalyst and a controlled addition of water vapour to the ethylene precursor, 

they obtained PAP of up to 84% [315]. Later, they showed that other oxygen-containing 

compounds such as CO2, ethanol or acetone, also act as growth enhancers [316]. They 

concluded that a controlled amount of oxygen supplied by the growth enhancer activates the 

catalysts by cleaning off the carbon coating that deactivates them. In another example of high-

density growth, the growth of aligned CNT arrays on quartz, Zhou et al. [317] reported that 

the nucleation efficiency can be enhanced by a factor 3-4 by performing multiple cycles of 

growths separated by a short argon exposure. A similar observation was reported by Bin Wu 

et al. [318]. Based on the observation of nanotube etching with increasing the number of 

cycles, they postulated that oxygen-containing functions (e.g. –OH) reacted with the most 

reactive forms of carbon (amorphous carbon, small-diameter SWCNTs). Using Fe/Al2O3 

catalysts presenting a gradient of iron thickness, Hasegawa et al. [319] evidenced that 

millimetre-tall VACNT forests can be grown without addition of water if the carbon precursor 

supply is set below a certain limit in order to retain an active catalyst; water only extends the 

catalyst lifetime when an excess precursor supply is used. They also found water addition to 

widen the window of catalyst thickness for VACNT growth toward higher thicknesses and to 

suppress nanotube growth from the smallest catalyst particles [299]. 

The carbon etching effect of oxygen-bearing enhancers may not be the only reason for 

the high nucleation yield of the super-growth. Zhu et al. [320] and Noda et al. [321] reported 

that replacing Al2O3 support beneath the Fe catalyst by SiO2 decreases the nanotube yield by 

nearly two orders of magnitude under the same growth conditions. Studying Fe catalysts 
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supported on different types of alumina, Amama et al. [322] observed that SWCNT forest 

growth was strongly dependent on the type of alumina. Highest nanotube yields were 

obtained using alumina of high porosity (e.g. sputtered Al2O3) which was correlated with low 

Ostwald ripening rates and mild subsurface diffusion rates. Burt et al. [323] also observed that 

the VACNT yield was strongly dependent on the grain size of the sputtered alumina layer. 

From Noda et al., using cobalt as catalyst instead of iron had little effect, but using nickel 

instead of iron reduced the CNT forest height by 2-3 orders of magnitude [321]. These results 

highlight the importance of the catalyst and the support for growing high-density CNT 

samples. Mattevi et al. [183] proposed that interaction of Fe on Al2O3 is much stronger than 

that on SiO2, and restricts Fe surface mobility. The resulting much narrower Fe catalyst 

particle size distribution on Al2O3 would lead to a higher CNT nucleation density. This is in 

line with the report of Esconjauregui et al. [324] that plasma-assisted thermal pretreatment of 

catalyst films of Ni, Co or Fe on TiN greatly facilitates the direct growth of high-density 

arrays of CNTs by promoting a stronger catalyst-support interaction and hence stabilizes 

smaller catalyst particles with a higher number density. Amama et al. [325] reported that the 

addition of water contributed to reduce the migration of iron catalysts on alumina and 

proposed that the formation of hydroxyl groups at the surface of alumina by water was at the 

origin of the reduced surface diffusivity of catalyst atoms. At the opposite, Hasegawa et al. 

observed no influence of water addition to the rate of catalyst coarsening inferred from the 

evolution of the average CNT diameter from the top to the bottom of CNT forests [319]. After 

exploring a large range of growth condition, Hasegawa and Noda [326] concluded that both a 

moderate carbon supply and a suppressed catalyst restructuring are key requirements in order 

to grow dense millimetre-tall SWCNT forests. As a consequence of those, they observed that 

the optimal growth domain for high-density SWCNT growth followed a diagonal in the 

temperature-carbon supply diagram [326].  
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3.7. Nanotube length 

Experimentally, the elongation rate (or growth rate) of nanotubes is observed to 

decrease with time until complete termination of the growth (Figure 13). In Figure 13, one can 

observe that nanotube kinetics is characterized by an initial growth rate and a lifetime 

corresponding to the saturation of the nanotube length. This general behavior was observed at 

the level of individual nanotubes [235,306,313], of thin nanotube carpets [327,328] and of 

thick nanotube forests [329-332]. The final length of a nanotube depends not only on the 

nature of the growth limiting step but also on the nature of the deactivation process(es) 

limiting the lifetime. Obviously, the nature of the rate-limiting step and of the dominating 

deactivation process may vary with the experimental conditions. Hereafter, we describe the 

parameter dependence of the growth rate and lifetime and discuss the particular case of the 

kite growth method which produces the longest nanotubes to date. 

 

Figure 13. Time evolution of the thickness of a forest of VACNT measured by  in situ optical absorbance 

for different partial pressures of carbon precursor (ethanol). T=825°C. From [331]. 
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3.7.1 Growth rate 

Growing carbon filaments from acetylene at low temperatures (350-600°C), Baker et 

al. measured growth activation energies that were remarkably correlated with the activation 

energy for solid-state carbon diffusion through the corresponding bulk metals [6,333,334]. 

This supported that, in these conditions, bulk diffusion through a solid-state catalyst particle 

was the rate-determining step. A similar correlation was noted by other authors [335-337]  

usually when using low temperatures (400-600°C) and relatively reactive carbon sources (e.g. 

acetylene, propylene, butadiene). 

However, many authors did not observe this correlation in their experimental 

conditions. Using acetylene in microwave plasma-assisted CVD, Bartsch et al. [337] 

measured an activation energy of 1.4–1.6 eV (in agreement with values for carbon diffusion 

in solid-state metals) for the formation of bamboo-like CNTs at 800-900°C but an activation 

energy of 0.3–0.6 eV for the growth of MWCNTs at 900-1100°C. They inferred that bulk 

diffusion was the rate-determining step in both cases, but through a solid or a liquid particle 

depending on the temperature range. Other authors reported high activation energies of the 

order of 2-2.8 eV at low temperatures [327,330,338,339] which may be compatible with gas-

phase conversion of the carbon or bulk diffusion of carbon through carbide metals, but not 

with bulk diffusion through pure metals (see 2.3.2). 

In contradiction with the hypothesis that growth kinetics is simply determined by the 

diffusion rate of carbon, the growth activation energy is often reported to be influenced by the 

reactivity of the gas phase. For instance, using plasma-assisted growth from acetylene at 150-

500°C, Hofmann et al. [105] reported activation energies of 0.23–0.4 eV much lower than the 

value of 1.2 eV that Ducati et al. measured for thermal growth [340] or the value of 1.5 eV 

measured by Baker et al.. They concluded that the rate-limiting step in plasma-assisted 

conditions was the surface diffusion of carbon on the catalyst particle and that precursor 



 53 

decomposition was the limiting step in purely thermal conditions. Meshot et al. [341] also 

showed that the growth activation energy was dependent on the pre-treatment of the gas 

mixture and increased from 1.02 to 1.88 eV when increasing the preheating temperature of the 

gas mixture from 980 to 1120°C. 

In addition, the growth rate is often reported to increase with increasing precursor 

pressure. The reaction orders were reported to be close to unity by most authors 

[298,327,331,338,342] except by Wirth et al. [332] who measured a reaction order of 0.6 for 

low-pressure acetylene growth on Fe/Al2O3. Noteworthy, several authors reported that above 

a critical precursor pressure, the growth rate is independent of the precursor pressure 

[298,327,331] which was interpreted by Picher et al. [327] and Feng et al. [298] as the 

transition from a kinetic regime controlled by gas diffusion to a surface-controlled regime. 

Many growth models predict that the nanotube growth rate will either increase 

[343,344] or decrease [330] with diminishing size of  the catalyst particle. For instance, the 

model proposed by Puretzky et al. [330] stipulates that the larger diameter nanotubes should 

grow faster than the smaller diameter ones due to their higher surface area to circumference 

ratio. They later refined this model by including a size-dependent activation energy for 

feedstock dissociation to account for the experimental bell-like distribution of nanotube 

diameters [226]. Experimentally, however, there is no general agreement on the variation of 

the nanotube growth rate with the particle size or nanotube diameter. Growing arrays of 

aligned MWCNT by PECVD, Huang et al. [345] observed that the CNT growth rate was 

diminished when reducing the catalyst thickness from 35 nm to 10 nm. A similar observation 

was reported by Lee et al. [346] using a lower range of catalyst thicknesses (0.7-10 nm). 

Using a gradient of catalyst thickness, Zhang et al. [33] reported that the growth rate 

increased with increasing catalyst thicknesses, while Hasegawa et al. [347] found that the 

initial growth rate of thick CNT forests was rather constant for catalyst thicknesses of 0.4-3.0 
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nm. Contrary to Zhang et al., Patole et al. [348] observed that the CNT growth rate increased 

when decreasing the catalyst thickness from 3.0 to 0.5 nm. They also noted that the growth 

rate decreased with time as t1/2, which supported that the rate was controlled by the diffusion 

through a barrier of increasing thickness (i.e. CNT or amorphous carbon mat) rather than by a 

catalyst size-related effect. This illustrates the difficulty to use CNT arrays to address this 

question because of the possible combination with other effects: diffusion through the stack, 

competitive/synergetic effects between neighbouring particles [349,350]. In this context, it is 

worth mentioning the in situ study of CNT length by aerosol size classification of Chiang et al. 

[351] who reported that reducing the catalyst size from 2.6 nm to 2.2 nm increased the CNT 

growth rate by a factor 3. 

Since the nature of the catalyst strongly affects the physical and chemical properties of 

the particles, it may significantly influence the CNT growth rate. For instance, growth 

simulations performed by Page et al. [352] predict that the growth rate on Ni particles would 

be 69% larger than on Fe particles due to a faster integration of carbon chains into the 

nanotube. However, experimental comparisons of CNT growth rates for different natures of 

catalyst are quite few. Comparing the efficiency of Ni, Co and Fe catalyst films in the same 

PECVD conditions, Huang et al. [345] found that Ni yielded the highest growth rate, largest 

diameter and thickest wall, whereas Co results in the lowest growth rate, smallest diameter 

and thinnest wall. The CNT growth rates with SiO2 [353] and Al2O3 [354] nanoparticles are 

usually of the order of 10 nm/s, which is much lower than with standard iron-group catalysts. 

Motta et al. [355] also reported that the presence of sulphur facilitates the formation of 

nanotubes. They found that sulphur forms a layer on the surface of the catalyst particles which 

may play a role in encouraging nanotube growth by surface diffusion. 

Other factors may influence the nanotube growth kinetics. For instance, Louchev 

proposed a kinetic model where the growth rate is controlled by the surface diffusion of 
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carbon atoms over the surfaces of the carbon nanotube and of the underlying support [356]. 

This is in tune with the proposition of Magrez et al. [147] that the support contributes to the 

conversion and supply of carbon-containing intermediates to the nanotube root. Quantitative 

assessments of these effects on the growth kinetics of CNTs are however still missing. 

3.7.2 Lifetime 

Several authors reported on the temperature dependence of the lifetime. Studying the 

growth kinetics of thin CNT carpets on silica-supported catalysts as a function of temperature, 

Picher et al. [327] found that the evolution of the lifetime was inversely correlated with that of 

the initial growth rate: the lifetime first decreases with increasing temperature until a critical 

temperature above which it increases with temperature. However, they observed that the 

correlation ceased at too high temperature or too low precursor pressure [156]. Studying the 

growth of CNT forest from ethylene at 600-700°C, Bronikowski [339] found that the lifetime 

decreases with increasing temperature with an apparent activation energy of 3.4 eV for an 

alumina underlayer and 2.1 eV for a silica underlayer. Studying the growth kinetics of thick 

CNT forests at higher temperatures (650-1000°C), Vinten et al. [296] also observed that the 

lifetime generally decreased with increasing temperature. In addition, they identified a critical 

temperature above which the initial growth rate started to plateau and the lifetime decreased 

even more abruptly. Monitoring the mass uptake of a Fe-Mo/Al2O3 catalyst during CNT 

growth, Feng et al. [298] observed that, with increasing temperature, the catalyst lifetime first 

slightly decreased, then increased and finally declined. 

Several studies also showed the dependence of the lifetime on the gas phase. Using 

ethylene as carbon source and an Fe/Al2O3 catalyst, Futaba et al [329] reported that the 

lifetime tended to decrease with increasing precursor supply. Using other types of catalysts 

(Ni/SiO2, Fe-Mo/Al2O3) and carbon sources (acetylene, ethanol), Feng et al. [298] and Picher 

et al. [327] also found that the lifetime generally decreases with increasing precursor pressure. 
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When applying a separate preheating of the process gas for the growth of CNT forests, [341], 

Meshot et al. observed that the lifetime strongly varied with the preheating temperature and 

peaked for a certain value. As already highlighted, Futaba et al. showed that the addition of 

water at an appropriate concentration could increase the growth lifetime [329]. Using 

ultrapure process gases free of oxygen and water contaminations, In et al. [338] found that the 

lifetime was significantly lower with purified gases than with unpurified ones, but was 

strikingly insensitive to variations in ethylene or hydrogen pressures. Generally speaking, 

these results support that different deactivation processes are at play during nanotube growth 

and that the predominance of each depends on the growth conditions. 

Finally, in the case of thick base-grown CNT forests, the diffusion of gaseous species 

through the growing mat of CNTs may become limiting. Observing that the growth rate 

decreases with time as t1/2, Zhu et al. attributed the decrease to the growing diffusion 

resistance of the mat to gaseous species [357]. Based on diffusion modeling, Xiang et al.[358] 

argued that this explanation could only hold for highly dense millimetre-tall SWNT arrays, 

but not for other types of CNT samples.   

3.7.3 Ultralong carbon nanotubes obtained by kite growth 

To understand the processes controlling the nanotube length, it may be useful to learn 

from the syntheses yielding the longest CNTs. At the time of writing, the longest reported 

nanotubes were obtained by kite growth, a particular mode of CCVD growth where one 

extremity of the CNT floats in the gas phase while the other one remains attached to the 

support [359,360]. Such CNTs can reach lengths of 4-20 cm [361]. Their growth rates 

extrapolated from the synthesis duration and the CNT length can reach 10-90 µm/s [361]. 

Ethanol, carbon monoxide and methane are the main carbon sources used for the growth of 

such ultralong CNTs by kite growth. It is worth noting that the addition of an appropriate 

amount of water to methane [361] or ethanol [362,363] significantly enhances the growth rate 
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of such ultralong CNTs. The nature of the catalyst is varied: Co, Cu, Fe, Fe-Mo. The growth 

temperatures are relatively high (850-1000°C) compared to standard CCVD conditions. In 

kite growth, ultralong CNTs are believed to grow by the tip-growth mechanism, i.e. with the 

catalyst particle attached at the floating end of the nanotube. This supports that substrate-

related deactivation processes are major causes of nanotube length limitation. 

3.8. Summary 

The structural features of carbon nanotubes grown by CCVD strongly depend on the 

support-catalyst system and on the synthesis conditions. From in situ TEM observations, the 

catalyst particle undergoes a dynamic reshaping to accommodate the growing carbon structure. 

In many cases, the reshaping leads to a pear-shaped catalyst particle. In first approach, the 

outer diameter of the nanotube is observed to correlate with the lateral dimension of the 

catalyst particle. However, for a given particle, the nanotube diameter is also found to vary 

with the growth temperature although the operating mechanism is still unclear. Carbon supply 

strongly influences the overall nanotube diameter distribution, but the reported trends are 

often contradictory, which suggests that its influence is strongly dependent on the growth 

conditions and of the studied systems. The nanotube inner diameter is often found 

proportional to the outer diameter with a proportionality coefficient which varies with the 

growth conditions. Consequently, adjusting the size of the catalyst particles is a common way 

to obtain CNTs of controlled wall numbers. Other parameters are also found influential. A 

decreased carbon supply generally reduces the number of walls, as expected from the initial 

model of Tibbetts for a reduced carbon chemical potential. The temperature dependence of 

the inner diameter is still unclear and gives rise to contradictory reports. The addition of 

sulphur is reported to reduce the inner diameter of CNTs. 
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Concerning the chiral angle, a higher occurrence of near-armchair CNTs in as-grown 

samples is frequently reported. Obtaining such chirality-enriched samples usually requires 

special (often binary) catalyst systems, low synthesis temperatures and optimized gaseous 

feeds. The origin of this chiral selectivity is the subject of an intense debate and of different 

hypotheses as detailed in §4.4. The addition of nitrogen and certain crystal substrates were 

also reported to promote the growth of specific chiralities. The growths of semiconducting- or 

metallic-enriched samples were reported by several groups. Most preferential growths of 

semiconducting SWCNTs can be attributed to a higher sensitivity of metallic SWCNTs to 

reactive environments (plasma, UV irradiation, oxygen-containing atmosphere) leading to a 

modification of their electrical properties or to their selective removal. The growth of samples 

highly enriched in metallic SWCNTs was also reported by an optimization of the annealing of 

the catalyst under a water-containing helium atmosphere. At the time of writing, this 

preferential growth of metallic SWCNTs remains is not explained. 

 The defect density of CNT samples is most commonly assessed by Raman 

measurements of the D band. However, these measurements can also be influenced by the 

presence of defective carbonaceous by-products (e.g. pyrolytic carbon). In first approximation, 

the resultant defect density of CNTs simply increases with increasing carbon supply and 

decreasing synthesis temperature as expected from classical crystal growth theory. In-depth 

studies actually showed different regimes of defect integration or of by-product formation 

when varying the growth temperature. Different hypotheses were proposed to explain the 

occurrence of these different regimes (e.g. change of state of the catalyst, reaction with 

contaminants, formation of defective carbon by-products), but the matter is still not closed. 

The use of oxygen- or nitrogen-containing precursors and the addition of water were shown to 

increase the defect density of CCVD-grown CNTs. In most CCVD syntheses, the percentage 

of particles yielding a nanotube is low (typically less than 10%). Particle inactivity is usually 
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attributed to the stochastic nature of nanotube nucleation or to its dependence on the particle 

size. Water and diverse oxygen-containing precursors were found to increase the percentage 

of active particles and to promote the growth of highly dense CNT forests. Their effect is 

usually attributed to the prevention of particle encapsulation by cleaning off carbon species at 

the surface of the particle. Fe/Al2O3 used with ethylene and water traces is a popular catalyst 

for growing high-density CNT forests whose efficiency is attributed to both the etching effect 

of water and the low coarsening of iron particles on alumina. 

For given conditions, the final length of a nanotube depends on the growth limiting 

step, on the main deactivation process, and on their respective parameter dependences. 

Growth activation energies are commonly used to infer the nature of the limiting step. 

However, the reported values (0.2-3 eV) greatly vary from one catalyst system to another and 

with the growth conditions. The good correlation between the values measured by Baker (0.7-

1.5 eV) and the values corresponding to bulk diffusion through solid metals supported this 

latter stage to be limiting. Other groups measured lower values (0.2-0.6 eV), which led them 

to assign the limiting step to surface diffusion or to bulk diffusion through a liquid particle. 

Higher values (1.5-3 eV) were also reported which were usually attributed to the surface or 

gas-phase conversion of carbon precursors. This latter proposition is additionally supported 

by the dependence of the activation energies on the gas phase reactivity (plasma activation, 

preheating, precursor pressure). From these reports, it is reasonable to conclude that the nature 

of the limiting step depends on the nature of the catalyst and the growth conditions although 

what actually fixes the limiting step is still not rationalized. The growth lifetime generally 

decreases with increasing precursor supply. This can be counteracted by a controlled addition 

of an appropriate oxygen-containing additive such as water. In a large range of precursor 

pressure and temperature, the lifetime is observed to be inversely correlated with growth rate. 

These results support that carbon encapsulation is a major cause of catalyst deactivation. 
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However, the complex temperature dependence of the lifetime supports that other 

deactivation processes, such as catalyst coarsening, may be at play, especially at high 

temperature and low carbon supply. It is apparent that the same phenomena (catalyst 

coarsening, particle encapsulation) are invoked for both the growth deactivation and the 

catalyst inactivity, supporting that, in many cases, particles inactivity may be considered as 

early deactivation. It is worth mentioning that the longest tubes to date, which were grown by 

kite growth, were obtained using both catalyst particles detached from the support (i.e. tip 

growth) and a controlled addition of water. 

4. Open questions and current hypotheses 
This part addresses a few selected questions that are considered as important in the 

field of nanotube growth and are the subjects of intense investigations. These questions 

directly impact on the experimental dependence of the nanotube features described in the 

preceding chapter. For each question, the associated hypotheses are described together with 

the pros and cons from experimental results and in silico simulations.  

4.1. State of the particle 

4.1.1 Physical state 

The physical state of the particle (liquid or solid) is a subject of controversy. As 

described in §2.2.2, the melting point of a metal particle can be significantly lowered by the 

size effects or the incorporation of carbon atoms or increased by interaction with the substrate. 

Simulations performed by Diarra et al. [364] show that, at the standard temperatures of CNT 

growth and in the absence of carbon, nickel nanoparticles down to 147 atoms (~1 nm) are 

solid. However, they observed that the incorporation of carbon tend to amorphize or melt the 

outer layer of the nanoparticle, eventually leading to a complete melting for smaller 

nanoparticles and large carbon fractions (i.e. larger than 10% at.). 
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In the 70s, Baker [5,6,365] proposed that the growth of carbon filaments proceeded via 

the vapour-liquid-solid (VLS) model developed by Wagner and Ellis for the growth of silicon 

whiskers [366]. In the original VLS model of Wagner and Ellis, the role of the particle is to 

form a liquid alloy droplet which acts as a preferred site for deposition from the vapour; once 

the liquid particle is supersaturated, the filament starts growing by precipitation of silicon 

atoms from the droplet. There are therefore two main and different hypotheses in the VLS 

model of Wagner and Ellis: i) the particle is liquid and ii) reactant atoms diffuse through the 

bulk of the particle. Actually, the proposition of Baker et al found massive support because 

the growth activation energies they measured were in excellent agreement with the values 

corresponding to the bulk diffusion of carbon through the corresponding metals. The results 

of Baker not only supported that bulk diffusion was a required step, but also that it was the 

rate determining step of carbon filament growth. However, it is often forgotten that the 

activation energies measured by Baker were in excellent agreement with those of bulk 

diffusion through the metals in the solid state and not in the liquid state. The results of Baker 

therefore provided a strong support for the second hypothesis of the VLS model (the bulk 

diffusion hypothesis), but were in contradiction with its first hypothesis (the liquid particle 

hypothesis). The use of the VLS term by opposition to a model where the particle would be 

solid is therefore often misleading. Preferably, one should specify which hypothesis of the 

VLS model one considers. 

Experimentally, the rounded and elongated shapes of nickel catalyst particles observed 

after nanotube growth led Kukovitsky et al [367] to conclude that the particles were liquid 

during the growth process. However, in situ TEM observations by Helveg et al. [201] and 

other groups [202-205] demonstrated that, although highly deformable, nickel and iron 

catalyst particles remained crystalline during CNT growth. It is worth mentioning that, to date, 

all in situ TEM observations of crystalline particles correspond to rather large particles 
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(typically larger than 4 nm). Experimentally, the physical state of transition metal catalyst 

particles of a few nanometres that are active for SWCNT growth is still an open question. 

If one considers the current list of active catalysts for SWCNT growth (see §2.2.1), the 

melting temperature of the bulk phase ranges from 327°C (Pb) to 3550°C (diamond) for 

individual elements and up to 2830°C (SiC) for mixed compounds. Even by taking into 

account the influence of the particle size, carbon content and support, one must conclude that 

at standard growth temperatures (600°C-1000°C), some catalyst particles are probably liquid 

(e.g. Pb) while other ones are solid (e.g. diamond). For instance, the quantum-based molecular 

dynamics simulations reported by Page et al. [368] support that, during CNT growth, the 

surface of SiO2 nanoparticles is converted to an amorphous SiC layer while the core of the 

SiO2 nanoparticle remains oxygen-rich and solid. From all these results, one must conclude 

that both liquid and solid particles can support the growth of a CNT. However, the physical 

state would modify several properties of the particle that influence the efficiency and features 

of CNT nucleation, growth or deactivation (i.e. carbon solubility and diffusivity, 

deformability). For a given element, a solid or liquid state may be preferred to assist the 

growth of CNTs. 

4.1.2 Chemical state 

The chemical state of transition metal particles during CNT growth is also a 

controversial subject, especially in the case of iron. Essentially, the question is how much 

carburized is the metal particle during the growth: is it still metallic or carbidic? Is carbon 

dissolved in the bulk, only in subsurface sites, or does it remain at the surface of the particle? 

Obviously, one may expect from the content of §2.3 that the answer varies with the 

considered metal, its carbon affinity and its propensity to form carbides. 
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Esconjauregui et al [38] performed in situ X-Ray diffraction (XRD) studies of CNT 

growth from a large range of elements as catalyst. They observed that all transition metal 

particles undergo carburization during the induction phase. At the onset of CNT growth, 

higher transition metal carbides such as Ni3C tended to decompose while lower transition 

metal carbides, such as WC, remained stable during CNT growth. Other metal carbides, such 

as Mo2C, were found stable but inactive for CNT growth. They also reported that MWCNTs 

could be grown by using pre-carburized Ni3C particles as catalyst. The in situ TEM studies 

reported by Lin et al. [306] confirmed that Ni particles of 1-10 nm remain metallic during 

CNT growth and do not transform into Ni3C carbide. [369] In situ XPS studies of Wirth et al. 

also showed that Ni, Co and Fe catalyst particles are in the metallic state during CNT growth.  

The case of iron requires special attention. As can be seen in Figure 3, the stability of 

Fe3C at the considered temperatures is close to that of graphite. Therefore, one should expect 

the stability of Fe3C to strongly depend on the experimental conditions (i.e. temperature and 

carbon activity of the gas phase). Hofmann et al. observed the presence of additional carbide 

peaks in XPS in the case of iron, but not in the case of nickel and cobalt catalysts [370]. In 

line with the results of Esconjauregui et al, Emmeneger et al [371] reported in situ XRD data 

showing that, when exposed to C2H2, Fe2O3 was progressively converted into Fe3C which 

decomposed after 20-30 min into Fe and graphite, this process coinciding with the onset of 

CNT growth. This result supports that Fe is in the metallic state during CNT growth and in 

the carbidic state before CNT nucleation. In contrast with these results, in situ TEM 

observations [21,204,372] and XRD measurements [373] of different groups showed that 

CNTs nucleate and grow from Fe3C particles. To complete this description, it is also worth 

mentioning the post-growth analysis by TEM reported by Z. He et al. [374]. These authors 

observed that, in the same sample, both Fe and Fe3C particles could be found at nanotube 

ends. Interestingly, the ratio of Fe and Fe3C particles was found to vary with the synthesis 
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temperature, Fe3C particles being more abundant at low temperature. In addition, CNTs 

connected to Fe3C particle were all bamboo-like and were much shorter than the CNTs 

connected to Fe particles. Similarly, in situ TEM and XRD data from Wirth et al [375] 

showed that both metallic Fe and carbidic Fe3C can be the active catalyst phase. Interestingly, 

they found that the nature of the main catalyst phase strongly depended on the α/γ-Fe 

proportion following catalyst reduction: they observed that metallic Fe was the main active 

catalyst phase for γ-rich catalyst mixtures while Fe3C was the main catalyst phase in the case 

of α-rich catalyst mixtures, which could be accounted for by considering the metastable Fe-C 

phase diagram. 

4.2. Reaction intermediates 

A still open question concerns the nature of the reaction intermediates incorporated at 

the nanotube edge. This is important since the nature of the intermediates affects the 

mechanism of carbon incorporation in the nanotube and, hence, the growth rate, the defect 

density and the chiral selectivity. Simulations reported by Wang et al. [376] notably predict 

that changes of chirality would be more frequent in the case of the addition of carbon adatoms 

than in the case of carbon dimers. 

Many studies were devoted to study the dissociation mechanism of carbon precursor 

molecules on a metal surface. Studying the dissociation of C2H2 on Fe(001) by first-principles 

calculations, Lee et al. [377] observed C-C bond breaking, leading to the formation of CH 

fragments. Molecular dynamics simulations performed by Vasenkov et al [378] also 

supported a C-C bond scission of C2H2, but highlighted that surface contamination by oxygen 

could impede the dissociation. Experimentally, Moors et al. [122] studied the surface products 

of acetylene decomposition on a nickel nanocrystal using field-assisted desorption coupled 

with mass spectrometry. They found that, for short reaction times (t<10ms), the carbon 
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spectrum is dominated by C1 species, demonstrating rapid C-C bond scission during acetylene 

decomposition. Only at longer reaction times (t>10ms) were higher Cn carbon oligomers 

(n=2-4) observed to form from C1. Using C13-marked ethanol as carbon source, Maruyama et 

al. [379] demonstrated that a smaller amount of site-1 carbon atom (i.e. next to OH) was 

incorporated into the CNTs, also supporting a prior scission of C-C bond in ethanol. Studying 

ethanol dissociation on Rh(111) by X-ray photoelectron spectroscopy and temperature-

programmed desorption, Vesselli et al. [380] confirmed that C-C bond cleavage is the 

preferential dissociation channel, while C-O bond scission was not observed. 

 Other works support that chains of a few carbon atoms may be the intermediates of 

carbon incorporation in the CNT. For instance, growth simulations performed by Irle et al. 

[381] support that carbon incorporation proceeds via carbon chains that are covalently 

attached to the nanotube edge. The image of an octopus on a rock was used by the Irle group 

to popularize this hypothesis. Simulations of nanotube nucleation and growth by Amara et al. 

[200,382] and Neyts et al. [383] also support that both processes proceed via carbon chains. 

Additional support was provided by the calculations of graphene nucleation and growth on a 

Cu(111) surface (Wesep et al. [384]) showing that the formation of carbon chains of 3–13 

atoms was preferred compared to two-dimensional compact islands of equal sizes. 

Experimentally, the afore mentioned study of Moors et al. [122] support a rapid aggregation 

of C1 into carbon oligomers of 2-4 units. Studying graphene growth on Ru by low-energy 

electron microscopy, Loginova et al. [385] found that graphene growth essentially occurs 

through addition of carbon clusters of about five atoms. Obviously, if the octopus hypothesis 

can account for SWCNT and graphene growth, it does not seem applicable in the case of the 

inner walls of MWCNTs. 

Some reports support the possibility of a direct polymerization of carbon precursors, 

such as alkynes and benzene, without C-C bond scission. When monitoring the decomposition 
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products of benzene by mass spectrometry during the CCVD growth of MWCNTs, Tian et al 

[20] surprisingly observed no possible hydrocarbon species derived from benzene. 

Concluding that the carbon-hydrogen bonds of benzene were dissociated but not the carbon-

carbon bonds, they proposed that CNT growth proceeded by direct integration of six-

membered rings. Their conclusion was supported by density functional theory calculations 

[386] showing the formation of biphenyl from two benzene molecules on a Ni(111) surface. 

The calculations indicated that the C-H bond of benzene could be selectively dissociated 

while the C-C bond was still retained. Observing that the growth kinetics of CNT forests were 

characteristic of heterogeneous chain reactions, Eres et al. [387] proposed that acetylene 

could self-assemble without C-C bond dissociation into larger carbon structures such as 

chains and nanotubes. Using different alkyne additives for the growth of MWCNT forests in a 

cold-wall reactor, Plata et al. [388] observed that multiple alkynes reacted with ethylene to 

accelerate MWCNT growth, suggesting a polymerization-like formation mechanism without 

full dissociation of the carbon precursors into C1 or C2 units. 

4.3. Mechanism of nanotube nucleation and growth 

Numerous works have been devoted to understand the requirements for nucleating a 

nanotube. In situ TEM studies have now unambiguously demonstrated that nanotube growth 

in CCVD is initiated by the formation of a carbon cap at the surface of the particle. These 

results validated the yarmulke hypothesis originally proposed by Hongjie Dai et al [389]. The 

experimental conditions favoring a high density of nucleation have already been described in 

§3.6. Here, we will describe the different theoretical approaches that have been reported to 

rationalize the nucleation process. 
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4.3.1 Thermodynamic models 

Analytical models based on thermodynamic arguments are an interesting first 

approach to identify the processes at play during nucleation and evaluate their respective 

contributions. Kuznetsov et al. [390] considered the probability of formation of a carbon 

nucleus at the surface of a metal/carbon particle and the corresponding critical radius. They 

hypothesized that the carbon nucleus has the form of a flat saucer whose edges are bent in 

order to bond to the metal surface. The change in Gibbs free energy for the formation of the 

nucleus includes four contributions: the free energy of precipitation of the carbon atoms from 

the particle, the free energy associated with the surfaces of the nucleus, the free energy 

associated with the nucleus edges and the strain energy arising from bending the graphene 

layer. The model predicts that the critical radius of nucleus formation decreases with 

increasing temperature, increasing saturation of the metal-carbon solution and decreasing 

specific edge free energy. The authors observed a good agreement between this critical 

diameter and the average diameter of CNTs formed by different methods as a function of the 

catalyst nature and synthesis temperature. Dijon et al. [391] used a similar approach to 

compare the probability of two models of nanotube nucleation leading to either base-growth 

or tip-growth as a function of the particle size and oxidation state of the catalyst.   

The model developed by Kanzow et al. [392] addressed the thermodynamic conditions 

for a graphene sheet at the surface of a liquid metal/carbon particle to bend and form a 

fullerene-like cap. From the model, the formation of a cap will be preferred if the available 

thermal energy exceeds the work of adhesion at the graphene/particle interface and the strain 

energy associated with the cap formation: the work of adhesion depends on the metal and 

decreases with the carbon content while the strain energy per unit area decreases with 

increasing the size of the graphene sheet. Although simple, the model could also reproduce 

the general dependence of the nanotube diameter distribution on the catalyst type and the 
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temperature observed in arc discharge and laser ablation. More recently, Schebarchov et al. 

[393] developed a model based on a flexible graphitic cap with its free edge constrained to the 

surface of a rigid spherical particle. They considered that the cap will lift if the curvature 

energy penalty in the collapsed state exceeds the work of adhesion. Their model provided a 

prediction of the catalyst-to-nanotube diameter ratio in good agreement with experimental 

observations for nickel and iron catalysts. However, a model based on a rigid catalyst particle 

may appear as too unrealistic with regard to the large particle deformability observed during 

in situ TEM observations. 

4.3.2 Computer simulations 

Such macroscopic models provide useful insights, but they generally lack reliable 

input data and their applicability at the nanoscale and the building hypotheses can often be 

questioned. For instance, all models consider a rigid particle which is contrary to most recent 

experimental observations. Contrary to thermodynamic models that consider idealized objects 

such as perfect cap structures on a spherical nanoparticle, but lack of reliable energy 

parameters, computer simulation approaches start, or should start, from a validated 

interatomic energy model and try and find conditions to nucleate a cap and/or grow a tube, 

that quite often incorporate a large number of defects. As described in §2.3.3, different atomic 

interaction models for metal and carbon have been proposed, ranging from simple empirical 

models to more sophisticated and more demanding in computer resources ab initio 

calculations. The computer simulation methods used are generally “brute force” Molecular 

Dynamics (MD) or Monte Carlo (MC) methods. In the former, atoms are generally added 

randomly close to the nanoparticle surface, while the latter enables more sophisticated 

approaches controlling carbon chemical potential, via Grand Canonical Monte Carlo (GCMC) 

simulations [382] or using force biased method to accelerate the relaxation and favor a 

healing of defective structures [383]. Such a naive approach is probably correct for simulating 
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the heterogeneous nucleation of a cap on a metal nanoparticle, but the question of whether the 

driving forces leading to the formation of a cap (e.g. carbon density in the vapor phase in the 

case of MD or the carbon chemical potential in GCMC) are realistic should be raised. In the 

case of homogenous nucleation, specific techniques have been devised to evaluate the 

nucleation barriers [394,395]. In the present instance, too short time scales and exceedingly 

large driving forces often lead to carbon structures that are highly disordered. There is 

however a lot to be gained from atomistic computer simulation since the nanotube nucleation 

is very difficult to study by any other experimental technique.  

Not all models give the same carbon solubility in the metal nanoparticle, nor has this 

solubility been systematically evaluated, but when carbon solubility is non-vanishing, a 

general trend is that the cap nucleation takes place once the nanoparticle is saturated with 

carbon [382,396]. The very small Fe clusters used in DFT [397] or tight-binding DFT [398] 

calculations do not allow such an analysis. In many models [382,396,399], carbon chains 

appear on the surface before a cap is formed. Although no direct experimental evidence has 

been produced, the presence of carbon chains during the nucleation and growth has been 

suggested by Eres et al. [387] and by Loginova et al. [385] in the case of graphene. The 

length of the observed carbon chains depends on the model and the precise nucleation and 

growth conditions and lead to more or less disordered structures. Quite interestingly, Neyts et 

al. [400] observed that the almost defect-less carbon nucleus formed could change its chirality 

in the early stages of the growth, thus discarding a possible determination of the tube chirality 

at the nucleation stage (Figure 14). 
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Figure 14. Coupled Monte Carlo / molecular dynamics study of the nucleation of a nanotube cap on a Ni 

nanoparticle. The local chirality of the cap appears to be changing at this stage of the nucleation process. 

After [400]. 

Once a cap is formed, it has to detach from the nanoparticle in order to avoid the 

encapsulation of the catalyst. Different explanations have been proposed to explain the cap 

detachment and lift-off. By systematically varying temperature and work of adhesion of the 

graphitic cap on the nanoparticle, Ribas et al. [401] could identify conditions leading either to 

a successful growth or to nanoparticle encapsulation. To explain the formation and lift-off of 

carbon domes observed by in-situ TEM during the formation of a multiwall nanotube on an 

Au doped Ni catalyst,  Pigos et al. [402] identified two critical factors: the surface energy of 

the nanoparticle (that can be modified by  chemisorbed carbon species) and the faceting of the 

nanoparticle. More recently, Diarra et al. [364] showed that the wetting properties of carbon 

sp2 walls on a Ni nanoparticle strongly depend on the fraction of carbon dissolved, and 

demonstrated that the cap lift-off takes place when the carbon concentration in the catalyst is 

within a critical window. 

Computer simulation modeling of the nucleation and growth of carbon nanotubes has 

made significant progress by incorporating more efficient and realistic atomic interaction 

models, and by using more sophisticated computer simulation techniques and algorithms. The 
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next challenge is a full understanding of the mechanisms leading to chiral selectivity that is 

discussed in the next paragraph. 

4.4. Chiral selectivity 

Chiral selectivity is an important issue in nanotube research due to the large number of 

applications requiring nanotubes with controlled electrical and optical properties. A higher 

proportion of high-chiral-angle CNTs (i.e. near-armchair) in nanotube samples is commonly 

reported as was already detailed in §3.3. The origin of this higher occurrence is still a matter 

of questioning. In the following, we review the theoretical works that have been devoted to 

this question and the hypotheses that have been proposed to explain the chiral selectivity of 

nanotube growth. 

4.4.1 Nucleation selectivity 

A first possibility is that chiral selectivity could be set at the nucleation stage. This 

hypothesis relies on the fact that the structure of a cap uniquely determines the chirality of the 

nanotube that will grow from it: in the absence of defects, the nanotube structure is an 

amplification of the edge structure of the cap. There is a statistical or entropic aspect to this 

question, i.e. how many different cap configurations exist for a given (n,m) tube. Brinkman et 

al. [403] established a census of the nanotube caps compatible with all tubes up to a diameter 

of 3 nm. Considering either general caps or isolated-pentagon caps, they found that the 

number of compatible caps increases quasi-exponentially when increasing the nanotube 

diameter. Reich et al. [404] performed a detailed study of the geometry, structure, and 

energetics of nanotube caps. They observed that tubes with diameters smaller than 6.8 Å have 

only caps that violate the isolated pentagon rule. The caps with isolated pentagons were found 

to have an average formation energy of 0.29 eV/atom while a pair of adjacent pentagons 

required a formation energy of 1.5 eV. This much larger formation energy justifies the 
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isolated pentagon rule and would explain the quasi-absence of SWCNTs of diameters less 

than 7 Å in nanotube samples. The (5,5) nanotube is the smallest diameter tube that has a cap 

obeying the isolated pentagon rule (a half C60). The other tubes with only one cap fulfilling 

the isolated pentagon rule are (9,0), (9,1), (8,2), and (6,5). Therefore, these results cannot 

account for the higher abundance of (6,5) and high-chiral angle SWCNT in many samples. 

This statistical approach is interesting in the first place, but all cap sizes are not equally 

probable since caps progressively grow in size and are constrained by the catalyst particle. In 

addition, considering that pentagons are randomly formed neglects the chemistry of formation 

of carbon cycles and the influence of the catalyst surface. 

Reich et al [405] performed ab initio calculations of the stability of different caps on a 

flat Ni surface. The results showed that certain caps are preferentially stabilized on a Ni(111) 

surface due to lattice matching with the catalyst surface. However, the energy differences 

were small (of the order of the thermal energy) and considering a flat and rigid catalyst 

surface now appears far from the experimentally encountered situation. The energy of 

graphene edges were calculated by Liu et al. [406] who found that the energy of an arbitrary 

graphene edge was significantly dependent on the orientation (from armchair to zigzag) and 

on the chemical functionnalization of the edge (i.e. –H or –Ni). They proposed that this 

difference of edge energies may influence the chiral selectivity at the nucleation stage. At the 

opposite, Zhu et al. [208] calculated the formation energies of (10,0) and (5,5) SWCNT caps 

sitting on a Ni55 cluster and found the energy difference to be too small to expect a 

preferential nucleation of caps corresponding to either high or low chiral angles SWCNTs. 

Most of these simulations were performed starting from pure Ni or Co catalysts but, in 

some cases, carbide particles may be more relevant. For instance, Koziol et al. [262] reported 

the preferential growth of achiral CNTs (zigzag and armchair) when nitrogen was added 

during the growth. They observed that the catalyst particles are iron carbide and are 
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preferentially oriented with the [010] direction parallel to the nanotube axis and, more 

precisely, to either the [100] or [210] graphene direction [407]. Their studies support that the 

role of nitrogen is to stabilize iron carbide catalyst particles which act as epitaxial template for 

the selective nucleation of achiral CNTs. 

4.4.2 Growth-rate selectivity 

A second possibility is that the growth rate of nanotubes is chirality-dependent. 

Corresponding models assume that carbon integration, the last stage of the growth mechanism, 

is the rate-determining step and that its rate depends on the nanotube chirality. Experimentally, 

this is supported by several observations of higher reactivity of armchair edges compared to 

zigzag edges in the case of graphene [408-410]. Shu et al. [411] calculated that connecting a 

Cu atom to an armchair site lowers the barrier of incorporating carbon atoms onto graphene 

edge from 2.5 eV to 0.8 eV, which would result in a much faster growth of armchair edges 

compared to zigzag edges. In the case of SWCNTs, Rao et al. reported in situ Raman 

measurements of the growth rates of individual index-identified tubes [412] showing a 

positive correlation between the nanotube growth rate and its chiral angle. 

On the theoretical side, several works were devoted to the question of chirality-

dependent kinetics. Zhao et al. [413] found that the energy of the frontier orbitals for (5,5) and 

(6,6) armchair carbon nanotubes bonded to Ni atoms exhibits a periodic behavior when 

increasing the number of carbon atoms in the nanotube. In contrast, the energy of the frontier 

orbitals of the (6,5) tube was found constant as the number of C atoms increases. They 

proposed that the energetic smoothness of carbon addition in (6,5) SWCNT may account for 

its experimentally high occurrence. Wang et al. [414] simulated the growth of armchair (5,5), 

chiral (6,5), and zigzag (9,0) nanotubes on a relaxed Ni55 cluster and studied the reactivity 

caused by charge transfer between the metal particle and the tube. They notably found that the 

edge of a (6,5) tube presents one particularly reactive site which could explain the preferential 
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growth of chiral (6,5) nanotubes over armchair (5,5) and zigzag (9,0) nanotubes. Gomez-

Gualdron et al. studied the energetics of frontier orbitals for different caps connected to a 9-

atom Co cluster during C2 addition [415]. The LUMO orbital expected to participate in the C2 

addition reaction was found to be located in a more favorable part of the cap rim for near-

armchair than for near-zigzag caps. They concluded that the carbon atoms in the near-

armchair caps may have a better predisposition for continuation of the nanotube growth when 

the growth proceeds by C2 addition. 

Also considering carbon addition to either armchair or zigzag nanotube edges 

connected to metal steps, Ding et al. [416] calculated that the addition of carbon to an 

armchair site has essentially no barrier while for a zigzag edge, the barrier energy is of the 

order of 1.1-1.5 eV. Building on that, they proposed that the lengthening rate of a nanotube is 

proportional to the linear density of armchair sites (kinks) at the nanotube edge, which is 

approximately proportional to the chiral angle of the tube (Figure 15). Dumlich and Reich 

[417] theoretically considered the geometric constraints for the addition of C2 dimers to 

armchair kinks at the edge of a nanotube. Observing that nanotube growth basically proceeds 

via the conversion of dangling bonds from armchair (a) to zigzag (z) and vice versa, they 

concluded that all armchair kinks are not equivalent and that a nanotube edge actually 

contains three types of armchair kinks () for C2 addition: aaaa, aaz and zz. In the case of a 

low energy difference between zigzag and armchair dangling bonds, the growth rate is 

proportional to the density of armchair kinks, that is a conclusion similar to Ding et al. In the 

case of a much larger energy for zigzag dangling bonds than for armchair ones, the model 

predicts that (n, n/2) chiral tubes would be kinetically favoured. 
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Figure 15. Schematic rim structures of (n, 0), (n, 1) and (n, 2) nanotubes showing that the number of kinks 

(armchair sites) is proportional to the chiral angle. Red arrows denote the Burgers vectors describing the 

axial screw dislocation associated with each tube. Adapted from [416]. 

4.4.3 Lifetime selectivity 

A third possibility is that the resistance of a growing tube regarding growth 

termination or chiral change depends on its chiral structure. Actually, environmental TEM 

observations frequently show the introduction of defects and the creation of kinks during CNT 

growth [207]. Changes of chirality along as-grown CNTs were experimentally observed [418]. 

Yao et al. [222] showed that chiral changes could be induced by slight modifications of the 

growth conditions (i.e. temperature. Recently, Kim et al. [419] simulated the dynamics of 

SWCNT chirality during growth and observed that improper defect healing could lead to 

changes in the tube chirality. In this respect, zigzag SWCNTs were found significantly 

inferior in maintaining their chirality compared to armchair SWCNTs. Besides defect 

integration, a major cause of growth termination or of chirality change is the coarsening of the 

catalyst particles. Using first principles calculations, Börjesson et al. [420] studied the 

influence of the nanotube chirality on the Ostwald ripening of the attached particle. They 

found that the Ostwald ripening of metal particles attached to CNTs not only depends on the 

particle size, but also on the nanotube chirality. Particles attached to armchair and zigzag 

nanotubes of similar diameters were found to have different propensity to ripening. For both 
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hypotheses (defect integration and catalyst coarsening), experimental studies of the chiral 

dependence are presently missing. 

4.5. Summary 

Concerning the state of the particle, in situ TEM studies show that catalyst particles of 

iron, nickel and cobalt are highly deformable, but still crystalline during growth. These 

observations were made on rather large particles (typically larger than 4 nm), which leaves 

open the question of the physical state in the case of smaller nanoparticles. Considering the 

range of elements active for CNT growth, certain particles are likely to be liquid (e.g. Pb) and 

other ones solid (e.g. diamond) in the standard conditions of nanotube growth. Having an 

either liquid or solid particle does not appear to be a requirement for growing a CNT, 

although the nanotube and growth features are likely to be modified. From in situ studies 

(TEM, XPS, XRD), nickel and cobalt particles are usually in a metallic state during nanotube 

growth while iron particles may either display a metallic or carbide structure. 

The nature of the reaction intermediates (adatoms, dimers, chains, undissociated 

precursors) is still unsettled. Different in situ studies revealed the presence of C1 species at 

short synthesis times. At longer times, the conversion of carbon adatoms into higher Cn 

oligomers (n=2-5) is reported both experimentally and in silico. In the case of alkynes and 

aromatic precursors, the hypothesis of a direct polymerization without C-C bond scission has 

been proposed by certain groups to account for the abnormal kinetic behavior. 

Concerning the mechanism of nanotube nucleation, the formation of a carbon cap at 

the surface of the particle (the yarmulke hypothesis) has now been validated by in situ TEM 

observations. Thermodynamic models support a strong influence of the carbon concentration, 

metal-carbon interaction and temperature on the formation of a carbon nucleus of critical size. 

Numerical simulations also confirm that surface carbon formation takes place once the 
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nanoparticle is saturated with carbon. They highlight the critical importance of the carbon 

cap-metal surface adhesion in the process of cap lift-off and its dependence on the fraction of 

carbon dissolved in the particle.  

To explain the chiral selectivity experimentally observed, three general hypotheses are 

considered: chiral-selective nucleation, chiral-dependent growth rate and chiral-dependent 

lifetime. The selective nucleation hypothesis is now somehow abandoned due to the small 

differences of formation energies calculated for caps of different chiralities. Growth-rate 

selectivity is currently preferred based on calculations showing a large difference of barrier 

energies for carbon integration at armchair and zigzag sites and on experimental 

measurements of the growth rate of individual SWCNTs of different chiral angles. The 

lifetime selectivity assuming a chiral-dependent propensity for growth termination or chiral 

change has found some support from simulation works, but is still to be experimentally 

validated. 

Beside those questions, many other questions remain that could not be addressed in 

detail in this review either due to the limited space or to the limited number of reported 

studies. One may notably mention the mechanism leading to either base- or tip-growth, the 

influence of the substrate on the growth kinetics or the mechanisms of defect integration. The 

interested reader can also refer to the list of open questions established after each edition of 

the Guadalupe Workshop on the Nucleation and Growth Mechanisms of Single Wall Carbon 

Nanotubes1. 

5. Conclusion 

 As apparent from this review, the growth mechanism of CNTs in CCVD is complex 

and still the subject of intense investigations. Its understanding is noticeably complicated by 

                                                
1 Guadalupe Workshop on Nucleation and Growth Mechanisms of Single Wall Carbon Nanotubes. Available 
from: http://swcnt.nano.rice.edu/. 
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the variety of experimental systems in terms of catalyst, support, carbon precursor and growth 

conditions. Too different systems often lead to too different observations to allow unification 

and rationalization. In addition, the studied systems are still frequently insufficiently 

controlled and characterized. Learning from other fields of research such as heterogeneous 

catalysis or molecular biology, one may identify two successful approaches to work out 

complex mechanisms: the study of model systems and the development of numerical 

simulations. As evidenced in this review, numerical simulations have already been extremely 

beneficial for orienting experimental works and improving our understanding of CNT growth 

mechanism. With increasing calculating capacities, simulation will probably become an 

essential prediction tool for the phenomena that are still too difficult to study experimentally. 

On the experimental side, the field would probably benefit from the establishment and study 

of model systems, as was successfully demonstrated in the field of heterogeneous catalysis 

with the study of model surfaces and metal clusters. Fe/Al2O3 used with ethylene as carbon 

source and water as additive is an example of such a model system which has self-established 

due to its high nanotube yield. Other model systems having characteristic features important 

for fundamental studies such as catalyst clusters of uniform size, no or negligible catalyst 

coarsening, known limiting step or known dissociation products, would also be highly 

desirable. Novel types of experiments may also help improving our understanding of the role 

of the catalyst nanoparticles in CCVD. For instance, the recent discovery that SWCNT seeds 

can be elongated by vapour-phase epitaxy without the need of a catalyst nanoparticle [421] 

will probably shine light on the exact role of the nanoparticle at each stage (precursor 

decomposition, cap nucleation, nanotube amplification) of the CCVD process.  

In conclusion, we now have a qualitatively good description of many phenomena 

acting during CNT growth, but quantitative relations are often lacking (e.g. quantitative 

parameter dependences of the defect density, growth rate, number of walls, outer and inner 
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diameters). More quantitative models would be extremely helpful for orienting experimental 

works and facilitating the analysis of experimental data. Growth kinetics or chiral selectivity 

are good examples of the valuable contribution of quantitative models to the rationalization of 

experimental data and to the orientation of experimental studies. For the future, we would 

clearly need more quantitative models that can be experimentally tested if we wish to build a 

more accurate and predictive theory of nanotube growth. Establish and study model systems 

and develop more quantitative and predictive theoretical tools should be particularly 

important goals for the young and creative minds entering the field. As apparent from this 

review, many exciting challenges are still awaiting them. 
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