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Direct tracking of the particle positions in a sedimenting suspension indicates that the particles are
not simply randomly distributed. The initial mixing of the suspension leads to a microstructure
which consists of regions devoid of particles surrounded by regions where particles have an excess
of close neighbors and which is maintained during sedimentation. © 2009 American Institute of
Physics. �doi:10.1063/1.3231828�

The settling of a collection of non-Brownian particles in
a viscous fluid is a basic problem in suspension dynamics but
is remarkably difficult to tackle. The hydrodynamic interac-
tions between the particles are long ranged and of many-
body character leading to a complex dynamical behavior. In
the absence of Brownian motion providing a randomizing
mechanism, the suspension microstructure is determined by
the hydrodynamics which in turn depends on the microstruc-
ture, a feature that makes sedimentation a particularly chal-
lenging problem relevant to nonequilibrium statistical phys-
ics.

In the absence of inertia, a single sphere settles at the
Stokes velocity VS= �2 /9�a2��p−� f�g /�, where a is the
sphere radius, �p is the density of the particles, � f that of the
fluid, and � of the fluid viscosity. The average sedimentation
speed of an ensemble of settling spheres decreases rapidly
with increasing particle volume fraction � due to the fluid
backflow induced by the particles falling down to the impen-
etrable bottom of the container. The first order correction of
−6.55� to the Stokes velocity was computed by Batchelor1

assuming low � and randomly dispersed spheres. Following
Batchelor’s assumption of a dilute random distribution of
sedimenting spheres, Caflisch and Luke2 and Hinch3 pre-
dicted that velocity fluctuations �standard deviation� should
diverge with the size of the container. Experiments in large
containers4–6 show indeed that fluctuations are of the order
of the mean in magnitude and of the order of the cell width
in size just after the initial mixing of the suspension. But,
these large-scale fluctuations are transient and give place to
smaller-scale fluctuations of smaller magnitude and size
�20a�−1/3, which remain constant �in a plateau region� until
the arrival of the upper sedimentation front between the sus-
pension and the clear fluid.4,7

This screening of the fluctuations stimulated numerous
theoretical models and simulations.8–14 Koch and Shaqfeh8

proposed a Debye-like screening which assumed a specific
particle distribution induced by three-particle interactions
�more precisely a net average deficit of one particle in the
vicinity of any other particles�. Several other bulk mecha-
nisms leading to nonuniform microstructures have been pro-
posed including a stochastic convection-diffusion model10

and analogy with high Prandtl number turbulence.11 How-
ever, screening has not been observed in numerical simula-

tions of homogeneous suspension with periodic boundary
conditions.9 It is only the inclusion of bottom and top bound-
aries acting as sink of the large-scale disturbances that leads
to damping and subsequent saturation of the velocity
fluctuations,12,14 similar to what is seen in experiments4–6

and in agreement with an earlier suggestion of Hinch.3 Simu-
lations with bounding walls14 show that monodisperse sus-
pensions develop a strongly anisotropic long-range micro-
structure during the settling process with vanishing density
fluctuations in the horizontal plane. Conversely, in polydis-
perse suspensions, the microstructure appears to be random-
ized by the varying settling speeds, but the particle velocity
fluctuations are seen to be damped by stratification due to
differential settling14 rather than interface diffusion.13 In con-
trast, in experiments, the reduction in the velocity fluctua-
tions does not seem to be fully controlled by local stratifica-
tion as same evolution of the velocity fluctuations is seen
despite different polydispersities or different concentration
gradients created by the initial mixing.6

Obtaining information on the microstructure is important
per se and may help in understanding the behavior of the
velocity fluctuations. However, it proves to be rather difficult
in experiments. While the structure factor can be obtained
using light scattering in colloidal suspensions, it is trickier
for non-Brownian suspensions because of the large size of
the particles compared to the wavelength of light. An analo-
gous scattering technique for noncolloidal suspensions based
on pulsed field gradient nuclear magnetic resonance has been
proposed instead. The application of the technique to sedi-

TABLE I. Particle characteristics: mean radius �a� and standard deviation
�a, sphere density �p, Stokes velocity VS, and sphere Reynolds number
Rep=VS�a�� f /�.

Batch
�a�

�cm�
�a / �a�

�%�
�p

�g /cm3�
VS

�cm/s�
Rep

�10−5�

A 0.0202 2.5 2.50�0.04 0.0136�0.0009 2.7

B 0.0152 2.5 4.11�0.07 0.0158�0.0010 2.3

C 0.0148 5.6 4.11�0.07 0.0150�0.0018 2.1

D 0.0187 11.3 2.50�0.04 0.0117�0.0027 2.1
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mentation has shown that the pair distribution function pre-
sents an excess of close particles on a range of about one
particle diameter.15 It is also possible to track the positions of
spheres using imaging techniques and directly infer informa-
tion about the microstructure. Lei et al.16 studied the fluctua-
tions in number density within sampling windows in central
region of their experimental cell. Initially selected random
fluctuations �Poisson statistics� have been found to become
suppressed with increasing test volume dimension. Several
questions are nonetheless left open by these two results
available in the literature. One may indeed wonder whether
the initial mixing leads to a random positioning of the par-
ticles or to an excess �or deficit� of close neighbors and how
this initial positioning �yet to be determined� evolves during
the sedimentation process. To tackle these questions, we
have measured the number density statistics and its evolution
in a sedimenting suspension by a method similar to that of
Lei et al.16

Four batches of glass spheres having different polydis-
persities were used in the experiments, see Table I. The fluid
used was silicone oil 47V1000, which had a viscosity
�=10.0�0.3 P and a density � f =0.965�0.007 g cm−3 at
the air-conditioned room temperature of 25�1 °C. The
sedimentation experiments were performed in glass-wall
vessels of different cross section �20�20, 10�10, and 4
�4 cm2 for particles of batch C and 10�10 cm2 for par-
ticles of batches A, B, and D� filled with a fluid height

H=40 cm. Most of the experiments were done at the same
initial volume fraction �0=0.3% but a series of experiments
with particles of batch B in the cell having a cross section
10�10 cm2 was also undertaken for volume fractions vary-
ing from 0.1% to 0.8%. Each sedimentation experiment ini-
tially consisted of mixing the suspension by moving a small
propeller �of size �2 cm� within the suspension for �10 min
in order to obtain a visually uniform particle distribution
throughout the suspension. The mixing process was per-
formed in the same way for the different runs �typically ten�,
as described previously by Chehata et al.6 The principle of
this procedure was to turn first the sediment into a concen-
trated homogeneous suspension in the bottom 5 cm of the
vessel and then to extend the mixing progressively upward
until the complete volume of the cell was homogenized. The
starting time of each run corresponded to the cessation of
mixing.

In the course of measuring particle velocities using par-
ticle image velocimetry, we captured images of particles il-
luminated by a light sheet �of thickness �1 mm� produced
by two 15 mW laser diodes facing each other. The imaging
window was typically of height 10 cm ��H /4� placed
25.5 cm below the liquid-air interface and sampled the entire
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FIG. 1. �Color online� Particle velocity-fluctuation field and center-of-mass
positions �gray �red online�� for t / ts=0 �left� and t / ts=729 �right� for par-
ticles of batch B at �=0.3%. Distance is plotted in mean interparticle spac-
ing, �a��−1/3.
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FIG. 2. Particle occupancy distributions for t / ts=0 �left� and t / ts=729
�right� for particles of batch B at �=0.3%. The solid curves represent the
corresponding Poisson distributions.
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FIG. 3. Standard deviation �N of the number of particles vs �N� in log-log
coordinates �left� and vs �N�1/2 �right� for particles of batch B at �=0.3%.
The dotted line in the left graph represents the Poisson law.
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FIG. 4. �Color online� Particle center-of-mass positions �gray �red online��
and holes found by �-shapes for fake random positioning �left� and for
experimental data �right� for batch C with �=0.3% at t / ts=0. Distance is
plotted in mean interparticle spacing, �a��−1/3.
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cell cross section. Pairs of images separated by �one Stokes
time=a /VS were captured every 40 s and were processed to
obtain a two-dimensional velocity-vector map.5,6 The same
images were used to study particle occupancy statistics.
First, we thresholded the gray-level intensity of the images.
Second, these images were made binary and the center of
mass of the particles was determined. To deduce precisely
the threshold to be used, we estimated the number of par-
ticles inside the light sheet and used a threshold value, which
gave approximately this number. The error bar on the num-
ber of particles in the sheet provided upper and lower bounds
of the threshold, which were used to determine uncertainties
in the processed data. Third, using the method of Lei et al.16

we have determined the particle occupancy distribution by
counting the number of particles N within a square box of
fixed area, which was randomly positioned in each of the
images of the different runs corresponding to the same time.

Figure 1 shows the typical particle velocity-fluctuation
field and center-of-mass positions obtained in the measuring
window ��10�10 cm2� for a single run just after cessation
of mixing, where the velocity fluctuations are �cell width
�left� and in the fluctuation-velocity plateau, where they are
�20a�−1/3 �right�. The corresponding particle occupancy
distributions obtained from data analysis of ten runs and for
a given sampling box of �1.2�1.2 cm2 are displayed in
Fig. 2. The solid curves indicate the Poisson distribution for
the same �N�. Clearly, the observed distributions are shorter
and wider than a Poisson distribution. The standard devia-
tions �N of the number of particles are plotted versus the
average number of particles �N� for different sampling boxes
ranging from 0.34�0.34 to 3.4�3.4 cm2 and for different
times in Fig. 3 �left�. Two important observations can be
made. First, �N is certainly not= �N�1/2 �Poisson statistics�
but is= �N�n with an exponent n�0.5. Second, there is no
evolution of this power law with time until the sedimentation
front enters the imaging window. Using all the data from the
different times, log��N� can be fitted by a linear function of
log��N�� using the method of weighted least squares and one
finds n=0.6 in the present case.

This power-law finding is purely empirical but indicates
that the particles are not simply randomly distributed inside
the sheet volume. A closer inspection of the particle center-
of-mass arrangement using the concept of �-shapes17 �based
on Delaunay triangulation and used for shape reconstruction�
shows clearly regions devoid of particles surrounded by re-
gions where particles are in excess, see Fig. 4 �right�. This
leads to an alternative way of interpreting the data suggested
by Hinch.18 The key idea is to consider that there are two
independently random effects that can be added by squares
of variances: fluctuations in particle number coming from
randomly positioning the particles �with standard deviation
=N1/2� and those coming from randomly positioning the
holes �with standard deviation= �Vh /V�NNh

1/2, where Nh and
Vh are, respectively, the hole number and volume and V is
the entire volume�. This results in a standard deviation still
	N1/2 but with a coefficient c�1, i.e., �N=cN1/2 with
c= �1+ �Vh /V�2NNh�1/2. Note that c depends upon the number
of particles in holes, NVh /V, and the volume fraction of
holes, NhVh /V. The comparison with this model is given in
Fig. 3 �right�. The agreement is good �although the correla-
tion coefficient of the linear fit is not as good as in the case
of the power law� and holds for the different sedimentation
times with c=2 in this case. It is important to mention that
these two behaviors �power law or Poisson with a coeffi-
cient� are representative of all experiments. However, the
exponent n and the coefficient c are seen to increase with
increasing polydispersity, volume fraction, and cell size, as
indicated in Tables II–IV.

To quantify the holes, the experimental data have been
processed using �-shapes to obtain the hole number Nh,exp

and the hole area Ah,exp. Figure 5 �left� shows a typical time
evolution of hole number Nh,exp and area Ah,exp. The hole
number Nh,exp has been normalized by the hole number
Nh,random found when randomly positioning point particles,
see Fig. 4 �left�. It does not vary during the sedimentation
process �apart from statistical fluctuations� and is smaller
than Nh,random �by an amount of �20%�. Similarly, the hole
area Ah,exp stays constant at ��7�a��−1/3�2. This absence of

TABLE II. Exponent n and coefficient c vs polydispersity at �=0.3% in the
10�10 cm2 cell.

Batch A B C D

�a / �a� �%� 2.5 2.5 5.6 11.3

n 0.55�0.03 0.60�0.02 0.63�0.04 0.71�0.02

c 1.68�0.15 2.03�0.26 2.37�0.49 3.25�0.21

TABLE III. Exponent n and coefficient c vs volume fraction � for batch B in the 10�10 cm2 cell.

�
�%� 0.1 0.2 0.3 0.4 0.5 0.8

n 0.57�0.03 0.55�0.02 0.60�0.02 0.67�0.02 0.73�0.03 0.87�0.02

c 1.56�0.14 1.42�0.12 2.03�0.26 2.57�0.23 3.68�0.49 10.07�0.96

TABLE IV. Exponent n and coefficient c vs cell cross section at �=0.3%
for batch C.

Section �cm� 4 10 20

n 0.52�0.03 0.63�0.04 0.77�0.02

c 1.43�0.22 2.03�0.26 4.90�0.40
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variation with time is consistent with the nonevolution of the
power law seen in Fig. 3. Figure 5 �right� shows the evolu-
tion of Nh,exp and Ah,exp with the exponent n for different
batches of particles at different concentrations and in differ-
ent containers. Clearly, as the exponent n increases, i.e., as
polydispersity, volume fraction, or cell size increases, the
number of holes decreases and their area increases.

In summary, the first outcome of this study is that mix-
ing a sedimenting suspension does not lead to a random dis-
tribution of particles, as has been assumed in most of the
previous studies. Image analysis of the particle positioning
reveals regions devoid of particles �holes� of the order of a
few a�−1/3 surrounded by regions where particles have an
excess of close neighbors. It may be that the small propeller
used for mixing creates microvorticity zones from which are
expelled the particles by centrifugal forces, thus leading to
hole formation. The present letter raises the issue, which
clearly needs to be followed up for different approaches to
mixing. The second finding is that this microstructure departs
from random positioning when increasing polydispersity,
particle concentration, and cell sizes. There is thus a complex
interaction yet to be elucidated of a fixed mixing procedure
with these parameters. A third result is that this microstruc-
ture is maintained throughout the sedimentation process. It is
not yet clear what the impact of the observed microstructure
has on velocity fluctuations. The holes are fluctuating struc-
tures but have a size which does not evolve in time �typically
6–9a�−1/3�, while that of the velocity fluctuations does
�from the cell size to �20�−1/3�. Besides the hole size is
smaller than that of the velocity fluctuations. This needs fur-
ther examination, e.g., by comparing with time evolutions of
Poisson and non-Poisson initial states in numerical simula-
tions.

We thank D. Saintillan and E. J. Hinch for discussions
and suggestions, D. Chehata for help in collecting data,

E. Brun, M. Nicolas, and J. Vicente for help in image analy-
sis, and Xena for inspiration.
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FIG. 5. �Color online� Hole number Nh,exp ��� and hole area Ah,exp ��� �dark gray �blue online�� vs time for particles of batch B at �=0.3% �left� and vs n
for the different experiments �right�.
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