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Abstract

Rayleigh streaming in a cylindrical acoustic standing waveguide is stud-

ied both experimentally and numerically, for nonlinear Reynolds num-

bers from 1 to 30 (ReNL =
(

U0

c0

)2 (
R
δν

)2
with U0 the acoustic velocity

amplitude at the velocity antinode, c0 the speed of sound, R the tube

radius and δν the acoustic boundary layer thickness). Streaming ve-

locity is measured by means of Laser Doppler Velocimetry (LDV) in

a cylindrical resonator filled with air at atmospheric pressure at high

intensity sound levels. The compressible Navier-Stokes equations are

solved numerically with high resolution finite difference schemes. The

resonator is excited by shaking it along the axis at imposed frequency.

Results of measurements and of numerical calculation are compared

with results given in the literature and with each other. As expected,

the axial streaming velocity measured and calculated agrees reasonably

well with the slow streaming theory for small ReNL but deviates sig-

nificantly from such predictions for fast streaming (ReNL > 1). Both

experimental and numerical results show that when ReNL is increased,

the center of the outer streaming cells are pushed toward the acoustic

velocity nodes until counter-rotating additional vortices are generated

near the acoustic velocity antinodes.

PACS numbers: 43.25.Nm,43.25.Gf



I. INTRODUCTION

Rayleigh streaming refers to the second order mean velocity that is generated by viscous

effects related with the interaction of a solid surface and an acoustic wave in a fluid. In

thermoacoustic devices, acoustic streaming results in convected heat flow that can reduce

the efficiency of the devices. Because the power density of a thermoacoustic device is roughly

proportional to the square of the acoustic pressure amplitude, the study of high acoustic

amplitude phenomena is important to the field of thermoacoustics. A better understanding

and characterization of the corresponding so-called “fast” Rayleigh streaming is therefore

useful to assess its impact on the efficiency of thermoacoustic devices.

The reference solution derived by Rayleigh1 concerns streaming generated by a stand-

ing wave between two infinite, widely separated plates. Together with further studies by

Nyborg2 and Westervelt3, this work yielded the so-called RNW streaming theory. For a

better application to thermoacoustics, this theoretical description has evolved in order to

refine thermal effect description and to remove the restrictions to wide channels and to slow

streaming. Concerning the first two points, during the last decades, thermoacoustic applica-

tions have motivated several theoretical works to take into account thermal effects4,5 and/or

to remove the restriction to large channels6,7. However, all these theoretical developments

were restricted to slow streaming where fluid inertia is neglected. The dimensionless number

characterizing the inertial effects with respect to viscous effects is the nonlinear Reynolds

number ReNL defined by Menguy and Gilbert8. For slow streaming the nonlinear Reynolds

number is such that ReNL << 1. The influence of fluid inertia was studied only by Menguy

and Gilbert and for ReNL up to about 4 only; using a perturbation method with asymptotic

expansions followed by time-averaging, they developed boundary layer streaming equations,

matched with nonlinear streaming equations in the main acoustic field, thus demonstrating

a)Current address:Laboratoire Roberval CNRS 6253, Université de Technologie de

Compiègne BP 20529, 60205 Compiègne Cedex, France
b)Also at LIMSI-CNRS UPR 3251, 91403 Orsay, France



a noticeable distortion of the streaming velocity field.

Previous simulations of acoustic streaming in the linear regime were conducted by solving

the flow dynamics between two plates inside a thermoacoustic refrigerator9. More recently,

Aktas and Farouk10 performed numerical simulations in the linear and nonlinear streaming

regimes, solving the full compressible Navier-Stokes equations in the plane case with a

FCT scheme. The acoustic excitation was provided by a moving wall. Their results show a

distortion of the streaming field and the existence of multiple streaming cells for small values

of ReNL, even for values less than 1. In their analysis, the authors correlate the existence

of the nonlinear streaming regime with the values of the aspect ratio of the waveguide and

of a different streaming Reynolds number (Res = U2
0/(νω), ω being the angular frequency).

When their results are analyzed as a function of ReNL, the tendencies depicted are in

contradiction with experiments11,12. One of the goals of the present paper is to present

direct numerical simulations of the Navier-Stokes equations in the cylindrical case using a

recently developed high resolution numerical scheme13 tested successfully in several cases

(including acoustics and streaming14,15). In the present simulations, the acoustic wave is

excited by shaking the entire resonator and there are no restrictions on the value of the

ReNL.

With respect to experimental studies, thanks to improving techniques in fluid dynamics,

measurements of the streaming in a standing wave guide have been performed recently11,16–19.

Experimental works by Sharpe, Greated and collaborators16 and by Thompson and Atchley19

first allowed quantitative study of streaming velocity in the core region on the basis of Par-

ticle Image Velocimetry (PIV) or Laser Doppler Velocimetry (LDV) measurements. Moreau

et al.11 first performed LDV measurements of streaming in both the core and the near wall

region to characterize inner streaming vortices. Their measurements were performed for

ReNL up to 140 but they mainly focused on inner streaming cells evolution. In their exper-

imental study, Thompson and Atchley19 considered streaming for ReNL up to 20 and found

that the streaming fields is distorted for high nonlinear Reynolds number in correlation with

the increasing temperature gradient along a streaming cell. Nabavi et al.12 analyzed stream-



ing in a square channel on the basis of PIV measurements; they found that for ReNL up to

25, streaming cells are regular and correspond to “classical” streaming flow, whereas when

ReNL exceeds 25, streaming deforms to irregular and complex shaped patterns. Another

goal of the present work is to present results of measurements of the streaming velocity field

generated by an acoustic standing wave in a cylindrical resonator by means of LDV from

low to high acoustic amplitudes (up to ReNL greater than 25).

In the present study, numerical and experimental results are successfully compared with

available theoretical expectations in the linear regime. For this purpose, a slow streaming

analytical model that has been developed previously6 for the calculation of Rayleigh stream-

ing in a cylindrical waveguide is used. Then the analysis of the nonlinear regime is conducted

for the first time with a coupled numerical/experimental approach on a cylindrical geometry,

and the results are confronted. Both simulations and experiments show that streaming at

high ReNL is associated with additional outer streaming cells appearing at a critical value

of this number of about ReNL = 30.

Section II presents the different methods for the calculation of streaming that are used

or referred to in this paper (Direct numerical method, work by Bailliet et al.6, and work

by Menguy and Gilbert8). The dimensionless numbers used to describe the problem of

Rayleigh streaming in a standing wave guide are presented as it is necessary to consider the

respective values of these numbers in order to validate the comparison between numerical

and experimental results. In Section III, experimental set up and procedure are presented.

Section IV presents the numerical method used to calculate streaming velocity. Finally in

Section V, these numerical and experimental results are compared with each other and with

the available literature.

II. FUNDAMENTAL EQUATIONS AND NON-DIMENSIONAL ANALYSIS

All the methods used to calculate the streaming flow in this paper are based on the

fundamental equations that describe an acoustic wave propagation in the laminar regime



along the z axis, in a cylindrical tube of radius R filled with air at atmospheric pressure.

The ratio of the wavelength to the transverse dimension is supposed to be large so that the

wave is plane. Air is considered as a Newtonian compressible fluid and there is no mean

flow apart from acoustic streaming. Gravity is neglected. Neglecting the bulk viscosity in

comparison with the shear viscosity, these fundamental equations (Navier-Stokes equations)

that describe the fluid motion are written as







































∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · (¯̄τ)

∂(ρE)

∂t
+∇ · (ρEu+ pu) = ∇ · (k∇T ) +∇ · (¯̄τu)

(1)

where ρ is the density, p is the pressure, u is the flow velocity vector, E = e+ 1
2
u·u is the total

energy, with e = p
(γ−1)ρ

the internal energy, γ the specific heat ratio, ¯̄τ = −2
3
µ(∇·u)¯̄I+2µ ¯̄D

the viscous stress tensor, with ¯̄I the identity tensor, ¯̄D = 1
2
(∇u +∇uT ) the strain tensor,

µ the dynamic viscosity, k the thermal conductivity. The gas is considered as a perfect gas

obeying the state law p = rgρT , where T is the temperature and rg is the constant of the

perfect gas (air in the present case).

A. Non-dimensional analysis

In the previous equations, there are 6 unknown physical variables, ρ, u (3 components),

p and T (the internal energy e can be replaced by (cp/γ)T , cp being the specific heat capacity

at constant pressure) and 6 equations. The problem is written in a dimensionless form, using

standard fluid mechanics scalings:

∇̂ =
∇
L0

, t̂ =
t

t0
, û =

u

U0

, p̂ =
p

p0
, ρ̂ =

ρ

ρ0
, T̂ =

T

T0

, µ̂ =
µ

µ0

, k̂ =
k

k0
, (2)

where L0, t0, U0 are reference scales for length, time and velocity (based on the acoustic

propagation), and p0, ρ0, T0, µ0, k0 are scales for pressure, density, temperature, dynamic

viscosity and conductivity (based on fluid properties at rest). In the context of acoustics,



the adiabatic speed of sound is defined as c0 =
√

(

∂p
∂ρ

)

s,0
, also written as c0 =

√

γ p0
ρ0

using

the first-order Taylor development of pressure. The characteristic acoustic time and length

scales are given by t0 =
1
ω
, L0 =

c0
ω
, where ω is the fundamental acoustic angular frequency.

U0 is a reference value of the acoustic velocity, for example the maximum amplitude of the

fundamental component of the wave. With these reference scales, 3 independent dimension-

less numbers are defined by rewriting the set of equations 1 : the acoustic Mach number

M =
U0

c0
, the acoustic Reynolds number Re =

ρ0c
2
0

µ0ω
and the Prandtl number Pr =

µ0cp
k0

.

The equations (1) in dimensionless form are indeed



























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
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

























∂ρ̂

∂t̂
+M∇̂ · (ρ̂û) = 0

∂(ρ̂û)

∂t̂
+M∇̂ · (ρ̂û⊗ û) +

1

γM
∇̂p̂ =

1

Re
∇̂ · (ˆ̄̄τ)

1

γ

∂(ρ̂T̂ )

∂t̂
+M2(γ − 1)

∂(ρ̂1
2
|û|2)
∂t̂

+
M

γ
∇̂ · (ρ̂T̂ û) +M3(γ − 1)∇̂ · (ρ̂û1

2
|û|2)+

γ − 1

γ
M∇̂ · (p̂û) = 1

RePr
∇̂ · (k̂∇̂T̂ ) +

1

Re
M2(γ − 1)∇̂ · (ˆ̄̄τ û)

(3)

The working fluid being air, the Prandtl number is fixed, of order 1. This leaves out two

non-dimensional numbers to monitor wave propagation in the tube (M and Re). In order

to characterize the streaming flow associated with a standing wave, the ∇ operator should

be separated into an axial and a radial part, that is a separate reference length scale for

the radial direction has to be introduced, inducing that a supplementary non-dimensional

number is needed. Menguy and Gilbert8 showed that this additional required number is the

Shear number, defined as Sh =
δν
R
, δν =

√

2ν

ω
being the acoustic boundary layer thickness

in the near wall region (with ν = µ/ρ0 the kinematic viscosity).

Here, the acoustic wave amplitude ranges from linear (M ≪ 1) to weakly nonlinear.

The Reynolds number compares inertial effects and viscous effects over the wavelength

and is large with respect to 1 for the present range of audible frequencies. Then, the

third dimensionless number compares the boundary layer thickness to the tube radius. The

hypothesis Sh ≪ 1 corresponds to large tubes, which is the case in all the studies we deal

with in this paper. Finally when working with air, the same flow behavior is expected

for studies where M ≪ 1, Re ≫ 1 and Sh ≪ 1. This asymptotic similarity will be



considered as valid for the numerical and experimental flows under study in the following.

In order to be able to compare our experimental and numerical results to a reference, in

the following section, two available models for streaming flow are briefly presented: a linear

model developed by Bailliet et al.6 (used for quantitative comparison with direct numerical

simulations and experiments in the slow streaming regime) and a nonlinear model developed

by Menguy and Gilbert8 (used for the description of the evolution of the streaming flow for

moderate streaming regime). The latter shows that when dealing with streaming flow, an

additional dimensionless number has to be considered, as discussed in the following.

B. Slow streaming

In the literature, there are several analytical models for slow streaming2,3,7. In this paper,

the model developed by Bailliet et al.6 is used. This model is based on the fundamental

equations presented above. Additional assumptions allow to obtain an expression of the

second order time averaged axial velocity as function of the first order acoustic quantities.

The streaming is supposed to be slow so that effect of inertia on the streaming motion is

neglected by comparison with viscous effects. The solid is supposed to have an infinite heat

capacity. Under these assumptions, the method of successive approximation is applied, the

first order quantities having a e−iωt dependence. Through time averaging a combination of

the continuity equation and of the axial component of the Navier-Stokes equations written

to the second order, the following equation is obtained:

1

R2
µ0∇2

η 〈u2〉 = ∂zp2 + ∂z(ρ0
〈

u2
1z

〉

) +
1

R
∇η(ρ0 〈u1zu1η〉)−

1

R2
∇η(〈µ1∇ηu1z〉) , (4)

where 〈−〉 denotes the time average and η = r
R
, with r the radial coordinate. An expression

for the second order pressure gradient ∂zp2 is obtained by writing that, in a closed resonator,

there is no net mass flow across the section, i.e. the second order time average mass flow

rate across the cross section must be zero. Successive integration of the expression obtained

yields the second order pressure gradient as a function of the first order acoustic quantities.

In turn, successive integration of eq. (4) yields the axial streaming velocity (see formula (16)



from Bailliet et al.6). In the case of widely spaced parallel plates, this velocity is equal to

the one obtained by RNW theory, but the calculation is valid also for narrow guides (that

is in the near wall region of any guide) and it takes into account the dependence of viscosity

on temperature. This calculation is also valid in the presence of a temperature gradient

(not set in the present study). This analytical study will be used as a reference for our

experimental and numerical results. However, high acoustic amplitudes will be considered

here and therefore the slow streaming assumption is expected to be restrictive, and the effect

of streaming inertia should be analyzed.

C. Effect of inertia on streaming

The only available theoretical study that is not restricted to slow streaming is the one

by Menguy and Gilbert8. By writing the fundamental equations up to the third order in the

main acoustic field followed by time averaging over the acoustic period, Menguy and Gilbert

derived the governing equations for the streaming field in the boundary layer and in the

main central part of the tube. Under the above presented assumptions (M ≪ 1, Re ≫ 1,

Sh ≪ 1), an asymptotic analysis can be performed, allowing to derive the fluid behavior

at the first and second order. A time averaging over the acoustic period yields equations

for streaming flow both inside and outside the acoustic viscous/thermal boundary layer.

Under the previous hypotheses on M, Re and Sh numbers, streaming equations inside the

boundary layer are always linear. Outside the boundary layer, streaming equations can be

linear or nonlinear depending on the ratio between inertia and viscous terms. Menguy and

Gilbert8 showed that in the central part of the tube, the equation that governs the streaming

velocity ûs has a unique nonlinear term

Sh2

M2

1

r̂

∂

∂r̂

(

r̂
∂ûs

∂r̂

)

.

This clearly shows that the outer streaming nonlinearity depends only upon one dimension-

less number :

ReNL =
M2

Sh2



called the nonlinear Reynolds number, that compares inertia and viscosity. For ReNL = O(1)

the classical streaming models are no longer valid and the nonlinear effects of inertia must

be taken into account. The latter cause distortion of the streaming velocity field in the

tube and Menguy and Gilbert8 discuss the distortion of the toroidal vortex patterns. When

ReNL ≪ 1, inertia terms are negligible with respect to viscous terms and the streaming

equation reduces to the linear model of streaming (see Section II.B).

Finally, four dimensionless numbers are to be considered when dealing with Rayleigh

streaming. At fixed Pr, for asymptotic similarity when M ≪ 1, Sh ≪ 1 and Re ≫ 1, the

nonlinear Reynolds number is expected to be the driving parameter for acoustic streaming.

The behavior of the streaming flow will then be analyzed and discussed upon the values of

the nonlinear Reynolds number.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

The setup used to observe the phenomenon of acoustic streaming is shown in Fig. 1 and

consists in a cylindrical tube connected at each end to a loudspeaker via connecting tubes

designed to avoid separation effect related to the singularities in change of section. The

cylindrical part of the waveguide has inner radius R = 19.5 mm and the waveguide is filled

with atmospheric air. The total length of the wave guide is Lexp = 2.13 m and the system

is tuned on two distinct frequencies corresponding to two different resonant modes: the first

mode corresponding to Lexp = λ/2 and the third mode corresponding to Lexp = 3λ/2, λ

being the wavelength of the fundamental mode.

In the following, results will be presented for acoustic streaming across one or two cells

and whatever the working frequency, the position along the guide axis will be given by the

axial coordinate z, with z = ±λ/4 corresponding to two adjacent streaming cells.

The acoustic wave is generated by two loudspeakers driven by a wave generator whose

frequency and amplitude are controlled. Wood smoke is used as seeding particles in order to

perform LDVmeasurements. The single component LDV system is a Dantec Dynamic Model
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Connecting
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FIG. 1. (color online) Photo and diagram of the experimental apparatus.

2580, the probe is mounted on a three-axis positioning system. The argon krypton laser has

an optical wavelength of 514.5µm and a power of 25 W. The parameters of LDV system are

adjusted for sound measurements20 and the axial streaming velocity is measured following

the work of Valière et al.21 along the centerline of the guide. The LDV measurements

yield the Eulerian particle velocity. In agreement with Moreau et al.11, measurements were

performed more than 26 min after the acoustic field is switched on and are stable after this

time. Also, following this latter reference, in order to reach convergence in the measured

streaming velocity, we choose to acquire either 70000 points or to stop acquisition after 10

seconds. This gives a good compromise between a sufficient number of measured tracer

particles per point for a precise streaming velocity measurement and a small measuring time

resulting from a correct seeding.

In order to get as close as possible to the isothermal boundary conditions used in the

numerical calculation and because it was found in the literature that temperature gradients



along the guide walls greatly influence Rayleigh streaming19, the resonator wall is forced

to correspond to an isothermal boundary condition with the help of fans used to insure

that the wall temperature is equal to the room temperature. The temperature is measured

along one streaming cell using 7 thermocouples with a resolution of about 0.05◦C. These

thermocouples are placed at the outer wall of the resonator and are insulated from the

external environment by a polystyrene covering. Using fans to force heat transfer from

the guide to the environment yields a residual temperature difference of 0.3◦C between the

acoustic velocity node and antinode at ReNL = 31.8. This temperature difference would be

equal to 3.1◦C if no fans were used.

IV. NUMERICAL APPROACH

A. Numerical method

In order to initiate an acoustic standing wave in the cylindrical tube of length L, it

is shaken in the longitudinal direction z, so that an harmonic velocity law is imposed,

~V (t) = (0, V (t))T , with V (t) = zpω cos(ωt), zp being the amplitude of the tube displacement.

The flow can be modeled by the compressible Navier-Stokes equations (1), expressed in the

moving frame attached to the tube, so that a forcing source term hs is added to the system

of equations (1). The model can be written in vector form :

∂w

∂t
+

1

r

∂

∂r
[r(f − f v)] +

∂

∂z
(g − gv) = h+ hs (5)

where w is the vector of conservative variables (ρ, ρu, ρv, ρE)T , f and g are the inviscid fluxes

f = (ρu, ρu2 + p, ρuv, ρEu + pu)T and g = (ρv, ρuv, ρv2 + p, ρEv + pv)T , f v and gv being

the viscous fluxes f v = (0, τrr, τrz, k
∂T
∂r

+ uτrr + vτrz)
T , gv = (0, τrz, τzz, k

∂T
∂z

+ uτrz + vτzz)
T .

The source terms read h = (0,− τθθ
r
+ p

r
, 0, 0), hs = (0, 0,−ρdV

dt
,−ρudV

dt
)T .

The model is numerically solved by using high order finite difference schemes, developed

by Daru and Tenaud13. An upwind scheme, third order accurate in time and space, is

used for convective terms, and a centered scheme, second order, is used for diffusion terms.



Traveling shock waves are present in the flow for high acoustic levels, that generate numerical

oscillations. However they are of weak intensity and produce very small oscillations that do

not spoil the solution. Thus it was not necessary to add a costly shock capturing procedure.

The numerical procedure is briefly described thereafter. Denoting by wn
i,j the numerical

solution at time t = nδt and grid point (r, z) = (iδr, jδz), with δt and δr, δz the time and

space discretization steps respectively, the following Strang splitting procedure is used to

obtain a second order accuracy every two time steps:

wn+2
i,j = LδrLδzLδzLδrw

n
ij (6)

where Lδr (resp. Lδz) is a discrete approximation of Lr(w) = w+δt(−1
r
(rf)r+

1
r
(rf v)r+h+

hs) (resp. Lz(w) = w + δt(−gz + gvz )). The 1D operators being similar in both directions,

only the r operator is described. The scheme is implemented as a correction to the second

order Mac-Cormack scheme. It consists of three steps, as follows:

w∗

i,j = wn
i,j − δt

ri,jδr

[

ri+ 1

2
,j(fi+1,j − f v

i+ 1

2
,j
)− ri− 1

2
,j(fi,j − f v

i− 1

2
,j
)
]n

+ δt(h+ hs)ni,j

w∗∗

i,j = w∗

i,j − δt
ri,jδr

[

ri+ 1

2
,j(fi,j − f v

i+ 1

2
,j
)− ri− 1

2
,j(fi−1,j − f v

i− 1

2
,j
)
]∗

wn+1
i,j = 1

2
(wn

i,j + w∗∗

i,j) +
1

ri,j
(ri+ 1

2
,jC

r
i+ 1

2
,j
− ri− 1

2
,jC

r
i− 1

2
,j
)

(7)

In (7), the subscripts (i± 1
2
, j) denote a value at the interface between cells (i, j) and

(i±1, j). The viscous fluxes are discretized at each interface using centered second order finite

differences. The corrective terms Cr
i± 1

2
,j
provide the third order accuracy and upwinding for

the inviscid terms. Details on the model can be found in Daru et al.14,15,22.

The physical boundary conditions employed in the moving frame are : no slip on the

wall, symmetry at the ends of the tube, and isothermal walls.

The acoustic streaming is generated by the interaction of the imposed plane standing

wave and the tube wall. Resonant conditions are imposed, for which L = λ/2, λ being

the wavelength calculated for a dissipative gas. The boundary layer δν is of small thickness

and must be correctly resolved by the discretization mesh. After several trials, it was found

that a value of 5 points per boundary layer thickness is sufficient for reasonable accuracy

of the simulations. All results presented below are thus obtained using a cartesian mesh of



rectangular cells of constant size δr and δz, composed of 500 points in the axial direction z,

and of 5×R/δν points in the radial direction.

The flow being assumed to be axisymmetric (at least in the range of parameters treated),

only the region 0 ≤ r ≤ R and 0 ≤ z ≤ L was considered. Also, the scheme being fully

explicit, the time step δt is fixed such as to satisfy the stability condition of the scheme. In

all cases considered here, the time step limitation is acoustic, it reads δt ≤ 1
2
δr/c0. Taking

δt = 1
2
δr/c0 and δr = δν/5, this results in a number of time steps NT per period of oscillation

proportional to
√
L, NT = 1/(fδt) = 10

√

2πc0
ν

√
L.

Because the LDV measurements yield the Eulerian particle velocity numerical results

are based on the Eulerian time-average of fluid velocity. The numerical streaming velocity

is obtained by calculating a simple mean value of the particle velocity over the discretized

acoustic period, thus a time average made with respect to the fixed measuring position, for

each mesh point.

B. Simulation parameters

A cylindrical tube is considered, initially filled with air at standard thermodynamic

conditions, p0 = 101325 Pa, ρ0 = 1.2 kgm-3, T0 = 294.15 K. The thermo-physical properties

of air are µ0 = 1.795 10-5 kgm-1s-1 and k0 = 0.025 Wm-1K-1. Viscosity is expressed as a power

law of temperature, µ(T ) = µ0(T/T0)
0.77. Also for air, γ = 1.4 and rg = 287.06 Jkg-1K-1.

The Prandtl number Pr is equal to 0.726. This results in an initial speed of sound c0 =

343.82 ms-1.

In the experimental case presented in Section III, the half-wavelength is about 0.7 m

long, which would yield a limiting time step corresponding to NT ≈ 25000
√
L, that is 21000

iterations per period. Since transients of several hundreds of periods may be needed in

order to reach stabilized streaming flow, several millions of iterations are necessary for each

simulation. Considering these numerical constraints, a high-frequency wave is chosen for

numerical calculations, with f = 20000 Hz. Taking into account the viscous dissipation,



this corresponds to a shorter wave guide with L = 8.396 mm. The resulting boundary layer

thickness is δν = 1.54 10−5 m. For computational ease, the Shear number was fixed in the

numerical simulations to be 1/40.

The time step δt = 8 10−9s is chosen in order to satisfy the numerical stability condition,

corresponding to 6250 time iterations per period. The acoustic velocity produced in the

wave guide depends on the imposed amplitude of the horizontal displacement zp. It varies

approximately linearly with zp, for a given ratio R/δν . Therefore it is possible via the only

choice of zp to approximately set the value of the desired nonlinear Reynolds number ReNL,

so that to approximately fit the ones obtained in experimental configurations.

V. RESULTS AND DISCUSSION

As seen in sections III and IV several differences exist between experimental and sim-

ulated configurations. As discussed in section II these differences should not be associated

with different behaviors of acoustic streaming if the nonlinear Reynolds number ReNL = M2

Sh2

is the same, and if the other relevant dimensionless numbers Sh =
δν
R
, Re =

c20
νω

andM =
U0

c0
are of the same order of magnitude. The acoustic amplitude of the fundamental mode at

the velocity antinode z = 0 is chosen as the velocity reference U0.

Table I summarizes then the values of these dimensionless parameters for both the

experimental and numerical configurations together with the ones for several studies of the

literature8,10,12,19 that are used for comparison with the present study.

As shown by Table I and as stated in the previous section IV, all numerical calculations

were performed for a given frequency in air at atmospheric pressure, corresponding to one

acoustic Reynolds number Re. Because the experimental setup could be tuned at two differ-

ent resonant modes, two different Re numbers could be achieved. Whatever the frequency

condition is in numerical and experimental configurations, the acoustic Reynolds number is

always much larger than 1. Therefore, we can expect similarity to hold between the different

configurations studied here in terms of Re.



When working on the λ/2 experimental mode, the Sh number is 1.2 · 10−2 (the corre-

sponding experimental configurations are labeled E1 and E2), whereas when working on the

3λ/2 experimental mode, the Sh number is 7.2 · 10−3 (labeled E3 to E5). In the numerical

simulations the Sh number is 2.5 · 10−2. As will be shown in the following section, such

differences in Sh numbers do not yield any significant difference in the acoustic streaming

regime.

Finally, by changing the acoustic amplitude, the M and ReNL numbers are modified.

Since the ReNL number is the relevant parameter to study nonlinear acoustic streaming,

numerical and experimental configurations were chosen such that the ReNL numbers are as

close as possible for comparisons. The corresponding acoustic Mach number ranges from

8.2 ·10−3 to 4 ·10−2 for experiments and from 1.2 ·10−2 to 1.5 ·10−1 for numerical simulations,

and therefore attention should be paid to the possible effects of such different dynamic ranges.

In the following Sections V.A-C, results for experiments and numerical simulations are

presented for different ranges of ReNL, then in Section V.D the effect of other dimensionless

numbers are considered and discussed.

A. Streaming velocity at low nonlinear Reynolds number

The results presented in this section refer to situations where the nonlinear Reynolds

number ReNL is smaller than 1. The experimental case selected for this comparison at low

nonlinear Reynolds number corresponds to ReNL = 0.47 (E1), and the numerical simulation

case corresponds to ReNL = 0.25 (N1).

Figure 2 displays results from measurements and from numerical simulations for the

axial streaming velocity component us along the scaled central axis z/(λ/2) together with

two different results from the analytical analysis presented in Section II corresponding to the

numerical and experimental cases respectively. In all figures, the velocities are normalized

by URayleigh = 3
8

U2

0

c0
that corresponds to the amplitude of the streaming velocity in Rayleigh’s

theory. The nonlinear effects being negligible for these values of ReNL, the axial streaming



z / (λ/2)

U
s
/U

R
ay

le
ig

h

-0.5 -0.25 0 0.25 0.5

-1

-0.5

0

0.5

1

FIG. 2. (color online) Variation of the axial streaming velocity component along the central

axis of the guide normalized by URayleigh = −3
8

U2

0

c0
. (–) N1 numerical simulation at ReNL =

0.25 ; (- -) analytical results using the conditions of the simulation ; (•) E1, experimental

measurements ReNL = 0.47 ; (- · -) analytical results using the conditions of the experiment.

velocity should follow Rayleigh’s law for linear streaming, that is uRayleigh = −3
8

U2

0

c0
sin

(

4πz
λ

)

in the present coordinate system. Figure 2 shows that it is indeed the case for all results

presented in the figure, except for a slight difference between numerical and both analytical

and experimental results. The source of this difference is unclear. The acoustic wave is

created in a different manner in the three studies (analytical, numerical and experimental).

This can create discrepancies between the results. Moreover, it is important to recall that

the numerical simulations are long and the streaming flow is of the second order. These are

difficult conditions, especially for small values of the nonlinear Reynolds number. There-

fore this difference in streaming velocity between numerical and analytical results is very

satisfying.

The streamlines of the streaming flow are plotted in Fig. 3. Two outer streaming cells and

two inner cells can be observed, corresponding to the classical Rayleigh streaming pattern.

The streaming vortices are present either sides of the central axis and spaced at interval of

λ/4. For outer streaming, the flow along the central axis is directed toward the acoustic



velocity antinodes and returns in the vicinity of the wall to complete a closed loop. In the

near wall region, the inner streaming vortices have directions of rotation opposite to those

of the outer cells. In the cylindrical resonator, those vortices form toroidal flows around the

central axis.
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FIG. 3. Streamlines of the streaming flow, from numerical simulation at ReNL = 0.25.

Figure 4 shows the variation of the axial streaming velocity component along the radial

axis on a cross-section positioned at z = −λ/8, for the same cases as in Fig. 2. There is

good agreement between all results in the core flow, away from the walls. Small discrepancies
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FIG. 4. (color online) Variation of the normalized axial streaming velocity component

along the radial axis, at z = −λ/8. (–) N1, numerical simulation at ReNL = 0.11 ; (- -)

analytical results using the conditions of the simulation ; (•) E1, experimental measurements

at ReNL = 0.47 ; (- · -) analytical results using the conditions of the experiment.



between numerical and experimental results can be observed near the walls, when 0.8R < r <

R that can be attributed to the difference between the Shear numbers in the experimental

and numerical configurations. To cope with this effect of different Shear numbers, the

evolution of the streaming radial dependency us(r) will no further be discussed, but only

the evolution of the axial dependency us(z) along the axis with ReNL.

Also, given the similarity between the two analytical curves along the center line, it is

chosen in the following to plot only the analytical result corresponding to the experimental

configuration.

B. Streaming velocity at moderate nonlinear Reynolds number
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FIG. 5. (color online) Variation of the normalized axial streaming velocity component along

the central axis of the guide. (- -) Analytical results using the conditions of the experiment ;

(•) E2, experimental measurements at ReNL = 4.8 ; (–) N2, numerical simulation ReNL =

4.91.

Figures 5, 6, 7 display results of measurements and calculations for the centerline stream-

ing velocity along the axis for increasing values of ReNL, up to ReNL ≈ 15. They show that

as ReNL increases, the streaming velocity departs from the linear theoretical expectation,
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FIG. 6. (color online) Variation of the normalized axial streaming velocity component along

the central axis of the guide. (- -) Analytical results using the conditions of the experiment

; (•) E3, experimental measurements at ReNL = 7.7 ; (–) N3, numerical simulation at

ReNL = 7.93.

especially at streaming antinodes (i.e. z/(λ/2) = ±0.25 in the considered figures) where

it gets significantly lower than Rayleigh expectation. As shown in Fig. 6, the streaming

structure keeps its symmetry with respect to the z = 0 position, both in numerical simula-

tions and in experimental measurements. It was checked that this symmetry is kept even

for higher amplitude, and therefore, in the rest of the figures, measurements are presented

along one cell only (from about z = 0 to z/λ/2 = 0.5).

The figures clearly show a continuous decrease of the maximum value of the streaming

velocity as ReNL increases both in the experimental results and the numerical simulations

even so the decrease is not as pronounced in the numerical simulations as in experiments

(see Figure 7). Potential sources of this discrepancy will be discussed in Section V.D.
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FIG. 7. (color online) Variation of the normalized axial streaming velocity component along

the central axis of the guide. (- -) Analytical results using the conditions of the experiment

; (•) E4, experimental measurements at ReNL = 14.6 ; (–) N4, numerical simulation at

ReNL = 15.2.

C. Streaming velocity at high nonlinear Reynolds number

As the Reynolds number is further increased, as shown in Fig. 8, the difference between

measured and calculated streaming on one hand, and linear theory on the other hand is even

more pronounced.

In Figure 8, experimental results are very different from the linear theory along the axis

except near the streaming velocity nodes (z = 0 and z/(λ/2) = 0.5 positions). In the z = 0

region, the curve for the measured streaming velocity along the central axis has successive

changes of slope. The maximum measured streaming velocity keeps on decreasing when

ReNL is increased until it crosses the zero-velocity axis for ReNL > 30, corresponding to the

apparition of a new streaming cell.

The numerical simulation shows an overall similar behavior, although the new cells

appearing around the central axis are smaller in the z extent. Near the ends of the guide small

additional cells appear in the numerical simulations. The streamlines obtained numerically
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FIG. 8. (color online) Variation of the normalized axial streaming velocity component along

the central axis of the guide. (- -) Analytical results using the conditions of the experiment

; (•) E5, experimental measurements at ReNL = 31.8 ; (–) N5, numerical simulation at

ReNL = 38.6.
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FIG. 9. Streamlines of the streaming flow, from numerical simulation at ReNL = 38.6.

are shown on Figure 9 enabling the visualization of the new streaming cells. Even if the

experimental and numerical results do not superimpose perfectly, it is remarkable that the

same qualitative and overall quantitative behaviors are observed for close values of the ReNL

number. Figure 10 shows the numerical results for the modification of the streaming field

as ReNL increases, clearly exhibiting the emergence of new streaming cells for ReNL greater

than 30.
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FIG. 10. (color online) Numerical simulations: variation of the normalized axial streaming

velocity component along the central axis of the guide for several values of ReNL.

D. Discussion

As seen in the previous sections, numerical, experimental and analytical results all agree

for small values of ReNL. As ReNL increases, the tendencies are similar for numerical simu-

lations and experiments: the levels of dimensionless streaming decrease and new streaming

cells appear at a critical value ReNL ≃ 30. In order to identify a physical source for this

evolution of streaming with ReNL, several hypotheses are discussed in the following sections

on the basis of the present literature review.

1. Thermal effects

Following Thompson et al.19, the influence of thermal effects can be questioned. They

performed measurements in a standing wave guide for nonlinear Reynolds numbers up to

22, the three other dimensionless numbers (M , Re and Sh) respecting the above mentioned

asymptotic conditions of our study, see Table I. They explored the evolution of the stream-

ing for three different thermal conditions : isothermal, uncontrolled and insulated and for

different nonlinear Reynolds numbers. They observed that when the magnitude of the tem-



perature gradient was increased by changing the thermal condition for a given high nonlinear

Reynolds number, the magnitude of the streaming decreased and the shape of the streaming

cell became increasingly distorted. They found that the thermoacoustically induced ax-

ial temperature gradient strongly influences the axial component of the acoustic streaming

velocity and concluded that the deviation from the theories of Rott (characterizing slow

streaming with an axial temperature gradient) is due to the influence of thermal effect more

than fluid inertia.

In our numerical simulations, isothermal boundary conditions are imposed and thermal

effects are accounted for. Nevertheless, the axial streaming velocity profile is deformed with

increasing ReNL. The same tendency is observed in the experimental results presented in

Fig. 5-8, even if the thermal condition maintained for our set up is only quasi-isothermal

(as a 0.3◦C temperature difference between acoustic velocity node and acoustic velocity

antinode is measured). For ReNL = 31.8 the streaming flow already presents additional

vortices compared to Rayleigh expectation, as shown by the change of sign of the axial

streaming velocity in Fig. 8.

Therefore, if we agree that thermal effects are very important in understanding acoustic

streaming (the difference between experimental and numerical thermal conditions could be

at the origin of the difference in results) it appears from our study that the presence of a

temperature gradient is not the cause of the divergence from slow streaming expectation at

high ReNL observed both numerically and experimentally.

2. Irregular streaming

Another possible cause of streaming distortion at high amplitudes exposed in the nu-

merical and experimental literature is the change of regime from ”regular” (or classical)

to ”irregular” streaming. In the literature the term ”regular” is used when streaming flow

exhibits the well-known patterns (toroidal outer and inner cells), while the term ”irregular”

is used to characterize any streaming flow that deviates from these patterns.



Aktas and Farouk10 studied acoustic streaming in a 2D rectangular channel numerically.

They found that there is a limit in the value of the enclosure height to wavelength ratio

above which the streaming flow structures are always irregular and complex. Since their

working frequency is constant, it is equivalent to consider a limit value of the inverse of

the Shear number. Based on their numerical results, they estimate this limit value of 1/Sh

between 30 and 40. In the present paper, results for values greater or equal to 40 are

shown, and we do observe regular streaming for low values of ReNL (cases E1 and N1).

The results presented by Aktas and Farouk10 do not exhibit any clear correlation between

the regularity of the streaming and the value of ReNL. For example, for two nonlinear

Reynolds numbers corresponding to slow streaming cases ReNL = 0.10 (called C-3 in their

paper) and ReNL = 0.08 (D-2), they observe two different streaming structures, respectively

classical and irregular. The case with irregular streaming structure has a value of 1/Sh of

40. This last case is almost similar to our simulation N1 where ReNL = 0.25, shown in

Fig. 3. In this figure, the streaming velocity field is clearly regular. Although our results are

obtained for axisymmetrical configurations, whereas those of Aktas and Farouk10 concern a

rectangular enclosure, previous work14 showed similar behavior in planar geometry compared

to the present observations in the axisymmetrical case. This is indeed coherent with the

asymptotic approach.

In the experimental literature, Nabavi et al.12 mentioned irregular Rayleigh streaming

for nonlinear Reynolds number above 20. Their experiments were performed in the case of

isothermal boundary conditions. They found that for nonlinear Reynolds number above 25,

the classical streaming deforms to an irregular and complex flow structure. The deformation

they observe is similar to what we observe for some of their irregular cases, however the

pattern of the irregular streaming is not always consistent amongst the experiments and

with the value of ReNL. In the above presented results, the streaming flow remains stable,

consistent and show a continuous evolution from low to high amplitudes. Measurements

have been repeated several times, they were always performed for steady flow and the results

obtained are very reproducible.



Finally, we choose not to use the terms ”regular” or ”irregular” to describe the stream-

ing flow regimes observed both numerically and experimentally. Instead, we would rather

describe them as ”regular” streaming flow regimes with either two (ReNL < 30) or three

(ReNL > 30) toroidal structures, with a smooth transition as ReNL increases.

3. Nonlinear propagation
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FIG. 11. (color online) Distribution of the harmonics along the guide. (a) Numerical simu-

lation N5 ; (b) Experimental study E5.

Our analysis has been done under the assumption of low Mach number. But as the

nonlinear Reynolds number increases, so does the Mach number, creating situations where

nonlinear acoustic propagation should be of importance, thus the generation of higher har-

monics has to be considered. This brings up the question of higher harmonics influence on

the streaming in competition with inertial effects associated with high values of nonlinear

Reynolds number.

Figure 11 shows the harmonic distribution of the acoustic field, obtained by projecting

the total velocity signals on a sine basis, in both numerical (Fig.11.a) and experimental



(Fig.11.b) results for ReNL ≈ 30. It shows that the nonlinear propagation induces the

existence of shockwaves in the simulations whereas the magnitude of higher harmonics never

reaches more than 4% of the magnitude of the fundamental in the experiments, due to the

difference in geometrical configurations between experimental and numerical studies. Now

for a first approach a superposition principle is applied in order to identify the acoustic

streaming due to multiple frequency components. But this crude assumption cannot cope

with nonlinear effects. So, as stated in section II.C, because the boundary layer can be

considered as a region where the streaming is linear, we choose to superimpose the streaming

fields resulting from higher harmonics in the vicinity of this region. We choose the particular

radial position corresponding to the limit between inner and outer streaming cell, that is at

(R− r) ≈ 3δν , at which the streaming is expected to be close to linear streaming. Figure 12

shows the streaming velocity obtained from the numerical simulation at ReNL = 38.6 (N5),

the analytical calculation resulting from the fundamental component of the numerical signal,

and the analytical calculation resulting from the linear superposition of all the harmonic

components of the numerical signal. First, the distortion of the streaming close to the

boundary layer (Fig. 12) is found to be much weaker than in the core of the resonator

(Fig. 8 and Fig. 10). The effect of the harmonics superposition at (R − r) ≈ 3δν results

in a shift of the streaming velocity maxima towards the acoustic velocity nodes associated

with a small change in the velocity magnitude. The same type of distortion can be observed

on the numerical profile (Fig. 12), but with a stronger change in the velocity magnitude

(the maximum value and the slope of the curve at z = 0 are much smaller). Moreover,

as the distortion in acoustic streaming is qualitatively the same in both experimental and

numerical study along the centerline of the guide, we conclude that while the harmonic

content of experimental and numerical signals are very different, the influence of higher

harmonics is not the main cause of the divergence of the streaming field from Rayleigh’s

expectation.

Finally we are left with only one hypothesis to explain this divergence: the inertial effects

cannot be neglected anymore when the streaming is fast.
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FIG. 12. (color online) Streaming velocity profile along the axis of the guide at (R − r) ≈

3δν , for ReNL = 38.6. (−) Analytical solution ; (-·-) Streaming velocity from analytical

superposition of frequency components of the numerically calculated acoustic velocity; (- -)

Numerical simulation.

VI. CONCLUSION

In this paper a coupled experimental and numerical study of Rayleigh streaming from low

to high acoustic amplitudes was conducted. As expected, slow streaming (both numerically

and experimentally obtained) agrees with analytical slow streaming expectations for small

ReNL. The divergence from these analytical results that occurs when the ReNL is increased

is very similar for numerical and experimental results. As ReNL increases, the cell centers

are pushed towards the acoustic velocity nodes and the maximum axial streaming velocity

decreases with respect to the analytical Rayleigh reference amplitude. It was also shown that

for ReNL larger than about 30, additional outer cells are formed through a smooth transition

between coherent streaming flow patterns. This is why the streaming flow regimes can be

called ”regular” throughout the transition between two (ReNL < 30) and three (ReNL > 30)

toroidal structures. After having considered all potential sources for the observed divergence

from slow streaming flow, we have concluded that inertial effects on acoustic streaming are



the main source. Logically the ReNL is the driving parameter for the acoustic streaming in

the regime considered here.
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874.

10 Aktas, M. K. and Farouk, B. (2004). “Numerical simulation of acoustic streaming gener-

ated by finite-amplitude resonant oscillations in an enclosure”, J. Acoust. Soc. Am. 116,

2822–2831.

11 Moreau, S., Bailliet, H., and Valière, J.-C. (2008). “Measurements of inner and outer

streaming vortices in a standing waveguide using laser doppler velocimetry”, J. Acoust.

Soc. Am. 123, 640–647.



12 Nabavi, M., Siddiqui, K., and Dargahi, J. (2009). “Analysis of regular and irregular

acoustic streaming patterns in a rectangular enclosure”, Wave Motion 46, 312 – 322.

13 Daru, V. and Tenaud, C. (2004). “High order one-step monotonicity-preserving schemes

for unsteady compressible flow calculations”, J. Comp. Phys. 193, 563 – 594.

14 Daru, V., Baltean-Carlès, D., Weisman, C., Debesse, P., and Gandikota, G. (2013).

“Two-dimensional numerical simulations of nonlinear acoustic streaming in standing

waves”, Wave Motion 50(5), 955 – 963.

15 Daru, V. and Gloerfelt, X. (2007). “Aeroacoustic computations using a high order shock-

capturing scheme”, AIAA J. 45, 2474–2486.

16 Sharpe, J., Greated, C., Gray, C., and Campbell, D. M. (1989). “The measurements of

acoustic streaming using particle image velocimetry”, Acustica 68, 168 – 172.

17 Campbell, M., Cosgrove, J., Greated, C., Jack, S., and Rockliff, D. (2000). “Review of

lda and piv applied to the measurement of sound and acoustic streaming”, Optics and

Laser Technology 32, 629 – 639, optical methods in heat and fluid flow.

18 Thompson, M. and Atchley, A. (2005). “Simultaneous measurement of acoustic and

streaming velocities in a standing wave using laser doppler anemometry”, J. Acoust. Soc.

Am. 117, 1828–1838.

19 Thompson, M., Atchley, A., and Maccarone, M. (2005). “Influences of a temperature

gradient and fluid inertia on acoustic streaming in a standing wave”, J. Acoust. Soc. Am.

117, 1839–1849.

20 Moreau, S., Bailliet, H., Valière, J.-C., Boucheron, R., and Poignand, G. (2009). “Devel-

opment of laser techniques for acoustic boundary layer measurements. part ii: Compari-

son of ldv and piv measurements to analytical calculation”, Acta Acustica united with

Acustica 95, 805–813.

21 Valière, J.-C., Moreau, S., and Bailliet, H. (2009). “Development of laser techniques for

acoustic boundary layer measurements. part i: LDV signal processing for high acoustic

displacements”, Acta Acustica united with Acustica 95, 585–594.

22 Daru, V. and Tenaud, C. (2001). “Evaluation of tvd high resolution schemes for un-



steady viscous shocked flows”, Computers and Fluids 30, 89 – 113.



TABLE I. Non-dimensional numbers used for the present study together with those of several

studies in the literature.

Reference Name ReNL M Sh Re

Experiments

E1 0.47 8.2 · 10−3

1.2 · 10−2 1.4 · 107
E2 4.8 2.6 · 10−2

E3 7.7 2 · 10−2

7.2 · 10−3 5.2 · 106(present study) E4 14.6 2.7 · 10−2

E5 31.8 4 · 10−2

Numerical

N1 0.25 1.2 · 10−2

2.5 · 10−2 6.3 · 104
N2 4.91 5.5 · 10−2

N3 7.93 7.0 · 10−2

(present study) N4 15.2 9.7 · 10−2

N5 38.6 15 · 10−2

Menguy & Gilbert8 [0.5− 2] << 1 << 1 >> 1

Thompson et al.19 [2.1− 22] [8− 25] · 10−3 5.3 · 10−3 4.1 · 106

Nabavi et al.12 [6.6− 78] [7.7− 34] · 10−3 [3− 4] · 10−3 [1− 1.9] · 106

Aktas & Farouk10 [0.035− 16.4] [3.7− 79] · 10−3 [2− 10] · 10−2 6.6 · 104
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