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Robust feedback switching control:

dynamic programming and viscosity solutions∗

Erhan BAYRAKTAR† Andrea COSSO‡ Huyên PHAM§

September 22, 2014

Abstract

We consider a robust switching control problem. The controller only observes the

evolution of the state process, and thus uses feedback (closed-loop) switching strategies,

a non standard class of switching controls introduced in this paper. The adverse player

(nature) chooses open-loop controls that represent the so-called Knightian uncertainty,

i.e., misspecifications of the model. The (half) game switcher versus nature is then for-

mulated as a two-step (robust) optimization problem. We develop the stochastic Perron

method in this framework, and prove that it produces a viscosity sub and supersolution

to a system of Hamilton-Jacobi-Bellman (HJB) variational inequalities, which envelope

the value function. Together with a comparison principle, this characterizes the value

function of the game as the unique viscosity solution to the HJB equation, and shows as

a byproduct the dynamic programming principle for robust feedback switching control

problem.

MSC Classification: 60G40, 91A05, 49L20, 49L25.

Keywords: model uncertainty, optimal switching, feedback strategies, stochastic games,

stochastic Perron’s method, viscosity solutions.

1 Introduction

Optimal switching is a class of stochastic control problems that has attracted a lot of interest

and generated important developments in applied and financial mathematics. Switching

control consists in sequence of interventions that occur at random discrete times due to

switching costs, and naturally arises in investment problems with fixed transaction costs or

in real options. The literature on this topic is quite large and we refer e.g. to [25], [18], [9],
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[19], [2] for a treatment by dynamic programming and PDE methods, to [14], [15], [10] for

the connection with reflected BSDE methods, and to [8], [7], [12] for various applications

to finance and real options in energy markets.

The standard approach to the study of a switching control problem is to give an evolu-

tion for the controlled state process, with assigned drift and diffusion coefficients. These,

however, are in practice obtained through estimation procedures and are unlikely to coin-

cide with the real coefficients. For this reason, in the present work we study a switching

control problem robust to a misspecification of the model for the controlled state process.

This is formalized as follows: Given s ≥ 0, x ∈ R
d, and a regime i ∈ Im := {1, . . . ,m}, let

us consider the controlled system of stochastic differential equations, for t ≥ s:

{

Xt = x+
∫ t
s b(Xr, Ir, ur)dr +

∫ t
s σ(Xr, Ir, ur)dWr,

It = i 1{s≤t<τ0} +
∑

n∈N ιn1{τn≤t<τn+1}.
(1.1)

The piecewise constant process I denotes the regime value at any time t, whose evolution

is determined by the controller through the switching control α = (τn, ιn)n∈N, while the

process u, decided by nature, brings the uncertainty within the model. In the switching

control problem with model uncertainty, the objective of the controller is the maximization

of the following functional, over a finite time horizon T < ∞:

J(s, x, i;α, u) := E

[
∫ T

s
f(Xs,x,i;α,u

r , Is,x,i;α,ur , ur)dr + g(Xs,x,i;α,u
T , Is,x,i;α,uT )

−
∑

n∈N

c(Xs,x,i;α,u
τn , Is,x,i;α,u

τ−n
, Is,x,i;α,uτn )1{s≤τn<T}

]

,

playing against nature, described by u. This leads to the “robust” optimization problem

sup
α

(

inf
u

J(s, x, i;α, u)
)

. (1.2)

What definition for the switching control α and for u should we adopt? As a first attempt,

if we interpret (1.2) as a game between the controller and nature, it would be reasonable

to formulate it in terms of strategies against controls, as in the seminal paper by Elliott

& Kalton [11]. In this case, α is a non-anticipating switching strategy, while u is an

open-loop control. Then, the switcher knows the current and past choices made by the

opponent (see Section 4.2 below for more details on this formulation). In the context of

robust optimization, the controller does not know in general the choice made by nature.

However, he knows the evolution of X and also of I (by keeping track of his previous

actions). For this reason, inspired by [22], we take α as a feedback switching control rather

than a non-anticipating strategy (namely, we present a feedback formulation of a switching

control problem, which is quite uncommon in the literature). On the other hand, u can

be an open-loop control (nature is aware of the all information at disposal). This leads to

the formulation of robust feedback switching control problem that we compare in the last

section of this paper with the Elliott-Kalton one, in a specific example. Notice that, in

both formulations, when the controller picks a strategy or a feedback control, then nature

acts in a way to minimize the payoff knowing the controller’s action (as a consequence of

2



the infu in (1.2)), which looks unrealistic, since nature is disinterested and has no-payoff.

Nevertheless, the fact that nature takes a decision to contrast the controller’s choice means

that we look at the worst-case scenario for the switcher, consistently with the robustness

characteristic of the optimization problem.

We develop the stochastic Perron method in this framework of robust feedback switching

control. This method was initially introduced to analyze linear problems in [3], Dynkin

games in [5] and regular control problems in [4]. Later on, it was adapted to analyze

exit time problems in [21], control problems with state constraints in [20], singular control

problems in [6], stochastic differential games in [23] and stochastic control with model

uncertainty in [22]. Stochastic Perron’s method is similar to a verification theorem and

avoids having to go through the dynamic programming principle (DPP) first (which is not

known a priori in this context) to show that the value function is a solution to the HJB

equation. Actually, the DPP is obtained as a byproduct of the stochastic Perron method

and comparison principle. Unlike the classical verification theorem, the stochastic Perron

does not require the a priori smoothness of the value function. The method is to construct

viscosity (semi-) solutions to the HJB equation, which envelope the value function, and

relies on the comparison principle of the HJB equation to conclude that the value function

is the unique viscosity solution. In order to carry out the construction, one needs to define

a suitable family of stochastic supersolutions/subsolutions, the crucial property of which

is closedness under minimization/maximization and whose members stay above/below the

value function. The technical part of the proof is in showing that the infimum/supremum

of the above families give a viscosity subsolution/supersolution to the HJB equation. One

of the advantages of the stochastic Perron method is that it allows us to demonstrate

that the information available to nature (whether it uses open-loop or feedback controls)

does not affect the value of the game. We do this by constructing the class of stochastic

supersolutions for an auxiliary problem, which by definition lies above our original value

function. Our results here can be thought of as a generalization of the recent work [22], in

which the controller uses elementary feedback strategies. In our setting changing the value

of control has a switching cost. This changes the nature of the problem as the past action

of the controller needs to be stored as a state variable. The presence of this additional state

variable brings about several subtle technical issues, which we resolve in this paper. For

example, concatenating the feedback switching strategies need to be done with care (not to

incur an additional cost at the time of concatenation), which forces us to make appropriate

changes in defining the stochastic subsolutions.

The rest of this paper is organized as follows. In Section 2, we provide a rigorous

formulation of the robust feedback switching control problem. We develop in Section 3

the stochastic Perron method, and characterize the infimum (supremum) of the stochastic

supersolutions (subsolutions) as the viscosity subsolution (supersolution) of the HJB equa-

tion. In Section 4, by using a comparison principle under a no free loop condition on the

switching costs, we conclude that the value function is the unique viscosity solution to the

HJB equation, and obtain as a byproduct the dynamic programming principle. We finally

compare the two formulations: robust feedback/Elliott-Kalton, in a specific example, which

then gives a counterexample to uniqueness for the HJB equation.
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2 Modeling a robust switching control problem

2.1 Feedback switching system under model uncertainty

Let (Ω,F ,P) be a fixed probability space on which a d-dimensional Brownian motion W =

(Wt)t≥0 is defined. For any s ≥ 0, we consider the filtration F
W,s = (FW,s

t )t≥s, which is the

augmented natural filtration generated by the Brownian increments starting at s, i.e.,

FW,s
t := σ(Wu −Ws, s ≤ u ≤ t) ∨N (P,F), t ≥ s,

where N (P,F) := {N ∈ F : P(N) = 0}. For each s ≥ 0, we denote by F
s = (Fs

t )t≥s another

filtration satisfying the usual conditions, which is larger than F
W,s and keeps (Wt −Ws)t≥s

a Brownian motion starting at s.

We fix a finite time horizon 0 < T < ∞. For any s ∈ [0, T ], we denote by y(·) or y a

generic element of the space C([s, T ];Rd)×L ([s, T ]; Im), where L ([s, T ]; Im) denotes the set

of càglàd paths valued in Im (notice that the elements of L ([s, T ]; Im) are indeed piecewise

constant paths, since Im is a discrete set). Let B
s = (Bs

t )s≤t≤T , with Bs
t := σ(y(u), s ≤

u ≤ t) for any t ∈ [s, T ], be the natural filtration of C([s, T ];Rd) × L ([s, T ]; Im). A map

τ : C([s, T ];Rd) × L ([s, T ]; Im) → [s, T ] satisfying {τ ≤ t} ∈ Bs
t , ∀ t ∈ [s, T ], is called a

stopping rule. T s denotes the family of all stopping rules starting at s. For any s ∈ [0, T ]

and τ ∈ T s, we define, as usual,

Bs
τ+ :=

{

B ∈ Bs
T : ∀ t ∈ [s, T ], B ∩ {y : τ(y) ≤ t} ∈ Bs

t+
}

,

Bs
τ :=

{

B ∈ Bs
T : ∀ t ∈ [s, T ], B ∩ {y : τ(y) ≤ t} ∈ Bs

t

}

,

where Bs
t+ := ∩r>tB

s
r, t ∈ [s, T ), and Bs

T+ := Bs
T . We also denote y(T+) := y(T ), for any

y ∈ C([s, T ];Rd)× L ([s, T ]; Im).

Definition 2.1 (Feedback switching controls) Fix s ∈ [0, T ]. We say that the double

sequence α = (τn, ιn)n∈N is a feedback switching control starting at s if:

• τn ∈ T s, for any n ∈ N, and

s ≤ τ0 ≤ · · · ≤ τn ≤ · · · ≤ T.

Moreover, (τn)n∈N satisfies the following property: ∀ (yn)n∈N ∈ C([s, T ];Rd)×L ([s, T ]; Im),

with yn(t) = yn+1(t), t ∈ [s, τn(yn)], then

τn(yn) = T, for n large enough.

• ιn : C([s, T ];Rd)× L ([s, T ]; Im) → Im is Bs
τn-measurable, for any n ∈ N.

As,s denotes the family of all feedback switching controls starting at s.

Remark 2.1 Consider a sequence of paths (yn)n∈N as in Definition 2.1. Then, the sequence

(τn(yn))n∈N is nondecreasing. Indeed, from Lemma 2.1 below we have τn(yn) = τn(yn+1).

Since τn(yn+1) ≤ τn+1(yn+1) from the nondecreasing property of the sequence (τn)n∈N, the

thesis follows. See also Remark 2.3 below, where the property “τn(yn) = T , for n large

enough” is analyzed in detail. 2
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Definition 2.2 (Open-loop controls) Fix s ∈ [0, T ]. An open-loop control u starting

at s, for the nature, is an F
s-adapted process u : [s, T ] × Ω → U . We denote by Us,s the

collection of all possible open-loop controls, given the initial deterministic time s.

For any (s, x, i) ∈ [0, T ] × R
d × Im, α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, we can now write

equation (1.1) on [0, T ] as follows:















Xt = x+
∫ t
s b(Xr, Ir, ur)dr +

∫ t
s σ(Xr, Ir, ur)dWr, s ≤ t ≤ T,

It = i1{s≤t<τ0(X·,I·−)} +
∑

n∈N ιn(X·, I·−)1{τn(X·,I·−)≤t<τn+1(X·,I·−)}, s ≤ t < T,

IT = IT− ,

(2.1)

with Is− := Is. Notice that the presence of I·− in place of I· in the arguments of τn, ιn is

due to the fact that the choice of (τn, ιn) by the controller is based only on the information

coming from the previous switching actions (τi, ιi)0≤i≤n−1. Moreover, the last equation

IT = IT− in (2.1) means that there is no regime switching at the final time T . We impose

the following assumptions on the coefficients b : Rd×Im×U → R
d and σ : Rd×Im×U → R

d×d

(in the sequel, we use the notation ‖A‖2 = tr(AA⊺) for the Hilbert-Schmidt norm of any

matrix A).

(H1)

(i) b, σ are jointly continuous on R
d × Im × U .

(ii) b, σ are uniformly Lipschitz continuous in x, i.e.,

|b(x, i, u) − b(x′, i, u)| + ‖σ(x, i, u) − σ(x′, i, u)‖ ≤ L1|x− x′|,

∀x, x′ ∈ R
d, i ∈ Im, u ∈ U , for some positive constant L1.

Remark 2.2 From Assumption (H1) it follows that b and σ satisfy a linear growth con-

dition in x, i.e.,

|b(x, i, u)| + ‖σ(x, i, u)‖ ≤ M1(1 + |x|),

∀x ∈ R
d, i ∈ Im, u ∈ U , for some positive constant M1. 2

Remark 2.3 Fix s ∈ [0, T ] and α = (τn, ιn)n∈N ∈ As,s. Let us consider the following

properties of the nondecreasing sequence (τn)n∈N:

(i) Uniformly finite. There exists N ∈ N such that, ∀ y ∈ C([s, T ];Rd)× L ([s, T ]; Im),

τn(y) = T, for n ≥ N.

(ii) Finite along every adaptive sequence. ∀ (yn)n∈N ∈ C([s, T ];Rd) × L ([s, T ]; Im), with

yn(t) = yn+1(t), t ∈ [s, τn(yn)],

τn(yn) = T, for n large enough.
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(iii) Finite along every path. ∀ y ∈ C([s, T ];Rd)× L ([s, T ]; Im),

τn(y) = T, for n large enough.

Condition (i) is the strongest, while (iii) is the weakest. In Definition 2.1 we imposed the

intermediate property (ii), since it allows to have a well-posedness result for equation (2.1),

which is no longer guaranteed if we require only (iii). To see this latter point, we construct

a counter-example. Take s = 0, T = 1, and m = 2 so that I2 = {1, 2}. Consider the

sequence (bn)n∈N ⊂ [0, 1] given by

bn =

n
∑

j=0

1

2j+2
, ∀n ∈ N.

In particular, we have b0 =
1
4 , b1 =

1
4 + 1

8 , b2 =
1
4 + 1

8 +
1
16 , . . ., and in general

bn =
2n+1 − 1

2n+2
, ∀n ≥ 0.

Notice that (bn)n∈N is a strictly increasing sequence satisfying bn ր 1
2 , as n → ∞. Now,

for every y ∈ C([0, 1];Rd)× L ([0, 1]; I2) we write y = (yX , yI) with yX ∈ C([0, 1];Rd) and

yI ∈ L ([0, 1]; I2). Then, we define the sequence (τn)n∈N as follows:

τn(y) = bn1{y∈Bn} + 1{y∈Bc
n}
, ∀ y ∈ C([0, 1];Rd)× L ([0, 1]; I2), n ∈ N,

where

B0 =
{

y ∈ C([0, 1];Rd)× L ([0, 1]; I2) : y
I(t) = yI(0), 0 < t ≤ b0

}

,

Bn =
{

y ∈ Bn−1 : y
I(t) = 3− yI(bn−1), bn−1 < t ≤ bn

}

, ∀n ≥ 1.

Observe that, since yI(t) ∈ I2 then 3−yI(t) ∈ I2; moreover, when yI(t) = 1 then 3−yI(t) =

2, while if yI(t) = 2 then 3 − yI(t) = 1. We also notice that Bn ∈ B0
bn
, therefore τn ∈ T 0.

Furthermore, (τn)n∈N is a nondecreasing sequence which verifies property (iii) above: this

is due to the fact that every path y ∈ C([0, 1];Rd)× L ([0, 1]; I2) has only a finite number

of jumps, since I2 is a discrete set; in other words, any y belongs to Bc
n when n is large

enough (e.g., when n is strictly greater than the number of jumps of y). However, (τn)n∈N
does not satisfy property (ii), as we shall prove below. We also define

ιn(y) = 3− yI(bn), ∀ y ∈ C([0, 1];Rd)× L ([0, 1]; I2), n ∈ N.

In other words, when yI(bn) = 1 then ιn(y) = 2, while when yI(bn) = 2 then ιn(y) = 1.

Let α = (τn, ιn)n∈N, then α satisfies Definition 2.1, but for property (ii) (see below), even

if property (iii) is satisfied. Now, we solve equation (2.1) with x ∈ R
d, α = (τn, ιn)n∈N,

u ∈ U0,0, and i = 1 ∈ I2. Define the (deterministic) process I : [0, 1] → I2 as follows, for

any t ∈ [0, 12),

It =







































1, 0 ≤ t ≤ b0,

2, b0 < t ≤ b1,

1, b1 < t ≤ b2,

2, b2 < t ≤ b3,
...
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On the other hand, we do not specify I on [12 , 1], we only require that the limit I1− :=

limt↑1 It exists and we suppose that I1 = I1− . Notice that I 1

2

− does not exist, therefore

I /∈ L ([0, 1]; I2). However, the process I solves equation (2.1) (viceversa, every process

satisfying (2.1) coincides with I on the interval [0, 12 ); in particular, there does not exist

a solution process with paths in L ([0, 1]; I2)). Moreover, under Assumption (H1) we can

also solve equation (2.1) for X. Since we did not specify the behavior of I on the entire

interval [0, 1], we can not have uniqueness of the solution for (2.1). Nevertheless, we notice

that the sequence (τn)n∈N does not satisfy property (ii) above. Indeed, let yn(·) := I·∧bn ,

n ∈ N. Then, yn ∈ L ([0, 1]; I2), but τn(yn) < 1
2 , for any n. This shows that if we only

require property (iii), then the well-posedness of equation (2.1) is no longer guaranteed. 2

We now study the well-posedness of equation (2.1), for which we need the following two

lemmata.

Lemma 2.1 Let s ∈ [0, T ], τ ∈ T s, and y1, y2 ∈ C([s, T ];Rd) × L ([s, T ]; Im). If y1(t) =

y2(t), s ≤ t ≤ τ(y1), then:

(i) τ(y1) = τ(y2).

(ii) ι(y1) = ι(y2), for any Bs
τ -measurable map ι : C([s, T ];Rd)× L ([s, T ]; Im) → Im.

Proof Let t∗ := τ(y1). We begin noting that if B ∈ Bs
t∗ and y1 ∈ B, then y2 ∈ B, as well.

Since τ is a stopping rule, the event B := {y : τ(y) = t∗} belongs to Bs
t∗ . As y1 ∈ B, we

then see that y2 ∈ B, i.e., τ(y2) = τ(y1).

Let now ι : C([s, T ];Rd)×L ([s, T ]; Im) → Im be Bs
τ -measurable. By definition of ι, the

event B̃ := {y : ι(y) = ι(y1)} belongs to Bs
τ . Therefore, B := B̃ ∩ {τ(y) ≤ t∗} ∈ Bs

t∗ . Since

y1 ∈ B, from the observation at the beginning of the proof it follows that y2 ∈ B, which

implies y2 ∈ B̃, i.e., ι(y2) = ι(y1). 2

Lemma 2.2 Let s ∈ [0, T ], τ ∈ T s, and Y = (Yt)s≤t≤T be an F
s-adapted process valued

in R
d × Im. Suppose that every path of Y belongs to C([s, T ];Rd) × L ([s, T ]; Im). Then,

τY : Ω → [s, T ] defined as τY (ω) := τ(Y·(ω)), ω ∈ Ω, is an F
s-stopping time. Moreover, if

ι : C([s, T ];Rd) × L ([s, T ]; Im) → Im is Bs
τ -measurable then iY (ω) := ι(Y·(ω)), ω ∈ Ω, is

Fs
τY -measurable.

Proof. For any t ∈ [s, T ], we notice that the map Y· is measurable from (Ω,Fs
t ) into

(C([s, T ];Rd)×L ([s, T ]; Im),Bs
t ). Then, {ω : τY (ω) ≤ t} = {ω : τ(Y·(ω)) ≤ t} = {ω : Y·(ω) ∈

τ−1([s, t])}. Since τ−1([s, t]) ∈ Bs
t , we have {ω : Y·(ω) ∈ τ−1([s, t])} ∈ Fs

t , which implies

that τY is an F
s-stopping time.

Let now ι : C([s, T ];Rd)×L ([s, T ]; Im) → Im be Bs
τ -measurable. We have to prove that

{ω : ιY (ω) = i} ∈ Fs
τY
, for any i ∈ Im, i.e., {ω : ιY (ω) = i} ∩ {ω : τY (ω) ≤ t} ∈ Fs

t , for any

i ∈ Im and t ∈ [s, T ]. Then, fix i ∈ Im and t ∈ [s, T ]. We have
{

ω : ιY (ω) = i
}

∩
{

ω : τY (ω) ≤ t
}

=
{

ω : Y·(ω) ∈ ι−1(i)
}

∩
{

ω : Y·(ω) ∈ τ−1([s, t])
}

=
{

ω : Y·(ω) ∈ {y : ι(y) = i} ∩ {y : τ(y) ≤ t}
}

.

Since ι is Bs
τ -measurable, then {y : ι(y) = i} ∩ {y : τ(y) ≤ t} ∈ Bs

t . Therefore, from the

observation at the beginning of the proof, we get the thesis. 2
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Proposition 2.1 Let Assumption (H1) hold. For any (s, x, i) ∈ [0, T ]×R
d×Im, α ∈ As,s,

u ∈ Us,s, there exists a unique (up to indistinguishability) Fs-adapted process (Xs,x,i;α,u, Is,x,i;α,u) =

(Xs,x,i;α,u
t , Is,x,i;α,ut )s≤t≤T to equation (2.1), such that every path of (Xs,x,i;α,u

· , Is,x,i;α,u
·−

) be-

longs to C([s, T ];Rd) × L ([s, T ]; Im). Moreover, for any p ≥ 1 there exists a positive

constant Cp,T , depending only on p, T,M1 (independent of s, x, i, α, u), such that

E

[

sup
s≤t≤T

|Xs,x,i;α,u
t |p

]

≤ Cp,T (1 + |x|p). (2.2)

Remark 2.4 In Proposition 2.1 we require that every path of (Xs,x,i;α,u
· , Is,x,i;α,u

·−
) belongs

to C([s, T ];Rd)×L ([s, T ]; Im) in order to guarantee that the maps τn(X
s,x,i;α,u
· (ω), Is,x,i;α,u

·−
(ω))

and ιn(X
s,x,i;α,u
· (ω), Is,x,i;α,u

·−
(ω)) are well-defined for every ω ∈ Ω, n ∈ N. 2

Proof. Fix (s, x, i) ∈ [0, T ]× R
d × Im, α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s.

Step I. Existence. We begin noting that, since the control α is of feedback type, we

have to construct the solution (Xs,x,i;α,u, Is,x,i;α,u) and α simultaneously. To do it we

proceed as follows: for any N ∈ N, we solve equation (2.1) controlled by u and the first

N switching actions (τn, ιn)0≤n≤N−1. This is done by induction on N . Then, noting that

(XN , IN ) = (XN−1, IN−1) on the stochastic interval [s, τN−1), by pasting together the

various solutions we are able to construct a solution (Xs,x,i;α,u, Is,x,i;α,u) to the original

equation (2.1) with the entire switching control α. We now report the rigorous arguments.

For any N ∈ N, let αN = (τNn , ιNn )n∈N ∈ As,s be given by

(τNn , ιNn ) :=

{

(τn, ιn), 0 ≤ n ≤ N − 1,

(T, ιn), n ≥ N.

Let N = 0 and consider equation (2.1) controlled by α0 and u. Notice that I is uncontrolled,

in particular It = i, s ≤ t ≤ T . Then, it is well-known that under Assumption (H1) there

exists a unique (up to indistinguishability) Fs-adapted solution (X0
t , I

0
t )s≤t≤T to this equa-

tion, with I0t = i for any t ∈ [s, T ], such that every (not only P-a.e., simply choosing an op-

portune indistinguishable version) path of (X0
· , I

0
·−) belongs to C([s, T ];Rd)×L ([s, T ]; Im).

Now, let us prove the inductive step. Let N ∈ N\{0} and suppose that there exists an

F
s-adapted solution (XN−1, IN−1) to equation (2.1) controlled by αN−1 and u, such that

every path of (XN−1
· , IN−1

·−
) belongs to C([s, T ];Rd) × L ([s, T ]; Im). Our aim is to solve

equation (2.1) controlled by αN and u. To this end, we define the process IN = (INt )s≤t≤T

as follows:






INt = IN−1
t 1{s≤t<τN−1(X

N−1
· ,IN−1

·−
)} + ιN−1(X

N−1
· , IN−1

·−
)1{τN−1(X

N−1
· ,IN−1

·−
)≤t<T},

INT = INT− .

From Lemma 2.2 we see that IN is an F
s-adapted process, with every path in L ([s, T ]; Im).

Then, under Assumption (H1) there exists a unique (up to indistinguishability) Fs-adapted

solution (XN
t , INt )s≤t≤T to equation (2.1), such that every path of (XN

· , IN·−) belongs to

C([s, T ];Rd) × L ([s, T ]; Im). Since (XN , IN ) and (XN−1, IN−1) solve the same equation

on [s, τN−1(X
N−1
· , IN−1

·−
)), then (XN

t , INt ) = (XN−1
t , IN−1

t ), t ∈ [s, τN−1(X
N−1
· , IN−1

·−
)). In
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particular, (XN
t , INt−) = (XN−1

t , IN−1
t−

), for any t ∈ [s, τN−1(X
N−1
· , IN−1

·−
)]. From Lemma

2.1, it follows that

(

τn(X
N−1
· , IN−1

·−
), ιn(X

N−1
· , IN−1

·−
)
)

=
(

τn(X
N
· , IN·−), ιn(X

N
· , IN·−)

)

, 0 ≤ n ≤ N − 1.

As a consequence, (XN , IN ) solves equation (2.1) controlled by αN and u.

Finally, let us define (with the convention τ−1 := s)

Xs,x,i;α,u
t :=

∑

n∈N

XN
t 1{τN−1(X

N−1
· ,IN−1

·−
)≤t<τN (XN

· ,IN
·−

)}, (2.3)

Is,x,i;α,ut :=
∑

n∈N

INt 1{τN−1(X
N−1
· ,IN−1

·−
)≤t<τN (XN

· ,IN
·−

)}, (2.4)

for any s ≤ t < T and (Xs,x,i;α,u
T , Is,x,i;α,uT ) := (Xs,x,i;α,u

T− , Is,x,i;α,uT− ). For simplicity of

notation, we denote (X, I) := (Xs,x,i;α,u, Is,x,i;α,u). Recalling that τN−1(X
N−1
· , IN−1

·−
) =

τN−1(X
N
· , IN·−) ≤ τN (XN

· , IN·−), we see that the sequence (τN (XN
· , IN·−))N≥−1 is nondecreas-

ing, so that, for any t ∈ [s, T ], there is at most one term different from zero in the series

appearing in (2.3) and (2.4). Moreover, from Definition 2.1, and, more precisely, from prop-

erty (ii) of Remark 2.3, we have that, for every ω ∈ Ω, τN (XN
· (ω), IN·−(ω)) = T , for N large

enough. In particular, X and I are well-defined over the entire interval [s, T ] and they are

F
s-adapted. Furthermore, we notice that (Xt, It) = (XN

t , INt ), t ∈ [s, τN (XN
· , IN·−)). Then,

using again property (ii) of Remark 2.3, it follows that every path of (X·, I·−) belongs to

C([s, T ];Rd)× L ([s, T ]; Im). In addition, since (Xt, It−) = (XN
t , INt−), t ∈ [s, τN (XN

· , IN·−)],

from Lemma 2.1 we have

(

τN (XN
· , IN·−), ιN (XN

· , IN·−)
)

=
(

τN (X·, I·−), ιN (X·, I·−)
)

, ∀N ∈ N.

In particular, (Xt, It) = (XN
t , INt ), t ∈ [s, τN (X·, I·−)). This implies that (X, I) solves

equation (2.1) on [s, τN (X·, I·−)), for any N ∈ N. Recalling property (ii) of Remark 2.3, we

see that (X, I) solves equation (2.1) on [s, T ). Since, by definition, (XT , IT ) = (XT− , IT−),

it follows that (X, I) solves equation (2.1) on [s, T ].

Step II. Uniqueness. Let (X1, I1) and (X2, I2) be two solutions of (2.1). Set τ0 :=

τ0(X
1
· , I

1
·−) ∧ τ0(X

2
· , I

2
·−). Notice that (X1, I1) and (X2, I2) solve the same equation on

[0, τ 0). Therefore (X1, I1) and (X2, I2) are equal (up to indistinguishability) on [0, τ 0).

Consider ω ∈ Ω such that τ0(ω) = τ0(X
1
· (ω), I

1
·−(ω)). Since (X

1
t (ω), I

1
t−(ω)) = (X2

t (ω), I
2
t−(ω)),

t ∈ [s, τ 0(ω)] = [s, τ0(X
1
· (ω), I

1
·−(ω))], from Lemma 2.1 it follows that τ0(X

1
· (ω), I

1
·−(ω)) =

τ0(X
2
· (ω), I

2
·−(ω)). When τ0(ω) = τ0(X

2
· (ω), I

2
·−(ω)), a similar argument shows that we

still have τ0(X
1
· (ω), I

1
·−(ω)) = τ0(X

2
· (ω), I

2
·−(ω)). From the arbitrariness of ω, we con-

clude that τ0 = τ0(X
1
· , I

1
·−) = τ0(X

2
· , I

2
·−). Using again Lemma 2.1, we also deduce

ι0(X
1
· , I

1
·−) = ι0(X

2
· , I

2
·−). By induction on n, we can prove that

(

τn(X
1
· , I

1
·−), ιn(X

1
· , I

1
·−)

)

=
(

τn(X
2
· , I

2
·−), ιn(X

2
· , I

2
·−)

)

, ∀n ∈ N,

(X1
t , I

1
t ) = (X2

t , I
2
t ), ∀ t ∈ [s, τn(X

1
· , I

1
·−)), n ∈ N.

From Definition 2.1, and, more precisely, from property (ii) of Remark 2.3, we have that,

for any ω ∈ Ω, τn(X
1
· (ω), I

1
·−(ω)) = T for n large enough. As a consequence, (X1, I1) and
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(X2, I2) are equal (up to indistinguishability) on [s, T ). Since (X1
T , I

1
T ) = (X1

T− , I
1
T−) and

(X2
T , I

2
T ) = (X2

T− , I
2
T−), we conclude that (X1, I1) and (X2, I2) are equal (up to indistin-

guishability) on [s, T ].

Step III. Estimate (2.2). Under (H1), estimate (2.2) is well-known, see, e.g., Theorem

1.3.15 in [19]. 2

2.2 The Value function

The value function associated to the robust switching control problem is defined as follows:

V (s, x, i) := sup
α∈As,s

inf
u∈Us,s

J(s, x, i;α, u), ∀ (s, x, i) ∈ [0, T ]× R
d × Im, (2.5)

with

J(s, x, i;α, u) := E

[
∫ T

s
f(Xs,x,i;α,u

r , Is,x,i;α,ur , ur)dr + g(Xs,x,i;α,u
T , Is,x,i;α,uT )

−
∑

n∈N

c(Xs,x,i;α,u
τn , Is,x,i;α,u

τ−n
, Is,x,i;α,uτn )1{s≤τn<T}

]

, (2.6)

where τn stands for τn(Xs,x,i;α,u
· , Is,x,i;α,u

·−
). We impose the following conditions on the

functions g : Rd × Im → R, f : Rd × Im × U → R, and c : Rd × Im × Im → R.

(H2)

(i) g, f, c are jointly continuous on their domains.

(ii) c is nonnegative.

(iii) g, f, c satisfy a polynomial growth condition in x, i.e.,

|g(x, i)| + |f(x, i, u)| + |c(x, i, j)| ≤ M2(1 + |x|p),

∀x ∈ R
d, i, j ∈ Im, u ∈ U , for some positive constants M2 and p ≥ 1.

(iv) g satisfies

g(x, i) ≥ max
j 6=i

[

g(x, j) − c(x, i, j)
]

,

for any x ∈ R
d and i ∈ Im.

Remark 2.5 Notice that, given (s, x, i) ∈ [0, T ] × R
d × Im, then infu∈Us,s J(s, x, i;α, u)

might assume the value −∞ for some α ∈ As,s. However, V (s, x, i) is a finite number for

any (s, x, i) ∈ [0, T ]× R
d × Im and satisfies a polynomial growth condition in x:

|V (s, x, i)| ≤ C(1 + |x|p), ∀ (s, x, i) ∈ [0, T ] × R
d × Im, (2.7)

for some positive constant C, depending only on T,M1,M2, and with the same p as in

Assumption (H2)(iii). Indeed, since c is nonnegative, we find

V (s, x, i) ≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ T

s
f(Xs,x,i;α,u

r , Is,x,i;α,ur , ur)dr + g(Xs,x,i;α,u
T )

]

. (2.8)
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On the other hand, let α∗ = (τ∗n, ι
∗
n)n∈N ∈ As,s be given by (τ∗n, ι

∗
n) = (T, i), ∀n ∈ N, for

some fixed i ∈ Im. Then

V (s, x, i) ≥ inf
u∈Us,s

J(s, x, i;α∗, u)

= inf
u∈Us,s

E

[
∫ T

s
f(Xs,x,i;α∗,u

r , Is,x,i;α
∗,u

r , ur)dr + g(Xs,x,i;α∗,u
T )

]

. (2.9)

From (2.8) and (2.9), we obtain

|V (s, x, i)| ≤ sup
α∈As,s

sup
u∈Us,s

E

[
∫ T

s
|f(Xs,x,i;α,u

r , Is,x,i;α,ur , ur)|dr + |g(Xs,x,i;α,u
T )|

]

.

Now, from estimate (2.2) and the polynomial growth condition of f and g in (H2)(iii), we

see that estimate (2.7) holds. As a consequence, in (2.5) we could take the supremum only

over α = (τn, ιn)n∈N ∈ As,s satisfying (τn stands for τn(Xs,x,i;α,u
· , Is,x,i;α,u

·−
))

inf
u∈Us,s

E

[

−
∑

n∈N

c(Xs,x,i;α,u
τn , Is,x,i;α,u

τ−n
, Is,x,i;α,uτn )1{s≤τn<T}

]

> −∞.

2

Our aim is to prove that V is the unique viscosity solution to the dynamic programming

equation associated to the robust switching control problem, which turns out to be a system

of variational inequalities of Hamilton-Jacobi-Bellman type of the following form:


















min
{

−
∂V

∂t
(s, x, i) − infu∈U

[

Li,uV (s, x, i) + f(x, i, u)
]

,

V (s, x, i)−maxj 6=i

[

V (s, x, j) − c(x, i, j)
]

}

= 0, (s, x, i) ∈ [0, T ) × R
d × Im,

V (T, x, i) = g(x, i), (x, i) ∈ R
d × Im,

(2.10)

where

Li,uV (s, x, i) = b(x, i, u).DxV (s, x, i) +
1

2
tr
[

σσ⊺(x, i, u)D2
xV (s, x, i)

]

.

We need the definition of (discontinuous) viscosity solution to equation (2.10), that we

now provide. To this end, given a locally bounded function v : [0, T ) × R
d × Im → R, we

define its lower semicontinuous (lsc for short) envelope v∗ : [0, T ]×R
d× Im → R, and upper

semicontinuous (usc for short) envelope v∗ : [0, T ]× R
d × Im → R, by

v∗(s, x, i) = lim inf
(s′,x′)→(s,x)

(s′,x′)∈[0,T )×R
d

v(s′, x′, i) and v∗(s, x, i) = lim sup
(s′,x′)→(s,x)

(s′,x′)∈[0,T )×Rd

v(s′, x′, i),

for all (s, x, i) ∈ [0, T ] × R
d × Im.

Definition 2.3 (Viscosity solution to (2.10))

(i) A lsc (resp. usc) function v on [0, T ]×R
d × Im is called a viscosity supersolution (resp.

subsolution) to (2.10) if

v(T, x, i) ≥ (resp. ≤) g(x, i)
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for any (x, i) ∈ R
d × Im, and

min
{

−
∂ϕ

∂t
(s, x)− inf

u∈U

[

Li,uϕ(s, x) + f(x, i, u)
]

,

v(s, x, i) −max
j 6=i

[

v(s, x, j) − c(x, i, j)
]

}

≥ (resp. ≤) 0

for any (s, x, i) ∈ [0, T ) × R
d × Im and any ϕ ∈ C1,2([0, T ]× R

d) such that

v(s, x, i)− ϕ(s, x) = min
(s′,x′)∈[0,T ]×Rd

[

v(s′, x′, i)− ϕ(s′, x′)
]

{

resp. v(s, x, i)− ϕ(s, x) = max
(s′,x′)∈[0,T ]×Rd

[

v(s′, x′, i)− ϕ(s′, x′)
]

}

.

(ii) A locally bounded function v on [0, T )×R
d × Im is called a viscosity solution to (2.10)

if v∗ is a viscosity supersolution and v∗ is a viscosity subsolution to (2.10).

3 Stochastic Perron’s method

Our aim is to prove that V is a viscosity solution to the dynamic programming equation

(2.10) and satisfies the dynamic programming principle. To derive these results, we exploit

stochastic Perron’s method, which allows to obtain the viscosity properties of V without

relying on the dynamic programming principle, but by means of the comparison theorem

for viscosity solutions to (2.10) (the dynamic programming principle will be obtained as a

by-product of this procedure).

3.1 An Auxiliary robust switching problem

We begin with the formulation of an auxiliary robust switching control problem where

nature adopts feedback controls in place of open-loop controls. Using the comparison

principle for equation (2.10), we shall see that the corresponding value function, denoted

by V , coincides with V . In other words, the information available to nature does not affect

the value of the game. This is not the only motivation for the introduction of this auxiliary

robust control problem. Indeed, in the implementation of the stochastic Perron method,

and in particular in the study of the viscosity properties of stochastic supersolutions, we

encountered the following difficulty: given two different controls u1 and u2, for nature, we

have to concatenate them at some stopping rule τ = τ(X·, I·−). If u
1 and u2 are open-loop

controls, the control u1⊗τ u
2 resulting from the concatenation of u1 and u2 at the stopping

rule τ , given by

(u1 ⊗τ u
2)(t, ω, y) = u1(t, ω)1{s≤t≤τ(y)} + u2(t, ω)1{τ(y)<t≤T} ,

is no more of open-loop type, since it also depends on y. On the other hand, if u1 and u2

are feedback controls, then u1 ⊗τ u2 is still a feedback control. For this technical reason,

to study the original control problem with corresponding value function V , we also need

to consider another robust switching control problem, in which nature adopts feedback

controls. In particular, inspired by [23] and [22], it turns out that it is more convenient,
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and it is enough, to consider only piecewise constant feedback controls, i.e., the elementary

feedback strategies that we now define.

Definition 3.1 (Elementary feedback strategies) Fix s ∈ [0, T ]. We say that u is an

elementary feedback strategy starting at s if:

• τk ∈ T s, for any k = 1, . . . , n, and

s =: τ0 ≤ · · · ≤ τk ≤ · · · ≤ τn = T.

• ξk : C([s, T ];Rd)× L ([s, T ]; Im) → U is Bs
τ+
k−1

-measurable, for any k = 1, . . . , n.

The strategy u : [s, T ]× C([s, T ];Rd)× L ([s, T ]; Im) → U is given by

u(t, y) := ξ1(y)1{t=s} +
n
∑

k=1

ξk(y)1{τk−1(y)<t≤τk(y)}.

UE
s,s denotes the family of all elementary feedback strategies starting at s.

Remark 3.1 We notice that Definition 3.1 is inspired by Definition 2.2 in [23] (see also

Definition 2.1 in [22]), the only difference being that ξk is Bs
τ+
k−1

-measurable instead of

Bs
τk−1

-measurable. This implies that the map ξk = ξk(y) depends on y through the values

{y(t), s ≤ t ≤ τk−1(y)
+}, so that ξk can also depend on y(τk−1(y)

+). Recalling that in

our setting y denotes a generic path of (Xt, It−)s≤t≤T , this means that ξk depends on

(Xt, It)s≤t≤τk−1(X·,I·−) rather than on (Xt, It−)s≤t≤τk(X·,I·−). Therefore, nature reacts to

the switcher using all the information at disposal at time τk−1 = τk−1(X·, I·−), including

Iτk−1
(in particular, if τk−1 coincides with a switching action, nature is aware of the action

that the switcher has just performed). 2

We have the following well-posedness result for equation (2.1) when u is an elementary

feedback strategy (so that ur stands for u(r,X·, I·−)), where the only difference with Propo-

sition 2.1 is that now the solution is adapted to the smaller filtration F
W,s, since F

s plays

no role when u ∈ UE
s,s.

Proposition 3.1 Let Assumption (H1) hold. For any (s, x, i) ∈ [0, T ] × R
d × Im, α ∈

As,s, u ∈ UE
s,s, there exists a unique (up to indistinguishability) F

W,s-adapted process

(Xs,x,i;α,u, Is,x,i;α,u) = (Xs,x,i;α,u
t , Is,x,i;α,ut )s≤t≤T to equation (2.1), such that every path of

(Xs,x,i;α,u
· , Is,x,i;α,u

·−
) belongs to C([s, T ];Rd)× L ([s, T ]; Im). Moreover, for any p ≥ 1 there

exists a positive constant Cp,T , depending only on p, T,M1 (independent of s, x, i, α, u), such

that

E

[

sup
s≤t≤T

|Xs,x,i;α,u
t |p

]

≤ Cp,T (1 + |x|p). (3.1)

Proof. The proof can be done along the lines of the proof of Proposition 2.1. We simply

notice that in Proposition 2.1 we used the following result: if u ∈ Us,s and I = (It)s≤t≤τ is
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known up to a certain F
s-stopping time τ , then there exists a unique (up to indistinguisha-

bility) Fs-adapted solution X = (Xt)s≤t≤τ to the equation

Xt = x+

∫ t

s
b(Xr, Ir, ur)dr +

∫ t

s
σ(Xr, Ir, ur)dWr, s ≤ t ≤ τ, (3.2)

such that every path of X belongs to C([s, T ];Rd). The validity of this result is well-known

under (H1). On the other hand, it is not immediately clear when u ∈ UE
s,s is an elementary

feedback strategy. However, the result is still valid and follows from Proposition 2.4 in [23],

see also Theorem 2.2 in [22]. Moreover, when u ∈ UE
s,s it turns out that the process X is

adapted to the smaller filtration F
W,s. Finally, under Assumption (H1), estimate (3.1) is

well-known, see, e.g., Theorem 1.3.15 in [19]. 2

We can finally introduce the value function for the robust switching control problem

where nature adopts the elementary feedback strategies

V (s, x, i) := sup
α∈As,s

inf
u∈UE

s,s

J(s, x, i;α, u), ∀ (s, x, i) ∈ [0, T ]× R
d × Im.

Notice that V (s, x, i) ≤ V (s, x, i), for any (s, x, i) ∈ [0, T ] × R
d × Im. Moreover, proceed-

ing as in Remark 2.5, we can show that V satisfies a polynomial growth condition in x:

|V (s, x, i)| ≤ C(1+ |x|p) < ∞, for some positive constant C, depending only on T,M1,M2,

and with the same p as in Assumption (H2)(iii).

3.2 Concatenation of feedback controls

In the present section, we need to introduce the concept of feedback control starting at

a certain stopping rule τ and to define the notion of concatenation at τ of two feedback

controls, which will be crucial in the development of the stochastic Perron method.

Definition 3.2 (Feedback switching controls starting strictly later than τ) Fix s

in [0, T ] and τ ∈ T s. We say that the double sequence α = (τn, ιn)n∈N is a feedback switching

control starting strictly later than τ if:

• τn ∈ T s, for any n ∈ N, and

τ ≤ τ0 ≤ · · · ≤ τn ≤ · · · ≤ T,

with τ < τ0 on the set {τ < T}. Moreover, (τn)n∈N satisfies the following property:

∀ (yn)n∈N ∈ C([s, T ];Rd)× L ([s, T ]; Im), with yn(t) = yn+1(t), t ∈ [s, τn(yn)], then

τn(yn) = T, for n large enough.

• ιn : C([s, T ];Rd)× L ([s, T ]; Im) → Im is Bs
τn-measurable, for any n ∈ N.

As,τ+ denotes the family of all feedback switching controls for the controller, given the initial

deterministic time s and starting strictly later than τ
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Remark 3.2 Definition 3.2 is inspired by Definition 2.7 in [23], with in addition the condi-

tion “ τ < τ0 on the set {τ < T}”, which justifies the presence of the adverb strictly in the

name. Indeed, our aim is to define the set As,τ+ in such a way that when we concatenate

two feedback switching controls α ∈ As,s and α̃ ∈ As,τ+ at a stopping rule τ ∈ T s (see

Proposition 3.2 below) then α ⊗τ α̃ coincides with α at time τ (this property plays an

important role in the sequel, e.g., in the proof of Theorem 3.1). On the other hand, when

we concatenate two elementary feedback strategies u ∈ UE
s,s and ũ ∈ UE

s,τ (see Definition

3.3 below), then u⊗τ ũ coincides with u at time τ , simply adopting the same definition for

UE
s,τ as in [23] combined with Remark 3.1. 2

Following [23], Definition 2.7, and recalling Remark 3.1, we now define the elementary

feedback strategies starting at some stopping rule τ .

Definition 3.3 (Elementary feedback strategies starting at τ) Fix s ∈ [0, T ] and

τ ∈ T s. We say that u is an elementary feedback strategy starting at τ if:

• τk ∈ T s, for any k = 1, . . . , n, and

τ =: τ0 ≤ · · · ≤ τk ≤ · · · ≤ τn = T.

• ξk : C([s, T ];Rd)× L ([s, T ]; Im) → U is Bs
τ+
k−1

-measurable, for any k = 1, . . . , n.

The elementary feedback strategy

u :
{

(t, y) ∈ [s, T ]×
(

C([s, T ];Rd)× L ([s, T ]; Im)
)

: τ(y) ≤ t ≤ T
}

−→ U

is given by

u(t, y) := ξ1(y)1{t=τ(y)} +
n
∑

k=1

ξk(y)1{τk−1(y)<t≤τk(y)}.

UE
s,τ denotes the family of all elementary feedback strategies, given the initial deterministic

time s and starting at τ .

Notice that, when τ = s in Definition 3.3, we find exactly UE
s,s. As in [23], Lemma 2.8

and Proposition 2.9, we have the two following results, whose simple proof is only sketched

for Lemma 3.1 and omitted for Proposition 3.2.

Lemma 3.1 Fix s ∈ [0, T ], τ ∈ T s, α1 = (τ1n, ι
1
n)n∈N, α

2 = (τ2n, ι
2
n)n∈N ∈ As,τ+, u

1, u2 ∈

UE
s,τ , and B ∈ Bs

τ+ .

• The double sequence α = (τn, ιn)n∈N given by

(

τn(y), ιn(y)
)

=
(

τ1n(y), ι
1
n(y)

)

1{y∈B} +
(

τ2n(y), ι
2
n(y)

)

1{y∈Bc}

is in As,τ+.
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• The map

u :
{

(t, y) ∈ [s, T ]×
(

C([s, T ];Rd)× L ([s, T ]; Im)
)

: τ(y) ≤ t ≤ T
}

−→ U

given by

u(t, y) = u1(t, y)1{y∈B} + u2(t, y)1{y∈Bc}

is in UE
s,τ .

Proof. We only prove the first item, where we focus on the two main points. In particular,

the proof that τn ∈ T s and ιn ∈ Bs
τn is based on the observation that B ∈ Bs

τ+ ⊂ Bs
τ1n
,Bs

τ2n
,

for any n ∈ N, which is a consequence of the property: τ < τ10 , τ
2
0 on the set {τ < T}. The

other non-trivial part is the proof that α satisfies property (ii) of Remark 2.3. To prove it,

consider (yn)n∈N ∈ C([s, T ];Rd)×L ([s, T ]; Im), with yn(t) = yn+1(t), t ∈ [s, τn(yn)]. Since

τ0 ≤ τn for any n ∈ N, we have

y0(t) = yn(t), ∀ t ∈ [s, τ0(y0)], n ∈ N.

As τ < τ0 on the set {τ < T}, it follows that

y0(t
+) = yn(t

+), ∀ t ∈ [s, τ(y0)], n ∈ N. (3.3)

In particular y0(τ(y0)
+) = yn(τ(y0)

+). Moreover, from Lemma 2.1 we get τ(y0) = τ(yn), so

that y0(τ(y0)
+) = yn(τ(yn)

+). Therefore, y0 ∈ B if and only if yn ∈ B, for any n ∈ N. In

conclusion, property (ii) of Remark 2.3 for (τn)n∈N follows from the definitions of (τ1n)n∈N
and (τ2n)n∈N. 2

Proposition 3.2 (Concatenation) Fix s ∈ [0, T ], τ, ρ ∈ T s with τ ≤ ρ ≤ T , α̃ =

(τ̃n, ι̃n)n∈N ∈ As,ρ+, ũ ∈ UE
s,ρ. Then

• for each α = (τn, ιn)n∈N ∈ As,s (resp. α = (τn, ιn)n∈N ∈ As,τ+), the double sequence

α⊗ρ α̃ = (τ
⊗ρ
n , ι

⊗ρ
n )n∈N given by

(

τ
⊗ρ
n (y), ι

⊗ρ
n (y)

)

=
(

τn(y), ιn(y)
)

1{τn(y)≤ρ(y)} +
(

τ̃n(y), ι̃n(y)
)

1{τn(y)>ρ(y)}

is in As,s (resp. As,τ+);

• for each u ∈ UE
s,τ , the map

u⊗ρ ũ :
{

(t, y) ∈ [s, T ]×
(

C([s, T ];Rd)× L ([s, T ]; Im)
)

: τ(y) ≤ t ≤ T
}

−→ U

given by

(u⊗ρ ũ)(t, y) = u(t, y)1{τ(y)≤t≤ρ(y)} + ũ(t, y)1{ρ(y)<t≤T}

is in UE
s,τ .
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3.3 Stochastic semisolutions and viscosity properties

We can now provide the definitions of stochastic sub and supersolution, which are the

cornerstones of the stochastic Perron method.

Definition 3.4 (Stochastic subsolutions) The set of stochastic subsolutions for equa-

tion (2.10), denoted by V−, is the set of functions v : [0, T ] × R
d × Im → R which have the

following properties:

• v is continuous and satisfies the terminal condition v(T, x, i) ≤ g(x, i), (x, i) ∈ R
d ×

Im, together with the polynomial growth condition

sup
(s,x,i)∈[0,T ]×Rd×Im

|v(s, x, i)|

1 + |x|q
< ∞,

for some q ≥ 1.

• For any s ∈ [0, T ] and τ, ρ ∈ T s with τ ≤ ρ ≤ T , there exists α̃ = (τ̃n, ι̃n)n∈N ∈ As,τ+

(possibly depending on s, τ, ρ) such that, for any α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, and

(x, i) ∈ R
d × Im, we have

v(τ ′,Xτ ′ , Iτ ′) ≤ E

[
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{τ ′≤τ̃ ′n<ρ′}

∣

∣

∣

∣

Fs
τ ′

]

, P-a.s.

with the shorthands X = Xs,x,i;α⊗τ α̃,u, I = Is,x,i;α⊗τ α̃,u, τ ′ = τ(X·, I·−), ρ′ =

ρ(X·, I·−), and τ̃ ′n = τ̃n(X·, I·−).

Definition 3.5 (Stochastic supersolutions) The set of stochastic supersolutions for equa-

tion (2.10), denoted by V+, is the set of functions v : [0, T ] × R
d × Im → R which have the

following properties:

• v is continuous and satisfies the terminal condition v(T, x, i) ≥ g(x, i), (x, i) ∈ R
d ×

Im, together with the polynomial growth condition

sup
(s,x,i)∈[0,T ]×Rd×Im

|v(s, x, i)|

1 + |x|q
< ∞,

for some q ≥ 1.

• For any s ∈ [0, T ], τ ∈ T s, and α = (τn, ιn)n∈N ∈ As,s, there exists ũ ∈ UE
s,τ (possibly

depending on s, τ, α) such that, for any u ∈ UE
s,s, (x, i) ∈ R

d × Im, and ρ ∈ T s, with

τ ≤ ρ ≤ T , we have

v(τ ′,Xτ ′ , Iτ ′) ≥ E

[
∫ ρ′

τ ′
f(Xt, It, ũt)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{τ ′≤τ ′n<ρ′}

∣

∣

∣

∣

Fs
τ ′

]

, P-a.s.

with the shorthands X = Xs,x,i;α,u⊗τ ũ, I = Is,x,i;α,u⊗τ ũ, τ ′ = τ(X·, I·−), ρ′ =

ρ(X·, I·−), τ
′
n = τn(X·, I·−), and ũt = ũ(t,X·, I·−).
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Remark 3.3 The definitions of stochastic sub and supersolution are inspired by [23], Def-

initions 3.1-3.2-3.3, but for the fact that in Definition 3.4 above we fix ρ before α̃, so that

α̃ can depend on ρ. This greater freedom in the choice of α̃ turns out to be fundamental

in the implementation of the stochastic Perron method, Theorem 3.1, and it is due to the

condition “ τ < τ0 on the set {τ < T}” in the definition of As,τ+, already discussed in

Remark 3.2. Indeed, using the set As,τ+, the existence of an “optimal” feedback switching

control α̃ = (τ̃n, ι̃n)n∈N ∈ As,τ+, which works for every ρ ∈ T s, with τ ≤ ρ ≤ T , is not

guaranteed. For example, it could happen that every “optimal” feedback switching control

which works for all ρ has to satisfy τ̃0 = τ , therefore it can not belong to As,τ+. To avoid

this problem, firstly we fix ρ, then we choose an “optimal” α̃ ∈ As,τ+. Another possibility

would be to look for an “ε-optimal” α̃ ∈ As,τ+ which works for every ρ. 2

We first notice that, as stated below, the two sets V− and V+ are not empty, moreover

every stochastic sub/supersolution satisfies half of the dynamic programming principle (also

known as sub/superoptimality principle, see [24]).

Lemma 3.2 Let Assumptions (H1) and (H2) hold.

(i) V− 6= ∅ and V+ 6= ∅.

(ii) Every stochastic subsolution v ∈ V− satisfies the half dynamic programming principle:

for any (s, x, i) ∈ [0, T ]× R
d × Im and ρ ∈ T s,

v(s, x, i) ≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′) (3.4)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

,

with the shorthands X = Xs,x,i;α,u, I = Is,x,i;α,u, ρ′ = ρ(X·, I·−), and τ ′n = τn(X·, I·−).

(iii) Every stochastic supersolution v ∈ V+ satisfies the half dynamic programming prin-

ciple: for any (s, x, i) ∈ [0, T ]× R
d × Im and ρ ∈ T s,

v(s, x, i) ≥ sup
α∈As,s

inf
u∈UE

s,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

,

with the shorthands X = Xs,x,i;α,u, I = Is,x,i;α,u, ρ′ = ρ(X·, I·−), τ
′
n = τn(X·, I·−),

and ut = u(t,X·, I·−).

Proof. We begin proving that V− 6= ∅. Let us consider the function v : [0, T ]×R
d×Im → R

given by

v(s, x, i) := −Ceλ(T−s)(1 + |x|q), ∀ (s, x, i) ∈ [0, T ]× R
d × Im, (3.5)

where q = max{4, p}, with p as in Assumption (H2)(iii), and C, λ are positive constants

to be determined later. Set h(x) = |x|q. Notice that h ∈ C2(Rd) and there exists a positive
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constant Mh (depending only on q) such that |Dxh(x)| ≤ Mh|x|
q−1 andD2

xh(x) ≤ Mh|x|
q−2,

∀x ∈ R
d.

From the polynomial growth condition of g in Assumption (H2)(iii), we see that

v(T, x, i) ≤ g(x, i) if we choose C large enough.

Now, we choose λ so that the stochastic subsolution property holds. Fix s ∈ [0, T ] and

τ, ρ ∈ T s with τ ≤ ρ ≤ T . We choose α̃ = (τ̃n, ι̃n)n∈N ∈ As,τ+ as follows: for any n ∈ N,

τ̃n ≡ T and ι̃n ≡ i, for some fixed i ∈ Im. Let α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, and

(x, i) ∈ R
d × Im. Set X = Xs,x,i;α⊗τ α̃,u, I = Is,x,i;α⊗τ α̃,u, τ ′ = τ(X, I), and ρ′ = ρ(X, I).

Then, noting that v(s,Xs, Is) is constant with respect to Is, and applying Itô’s formula to
∫ s
τ ′ f(Xt, It, ut)dt+ v(s,Xs, Is) between s = τ ′ and s = ρ′, we obtain

∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

=

∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(τ ′,Xτ ′ , Iτ ′)− C

∫ ρ′

τ ′
eλ(T−t)Dxh(Xt).b(Xt, It, ut)dt

− C

∫ ρ′

τ ′
eλ(T−t)(Dxh(Xt))

⊺σ(Xt, It, ut)dWt + λC

∫ ρ′

τ ′
eλ(T−t)(1 + h(Xt))dt

−
1

2
C

∫ ρ′

τ ′
eλ(T−t)tr

[

σσ⊺(Xt, It, ut)D
2
xh(Xt)

]

dt.

Taking the conditional expectation with respect to Fs
τ ′ , using the linear growth conditions

of b, σ, f , and the estimates on Dxh(x) and D2
xh(x), we find

E

[
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

∣

∣

∣

∣

Fs
τ ′

]

≥ v(τ ′,Xτ ′ , Iτ ′) + E

[

−M2

∫ ρ′

τ ′
(1 + |Xt|

p)dt− CMhM1

∫ ρ′

τ ′
eλ(T−t)|Xt|

q−1(1 + |Xt|)dt

+λC

∫ ρ′

τ ′
eλ(T−t)(1 + |Xt|

q)dt−
1

2
CMhM

2
1

∫ ρ′

τ ′
eλ(T−t)|Xt|

q−2(1 + |Xt|)
2dt

∣

∣

∣

∣

Fs
τ ′

]

.

We see that there exists a positive constant C̄ (depending only on C,Mh,M1,M2) such

that

E

[
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

∣

∣

∣

∣

Fs
τ ′

]

≥ v(τ ′,Xτ ′ , Iτ ′)

+ (λC − C̄)E

[
∫ ρ′

τ ′
eλ(T−t)(1 + |Xt|

q)dt

∣

∣

∣

∣

Fs
τ ′

]

.

Now, we choose λ ≥ 0 such that λC − C̄ ≥ 0. Then, we have

E

[
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

∣

∣

∣

∣

Fs
τ ′

]

≥ v(τ ′,Xτ ′ , Iτ ′).

From the definition of α̃, we see that
∑

n∈N c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{τ ′≤τ̃ ′n<ρ′} = 0. Therefore, it

follows that v ∈ V−. In a similar way we can prove that −v ∈ V+, so that V+ 6= ∅.

Concerning (ii), let v ∈ V− and fix s ∈ [0, T ], τ, ρ ∈ T s, with s ≡ τ ≤ ρ ≤ T . From the

second item of the definition of stochastic subsolution, there exists α̃ = (τ̃n, ι̃n)n∈N ∈ As,s+
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such that, for any u ∈ Us,s and (x, i) ∈ R
d × Im (we choose α = (τn, ιn)n∈N ∈ As,s with

τn ≡ T and ιn ≡ i, for any n ∈ N; with this choice we have (Xs,x,i;α⊗sα̃,u, Is,x,i;α⊗sα̃,u) =

(Xs,x,i;α̃,u, Is,x,i;α̃,u); in particular, Is,x,i;α⊗sα̃,u
s = i), we find

v(s, x, i) ≤ E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{s≤τ̃ ′n<ρ′}

∣

∣

∣

∣

Fs
s

]

, P-a.s. (3.6)

with the shorthands X = Xs,x,i;α̃,u, I = Is,x,i;α̃,u, ρ′ = ρ(X·, I·−), and τ̃ ′n = τ̃n(X·, I·−).

Taking the expectation in (3.6) and the infimum with respect to u ∈ Us,s, we get

v(s, x, i) ≤ inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{s≤τ̃ ′n<ρ′}

]

≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

.

In a similar way we can prove statement (iii). 2

As stated below, every stochastic subsolution is less than every stochastic supersolution,

while the value functions V and V are squeezed between them.

Lemma 3.3 Let Assumptions (H1) and (H2) hold.

(i) supv∈V− v =: v− ≤ V ≤ V ≤ v+ := infv∈V+ v.

(ii) v− is lsc and satisfies the polynomial growth condition

sup
(s,x,i)∈[0,T ]×Rd×Im

|v−(s, x, i)|

1 + |x|q
< ∞, (3.7)

for some q ≥ 1.

(iii) v+ is usc and satisfies the polynomial growth condition

sup
(s,x,i)∈[0,T ]×Rd×Im

|v+(s, x, i)|

1 + |x|q
< ∞,

for some q ≥ 1.

Proof. Statement (i) follows easily from the half dynamic programming principle in Lemma

3.2 satisfied by any element of V− and V+. Concerning (ii), we notice that v− is lsc since

it is the supremum of a family of lsc (actually, continuous) functions. Moreover, let v ∈ V−

and v̄ ∈ V+. From (i) it follows that v ≤ v− ≤ v̄, and from the polynomial growth condition
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of v, v̄ we see that v− satisfies the polynomial growth condition (3.7). Statement (iii) can

be proved in a similar way. 2

We can now state our main result.

Theorem 3.1 (Stochastic Perron’s method) Let Assumptions (H1) and (H2) hold.

Then, v− is a viscosity supersolution to equation (2.10) and v+ is a viscosity subsolution

to equation (2.10).

In order to prove Theorem 3.1, we need the following two lemmata. In particular,

Lemma 3.4 states that V− (resp. V+) is stable by supremum (resp. infimum), which gives

the existence of a monotone approximating sequence for v− (resp. v+) in Lemma 3.5.

Lemma 3.4 Let Assumptions (H1) and (H2) hold.

(i) If v1, v2 ∈ V− then v := v1 ∨ v2 ∈ V−.

(ii) If v1, v2 ∈ V+ then v := v1 ∧ v2 ∈ V+.

Proof. Let us prove (i). As the first item of the definition of stochastic subsolution is clear,

we prove that v satisfies the second item. To this end, fix s ∈ [0, T ] and τ, ρ ∈ T s with

τ ≤ ρ ≤ T . Let α̃1 = (τ̃1n, ι̃
1
n)n∈N, α̃

2 = (τ̃2n, ι̃
2
n)n∈N ∈ As,τ+ be the two feedback switching

controls, starting strictly later than τ , corresponding to the stochastic subsolutions v1 and

v2. Now, consider the set B := {(v1−v2)(τ(y), y(τ(y)+)) ≥ 0} ∈ Bs
τ+ and define the double

sequence α̃ = (τ̃n, ι̃n)n∈N as follows

(

τ̃n(y), ι̃n(y)
)

:=
(

τ̃1n(y), ι̃
1
n(y)

)

1{y∈B} +
(

τ̃2n(y), ι̃
2
n(y)

)

1{y∈Bc},

for any y ∈ C([s, T ];Rd)×L ([s, T ]; Im), n ∈ N. From Lemma 3.1 it follows that α̃ ∈ As,τ+.

Now, we prove that α̃ satisfies the condition in the second item of the definition of stochastic

subsolution for v. Take α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, and (x, i) ∈ R
d × Im. We adopt

the shorthands:

X = Xs,x,i;α⊗τ α̃,u, X1 = Xs,x,i;α⊗τ α̃1,u, X2 = Xs,x,i;α⊗τ α̃2,u,

I = Is,x,i;α⊗τ α̃,u, I1 = Is,x,i;α⊗τ α̃1,u, I2 = Is,x,i;α⊗τ α̃2,u.

We also denote τ ′ = τ(X·, I·−), ρ
′ = ρ(X·, I·−), ρ

1,′ = ρ(X1
· , I

1
·−), ρ

2,′ = ρ(X2
· , I

2
·−), τ̃

′
n =

τ̃n(X·, I·−), τ̃
1,′
n = τ̃1n(X

1
· , I

1
·−), and τ̃2,

′

n = τ̃2n(X
2
· , I

2
·−). Notice that (Xt, It−) = (X1

t , I
1
t−) =

(X2
t , I

2
t−), t ∈ [s, τ ′]. Therefore, from Lemma 2.1 we see that τ ′ = τ(X1

· , I
1
·−) = τ(X2

· , I
2
·−).

Moreover, for any t ∈ [τ ′, T ],

(Xt, It) = (X1
t , I

1
t )1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0} + (X2

t , I
2
t )1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0}.

As a consequence,

ρ′ = ρ1,
′

1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0} + ρ2,
′

1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0},

τ̃ ′n = τ̃1,
′

n 1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0} + τ̃2,
′

n 1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0}.

21



Therefore, from the previous identities and the stochastic subsolution property of v1, we

obtain

v1(τ ′,Xτ ′ , Iτ ′)1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0} = v1(τ ′,X1
τ ′ , I

1
τ ′)1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0}

≤ E

[(
∫ ρ1,

′

τ ′
f(X1

t , I
1
t , ut)dt+ v1(ρ1,

′

,X1
ρ1,′

, I1
ρ1,′

)

−
∑

n∈N

c(X1

τ̃1,
′

n

, I1
(τ̃1,

′
n )−

, I1
τ̃1,

′
n

)1
{τ ′≤τ̃1,

′
n <ρ1,′}

)

1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0}

∣

∣

∣

∣

Fs
τ ′

]

≤ E

[(
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{τ ′≤τ̃ ′n<ρ′}

)

1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0}

∣

∣

∣

∣

Fs
τ ′

]

.

Concerning v2, proceeding similarly we get

v2(τ ′,Xτ ′ , Iτ ′)1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0} ≤ E

[(
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{τ ′≤τ̃ ′n<ρ′}

)

1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0}

∣

∣

∣

∣

Fs
τ ′

]

.

In conclusion, we find

v(τ ′,Xτ ′ , Iτ ′)

= v1(τ ′,Xτ ′ , Iτ ′)1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)≥0} + v2(τ ′,Xτ ′ , Iτ ′)1{(v1−v2)(τ ′,Xτ ′ ,Iτ ′)<0}

≤ E

[
∫ ρ′

τ ′
f(Xt, It, ut)dt+ v(ρ′,Xρ′ , Iρ′)−

∑

n∈N

c(Xτ̃ ′n , I(τ̃ ′n)− , Iτ̃ ′n)1{τ ′≤τ̃ ′n<ρ′}

∣

∣

∣

∣

Fs
τ ′

]

,

which is the subsolution property for v.

A similar argument allows to prove the stability with respect to infimum of V+ in (ii).

In particular, fix s ∈ [0, T ], τ ∈ T s, and α = (τn, ιn)n∈N ∈ As,s. Let ũ1, ũ2 ∈ UE
s,τ be the

two elementary feedback strategies, for the nature, starting at τ and corresponding to the

supersolutions v1 and v2. Let B := {(v1 − v2)(τ(y), y(τ(y)+)) ≤ 0} ∈ Bs
τ+ . Then, from

Lemma 3.1 we see that the map

ũ(t, y) := ũ1(t, y)1{y∈B} + ũ2(t, y)1{y∈Bc}

is an elementary feedback strategy starting at τ , which allows to prove that v is a stochastic

supersolution to equation (2.10). 2

Lemma 3.5 Let Assumptions (H1) and (H2) hold.

(i) There exists a nondecreasing sequence (vn)n∈N ⊂ V− such that vn ր v−.

(ii) There exists a nonincreasing sequence (vn)n∈N ⊂ V+ such that vn ց v+.
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Proof. From Proposition 4.1 in [3] we can find a sequence (ṽn)n∈N ⊂ V− satisfying v− =

supn∈N ṽn. Set vn := ṽ0 ∨ · · · ∨ ṽn, n ∈ N. Then vn ր v− as n → ∞, and from Lemma 3.4

we see that (vn)n∈N ⊂ V−. In a similar way we can prove statement (ii). 2

We are now in a position to prove Theorem 3.1. Firstly, we just state here, in the spirit

of Lemma 2.4 in [5], the following technical result, which will be used several times in the

proof of Theorem 3.1.

Lemma 3.6 Let C ⊂ [0, T ] × R
d be a compact set and consider a continuous function

F : Rm × C → R, which is nondecreasing in each of its first m components. If there exists

δ > 0 such that inf(t,x)∈C F (v−(t, x, ·), t, x) > δ (resp. sup(t,x)∈C F (v+(t, x, ·), t, x) < −δ),

then

inf
(t,x)∈C

F (v(t, x, ·), t, x) > δ

(

resp. sup
(t,x)∈C

F (v(t, x, ·), t, x) < −δ
)

for some v ∈ V− (resp. v ∈ V+).

Proof. Notice that, from the strict inequality inf(t,x)∈C F (v−(t, x, ·), t, x) > δ we can find

ε > 0 such that F (v−(t, x, ·), t, x) > δ + ε, for any (t, x) ∈ C. Recall from Lemma 3.5 that

there exists a nondecreasing sequence of stochastic subsolutions vn ր v−. Let

An :=
{

(t, x) ∈ C : F (vn(t, x, ·), t, x) ≤ δ + ε/2
}

.

Notice that An is closed, An+1 ⊂ An, and ∩∞
n=0An = ∅. Since An ⊂ C, using the compact-

ness we see that there exists an n0 such that An0
= ∅, namely F (vn0

(t, x, ·), t, x) > δ + ε,

for any (t, x) ∈ C. In particular, inf(t,x)∈C F (vn0
(t, x, ·), t, x) > δ. We then take v := vn0

. In

a similar way we can prove the statement for v+. 2

Proof of Theorem 3.1.

Step I. v− is a viscosity supersolution to the HJB equation (2.10).

Step I(i). Interior viscosity supersolution property. Let (t0, x0) ∈ [0, T ) × R
d, i ∈ Im, and

consider a test function ϕ ∈ C1,2([0, T ] × R
d) such that v−(·, ·, i) − ϕ(·, ·) attains a strict

global minimum equal to zero at (t0, x0). Reasoning by contradiction, we assume that

min
{

−
∂ϕ

∂t
(t0, x0)− inf

u∈U

[

Li,uϕ(t0, x0) + f(x0, i, u)
]

,

v−(t0, x0, i)−max
j 6=i

[

v−(t0, x0, j) − c(x0, i, j)
]

}

< 0.

We distinguish two cases.

Case a. −∂ϕ
∂t (t0, x0)−infu∈U [L

i,uϕ(t0, x0)+f(x0, i, u)] < 0. Then, there exists ε ∈ (0, T−t0)

such that

−
∂ϕ

∂t
(t0, x0)− inf

u∈U

[

Li,uϕ(t0, x0) + f(x0, i, u)
]

< −ε.

From the continuity of b, σ, f , together with the compactness of U , we see that we can

choose a smaller ε ∈ (0, T − t0) such that

−
∂ϕ

∂t
(t, x)− inf

u∈U

[

Li,uϕ(t, x) + f(x, i, u)
]

< −ε, ∀ (t, x) ∈ B(t0, x0, ε),
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where

B(t0, x0, ε) =
{

(t, x) ∈ [0, T ]× R
d : max{|t− t0|, |x− x0|} < ε

}

. (3.8)

Since v−(·, ·, i)−ϕ(·, ·) is lsc and strictly positive on the compact set C := B(t0, x0, ε)\B(t0, x0, ε/2),

there exists δ > 0 such that inf(t,x)∈C(v
−(t, x, i) − ϕ(t, x)) > δ. Denoting F (p, t, x) :=

p−ϕ(t, x), it follows from Lemma 3.6 that there exists v ∈ V− such that ϕ(t, x)+δ < v(t, x, i)

on C. Now, define

vδ(t, x, i) =

{

(ϕ(t, x) + δ) ∨ v(t, x, i), on B(t0, x0, ε),

v(t, x, i), outside B(t0, x0, ε).

Moreover, vδ(t, x, j) = v(t, x, j) for any (t, x, j) ∈ [0, T ] × R
d × Im, with j 6= i. Our aim is

to prove that vδ ∈ V−, which would give a contradiction, since vδ(t0, x0, i) > v−(t0, x0, i).

Clearly, vδ satisfies the first item in Definition 3.4, therefore it remains to prove the second

item. To this end, fix s ∈ [0, T ] and τ, ρ ∈ T s, with τ ≤ ρ ≤ T . Let α̃0 = (τ̃0n, ι̃
0
n)n∈N be

given by

(τ̃0n, ι̃
0
n) = (T, i), ∀n ∈ N.

Notice that α̃0 ∈ As,τ+. Introduce now the stopping rule ρ1 : C([s, T ];Rd)×L ([s, T ]; Im) →

[s, T ], τ ≤ ρ1 ≤ T ,

ρ1(y) = inf
{

t ∈ [τ(y), T ] : (t, yX(t)) /∈ B(t0, x0, ε/2)
}

∧ T. (3.9)

We denote by α̃1 = (τ̃1n, ι̃
1
n)n∈N ∈ As,(ρ1∧ρ)+ the feedback switching control in Defini-

tion 3.4, corresponding to s, ρ1 ∧ ρ, ρ, for the stochastic subsolution v. Then, we de-

fine α̃2 = α̃0 ⊗ρ1∧ρ α̃
1, which belongs to As,τ+ thanks to Proposition 3.2. Moreover, let

α̃3 = (τ̃3n, ι̃
3
n)n∈N ∈ As,τ+ be the feedback switching control corresponding to s, τ, ρ for the

stochastic subsolution v. Then, we define α̃ = (τ̃n, ι̃n)n∈N by (for any y ∈ C([s, T ];Rd) ×

L ([s, T ]; Im) we write y = (yX , yI) with yX ∈ C([s, T ];Rd) and yI ∈ L ([s, T ]; Im))

(τ̃n(y), ι̃n(y)) = (τ̃2n(y), ι̃
2
n(y))1{(v−ϕ)(τ(y),y(τ(y)+ ))<δ, yI(τ(y)+)=i}

+ (τ̃3n(y), ι̃
3
n(y))1{(v−ϕ)(τ(y),y(τ(y)+ ))<δ, yI (τ(y)+)=i}c .

From Lemma 3.1 it follows that α̃ ∈ As,τ+. Moreover, the feedback switching control α̃

satisfies the condition in the definition of stochastic subsolution for vδ . To see this, fix

α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, and (x, i) ∈ R
d × Im. We adopt the shorthands:

(X, I) = (Xs,x,i;α⊗τ α̃,u, Is,x,i;α⊗τ α̃,u),

(X1, I1) = (Xs,x,i;α⊗τ α̃2,u, Is,x,i;α⊗τ α̃2,u),

(X2, I2) = (Xs,x,i;α⊗τ α̃3,u, Is,x,i;α⊗τ α̃3,u).

We also denote τ ′ = τ(X·, I·−), ρ
′
1 = ρ1(X·, I·−), and ρ′ = ρ(X·, I·−). Notice that

(X, I) = (X1, I1)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)<δ, Iτ ′=i} + (X2, I2)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)<δ, Iτ ′=i}c .

In particular, it is useful to decompose vδ(τ ′,Xτ ′ , Iτ ′) as follows

vδ(τ ′,Xτ ′ , Iτ ′) =
(

ϕ(τ ′,X1
τ ′) + δ

)

1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)<δ, Iτ ′=i} (3.10)
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+ v(τ ′,X2
τ ′ , I

2
τ ′)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)<δ, Iτ ′=i}c .

Then, to see that the stochastic subsolution property of vδ holds, we consider the two terms

on the right-hand side of (3.10) individually. Regarding the first term, we apply Itô’s for-

mula to ϕ between τ ′ and ρ′1 ∧ ρ′, observing that I1t = i for any t ∈ [τ ′, ρ′1 ∧ ρ′]; afterwards,

we use the subsolution property of v with corresponding feedback switching control α̃1. Fi-

nally, concerning the other term in (3.10), the result follows from the stochastic subsolution

property of v and the definition of α̃3.

Case b. v−(t0, x0, i) < maxj 6=i[v
−(t0, x0, j)−c(x0, i, j)] and−∂ϕ

∂t (t0, x0)−infu∈U [L
i,uϕ(t0, x0)+

f(x0, i, u)] ≥ 0. Since v− is lsc and c is continuous, there exists ε ∈ (0, T − t0) such that

v−(t0, x0, i) + ε < inf
(t,x)∈B(t0 ,x0,ε)

max
j 6=i

[v−(t, x, j) − c(x, i, j)].

Set F (p, t, x) = maxj 6=i[pj − c(x, i, j)], for any (p, t, x) ∈ R
m × B(t0, x0, ε). Then, from

Lemma 3.6 it follows that there exists v ∈ V− such that F (v(t, x, ·), t, x) > v−(t0, x0, i)+ε ≥

v(t0, x0, i) + ε, for any (t, x) ∈ B(t0, x0, ε). We also suppose that the function v given by

Lemma 3.6 satisfies v−(t0, x0, i) − v(t0, x0, i) < ε/2. Since v is continuous on B(t0, x0, ε),

we can find δ > 0 such that

sup
(t′,x′)∈B(t0,x0,δ)

v(t′, x′, i) + ε < inf
(t,x)∈B(t0 ,x0,ε)

max
j 6=i

[

v(t, x, j) − c(x, i, j)
]

. (3.11)

Let M > 0 be an upper bound for the continuous function |f(x, i, u)| on the compact set

B(t0, x0, ε) × Im × U . We suppose that δ ≤ ε/(4M). Now, define (we adopt the notation

‖(t, x)‖ = max{|t|, |x|})

vδ(t, x, i) =

{

v(t, x, i) + ε
2δ (δ − ‖(t− t0, x− x0)‖), on B(t0, x0, δ),

v(t, x, i), outside B(t0, x0, δ).

Moreover, vδ(t, x, j) = v(t, x, j) for any (t, x, j) ∈ [0, T ] × R
d × Im, with j 6= i. As

vδ(t0, x0, i) > v−(t0, x0, i), we get a contradiction if we prove that vδ ∈ V−. In order to do so,

fix s ∈ [0, T ] and τ, ρ ∈ T s, with τ ≤ ρ ≤ T . We have to determine α̃ = (τ̃n, ι̃n)n∈N ∈ As,τ+

which works for vδ. To this end, define ρ1 ∈ T s as follows

ρ1(y) = inf
{

t ∈ [τ(y), T ] : (t, yX(t)) /∈ B(t0, x0, δ)
}

∧ T.

Let α̃0 = (τ̃0n, ι̃
0
n)n∈N be given by: (τ̃0n, ι̃

0
n) = (T, i) for any n ≥ 1, and

τ̃00 (y) =
(

ρ1 ∧ ρ
)

(y)1{(τ(y),yX (τ(y)))∈B(t0 ,x0,δ)} + T 1{(τ(y),yX (τ(y)))/∈B(t0,x0,δ)},

ι̃00(y) = min
j 6=i

{

v(τ̃00 (y), y
X(τ̃00 (y)), j) − c(yX(τ̃00 (y)), i, j) = m(y)

}

,

where m : C([s, T ];Rd)× L ([s, T ]; Im) → R is defined as

m(y) = max
j 6=i

[

v(τ̃00 (y), y
X(τ̃00 (y)), j) − c(yX(τ̃00 (y)), i, j)

]

.

Notice that m is Bs
τ̃0
0

-measurable, so that ι̃00 is Bs
τ̃0
0

-measurable. Moreover, τ < τ̃00 on the

set {τ < T}. In particular, α̃0 ∈ As
τ+. Now, consider the feedback switching control α̃1 =
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(τ̃1n, ι̃
1
n)n∈N ∈ As,(τ̃0

0
∧ρ)+ in Definition 3.4, corresponding to s, τ̃00 ∧ ρ, ρ, for the stochastic

subsolution v. We define α̃2 = α̃0 ⊗τ̃0
0
∧ρ α̃

1, which belongs to As,τ+ thanks to Proposition

3.2. Consider also the feedback switching control α̃3 = (τ̃3n, ι̃
3
n)n∈N ∈ As,τ+, corresponding

to s, τ, ρ, for the stochastic subsolution v. Then, let α̃ = (τ̃n, ι̃n)n∈N be given by

(τ̃n(y), ι̃n(y)) = (τ̃2n(y), ι̃
2
n(y))1{(τ(y),yX (τ(y)))∈B(t0 ,x0,δ), yI (τ(y)+)=i}

+ (τ̃3n(y), ι̃
3
n(y))1{(τ(y),yX (τ(y)))∈B(t0 ,x0,δ), yI (τ(y)+)=i}c .

From Lemma 3.1 it follows that α̃ ∈ As,τ+. Moreover, α̃ is the feedback switching control

which satisfies the condition in the definition of stochastic subsolution for vδ. To see this, fix

α = (τn, ιn)n∈N ∈ As,s, u ∈ Us,s, and (x, i) ∈ R
d× Im. We adopt the shorthands introduced

in Case a. Consider the event A := {(τ ′,Xτ ′) ∈ B(t0, x0, δ), Iτ ′ = i}. On Ac the result

follows from the stochastic subsolution property of v and the definition of α̃3. On the other

hand, on A we have

vδ(τ ′,Xτ ′ , Iτ ′)1A = vδ(τ ′,X1
τ ′ , i)1A =

[

v(τ ′,X1
τ ′ , i) +

ε

2δ

(

δ − ‖(τ ′ − t0,X
1
τ ′ − x0)‖

)

]

1A

≤
[

v(τ ′,X1
τ ′ , i) +

ε

2

]

1A.

Using (3.11) and taking the conditional expectation with respect to Fs
τ ′ , we obtain (denoting

τ̃0,
′

0 = τ̃00 (X·, I·−))

vδ(τ ′,Xτ ′ , Iτ ′)1A ≤ E

[

v
(

τ̃0,
′

0 ∧ ρ′,X1

τ̃0,
′

0
∧ρ′

, I1
τ̃0,

′

0
∧ρ′

)

− c
(

X1

τ̃0,
′

0
∧ρ′

, i, I1
τ̃0,

′

0
∧ρ′

)

−
ε

2

∣

∣

∣
Fs
τ ′

]

1A.

Observe that τ̃0,
′

0 ≤ ρ′ on A. Therefore, the above inequality can be written as

vδ(τ ′,Xτ ′ , Iτ ′)1A ≤ E

[

v
(

τ̃0,
′

0 ,X1

τ̃0,
′

0

, I1
τ̃0,

′

0

)

− c
(

X1

τ̃0,
′

0

, i, I1
τ̃0,

′

0

)

−
ε

2

∣

∣

∣
Fs
τ ′

]

1A.

Adding and subtracting
∫ τ̃0,

′

0

τ ′ f(X1
t , I

1
t , ut)dt, noting that (τ̃

0,′

0 −τ ′)1A ≤ 2δ and 2δM−ε/2 ≤

0, we find

vδ(τ ′,Xτ ′ , Iτ ′)1A ≤ E

[
∫ τ̃0,

′

0

τ ′
f(X1

t , I
1
t , ut)dt+ v

(

τ̃0,
′

0 ,X1

τ̃0,
′

0

, I1
τ̃0,

′

0

)

− c
(

X1

τ̃0,
′

0

, i, I1
τ̃0,

′

0

)

∣

∣

∣

∣

Fs
τ ′

]

1A.

Finally, using the stochastic subsolution property of v, with corresponding feedback switch-

ing control α̃1, and the inequality v ≤ vδ, we derive the stochastic subsolution property of

vδ .

Step I(ii). Terminal condition. Reasoning by contradiction, we assume that there exist

x0 ∈ R
d and i ∈ Im such that

v−(T, x0, i) < g(x0, i).

Since g is continuous, there exists ε > 0 such that v−(T, x0, i) ≤ g(x, i) − ε whenever

|x− x0| ≤ ε. Consider the compact set

C :=
(

B(T, x0, ε)\B(T, x0, ε/2)
)

∩
(

[0, T ] × R
d
)

,
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where B(T, x0, ε) = {(t, x) ∈ [0, T ] × R
d : max{|t− t0|, |x− x0|} < ε}. Since v− is lsc, it is

bounded from below on C. Therefore, we can find η > 0 small enough (possibly depending

on ε) such that

v−(T, x0, i)−
ε2

4η
< −ε+ inf

(t,x)∈C
v−(t, x, i).

From Lemma 3.6 with F (p, t, x) = p for any (p, t, x) ∈ R × C, we can find a stochastic

subsolution v ∈ V− such that

v−(T, x0, i) −
ε2

4η
< −ε+ inf

(t,x)∈C
v(t, x, i). (3.12)

For k > 0 define

ϕη,ε,k(t, x) = v−(T, x0, i)−
|x− x0|

2

η
− k(T − t).

Since b, σ, f are continuous, we can choose k large enough such that

−
∂ϕη,ε,k

∂t
(t, x)− inf

u∈U

[

Li,uϕη,ε,k(t, x) + f(x, i, u)
]

< 0, ∀ (t, x) ∈ B(T, x0, ε).

From (3.12) it follows that ϕη,ε,k(t, x) < −ε+ v(t, x, i) on C. Moreover

ϕη,ε,k(T, x) ≤ v−(T, x0, i) ≤ g(x, i) − ε, whenever |x− x0| ≤ ε.

Now, for δ ∈ (0, ε) define

vδ(t, x, i) =

{

(ϕη,ε,k(t, x) + δ) ∨ v(t, x, i), on B(t0, x0, ε),

v(t, x, i), outside B(t0, x0, ε).

Moreover, vδ(t, x, j) = v(t, x, j) for any (t, x, j) ∈ [0, T ] × R
d × Im, with j 6= i. As

vδ(T, x0, i) > v−(T, x0, i), we get a contradiction if we are able to prove that vδ ∈ V−.

In particular, for any s ∈ [0, T ] and τ, ρ ∈ T s with τ ≤ ρ ≤ T , we have to find α̃ =

(τ̃n, ι̃n)n∈N ∈ As,τ+ which works for vδ. Consider the feedback switching control α̃ defined

in Step I(i), Case a, with ρ1 the exit time from B(T, x0, ε/2). Then, proceeding as in Case

a of Step I(i), we can prove that α̃ satisfies the condition in the definition of stochastic

subsolution for vδ .

Step II. v+ is a viscosity subsolution to the HJB equation (2.10).

Step II(i). Interior viscosity subsolution property. Let (t0, x0) ∈ [0, T ) × R
d, i ∈ Im, and

consider a test function ϕ ∈ C1,2([0, T ] × R
d) such that v+(·, ·, i) − ϕ(·, ·) attains a strict

global maximum equal to zero at (t0, x0). Reasoning by contradiction, we assume that

min
{

−
∂ϕ

∂t
(t0, x0)− inf

u∈U

[

Li,uϕ(t0, x0) + f(x0, i, u)
]

,

v+(t0, x0, i)−max
j 6=i

[

v+(t0, x0, j) − c(x0, i, j)
]

}

> 0.

Then, there exists ε > 0 and u ∈ U such that

−
∂ϕ

∂t
(t0, x0)− Li,uϕ(t0, x0)− f(x0, i, u) > ε.
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From the continuity of b, σ, f , it follows that we can find a smaller ε > 0 such that

−
∂ϕ

∂t
(t, x)− Li,uϕ(t, x) − f(x, i, u) > ε, ∀ (t, x) ∈ B(t0, x0, ε),

where B(t0, x0, ε) is given by (3.8). As v+(·, ·, i) − ϕ(·, ·) is usc and strictly negative on

the compact set C := B(t0, x0, ε)\B(t0, x0, ε/2), we see that there exists δ > 0 such that

sup(t,x)∈C(v
+(t, x, i) − ϕ(t, x)) < −δ. Denoting F (p, t, x) := p − ϕ(t, x), it follows from

Lemma 3.6 that there exists v ∈ V+ such that ϕ(t, x)− δ > v(t, x, i) on C. Now, define

vδ(t, x, i) =

{

(ϕ(t, x) − δ) ∧ v(t, x, i), on B(t0, x0, ε),

v(t, x, i), outside B(t0, x0, ε).

Moreover, vδ(t, x, j) = v(t, x, j) for any (t, x, j) ∈ [0, T ] × R
d × Im, with j 6= i. As

vδ(t0, x0, i) < v+(t0, x0, i), we find a contradiction if we are able to prove that vδ ∈ V+. To

this end, fix s ∈ [0, T ], τ ∈ T s, and α = (τn, ιn)n∈N ∈ As,s. We have to construct an ele-

mentary feedback strategy ũ ∈ UE
s,τ which works for vδ. Consider the stopping rule ρ1 ∈ T s

given by (3.9), and let ũ1 ∈ UE
s,ρ1 be the elementary feedback strategy for v, corresponding

to s, ρ1, α. Then, we define ũ2 = u ⊗ρ1 ũ
1, which belongs to UE

s,τ thanks to Proposition

3.2. Now, let ũ3 ∈ UE
s,τ be the elementary feedback strategy for v, corresponding to s, τ, α.

Then, we define

ũ(t, y) = ũ2(t, y)1{(v−ϕ)(τ(y),y(τ(y)+ ))>−δ, yI (τ(y)+)=i}

+ ũ3(t, y)1{(v−ϕ)(τ(y),y(τ(y)+ ))>−δ, yI (τ(y)+)=i}c .

From Lemma 3.1 we see that ũ ∈ UE
s,τ . Moreover, ũ is the elementary feedback strategy

for the stochastic supersolution property of vδ. Indeed, fix u ∈ UE
s,s, (x, i) ∈ R

d × Im, and

ρ ∈ T s, with τ ≤ ρ ≤ T . We adopt the shorthands:

(X, I) = (Xs,x,i;α,u⊗τ ũ, Is,x,i;α,u⊗τ ũ),

(X1, I1) = (Xs,x,i;α,u⊗τ ũ2

, Is,x,i;α,u⊗τ ũ2

),

(X2, I2) = (Xs,x,i;α,u⊗τ ũ3

, Is,x,i;α,u⊗τ ũ3

).

We also denote τ ′ = τ(X·, I·−), ρ
′
1 = ρ1(X·, I·−), and ρ′ = ρ(X·, I·−). Notice that

(X, I) = (X1, I1)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)>−δ, Iτ ′=i} + (X2, I2)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)>−δ, Iτ ′=i}c .

Moreover, write vδ(τ ′,Xτ ′ , Iτ ′) as follows

vδ(τ ′,Xτ ′ , Iτ ′) =
(

ϕ(τ ′,X1
τ ′)− δ

)

1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)>−δ, Iτ ′=i}

+ v(τ ′,X2
τ ′ , I

2
τ ′)1{(v−ϕ)(τ ′ ,Xτ ′ ,Iτ ′)>−δ, Iτ ′=i}c .

Then, applying Itô’s formula to ϕ and using the stochastic supersolution property of v, we

derive the stochastic supersolution property for vδ .

Step II(ii). Terminal condition. Reasoning by contradiction, we assume that there exist

x0 ∈ R
d and i ∈ Im such that

v+(T, x0, i) > g(x0, i).
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Since g is continuous, there exists ε > 0 such that v+(T, x0, i) ≥ g(x, i) + ε whenever

|x− x0| ≤ ε. Consider the compact set

C :=
(

B(T, x0, ε)\B(T, x0, ε/2)
)

∩
(

[0, T ] × R
d
)

.

As v+ is usc, it is bounded from above on C. Therefore, we can find η > 0 small enough

(possibly depending on ε) such that

v+(T, x0, i) +
ε2

4η
> ε+ sup

(t,x)∈C
v+(t, x, i).

From Lemma 3.6 with F (p, t, x) = p for any (p, t, x) ∈ R × C, we can find a stochastic

supersolution v ∈ V+ such that

v+(T, x0, i) +
ε2

4η
> ε+ sup

(t,x)∈C
v(t, x, i). (3.13)

For k > 0 define

ϕη,ε,k(t, x) = v+(T, x0, i) +
|x− x0|

2

η
+ k(T − t).

Since b, σ, f are continuous, we can choose k large enough and u ∈ U such that

−
∂ϕη,ε,k

∂t
(t, x)− Li,uϕη,ε,k(t, x)− f(x, i, u) > 0, ∀ (t, x) ∈ B(T, x0, ε).

From (3.13) it follows that ϕη,ε,k(t, x) > ε+ v(t, x, i) on C. Moreover

ϕη,ε,k(T, x) ≥ v+(T, x0, i) ≥ g(x, i) + ε, whenever |x− x0| ≤ ε.

Now, for δ ∈ (0, ε) define

vδ(t, x, i) =

{

(ϕη,ε,k(t, x)− δ) ∧ v(t, x, i), on B(t0, x0, ε),

v(t, x, i), outside B(t0, x0, ε).

Moreover, vδ(t, x, j) = v(t, x, j) for any (t, x, j) ∈ [0, T ] × R
d × Im, with j 6= i. As

vδ(T, x0, i) < v+(T, x0, i), we get a contradiction if we prove that vδ ∈ V+. In particu-

lar, for any s ∈ [0, T ], τ ∈ T s, and α = (τn, ιn)n∈N ∈ As,s, we have to find ũ ∈ UE
s,τ for the

stochastic supersolution property of vδ. Let ũ ∈ UE
s,τ be the elementary feedback strategy

defined in Step II(i), with ρ1 the exit time from B(T, x0, ε/2). Then, we can prove, as in

Step II(i), that ũ satisfies the condition in the definition of stochastic supersolution for vδ.

2

4 Dynamic programming and viscosity properties of V

In the present section, by means of the comparison principle for equation (2.10), we prove

that V satisfies the dynamic programming principle and is a viscosity solution to equation

(2.10), which therefore turns out to be the dynamic programming equation of the robust

switching control problem.
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4.1 Comparison principle and viscosity characterization

We need to make an additional assumption on the switching costs in order to get comparison

principle.

(H3)

The switching cost function c satisfies the no free loop property: for any sequence of

indices i1, . . . , ik ∈ Im, with k ∈ N\{0, 1, 2}, i1 = ik, and card{i1, . . . , ik} = k − 1, we

have

c(x, i1, i2) + c(x, i2, i3) + · · ·+ c(x, ik−1, ik) + c(x, ik, i1) > 0, ∀x ∈ R
d.

We also assume that c(x, i, i) = 0, for any x ∈ R
d and i ∈ Im.

Theorem 4.1 (Comparison principle) Let Assumptions (H1), (H2) and (H3) hold

and consider a viscosity subsolution u (resp. supersolution v) to equation (2.10). Suppose

that

sup
(t,x,i)∈[0,T ]×Rd×Im

|u(t, x, i)| + |v(t, x, i)|

1 + |x|q
< ∞,

for some q ≥ 1. Then, we have u(t, x, i) ≤ v(t, x, i) for any (t, x, i) ∈ [0, T ] × R
d × Im.

Remark 4.1 The proof can be done along the lines of Proposition 3.1 in [13], apart from

minor changes due to the presence of the infimum over U in (2.10), which are dealt with

by the uniform Lipschitz condition in (H1)(ii). More precisely, it is proved, as usual,

proceeding by contradiction and then using the doubling variable technique. We simply

notice here that equation (2.10) requires a particular step. Indeed, along the sequence of

maximum points (tn, xn)n coming through the doubling of variables, we require

u(tn, xn, i) > max
j 6=i

[

u(tn, xn, j) − c(xn, i, j)
]

, (4.1)

so that, from the viscosity subsolution property of u, we can derive an inequality for the

PDE part of equation (2.10) (concerning v, the viscosity supersolution property implies

already the nonnegativity of both terms in (2.10)). Condition (4.1) is obtained from a “no-

loop” argument presented in Theorem 3.1 of [16] (see also Lemma A.2 in [1] and Proposition

3.1 in [13]), which is based on the no free loop property in (H3). 2

Corollary 4.1 Under Assumptions (H1), (H2), and (H3), we have v− = V = V = v+.

In particular, V (as v−, V , v+) is continuous. Moreover, V is the unique viscosity solution

to equation (2.10) satisfying a polynomial growth condition. Furthermore, V satisfies the

dynamic programming principle: for any (s, x, i) ∈ [0, T ]× R
d × Im and ρ ∈ T s,

V (s, x, i) = sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ V (ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]
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= sup
α∈As,s

inf
u∈UE

s,s

E

[
∫ ρ′

s
f(Xt, It, u

′
t)dt+ V (ρ′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

,

with the shorthands X = Xs,x,i;α,u, I = Is,x,i;α,u, ρ′ = ρ(X·, I·−), τ ′n = τn(X·, I·−), and

u′t = u(t,X·, I·−).

Proof. The equality v− = V = V = v+ follows from the comparison Theorem 4.1. Since

v− is lsc and v+ is usc, we see that V is continuous. Moreover, from Remark 2.5, Theorem

3.1, and Theorem 4.1 it follows that V is the unique viscosity solution to equation (2.10)

satisfying a polynomial growth condition. Finally, let us prove the dynamic programming

principle for V . We begin noting that v− and v+ satisfy, respectively, the half dynamic

programming principles: for any (s, x, i) ∈ [0, T ]× R
d × Im and ρ ∈ T s,

v−(s, x, i) ≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v−(ρ′,Xρ′ , Iρ′) (4.2)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

and

v+(s, x, i) ≥ sup
α∈As,s

inf
u∈UE

s,s

E

[
∫ ρ′

s
f(Xt, It, u

′
t)dt+ v+(ρ′,Xρ′ , Iρ′) (4.3)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

,

with the shorthands X = Xs,x,i;α,u, I = Is,x,i;α,u, ρ′ = ρ(X·, I·−), τ
′
n = τn(X·, I·−), and

u′t = u(t,X·, I·−). As a matter of fact, let (vn)n∈N ⊂ V− be the sequence in Lemma 3.5(i).

From Lemma 3.2 we know that each vn satisfies the half dynamic programming principle:

for any (s, x, i) ∈ [0, T ]× R
d × Im and ρ ∈ T s,

vn(s, x, i) ≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ vn(ρ

′,Xρ′ , Iρ′)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

.

Since vn ≤ v−, we get

vn(s, x, i) ≤ sup
α∈As,s

inf
u∈Us,s

E

[
∫ ρ′

s
f(Xt, It, ut)dt+ v−(ρ′,Xρ′ , Iρ′) (4.4)

−
∑

n∈N

c(Xτ ′n , I(τ ′n)− , Iτ ′n)1{s≤τ ′n<ρ′}

]

.

Letting n → ∞ in (4.4), we finally obtain the half DPP (4.2) for v−. In a similar way we

can prove (4.3). Combining (4.2) and (4.3) with the equalities v− = V = v+, we end up

with the dynamic programming principle for V . 2
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4.2 A counterexample to uniqueness

We now describe the Elliott-Kalton version of the robust switching control problem, and

compare its value function to the value function V . To this end, we need to introduce

the concept of non-anticipating strategy for the switcher. Firstly, we define a standard

switching control, not necessarily of feedback form.

Definition 4.1 (Switching controls) Fix s ∈ [0, T ]. We say that the double sequence

α = (τn, ιn)n∈N is a switching control starting at s if:

• τn is an F
s-stopping time, for any n ∈ N, and

s ≤ τ0 ≤ · · · ≤ τn ≤ · · · ≤ T.

Moreover, (τn)n∈N satisfies the following property: for P-a.e. ω ∈ Ω,

τn(ω) = T, for n large enough.

• ιn : Ω → Im is Fs
τn-measurable, for any n ∈ N.

As,s denotes the family of all switching controls starting at s.

When using switching controls as defined above, the well-posedness of equation (2.1)

becomes easier. In particular, we have the following result, whose standard proof is omitted.

Proposition 4.1 Let Assumption (H1) hold. For any (s, x, i) ∈ [0, T ]×R
d×Im, α ∈ As,s,

u ∈ Us,s, there exists a unique (up to indistinguishability) Fs-adapted process (Xs,x,i;α,u, Is,i;α) =

(Xs,x,i;α,u
t , Is,i;αt )s≤t≤T to equation (2.1). Moreover, estimate (2.2) holds.

We can now introduce the concept of non-anticipating strategy for the switcher.

Definition 4.2 (Non-anticipating strategies) Fix s ∈ [0, T ]. We say that the map

β : Us,s −→ As,s

u 7−→ β[u] =
(

τn[u], ιn[u]
)

n∈N

is a non-anticipating strategy starting at s if

P
[

(τn[u
1], ιn[u

1])1{τn[u1]≤t} = (τn[u
2], ιn[u

2])1{τn[u2]≤t}, ∀n ∈ N
]

= 1

whenever P(u1r = u2r , ∀ r ∈ [s, t]) = 1, for any t ∈ [s, T ] and u1, u2 ∈ Us,s. ∆s,s denotes the

family of all non-anticipating strategies starting at s.

We can now define the corresponding value function:

V̂ (s, x, i) := sup
β∈∆s,s

inf
u∈Us,s

J(s, x, i;β[u], u),

for all (s, x, i) ∈ [0, T ] × R
d × Im. Notice that

V (s, x, i) ≤ V̂ (s, x, i), ∀ (s, x, i) ∈ [0, T ]× R
d × Im. (4.5)

Under Assumptions (H1) and (H2), we expect that V̂ (as V ) is a viscosity solution to

equation (2.10), so that, by comparison, V = V̂ . However, when comparison does not hold,

the above inequality (4.5) might be strict at some point, as the following example shows.
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Example 4.1 Fix d = 1, m = 2 so that I2 = {1, 2}, and take U = I2. Moreover, set

b(x, i, u) = −(i − u)2 and σ ≡ 0. Notice that b ∈ {−1, 0}. Since Assumption (H1)

is satisfied, from Proposition 4.1 it follows that, for any (s, x, i) ∈ [0, T ] × R × I2, α ∈

As,s, u ∈ Us,s, there exists a unique solution (Xs,x,i;α,u, Is,i;α) = (Xs,x,i;α,u
t , Is,i;αt )s≤t≤T to

equation (2.1).

Set g(x, i) = x, f ≡ 0, and c ≡ 0. Our aim is now to determine the explicit form of V̂

and V . To this end, it is convenient to prove, relying on an approximation result by [17],

that V̂ can be defined equivalently taking the infimum over the set of step controls, i.e.,

controls which are pure jump processes and have a uniformly finite number of jumps. In

our particular example, since U = {1, 2} we notice that every control u ∈ Us,s is already a

pure jump process, however it is not guaranteed that it has a uniformly finite number of

jumps.

Definition 4.3 (Step controls) Fix s ∈ [0, T ]. We say that u is a step control starting

at s if there exists n ∈ N \ {0}:

• τk is an F
s-stopping time, for any k = 1, . . . , n, and

s =: τ0 ≤ · · · ≤ τk ≤ · · · ≤ τn = T.

• ξk : Ω → U is Fs
τ+
k−1

-measurable, for any k = 1, . . . , n.

The control u : [s, T ]× Ω → U is given by

ut := ξ11{t=s} +

n
∑

k=1

ξk1{τk−1<t≤τk}.

US
s,s denotes the family of all step controls starting at s.

Now, recalling the approximation result in [17], Lemma 3.2.6, together with the form of

the functional J(s, x, i;α, u) = E[Xs,x,i;α,u
T ] in the present particular example, we conclude

that

V̂ (s, x, i) = sup
β∈∆s,s

inf
u∈US

s,s

J(s, x, i;β[u], u), ∀ (s, x, i) ∈ [0, T ] × R× I2.

Let us now determine the form of the function V̂ . Since the terminal payoff g is strictly

increasing and the drift b is nonpositive, the aim of the switcher is to keep the system still.

This can be done adopting the following strategy: β[u] = (τn[u], ιn[u])n∈N where, for any

ut := ξ11{t=s} +
∑n

k=1 ξk1{σk−1<t≤σk} in US
s,s, we have

(

τk[u], ιk[u]
)

= (σk, ξk+1), ∀ k = 0, . . . , n− 1.

With this choice, X
s,x,i;β[u],u
t = x for any t ∈ [s, T ]. Moreover, β ∈ ∆s,s. In conclusion, we

find

V̂ (s, x, i) = g(x, i) = x, ∀ (s, x, i) ∈ [0, T ] × R× I2.
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Let us now find the expression of V . Fix (s, x, i) ∈ [0, T ]×R×I2 and α = (τn, ιn)n∈N ∈ As,s.

The aim of nature is to minimize the quantity J(s, x, i;α, u) over Us,s, which means to

maximize the drift b, i.e., to keep it at the value −1. This can be done as follows. Define

u ∈ Us,s, depending on α, by

ut := (3− i) 1{s≤t≤τ0} +
∑

n∈N

(3− ιn)1{τn<t≤τn+1}, ∀ t ∈ [s, T ].

Observe that, since i, ιn ∈ I2 then 3− i, 3 − ιn ∈ I2; moreover, when i = 1 then 3 − i = 2,

while if i = 2 then 3 − i = 1. Notice that, for P-a.e. ω ∈ Ω we have Is,i;αt (ω) = 3− ut(ω),

for all t ∈ [s, T ] with t 6= τn(ω), n ∈ N. Therefore, P-a.s.,

b
(

Xs,x,i;α,u
t , Is,i;αt , ut

)

= −
(

Is,i;αt − ut
)2

= −1,

for all t ∈ [s, T ], with t 6= τn, n ∈ N. It follows that, P-a.s. we have Xs,x,i;α,u
T = x− (T − s).

In other words, we obtain

V (s, x, i) = x− (T − s), ∀ (s, x, i) ∈ [0, T ]× R× I2.

In conclusion, V < V̂ on [0, T )×R× I2. We finally observe that both V and V̂ are classical

solutions to equation (2.10), so that comparison does not hold. This is due to the fact that

while Assumptions (H1) and (H2) hold, the no free loop property in (H3) is not satisfied.

2
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