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Abstract. The paper deals with the problem of compliance errors compensation 

in robotic-based milling. Contrary to previous works that assume that the 

forces/torques generated by the manufacturing process are constant, the interac-

tion between the milling tool and the workpiece is modeled in details. It takes 

into account the tool geometry, the number of teeth, the feed rate, the spindle 

rotation speed and the properties of the material to be processed. Due to high 

level of the disturbing forces/torques, the developed compensation technique is 

based on the non-linear stiffness model that allows us to modify the target tra-

jectory taking into account nonlinearities and to avoid the chattering effect. Illu-

strative example is presented that deals with robotic-based milling of aluminum 

alloy. 

Keywords. Industrial robot, milling, compliance error compensation, dynamic 

machining force model, non-linear stiffness model.  

1 Introduction 

Currently, robots become more and more popular for a variety of technological 

processes, including high-speed precision machining. For this process, external load-

ing caused by the machining force is applied on the robot tool. This force is generated 

by the interaction between the tool mounted on the robot end-effector and the work-

piece during the material removal [1]. It is a contact force and it is distributed along 

the affected area of the tool cutting part. To evaluate the influence and to analyze the 

robot behavior while machining, the cutting force should be defined either experimen-

tally or using accurate mathematical model. 

To evaluate the force caused by interaction between the tool and the workpiece, 

two approaches can be used. The static approach allows computing the average cut-

ting force without any consideration of dynamic aspect in machining system. This 

force serves as an external loading of the robot. This approach is widely used in anal-

ysis of conventional machining processes using CNC machines [2], where the stiff-

ness is high. In contrast, robots have relatively low structural stiffness. For this rea-



 

son, in the case of robotic-based machining, an additional source of dynamic dis-

placements of the end-effector with respect to the desired trajectory induced by robot 

compliance may arise. Such behavior leads to the variable contact between the ma-

chining tool and the workpiece. Thus, the generated contact force depends on the 

current position of the robot end-effector on the trajectory. Consequently, the cutting 

force cannot be evaluated correctly using the static approach. In this case, the dynam-

ic approach, which will be used in the paper, is required. It is based on computing of 

the force at each instant of machining process that defines loading of the robot for the 

next instant of processing. As a result, the dynamic aspect of robot motion under such 

variable cutting force can be examined for whole process.  

Usually, in the robot-based machining this force causes essential deflections that 

decrease the quality of the final product. The problem of the robot error compensation 

can be solved in two ways that differ in degree of modification of the robot control 

software:  

(a) by modification of the manipulator model, which better suits to the real ma-

nipulator and is used by the robot controller (in simple case, it can be limited by tun-

ing of the nominal manipulator model, but may also involve essential model en-

hancement by introducing additional parameters, if it is allowed by a robot manufac-

turer);  

(b) by modification of the robot control program  that defines the prescribed tra-

jectory in Cartesian space (here, using relevant error model, the input trajectory is 

generated in such way that under the loading the output trajectory coincides with the 

desired one, while input trajectory differs from the target one).  

Moreover, with regard to the robot-based machining, there is a solution that does 

not require force/torque measurements or computations [1], where the target trajecto-

ry for the robot controller is modified by applying the "mirror" technique. An evident 

advantage of this technique is its applicability to the compensation of all types of the 

robot errors, including geometrical and compliance ones. However, this approach 

requires carrying out additional preliminary experiments which are quite expensive. 

So, it is suitable for the large-scale production only. Another compensation methodol-

ogy has been proposed by Eastwood and Webb [3] that was used for gravitational 

deflection compensation for hybrid parallel kinematic machines.  

This paper focuses on the modification of control program that is considered to be 

more realistic in practice. This approach requires also accurate stiffness model of the 

manipulator. From point of view of stiffness analysis, the external and forces directly 

influence on the manipulator equilibrium configuration and, accordingly, may modify 

the stiffness properties. So, they must be undoubtedly taken into account while devel-

oping the stiffness model. However, in most of the related works the Cartesian stiff-

ness matrix has been computed for the nominal configuration [4-5]. Such approach is 

suitable for the case of small deflections only. For the opposite case, the most impor-

tant results have been obtained in [6-8], which deal with the stiffness analysis of ma-

nipulators under the end-point loading.  

Thus, to compensate errors caused by the machining process, it is required to have 

an accurate stiffness model and precise cutting force model. In contrast to the pre-

vious works, the compliance error compensation technique presented in this work is 



based on the non-linear stiffness model of the manipulator [7] and dynamic model of 

technological process that generates the cutting force.  

2 Problem statement 

For the compliance errors, the compensation technique must rely on two compo-

nents. The first of them describes distribution of the stiffness properties throughout 

the workspace and is defined by the stiffness matrix as a function of the joint coordi-

nates. The second component describes the forces/torques acting on the end-effector 

while the manipulator is performing its machining task (manipulator loading).  

The stiffness matrix required for the compliance errors compensation highly de-

pends on the robot configuration and essentially varies throughout the workspace. 

From general point of view, full-scale compensation of the compliance errors requires 

essential revision of the manipulator model embedded in the robot controller. In fact, 

instead of conventional geometrical model that provides inverse/direct coordinate 

transformations from the joint to Cartesian spaces and vice versa, here it is necessary 

to employ the so-called kinetostatic model [9]. It is essentially more complicated than 

the geometrical model and requires rather intensive computations that are presented in 

Section 3.  

The dynamic behavior of the robot under the loading F  caused by technological 

process can be described as 

 
C C C

  M δt C δt K δt F   (1) 

where 
C

M  is 6 6  mass matrix that represents the global behavior of the robot in 

terms of natural frequencies, 
C

C  is 6 6  damping matrix, 
C

K  is 6 6  Cartesian 

stiffness matrix of the robot under the external loading F , ,δt δt  and δt  are dynamic 

displacement, velocity and acceleration of the tool end-point in a current moment 

respectively [10].  

In general, the cutting force Fc has a nonlinear nature and depends on many factors 

such as cutting conditions, properties of workpiece material and tool cutting part, etc 

[11]. But, for given tool/workpiece combination, the force Fc could be approximated 

as a function of an uncut chip thickness h, which represents the desired thickness to 

cut at each instant of machining.  

Hence, to reduce the errors caused by the cutting forces in the robotic-based ma-

chining it is required to obtain an accurate elastostatic model of the robot and elasto-

dynamic model of the machining process. These problems are addressed in the fol-

lowing sections taking into account some particularities of the considered application 

(robotic-based milling). 



 

3 Manipulator model  

3.1 Elastostatic model 

Elastostatic model of a serial robot is usually defined by its Cartesian stiffness ma-

trix, which should be computed in the neighborhood of loaded configuration. Let us 

propose numerical technique for computing static equilibrium configuration for a 

general type of serial manipulator. Such manipulator may be approximated as a set of 

rigid links and virtual joints, which take into account elastostatic properties (Fig. 1). 

Since the link weight of serial robots is not negligible, it is reasonable to decompose it 

into two parts (based on the link mass centre) and apply them to the both ends of the 

link. All this loadings will be aggregated in a vector  1
...

n
G G G , where 

i
G  is the 

loading applied to the i-th node-point. Besides, it is assumed that the external loading 

F  (caused by the interaction of the tool and the workpiece) is applied to the robot 

end-effector. 

Following the principle of virtual work, the work of external forces ,G F  is equal 

to the work of internal forces 

τ  caused by displacement of the virtual springs δθ  

  T T T

θ

1

δ δ δ

n

j j

j 

     G t F t τ θ  (2) 

where the virtual displacements δ
j

t  can be computed from the linearized geometrical 

model derived from ( )

θ
δ δ , 1..

j

j
j n t J θ , which includes the Jacobian matrices 

 
( )

θ
,

j

j
  J g q θ θ  with respect to the virtual joint coordinates. 

So, expression (2) can be rewritten as 

    T ( ) T ( ) T

θ θ θ

1

δ δ δ

n

j n

j

j 

       G J θ F J θ τ θ  (3) 

which has to be satisfied for any variation of δθ . It means that the terms regrouping 

the variables δθ  have the coefficients equal to zero. Hence the force balance equa-

tions can be written as 

 ( ) T ( ) T

θ θ θ

1

n

j n

j

j 

   τ J G J F  (4) 

These equations can be re-written in block-matrix form as 

 

Fig. 1. VJM model of industrial robot with end-point and auxiliary loading  



 (G) T (F) T

θ θ θ
   τ J G J F  (5) 

where (F) ( )

θ θ

n
J J , (G) (1) ( )

θ θ θ

T
T T

...
n

 
 

J J J , 
T

T T

1
...

n
 
 

G G G . Finally, taking into ac-

count the virtual spring reaction 
θ θ
 τ K θ , where  

1 nθ θ θ
, ...,diagK K K , the 

desired static equilibrium equations can be presented as 

 (G) T (F) T

θ θ θ
    J G J F K θ  (6) 

To obtain a relation between the external loading F  and internal coordinates of the 

kinematic chain θ  corresponding to the static equilibrium, equations (6) should be 

solved either for different given values of F  or for different given values of t . Let us 

solve the static equilibrium equations with respect to the manipulator configuration θ  

and the external loading F  for given end-effector position  t g θ  and the function 

of auxiliary-loadings  G θ  

    
(G) T (F) T

θ θ θ
; ;    K θ J G J F t g θ G G θ  (7) 

where the unknown variables are  ,θ F .  

Since usually this system has no analytical solution, iterative numerical technique 

can be applied. So, the kinematic equations may be linearized in the neighborhood of 

the current configuration 
i

θ  

      
(F)

θ1 1
;

i i i i i 
   t g θ J θ θ θ  (8) 

where the subscript 'i' indicates the iteration number and the changes in Jacobians 
(G) (F)

θ θ
,J J  and the auxiliary loadings G  are assumed to be negligible from iteration to 

iteration. Correspondingly, the static equilibrium equations in the neighborhood of 
i

θ  

may be rewritten as 

 (G) T (F) T

θ 1θ 1 θi i 
    J G J F K θ  (9) 

Thus, combining (8), (9) and expression for 1 (G) T (F) T

θ θ θ
( )


   θ K J G J F , the un-

known variables F  and θ  can be computed using  following iterative scheme  

 
    

 

1
(F) 1 (F) T (F) (F) 1 (G ) T

θ θ θ θ θ

1 (G ) T (F) T

θ θ θ

1 1

1 1

i i i i i

i i i

 


 



 

 

     

   

F J K J t g θ J θ J K J G

θ K J G J F

 (10) 

The proposed algorithm allows us to compute the static equilibrium configuration for 

the serial robot under external loadings applied to any point of the manipulator and 

the loading from the technological process. 

3.2 Stiffness matrix 

In order to obtain the Cartesian stiffness matrix, let us linearize the force-deflection 

relation in the neighborhood of the equilibrium. Following this approach, two equili-



 

briums that correspond to the manipulator state variables ( , , )F θ t  and 

( δ , δ , δ )  F F θ θ t t  should be considered simultaneously. Here, notations δF , δt  

define small increments of the external loading and relevant displacement of the end-

point. Finally, the static equilibrium equations may be written as  

  
(G) T (F) T

θ θ θ
;     t g θ K θ J G J F  (11) 

and 

 
 

         
T T

(G) (G) (F) (F)

θ θ θ θ θ

δ δ

δ δ δ δ δ

  

         

t t g θ θ

K θ θ J J G G J J F F

 (12) 

where 
θ

, , , ,t F G K θ  are assumed to be known.  

After linearization of the function ( )g θ  in the neighborhood of the loaded equili-

brium, the system (11), (12) is reduced to equations 

 

(F)

θ

(G) (G) (F) (F)

θ θ θ θ θ

δ δ

δ δ δ δ δ



    

t J θ

K θ J G J G J F J F
 (13) 

which defines the desired linear relations between δt  and δF . In this system, small 

variations of Jacobians may be expressed via the second order derivatives 
(F) (F)

θ θθ
δ δ J H θ , (G ) (G )

θ θθ
δ δ J H θ , where  

 (G) 2 (F) 2

θθ θθ1

2 2
;

T T

j

n

jj 
     H g G θ H g F θ  (14) 

Also, the auxiliary loading G  may be computed via the first order derivatives as 

δ δ   G G θ θ  

Further, let us introduce additional notation  

 (F) (G) (G) T

θθ θθ θθ θ
     H H H J G θ  (15) 

which allows us to present system (13) in the form 

 
(F)

θ

(F) T

θ θ θθ

δ δ

δ

    
          

0 Jt F

0 θJ K H
 (16) 

So, the desired Cartesian stiffness matrices 
C

K  can be computed as  

  
1

(F) 1 (F) T

C θ θ θθ θ
( )




 K J K H J  (17) 

Below, this expression will be used for computing of the elastostatic deflections of 

the robotic manipulator. 



3.3 Reduced mass matrix 

To evaluate the dynamic behavior of the robot under the loading, in addition to the 

Cartesian stiffness matrix 
C

K  it is required to define the Cartesian mass matrix 
C

M .  

This mass matrix has the same dimension as 
C

K  and can be obtained using some 

model reduction techniques. Comprehensive analysis and definition of this matrix 

have been proposed in [10]. Here, let us summarize the main results that will be used 

further. 

To reduce the mass matrix dimension, model reduction techniques are applied for 

decreasing the size of the link mass matrices and also for the robot total mass matrix. 

Two main ways can be followed to reduce the size of the link mass matrices. The first 

one consists in discretizing the beam j into pj rigid links and springs and to express 

their displacements as a function of the beam extremity displacements. However, such 

numerical method must be repeated for each link and, thus, increases the size of the 

algorithm and decreases its efficiency. As a result, it is preferred to use the following 

procedure which allows analytical expressions to be obtained for the reduced link 

mass matrices. 

Let us consider the link j, modeled as a beam (Fig. 2). At this beam is attached a 

local frame represented by the vectors xj, yj and zj. Before any deformation of the 

system, the beam j is linked to beams (j–1) and (j+1) at points Oj and Oj+1, respective-

ly (Fig. 2). After deformation of the robot, the beam extremity located at Oj is dis-

placed from 1 2 6

1 1 1 1
, , ,  

   
 
 


T

j j j j
t t tδt  and the one located at Oj+1 is displaced 

from 1 2 6
, , ,   

 


T

j j j j
t t tδt , where the three first components of each vector cor-

respond to the translational displacements along local xj, yj and zj axes, respectively, 

and the three last components to the rotational displacements along the same axes.  

The general formula for the kinetic energy of an elastic Bernoulli beam is equal to: 

  
0

1 2 ; diag , , , , 
 

jL

T p y z

j j j j j j j j j j j j
T dx A A A I I Iδ Q δ Q  (18) 

In this expression, 
j

δ  represents the velocity of the beam cross-section located at 

position x from the local reference frame (Fig. 2), Lj is the length of the beam j, j the 

mass density at cross-section x, Aj its area, 
p

j
I  its torsional constant and 

y

j
I , 

z

j
I , the 

quadratic momentums along yj and zj, respectively. 

 

Fig. 2. Displacements and elastic deformations of a beam. 



 

For the l-th natural mode 
l

 , the kinetic energy can be rewritten as: 

  

jL

jj

T

jjllljl dxtT

0

22
cos21 δQδ  (19) 

j being the amplitude of the displacement of the beam cross-section located at posi-

tion x from the local reference frame (Fig. 2). 

In the Rayleigh-Ritz approximation, considering that the deformations due to the 

natural vibrations are similar to those obtained when an external load is applied at the 

robot end-effector only, each link of the structure will deform due to the stresses 

transmitted through the robot joints at points Oj. As a result, the deformations j of the 

beam cross-section can be approximated by the deformations of a tip-loaded beam 

  diag , , , , ,
j j j j j j j j

f g g f h hε δθ  (20) 

where   
j j j

x Lδθ ε  represents the deformation of the beam at its tip and 

          2 3 2
, 0.5 3 , 2 0.5    

j j j j j j j j
f x x L g x x L x L h x x L x L  (21) 

As a result, the global displacement j of the beam cross-section at x can be ex-

pressed as a sum of two terms: 

 
 3

1

3 3





 
  
  

j j j

I D
δ δt ε

0 I
, with 

 

0 0 0

0 0

0 0

D x

x



 

 
 
 

  

 (22) 

In this sum, the left terms corresponds to the displacement of the undeformed beam 

due to the displacement of the node located at Oj. 

Introducing (20) to (22) into (9) leads to the following equation: 

  
12 2

1
1 2 cos  





  
       

  

jT T red

jl l l l j j j

j

T t
δt

δt δt M
δt

 (23) 

where the expressions of each components of matrix 
red

j
M  are given in [10]. 

Using these results, the total kinetic energy of the system for the l-th node is: 

   δtMδt tot

T

lll

j

jll tTT   
22

cos21  (24) 

with  1
diag , , 

red red

tot n
M M M  and 

0 1 1
, , , ,


 
 


T T T T T

n n
δt δt δt δt δt  

Then, assuming that the first natural modes of vibrations, i.e. the modes that have 

the most energy, lead to deformations that are close to the static deformations of the 

robot under a load applied on the end-effector, the mass matrix can be recomputed 

into the Cartesian coordinates associated with the tool end-point using the Jacobian 



matrix 
θ

J  defined at expression (3) (which depend on the robot configuration q  and 

computed with respect to virtual joint coordinates θ ) using following expression 

 
θC θ θ

T
M J M J  (25) 

Thus, using expressions (25), it is possible to compute the reduced mass matrix 

C
M  for a given robot configuration q . The performances of this model reduction are 

shown in [10]. 

4 Machining process 

Let us obtain the model of the cutting force which depends on the relative position 

of the tool with respect to the workpiece at each instant of machining. As follows 

from previous works [12], for the known chip thickness h, the cutting force Fc can be 

expresses as 

  
 

2

0
, 0

1

s s

c

s

p

h h r h h
F h k a h

h h


 


 (26) 

where 
p

a  is a depth of cut, 
0

1r k k


   depends on the parameters k∞, k0 that define 

the so called stiffness of the cutting process for large and small chip thickness h re-

spectively (Fig. 3) and hs is a specific chip thickness, which depends on the current 

state of the tool cutting edge. The parameters k0, hs, r are evaluated experimentally for 

a given combination of tool/working material. To take into account the possible loss 

of contact between the tool and the workpiece, the above expression should be sup-

plement by the case of 0h   as  

   0, if 0
c

F h h   (27) 

For the multi-edge tool the machining surface is formed by means of several edges 

simultaneously. The number of working edges varies during machining and depends 

on the width of cut. For this reason, the total force Fc of such interaction is a superpo-

sition of forces Fc,i generated by each tool edge i, which are currently in the contact 

with the workpiece. Besides, the contact force Fc,i can be decomposed by its radial 

Fr,i and tangential Ft,i components (Fig. 4). In accordance with Merchant’s model 

[13], the t-component of cutting force Ft,i can be computed with the equation (26). 

The r-component Fr,i is related with Ft,i by following expression [14] 

 
, ,r i r t i

F k F  (28) 

where the ratio factor kr depends on the given tool/workpiece characteristics. 

It should be mentioned that in robotic machining it is more suitable to operate with 

forces expressed in the robot tool frame {x,y,z}. Then, the corresponding components 

Fx, Fy (Fig. 4) of the cutting force Fc can be expressed as follows 

 



 

 

Fig. 3.  Fractional cutting force model Fc(h) 

 

Fig. 4.  Forces of tool/workpiece interaction 

 

Fig. 5. Meshing of the workpiece area 

 

Fig. 6. Evaluating the tool/workpiece inter-

section Ai and computing the corresponding 

chip thickness hi 

 

, ,

1 1

, ,

1 1

cos sin

sin cos

z z

z z

n n

x r i i t i i

i i

n n

y r i i t i i

i i

F F F

F F F

 

 

 

 

  

 

 

 

 (29) 

where nz is the number of currently working cutting edges, φi is the angular position 

of the i-th cutting edge (the cutting force in z direction Fz is negligible here). So, the 

vector of external loading of the robot due to the machining process can be composed 

in the frame {x,y,z} using the defined components Fx, Fy as F=[Fx,Fy,0,0,0,0]
T
. 

It should be stressed that the cutting force components Fr,i, Ft,i mentioned in equa-

tion (26), (28) are computed for the given chip thickness hi, which should be also 



evaluated. Let us define model for hi using mechanical approach. Then the chip thick-

ness hi removed by i-th tooth depends on the angular position φi of this tooth and it 

can be evaluated using to the geometrical distance between the position of the given 

tooth i and the current machining profile (Fig. 4). It should be mentioned, that the 

main issue here is to follow the current relative position between the i-th tooth and the 

working material or to define whether the i-th tooth is involved in cutting for given 

instant of process. Because of the robot dynamic behavior and the regenerative me-

chanism of surface formation [15] this problem cannot be solved directly using kine-

matic relations. In this case it is reasonable to introduce a special rectangular grid, 

which decomposes the workpiece area into segments and allows tracking the 

tool/workpiece interaction and the formation of the machining profile (Fig. 5). 

Here, Steps Δsx, Δsy between grid nodes are constant and depend on the tool geo-

metry, cutting condition and time discretization Δτ. Each node j ( 1,
w

j N , Nw is the 

number of nodes) of the grid can be marked as “1” or “0”: “1” corresponds to nodes 

situated in the workpiece area with material (rose nodes in Fig. 6), “0” corresponds to 

nodes situated in workpiece area that was cut away (white nodes in Fig. 6). 

In order to define the number of currently cut nodes by the i-th tooth, the previous 

instant of machining process should be considered. Let us define Ai as an amount of 

working material that is currently cut away by the i-th tooth (Fig. 6). So, if node j 

marked as “1” is located inside the marked sector (green nodes in Fig. 6), it changes 

to “0” and Ai is increasing by 
x y

s s  . Analyzing all potential nodes and computing  

 

Fig. 7. Algorithm for numerical simulation of robotic machining process dynamics 



 

Ai, the chip thickness hi, removed at given instant of the process by the i-th tooth, can 

be estimated by ,
i i i

h A R    1, zi N . The angle Δφi determines the current angu-

lar position of the i-th tooth regarding to its position at the instant τ-Δτ and referred to 

the position of TCP at τ-Δτ. 

Described mechanism of chip formation and the machining force model (26) allow 

computing the dynamic behavior of the robotic machining process where models of 

robot inertia and stiffness are discussed in the section 3 of the paper. The detailed 

algorithm that is used in numerical analysis is presented in Fig. 7, where the analysis 

of the robot dynamics is performed in the tool frame with respect to the dynamic dis-

placement of the tool δtdyn fixed on the robot end-effector around its position on the 

trajectory. 

5 Compliance error compensation technique 

In industrial robotic controllers, the manipulator motions are usually generated us-

ing the inverse kinematic model that allows us to compute the input signals for actua-

tors 
0

ρ  corresponding to the desired end-effector location 
0

t , which is assigned as-

suming that the compliance errors are negligible. However, if the external loading F  

is essential, the kinematic control becomes non-applicable because of changes in the 

end-effector location. It can be computed from the non-linear compliance model as 

  
1

F 0
|f


t F t  (30) 

where the subscripts 'F' and '0' refer to the loaded and unloaded modes respectively, 

and ' | ' separates arguments and parameters of the function  f . Some details con-

cerning this function are given in our previous publication [7].  

To compensate this undeterred end-effector displacement from 
0

t  to 
F

t , the target 

point should be modified in such a way that, under the loading F , the end-platform is 

located in the desired point 
0

t . This requirement can be expressed using the stiffness 

model  in the following way 

  (F)

0 0
|fF t t  (31) 

where (F)

0
t  denotes the modified target location. Hence, the problem is reduced to the 

solution of the nonlinear equation (31) for (F)

0
t , while F  and 

0
t  are assumed to be 

given. It is worth mentioning that this equation completely differs from the equation 

0
( | )fF t t , where the unknown variable is t . It means that here the compliance 

model does not allow us to compute the modified target point (F)

0
t  straightforwardly, 

while the linear compensation technique directly operates with Cartesian compliance 

matrix [16].  

To solve equation (31) for (F)

0
t , similar numerical technique can be applied. It 

yields the following iterative scheme 

  (F) (F) 1 (F)

0 0 0 0
( | )· f


  t t t F t  (32) 



 

Fig. 8. Procedure for compensation of compliance errors  

 

Fig. 9. Implementation of compliance error compensation technique 

where the prime corresponds to the next iteration, (0,1)   is the scalar parameter 

ensuring the convergence. More detailed presentation of the developed iterative rou-

tines is given in Fig. 8. 

Hence, using the proposed computational techniques, it is possible to compensate a 

main part compliance errors by proper adjusting the reference trajectory that is used 

as an input for robotic controller. In this case, the control is based on the inverse kine-

tostatic model (instead of kinematic one) that takes into account both the manipulator 



 

geometry and elastic properties of its links and joints. Implementation of developed 

compliance error compensation technique presented in Fig. 9. 

6 Experimental verification 

The developed compliance error compensation technique has been verified expe-

rimentally for robotic milling with  the KUKA KR270 robot along a simple trajectory 

in aluminum workpiece. It is assumed that at the beginning of the technological 

process the robot is in the configuration q  (see Table 1, Fig. 10). The parameters of 

the stiffness model for the considered robot have been identified in [17] and are pre-

sented in Table 1. Link masses required for the mass matrix of the robot are presented 

also in Table 1. 

For the milling, the cutter with the external diameter D=20 mm and four teeth 

(Nz=4) distributed uniformly over the tool is used. For the given combination of the 

tool and the workpiece material the following parameters correspond to the cutting 

force model defined in (26): k0=
6

5 10  N/m, hs=
5

1.8 10


  m, r=0.1, kr=0.3. 

 

Fig. 10. Starting pose of the KUKA KR270 

robot to perform the operation of milling 

 

Fig. 11. Starting relative position of the tool 

with respect to the workpiece 

Table 1. Initial data for robotic-based milling 

Joint coordinates, [deg] 

q1 q2 q3 q4 q5 q6 

90 -50 120 180 25 180 

Joint compliances, [rad/N m]*10-6 

k1 k2 k3 k4 k5 k6 

0.26 0.15 0.26 1.79 1.52 2.13 

Link masses, [kg] 

m1 m2 m3 m4 m5 m6 

336.8 259.4 85.2 54.5 36.3 18.2 



 

Fig. 12. Variation of machining force components Fx (a) and Fy (b) for whole milling process 

 

Fig. 13. Evolution of the tool dynamic dis-

placement δtdyn that is composed from xTCP 

and yTCP components 

 

Fig. 14. Modified trajectory fy and correspond-

ing feed rate vfy in y-direction, computed based 

on the original dynamic displacement of the 

tool δtdyn 

Taking into account that the workpiece has a straight borders let us assume that at 

the instant t=0 one of the teeth of the tool is in contact with the workpiece material as 

it is shown in the Fig. 11. It is also assumed that the machining process is performing 

with the constant feed rate vf=4 m/min (applied in x-direction of the robot tool frame) 

and the constant spindle rotation Ω=8000 rpm along the straight line of 80 mm. Expe-

rimental verification and numerical simulation of the described case of the milling 

process with KUKA KR-270 robot using the algorithm shown in Fig. 7 allows us to 

trace the evolution of machining force x,y-components for the whole process 

(Fig. 12). The corresponding dynamic displacement of the tool around its current 

position on the trajectory is shown in Fig. 13. 

In accordance with the obtained results the system robot/machining process realize 

complex vibratory motion. The high frequency component of this motion (about 700 

Hz, Fig. 12) is related to the spindle rotation and the number of tool teeth Nz. In cer-



 

tain cases such behavior can excites the dynamics of the robot (natural modes) but 

this study remains out the frame of the presented paper. On the contrary, the low fre-

quency component of robot/tool motion (about 7 Hz, Fig. 13), especially in the y-

direction (that is perpendicular to the applied feed) influences directly the quality of 

final product. Such motion is related to the robot compliance and it can be compen-

sated using the error compensation technique described in the paper. Hence, let us 

form the modified trajectory based on the dynamic displacement of the robot end-

effector in the y-direction (Fig. 14). 

It should be stressed that the time step between referenced points of this modified 

trajectory is limited with the characteristics of the controller used in the robot (in the 

presented case this step is chosen 0.05 sec). The corresponding feed rate vfy for the 

modified trajectory has been computed. So, this new data (feed fy and feed rate vfy) 

with the data defined in the beginning of this section allow us to compensate the tra-

jectory error during machining caused by the robot compliance. The resulted compen-

sated trajectory in the y-direction (in time domain) is presented in Fig. 15. 

It should be noted that the part of the trajectory while machining tool is engaging 

into the workpiece does not have effect on the quality of final product (surface). Dur-

ing this stage the contact area between the tool and the workpiece is increasing pro-

gressively. Hence, at each instant of processing the cutter corrects the machining pro-

file and eliminates trajectory errors produced during all previous instants. On the con-

trary, during the stage of machining with the fully engaged tool the trajectory in x,y-

directions define directly the final machining profile and this part of trajectory is ana-

lyzed here (Fig. 15). Comparison results presented in Fig. 13 and Fig. 15 are summa-

rized in Table 2. So after applying error compensation technique the static deviation 

in y direction has been reduced from 0.058 mm to 0.00014 mm (99.8%). Maximum 

defilation in the machining profile has been reduced from 0.063 mm to 0.0047 mm 

(92.6%). Low frequency remained the same for both cases.  

Hence, obtained results show that the developed compliance error compensation 

allows us significantly increase the accuracy of the robotic-based machining. 

 

 

Fig. 15. Evolution of the dynamic displacement obtained after involving the error compensa-

tion technique into the analysis of robotic milling process 



Table 2. Milling trajectory accuracy before and after compliance error compensation 

Performance measure 
Original  

trajectory 

Modified  

trajectory 

Low frequency,[ Hz] 6.70 6.70 

Static deviation ys, [mm] 58.1e-3 0.14e-3 

Max deviation yMAX, [mm] 63.2e-3 4.70e-3 

7 Conclusion 

In robotic-based machining, an interaction between the workpiece and technologi-
cal tool causes essential deflections that significantly decrease the manufacturing 
accuracy. Relevant compliance errors highly depend on the manipulator configuration 
and essentially differ throughout the workspace. Their influence is especially impor-
tant for heavy serial robots. To overcome this difficulty this paper presents a new 
technique for compensation of the compliance errors caused by technological process. 
In contrast to previous works, this technique is based on the non-linear stiffness mod-
el and the reduced elasto-dynamic model of the robotic based milling process. 

The advantages and practical significance of the proposed approach are illustrated 

by milling with of KUKA KR270. It is shown that after error compensation technique 

significantly increase the accuracy of milling. In future the proposed technique will be 

integrated in a software toolbox.  
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