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Abstract. This research contributes to the micro-macro modeling of refractory lining
present in many reactors (like steel converter or blast furnaces). In order to simplify
this study, we consider that the masonry is periodic and that only one component (the
mortar) is a microcracked viscoelastic material. The objective is to determine the effective
and local behavior of this masonry without crack propagation. This study is based on
the coupling between homogenization techniques and brittle fracture mechanics. The
relevance of the proposed methodology is assessed through numerical simulations carried
out for some examples of masonry available in the literature.

1 INTRODUCTION

In the iron and steel industry, the refractory lining of furnaces is usually made of
masonry in which brick joints may be either mortared or dry (without mortar [1]). In
most cases, refractory brick linings are installed with mortar because its use to bond the
brickwork provides more resistance to thermal shock and a cushion at the brick joint [2].
The temperature inside these structures can reach 1650 degrees which induces non-linear
mechanical behavior for the masonry and even leads to the initiation and propagation
of cracks in the joints. We know that, a thick mortar tends to decrease the stiffness of
structure and increases the likelihood of the possible penetration of process materials into
the joints, resulting in the deterioration of the lining. So, the use of thin mortar joint is
appropriate and necessary in designing the refractory brick lining system.

Concerning the creep behavior of the mortar which can be induced by severe service
conditions, various rheological models namely the Maxwell, Kelvin-Voigt, Ross, Burgers
and Modified-Maxwell models may be investigated [3, 4]. There exist several approaches
accounting for damage in viscoelastic materials [4, 5]. Indeed, the approach presented
in [5] is based on a coupling between continuum damage mechanics and viscoelastic-

1



Thi Thu Nga NGUYEN, Amna REKIK, Alain Gasser

ity through the generalized Kelvin-Voigt model. Accordingly, a three-dimensional phe-
nomenological model was developed to describe the long-term creep of gypsum rock. The
main disadvantage of this model is the difficulty to carry out because the internal damage
variable is given by solving a nonlinear equation [5] or due to experimentation [4]. In
the work of Nguyen et al. [6], the effective behavior of microcracked linear viscoelastic
concrete was derived from a combination of the Griffith’s theory and the Eshelby-based
homogenization scheme. The safe concrete was assumed to obey to the Burgers model.

In [3], an experimental study was carried in order to investigate the creep of masonry.
A number of rheological models are examined to assess their ability to predict the creep of
masonry. It was proved that the Modified Maxwell model is the most accurate. According
to this result, the Burgers model, namely a Maxwell system connected in series with
a Kelvin-Voigt one, and the Modified Maxwell scheme (a parallel combination of the
Maxwell model and a spring) models are adopted in this paper to describe the mortar
joint’s creep. Moreover, in the literature, there are few works investigating the global
and local behavior of viscoelastic masonry. For instance, Cecchi and Tralli [7] used the
asymptotic homogenization technique to deduce the behavior of a safe (without cracks)
viscoelastic periodic masonry cell. The effective behavior of a masonry prism is provided
due to periodic homogenization.

In the present study, the coupling between the Griffith’s theory and the dilute scheme
will be applied to provide the effective behavior of the micro-cracked mortar [6]. In
a second step, the expressions proposed in [7] are extended to determine the effective
behavior of a periodic microcracked viscoelastic masonry cell.

The paper is organized as follows. The general principle of the proposed approach
is presented in section 2. The modified Maxwell and Burgers rheological models are
recalled in section 3. The steps allowing the determination of the effective behavior of a
microcracked linear viscoelastic mortar are explained in section 4. Section 5 shows the
determination of the effective behavior of microcracked viscoelastic masonry. At last,
section 6 presents primary results for a loaded masonry panel.

2 GENERAL PRINCIPLE

The objective of this study is to evaluate the effective behavior of masonry subjected
to high temperatures inducing nonlinear behavior (viscoelasticity, elasto-(visco-)plasticity,
etc.). For the sake of simplicity, it can be assumed that only the mortar is a micro-cracked
viscoelastic material [8, 9]. Its behavior (at the safe state) obeys to the Modified Maxwell
or Burgers models. The blocks or bricks are assumed to be safe and to have either a rigid
or elastic isotropic behavior. In the mortar, the cracks are assumed to be penny-shaped
and to have an isotropic distribution. The proposed approach is based on two main steps.
Firstly, the homogenization technique is applied in order to assess the effective behavior of
the micro-cracked mortar. The results of brittle fracture mechanics (the Griffith’s theory)
could be useful if we move from the real temporal space to the symbolic one due the
Laplace-Carson (LC) transform. In the later space, the apparent behavior of the mortar
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is linear elastic. This procedure allows the use of expressions available in the literature for
the displacement jump induced by the crack [6]. Assuming again that the displacement
jump field depends linearly on the macroscopic stress, it is possible to define an effective
linear behavior for the micro-cracked mortar in the symbolic space. To determine the
global behavior in the real space time, it is possible to apply the inverse of the LC
transform in some simple cases. It is then interesting to approach in the symbolic space, at
least in short and long terms, the symbolic effective stiffness (or compliance) by an existing
rheological model. For example, if the safe mortar behaves as the Modified Maxwell model,
we try to approach the symbolic effective behavior of the corresponding microcracked
mortar by the same model. After validation of this approximation at short and long
terms, the inversion of the apparent effective stiffness will be straightforward. Therefore,
the effective behavior of the micro-cracked viscoelastic mortar could be expressed in the
real space time.

In a second step, the global behavior proposed for safe linear viscoelastic periodic ma-
sonry cell masonries [7] is extended in this study for similar masonry cell with microcracks.

3 RHEOLOGICAL MODELS FOR SAFE VISCOELASTIC MORTAR

In the literature, several rheological models are proposed for the creep of mortar [3, 4].
In this work, only the Burgers and Modified Maxwell models will be considered.

Figure 1: Rheological models for the creep of mortar.

3.1 Modified Maxwell model

The local behavior of the Modified Maxwell model referred to as hereafter by ”MM”
(fig.1-a) reads:

SvMσ + SeM σ̇ = SvMCe
Rε+ (I + SeMCe

R) ε̇ (1)

where the stiffness tensor of the spring Ce
R = 3kRJ + 2µRK is added to the elastic Ce

M =
3kMJ + 2µMK and viscoelastic Cν

M = ηsMJ + ηdMK stiffnesses of the classical Maxwell
model. ε and σ are respectively the strain and stress fields. Sβα is the compliance fourth-
order tensor inverse of Cβ

α, where the symbol α = M (Maxwell) or R (Spring) and β = h
(v) for horizontal (vertical) joints. The fourth-order spherical and deviatoric projectors
are respectively denoted by: J = i ⊗ i/3 and K = I − J. i and I are respectively the
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second and fourth-order identity tensors. kα and µα represent the bulk and shear moduli.
ηsα and ηdα respectively denote the bulk and shear viscosity parameters. In the symbolic
space, the constitutive law (1) is given by:

SvMσ∗ + pSeMσ∗ = SvMCe
Rε
∗ + p (I + SeMCe

R) ε∗ (2)

where f ∗(p) = p
∫∞

0
f(t)e−ptdt (p is a scalar) is the Laplace-Carson transform for all

temporal function f(t). The apparent local behavior of the mortar is isotropic linear elastic
since the apparent “stress-strain” relation (2) can be written as follows: σ∗ = C∗ : ε∗.
The stiffness tensor C∗ in the symbolic space can be put in the form: C∗ = 3k∗J + 2µ∗K
with the following apparent bulk and shear moduli for the safe mortar:

k∗ = kR +
1

1
kM

+ 3
pηsM

, µ∗ = µR +
1

1
µM

+ 2
pηdM

(3)

Under uniaxial compressive loading: Σ∗ = Σ∗nnn⊗ n where n is the normal to the crack,
the creep function can be deduced from the macroscopic relationship: ε∗nn = J∗nnΣ∗nn with
J∗nn = 1

E∗
= 1

9k∗
+ 1

3µ∗
and ε∗nn is the apparent normal macroscopic strain. According to

equation (3) and after the inversion of the LC transform of J∗, the “real” creep function
related to the MM model reads:

JMM(t) =
1

9kR
+

1

3µR
− kM

9kR(kR + kM)
e−t/τ

s
MM − µM

3µR(µR + µM)
e−t/τ

d
MM (4)

where τ sMM =
ηsM (kR+kM )

3kRkM
and τ dMM =

ηdM (µR+µM )

2µRµM
are the characteristic relaxation times

associated respectively to the spherical and deviatoric parts of the creep behavior following
the MM model.

3.2 Burgers model

For this model (fig.1-b), the local behavior takes the form:
X : σ + Y : σ̇ + Z : σ̈ = Ce

K : ε̇+ Cv
K : ε̈ (5)

in which the fourth-order tensors X, Y and Z are given by: X = Ce
K : SvM , Y = I + Ce

K :
SeM + Cv

K : SvM and Z = Cv
K : SeM . Due to the LC transform, the apparent bulk and shear

moduli of the mortar without cracks read respectively:

1

k∗Bu
=

1

kM
+

1

pηsM/3
+

1

kK + pηsK/3
,

1

µ∗Bu
=

1

µM
+

1

pηdM/2
+

1

µK + pηdK/2
(6)

The real creep function of the Burgers model reads then:

JBu(t) =
1

9kM
+

1

3µM
+

(
1

3ηsM
+

2

3ηdM

)
t+

1

9kK

(
1− e−t/τsK

)
+

1

3µK

(
1− e−t/τdK

)
(7)

where τ sK and τ dK are the characteristic relaxation times given by: τ sK =
ηsK
3kK

and τ dK =
ηdK

2µK
.

Note that the Burgers relaxation times are identical to that of the Kelvin-Voigt scheme.
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4 EFFECTIVE PROPERTIES OF MICRO-CRACKED VISCOELASTIC
MORTAR

4.1 Coupling between the Griffith’s theory and linear homogenization tech-
nique

As previously mentioned, we assume that the mortar is a linear viscoelastic material oc-
cupying the area Ω and containing a parallel network of penny-shaped cracks. During the
loading time interval, it is assumed that the displacement u(x, t) prescribed on the bound-
ary of the area ∂Ω is related to the macroscopic strain ε(t) as follows : u(x, t) = ε(t).x.
According to the principle of macro-homogeneity, the macroscopic strain is deduced from
the average of the local strain ε(t) in the safe matrix corrected by the strain induced by
the presence of micro-cracks as shown in the following:

ε =
1

V

(∫
Ωs

εdV +
∑
i

∫
Ci

[u]i ⊗
s nidS

)
(8)

where Ωs is the domain occupied by the safe material (without cracks), V is the volume of
Ω and a⊗s b = a⊗b+b⊗a

2
for the vectors a and b. Ci and ni denote respectively the area of

the crack i and the normal vector to the plane of this crack. [u]i denotes the displacement
jump at the lips of crack i. Due to the Laplace-Carson (LC) transform, the equation (8)
can be rewritten as follows:

ε∗ =
1

V

(∫
Ωs

ε∗dV +
∑
i

∫
Ci

[u]∗i ⊗
s nidS

)
(9)

The objective is to establish the relationship between the apparent macroscopic strain
ε∗ and stress Σ∗. Since the local behavior of the mortar without cracks reads σ∗ = C∗s : ε∗

(see section 3), the equation (9) gives:

ε∗ = C∗s
−1 : Σ∗ +

1

V

(∑
i

∫
Ci

[u]∗i ⊗
s nidS

)
(10)

where Cs denotes the stiffness tensor of the safe mortar. Note that the relation between
the displacement jump [u]∗i and the applied symbolic stress Σ∗ can be estimated by one
of the available linear homogenization models such as the dilute scheme, the Mori-Tanaka
model, etc. [10]. The coupling between the dilute scheme and Griffith’s theory provides
the following expressions for the normal and tangential jumps of the displacement field
at the crack, respectively:

[un]∗ =
4(1− ν∗s )

π

Σ∗

µ∗s

√
l2 − ρ2 (11a) [ut]

∗ =
4(1− ν∗s )

π(2− ν∗s )

Σ∗

µ∗s

√
l2 − ρ2 (11b)

where ν∗s and µ∗s are respectively the apparent Poisson’s ratio and shear modulus of
the safe mortar. l and ρ denote respectively the penny-shaped crack’s half length and the
distance to the axis of symmetry of the crack.

5



Thi Thu Nga NGUYEN, Amna REKIK, Alain Gasser

4.2 Effective properties of the cracked viscoelastic mortar

4.2.1 In the symbolic space

Similarly to the effective strain in the matrix, the displacement jumps (11a) and
(11b) depend linearly on the apparent macroscopic stress Σ∗. Therefore, it is possible

to re-write the equation (10) as follows: ε∗ = C̃∗−1

c : Σ∗ where C̃∗c is the apparent effec-
tive stiffness tensor of the micro-cracked viscoelastic mortar. As the matrix is isotropic
and cracks are parallel, the apparent stiffness C̃∗c is isotropic and reads: C̃∗c = 3k̃∗cJ +
2µ̃∗cK. k̃∗c and µ̃∗c are the apparent effective bulk and shear moduli, respectively given by:

1

k̃∗c
=

1 + dcQ
∗

k∗s
(12a)

1

µ̃∗c
=

1 + dcM
∗

µ∗s
(12b)

with: Q∗ = 16
9

1−ν∗s 2
1−2ν∗s

, M∗ = 32
45

(1−ν∗s )(5−ν∗s )
1−2ν∗s

and dc = Nl3 is the damage parameter or crack
density parameter where N is the number of cracks per unit of volume. It is noted that
k∗c is deduced from the combination of equations (10) and (11a) leading to:

ε∗ = C∗s
−1 : Σ∗i +

8dc
9

Σ∗(1− ν∗s )

µ∗s
i (13)

where the macroscopic loading is purely spherical i.e. Σ∗ = Σ∗iii (i = 1, 2, 3) and knowing
that trace(ε∗) = ε∗ii/3 = Σ∗/k̃∗c .

Under a deviatoric macroscopic loading Σ∗ = Σ∗(e1 ⊗ e1 − e3 ⊗ e3) in a Cartesian
coordinate system (e1, e2, e3) (e1 and e3 are respectively parallel and normal to the crack’s
plane), the linear relation between the crack displacement jumps (11a), (11b) and the
apparent macroscopic stress allows to rewrite the apparent macroscopic strain (10) as
follows: ε∗ = Σ∗/2µ̃∗c = Σ∗(1 + dcM

∗)/2µ∗s and hence to deduce the apparent effective
shear moduli given above (12b) (for more details, see [6]).

4.2.2 In the real space time

In order to move from the symbolic space to the temporal real one, it is useful to approx-
imate the apparent effective moduli (12a), (12b) with expressions associated to existent or
predefined rheological models. Accordingly, the inverse LC transform can be determined
analytically without any approximation related to a numerical inversion scheme [11]. For
concrete damaged material, the work [6] identified the best approximation of the apparent

stiffness tensor C̃∗Bu(p, dc) due to the coupling between the homogenization techniques and
the mechanics of brittle fracture leading to a creep behavior which follows also a Burgers
model at least at short (t→ 0) and long (t→∞) terms. In this study, a similar approach
is followed to a mortar which obeys to the MM model at the safe state. Accordingly, the
bulk and shear moduli of micro-cracked viscoelastic mortar in the symbolic space have
the following expressions:
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k̃∗MM(p, dc) = kR(dc) +
1

1
kM (dc)

+ 3
pηsM (dc)

µ̃∗MM(p, dc) = µR(dc) +
1

1
µM (dc)

+ 2
pηdM (dc)

(14)

For microcracked mortar with a matrix which the behavior follows the Burgers model,
the apparent effective moduli can be well approximated by:

1

k̃∗Bu(p, dc)
=

1

kM(dc)
+

3

pηsM(dc)
+

1

kK(dc) + pηsK(dc)/3
1

µ̃∗Bu(p, dc)
=

1

µM(dc)
+

2

pηdM(dc)
+

1

µK(dc) + pηdK(dc)/2

(15)

Using the correspondance theorems on the initial and final values limp→0 f
∗(p) = limt→∞ f(t)

and limp→∞ f
∗(p) = limt→0 f(t), the viscosity parameters of the damaged mortar are de-

termined by the developments in series of the estimated apparent moduli (12a), (12b) to
the first-order at p (at 1/p) when p → 0 (p → ∞). The resulting damaged stiffness and
viscosity parameters related to the MM model read:

1

kR(dc)
=

1 +Qe
Mdc

kR
,

1

kM(dc)
=

1 +Qe
Mdc

kR + kM − kR(1 +Qe
Mdc)/(1 +Qv

Mdc)
,

1

µR(dc)
=

1 +M v
Mdc

µR
,

1

µM(dc)
=

1 +M e
Mdc

µR + µM − µR(1 +M e
Mdc)/(1 +M v

Mdc)
,

1

ηsM(dc)
=

(1 +Qv
Mdc)

2

ηsM + ηsMQ
v
Mdc − 3kRQ0

1dc
,

1

ηdM(dc)
=

(1 +M v
Mdc)

2

ηdM(1 +M v
Mdc)− 2dcµRM0

1

(16)

For the expressions of Qβ
α and Mβ

α , see Appendix A. The eight damaged stiffness and
viscosity parameters of the Burgers model are given by (see also Appendix B):

1

kM(dc)
=

1 +Qe
Mdc

kM
,

1

µM(dc)
=

1 +M e
Mdc

µM
,

1

ηsM(dc)
=

1 +Qv
Mdc

ηsM
,

1

ηdM(dc)
=

1 +M v
Mdc

ηdM
1

kK(dc)
=

1 +Qe
Kdc

kK
,

1

µK(dc)
=

1 +M e
Kdc

µK
,

1

ηsK(dc)
=

1 +Qv
Kdc

ηsK
,

1

ηdK(dc)
=

1 +M v
Kdc

ηdK
(17)

Accordingly, the real creep functions of the microcracked viscoelastic mortar read:

J̃MM(t, dc) =
1

9kR(dc)
+

1

3µR(dc)
− kM(dc)

9kR(dc) (kR(dc) + kM(dc))
e−t/τ

s
M (dc)

− µM(dc)

3µR(dc) (µR(dc) + µM(dc))
e−t/τ

d
M (dc) (18)
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J̃Bu(t, dc) =
1

9kM(dc)
+

1

3µM(dc)
+

(
1

3ηsM(dc)
+

2

3ηdM(dc)

)
t

+
1

9kM(dc)

(
1− e−t/τsK(dc)

)
+

1

3µM(dc)

(
1− e−t/τdK(dc)

)
(19)

respectively for the MM and Burgers models. Actually, the characteristic relaxation times

are given by: τ sM(dc) =
ηsM (dc)(kR(dc)+kM (dc))

3kR(dc)kM (dc)
, τ dM(dc) =

ηdM (dc)(µR(dc)+µM (dc))

2µR(dc)µM (dc)
for the MM

model and τ sK(dc) =
ηsK(dc)

3kK(dc)
, τ dK(dc) =

ηdK(dc)

2µK(dc)
for the Burgers scheme.

5 PERIODIC HOMOGENIZATION OF MASONRY WITH VISCOELAS-
TIC CRACKED MORTAR

In this part and for the sake of shortness, we present only a 2D application of the
proposed approach described above. We treat the case of a masonry panel studied by
Cecchi et Tralli [7] subjected to three distributed loads at the top and two lateral edges
and to a concentrated load F at the top as shown in Fig.2-b. Bricks are assumed to be
rigid. The mortar inside the joints is assumed to be microcracked with a matrix which
obeys to linear viscoelastic behavior. As the arrangement of the bricks is regular, the
effective behavior of the panel is assumed to be well estimated by that of a periodic cell
(see Figure 2-a). The panel can then be modeled as an homogeneous equivalent material
(HEM) which mechanical properties are given by the effective stiffness C̃c. The material
data used to compute this problem are provided in Table 1.

Figure 2: Masonry panel: (a) Representative periodic unit cell and its quarter. (b) Compression test
applied to the wall. (c) Snapshot of the stress field σ22 (MPa) predicted by the MM and Burgers models
at t = 100 (s).

The geometric characteristics of the masonry are: eh = ev = 1mm - the thickness of bed
and head joints. a = 55mm, b = 250mm are the block height and length, respectively.
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The Poisson’s ratio of the mortar is νm = 0.2. In [7], the safe mortar was modeled

as an interface with constitutive functions of the interface: K
′

h =
Emh Φmh (t)

(1+νmh )(1−2νmh )
, K

′
v =

Emv Φmv (t)
(1+νmv )(1−2νmv )

, K
′′

h =
Emh Φmh (t)

2(1+νmh )
, K

′′
v = Emv Φmv (t)

2(1+νmv )
, in which Em

γ and νmγ respectively denote the

Young’s moduli and Poisson’s ratios where γ = h ou v for horizontal and vertical mortar
joints, respectively. Φm

γ (t) are the viscous functions of the mortar given by J−1
m (t) =

Em(t0)Φm(t) where Em(t0) is the Young’s modulus of the mortar at the initial instant
t0. The effective stiffness components of the masonry periodic cell with mortar in its safe
state (without cracks) read [7]:

C̃1111 =

(
4K

′
v

eh

a+ eh
+
b+ ev

a+ eh
K
′′

h

ev

a+ eh

)
4

eh

a+ eh
ev

b+ ev

, C̃2222 =
K
′

h

eh

a+ eh

, C̃1122 = 0,

C̃1212 =

K
′′

h

(
K
′

h

ev

b+ ev
+ 4

a+ eh

b+ ev
K
′′

h

eh

b+ ev

)
eh

a+ eh

(
K
′
h

ev

b+ ev
+ 4

a+ eh

b+ ev
K
′′
h

eh

b+ ev
+ 4

(
a+ eh

b+ ev

)2

K ′′v
ev

b+ ev

) (20)

For masonry panel with microcracked viscoelastic mortar, the constitutive functions

of the interface: K
′

h =
Emh (dc)Φmh (t,dc)

(1+νmh )(1−2νmh )
, K

′
v = Emv (dc)Φmv (t,dc)

(1+νmv )(1−2νmv )
, K

′′

h =
Emh (dc)Φmh (t,dc)

2(1+νmh )
, K

′′
v =

Emv (dc)Φmv (t,dc)
2(1+νmv )

actually account also for the damage parameter dc. E
m
h (dc) = J̃−1

m (t0, dc) at

t0 = 0 and Φm
h (t, dc) = J̃−1

m (t, dc)/E
m
h (dc) (t > t0). It is recalled that the creep function

J−1
m (t, dc) is determined by (18) for the MM model and (19) for the Burgers scheme. The

modulus Em
h (dc) can be rewritten as follows: 1

Emh (dc)
= 1

9(kM (dc)+kR(dc))
+ 1

3(µM (dc)+µR(dc))
for

the MM and 1
Emh (dc)

= 1
9kM (dc)

+ 1
3µM (dc)

for the Burgers models. The effective properties

of the periodic cell with materials data given in Table 1 are provided in Table 2 for the
safe (dc = 0) and microcracked (dc = 0.3) states at two times (t = 0 and t = 100 days).
The engineering constants Ẽ11, Ẽ22, ν̃12, ν̃21 and G̃12 are provided by the following global

”stress-strain” relation: ε̄ij = C̃−1
ijklσ̄kl =

(
1/Ẽ11 −ν̃12/Ẽ11 0

−ν̃21/Ẽ22 1/Ẽ22 0

0 0 1/G̃12

)
σ̄kl.

Table 1: Elastic and viscous moduli of the considered mortar [12].

Elastic or viscous parts k(MPa) µ(MPa) ηs(MPa.s) ηd(MPa.s)
Maxwell 576.67 526.52 17.18 108 26.52 106

Kelvin 714.28 652.17 65.20 106 2.16 106

Spring 714.28 652.17

Under plane stress assumption, when t exceeds 100 days, the effective stiffness pre-
dicted by the Burgers model goes to zero whereas that of the MM model leads to a finite
asymptotic limit (see table 2). Figure 2-c shows a heterogeneous symmetric stress local

9
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Table 2: Effective moduli for masonry periodic cell with (safe (dc = 0) or damaged (dc = 0.3)) linear
viscoelastic mortar.

Rheological models States times Ẽ11(GPa) Ẽ22(GPa) G̃12(GPa)
Safe 0 564.083 94.188 26.985

100s 542.372 90.563 25.946
Burgers 100days 2114 0.353 0.101

1000days 0.213 0.036 0.010
Micro-cracked 0 478.274 79.860 22.880

100s 459.890 76.791 22.000
100days 1.833 0.306 0.088
1000days 0.184 0.031 0.009

Safe 0 1263 210.855 60.410
100s 1261 210.566 60.327

MM 100days 699.288 116.765 33.453
1000days 698.696 116.666 33.425

Micro-cracked 0 820.924 137.075 39.272
100s 1070 178.779 51.220

100days 592.664 98.961 28.352
1000days 592.409 98.918 28.340

field σyy with compression for almost all the area of the wall. Small symmetric zones of
tension are also observed not so far from the point of application of the concentrated load
F .

6 CONCLUSIONS

In this study, the effective behavior of a 2D periodic masonry with a micro-cracked
viscoelastic mortar and rigid bricks is firstly provided using the coupling between homog-
enization techniques and the Griffith’s theory. The Burgers and MM models predict local
stress exceeding the compressive strength of the considered mortar (around 3.7 MPa [12])
almost throughout the wall except around the zone of application of the concentrated
load. This study assumes no interaction between cracks as it is the case of the dilute
scheme. Future work will focus on masonry problems with crack propagation and linear
homogenization models accounting for interaction between the cracks.
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Appendix A - Modified Maxwell model

The idea to identify the best approximation of the apparent stiffness tensor of micro-cracked mortar in the

class of the same model is to satisfy the series expansions of (12a), (12b) and (14) to the first order at p = 0 and

p =∞. The series expansion of (14) in the vicinity of p = 0 and p =∞ respectively read:

1

k̃∗MM (p, dc)
|p=0=

1

kR(dc)
+ θ(p),

1

k̃∗MM (p, dc)
|p=∞=

1

kR(dc) + kM (dc)
+ θ(1/p2), (21)

1 + dcM
∗

µ∗
|p=0=

1 + dcM
0
0

µR
+O(p),

1 + dcM
∗

µ∗
|p=∞=

1 + (M∞0 +M∞−1/p)dc
µR + µM

+O(1/p2) (22)

In turn, the series expansion of (12a) and (12b) read:

1 +Q∗dc
k∗s

|p=0=
1 +Q0

0dc
kR

+ θ(p),
1 +Q∗dc

k∗s
|p=∞=

1 + (Q∞0 +Q∞−1/p)dc
kR + kM

+O(1/p2), (23)

1 + dcM
∗

µ∗
|p=0=

1 + dcM
0
0

µR
+O(p),

1 + dcM
∗

µ∗
|p=∞=

1 + (M∞0 +M∞−1/p)dc
µR + µM

+O(1/p2) (24)
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This allows the identification of six parameters (see (16)), where:

QeM = Q∞e =
4

3

(kR + kM )(3kR + 3kM + 4µR + 4µM )

(µR + µM )(3kR + 3kM + µR + µM )
, QvM = Q0

0 =
4

3

kM (3kR + 4µM )

µM (3kR + µM )
,

Q0
1 =

2

9

(9k2R + 6kRµR + 4µ2
R)(−3kRη

d
M + 2µRη

s
M )

9µ2
R(3kR + µR)2

, M0
1 =

8

45

(63k2R + 60kRµR + 16µ2
R)(3kRη

d
M − 2µRη

s
M )

(9k2R + 9kRµR + 2µ2
R)2

,

Me
M = M∞e =

16

45

(9kR + 9kM + 4µR + 4µM )

(3kR + 3kM + µR + µM )

(3kR + 3kM + 4µR + 4µM )

(3kR + 3kM + 2µR + 2µM )
,

Mv
M = M0

0 =
16

45

(3kR + 4µR)(9kR + 4µR)

(9k2R + 9kRµR + 2µ2
R)

(25)

Appendix B - Burgers model

The damaged stiffness and viscosity parameters (17) are determined by the developments in series of the

estimated apparent modulus (15) to the first-order at p (and at 1/p) when p goes to zero (p goes to infinity)

which could be equal to those indicated in (12a) and (12b), where:

QeM = Q∞e =
4

3

kM (3kM + 4µM )

µM (3kM + µM )
, QvM = Q0

0 =
16

9

ηsM (ηsM + 2ηdM )

ηdM (2ηsM + ηdM )
,

QeK = Q0
0 +

3kK
ηsM

Q0
1 −

kK
kM

(Q∞0 −Q0
0), QvK = Q∞0 +

ηsK
3kM

Q∞−1 −
ηsK
ηsM

(Q0
0 −Q∞0 ),

Q0
1 =

32

9

ηsM
ηdM

(ηsM
2 + ηsMη

d
M + ηdM

2
)

(2ηsM + ηdM )2

[
ηsM
3

(
1

kM
+

1

kK

)
− ηdM

2

(
1

µM
+

1

µK

)]
,

Q∞−1 = −4

3

kM
µM

(9k2M + 6µMkM + 4µ2
M )

(3kM + µM )2

[
3kM

(
1

ηsM
+

1

ηsK

)
− 2µM

(
1

ηdM
+

1

ηdK

)]
(26)

and:

Me
M = M∞e =

16

45

(9kM + 4µM )

(3kM + µM )

(3kM + 4µM )

(3kM + 2µM )
, Mv

M = M0
0 =

32

45

(ηsM + 2ηdM )

(ηsM + ηdM )

(3ηsM + 2ηdM )

(2ηsM + ηdM )
,

Me
K = M0

0 +
2µK
ηdM

M0
1 −

µK
µM

(M∞0 −M0
0 ), Mv

K = M∞0 +
ηdK

2µM
M∞−1 −

ηdK
ηdM

(M0
0 −M∞0 ),

M0
1 =

32

45

ηsMη
d
M

(ηsM + ηdM )2
(7ηsM

2 + 10ηsMη
d
M + 4ηdM

2
)

(2ηsM + ηdM )2

[
ηsM
3

(
1

kM
+

1

kK

)
− ηdM

2

(
1

µM
+

1

µK

)]
,

M∞−1 = −16

15

kMµM
(3kM + µM )2

(63k2M + 60µMkM + 16µ2
M )

(3kM + 2µM )2

[
3kM

(
1

ηsM
+

1

ηsK

)
− 2µM

(
1

ηdM
+

1

ηdK

)]
(27)

12


