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ABSTRACT 

The adsorption of Zn2+ ions onto biogenic elemental selenium nanoparticles (BioSeNPs) 

was investigated. BioSeNPs were produced by reduction of selenite (SeO3
2−) in the 

presence of anaerobic granules from a full scale upflow anaerobic sludge blanket 

(UASB) reactor treating paper mill wastewater. The BioSeNPs have an iso-electric point 

at pH 3.8 at 5 mM background electrolyte concentration. X-ray photoelectron 

spectroscopy showed the presence of a layer of extracellular polymeric substances on 

the surface of BioSeNPs providing colloidal stability. Batch adsorption experiments 

showed that the uptake of Zn2+ ions by BioSeNPs was fast and occurred at a pH as low 

as 3.9. The maximum adsorption capacity observed was 60 mg of zinc adsorbed per g 

of BioSeNPs. The Zn2+ ions adsorption on the BioSeNPs was largely unaffected by the 

presence of Na+ and Mg2+, but was impacted by the presence of Ca2+ and Fe2+ ions. 

The colloidal stability of BioSeNPs decreased with the increasing Zn2+ ions loading on 

BioSeNPs (increase in mg of zinc adsorbed per g of BioSeNPs), corresponding to the 

neutralization of the negative surface charge of the BioSeNPs, suggesting gravity 

settling as a technique for solid-liquid separation after adsorption. This study proposes a 

novel technology for removal of divalent cationic heavy metals by their adsorption on 

the BioSeNPs present in the effluent of an UASB reactor treating selenium oxyanions 

containing wastewaters.  

 

KEYWORDS: adsorption, selenium nanoparticles, zinc removal, XPS analysis, ζ-

potential, colloidal stability 
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ABBREVIATIONS 

BioSeNPs - biologically produced (biogenic) elemental selenium nanoparticles 

Qe-Me - mg of metal adsorbed per g of biogenic elemental selenium nanoparticles 

UASB - Upflow anaerobic sludge blanket reactor 

SEM-EDXS - Scanning electron microscopy - Energy disperse X-ray spectroscopy 

XRD - X-ray diffraction 

XPS - X-ray photoelectron spectroscopy 

EPS - Extracellular polymeric substances 

 

 

 

 

 

 

 

 

 

 

 



  

Manuscript submitted to Chemical Engineering Journal 
 

5 

1. INTRODUCTION 

Heavy metals at elevated concentrations are toxic to humans, animals and aquatic 

ecosystems [1]. Removal of heavy metals from wastewater is carried out using a variety 

of techniques, including chemical precipitation, ion exchange, adsorption, membrane 

filtration or electrochemical separation [2]. Among these technologies, the adsorption 

process is advantageous as it is cheap, flexible to operate and maintain, and also 

generates a high quality effluent, even when metal ions are present in low 

concentrations in the feed wastewater. Therefore, there is a constant search for 

adsorbents with higher adsorption capacity, faster kinetics and low cost [3,4,5].  

Biologically produced elemental selenium nanoparticles  (BioSeNPs) can be a potential 

new adsorbent for heavy metal cations such as zinc, copper, nickel, lead and cadmium 

due to the BioSeNPs' amorphous nature [6], small diameter (~300 nm [6,7]) and 

negative surface charge (ζ-potential −35 mV at neutral pH and 5 mM background 

electrolyte concentration) [8,9]. Indeed, chemically produced selenium nanoparticles 

(CheSeNP) adsorb high quantities of copper (800 mg of Cu adsorbed per g of elemental 

selenium nanoparticles) [10]. Both CheSeNPs and BioSeNPs adsorb mercury from 

mercury vapor by forming mercury selenide precipitates [11,12,13]. However, chemical 

elemental selenium nanoparticles production methods entail high production costs and 

are not environmental benign due to the use of toxic solvents, high temperature and 

high pressure [14,15,16]. In contrast, BioSeNPs can be produced at an ambient 

temperature without the use of specialized equipments [7,17]. Moreover, BioSeNPs are 

present in the effluent of an upflow anaerobic sludge blanket reactor (UASB) treating 

selenium containing wastewaters due to microbial reduction of selenium oxyanions 
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present in the wastewaters to elemental selenium, thus, further reducing the BioSeNPs' 

production cost [6,18].  

Zinc was selected as a model divalent heavy metal ion as it is used extensively in 

metallurgy, transport, power and construction industries. Zinc is also a major 

micronutrient in the human body [19]. However, overexposure to zinc can cause 

stomach cramps, skin irritations, vomiting, anemia, damage to the pancreas, cause 

arteriosclerosis, impair immune functioning and disturb protein metabolism [20]. Due to 

the adverse health impact of overexposure to zinc and the undesirable taste of drinking 

water at zinc concentration higher than 5 mg L−1, the environmental regulatory agency 

of the USA and the Food and Agriculture Organization of the United Nations have set 

limits of 5 mg L−1 in the drinking water [21,22] and the European Commission have set a 

limit of 5-10 mg L−1 zinc in domestic wastewater [23]. This manuscript, for the first time, 

attempts to study the interaction of BioSeNPs with Zn2+ ions. Based on this fundamental 

understanding, a zinc removal unit and technique can be developed.   

In this study, BioSeNPs were produced by the anaerobic reduction of selenite in 

presence of anaerobic granules. The reduction of selenite is reported to take place 

through dissimilatory respiration and the BioSeNPs are mainly formed in the periplasm 

or extracellularly [24,25]. Prior to batch adsorption experiments, BioSeNPs were 

characterized by X-ray diffraction (XRD), Scanning Electron Microscopy - Energy 

Dispersive X-ray Spectroscopy analysis (SEM-EDXS), ζ-potential measurements and 

X-ray photoelectron spectroscopy (XPS). The Qe-Zn (mg of zinc adsorbed per g of 

BioSeNPs) was determined as a function of adsorption duration, ionic strength, initial 

metal solution pH and concentrations, and in the presence of competing cations (Na+, 
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Ca2+, Mg2+ and Fe2+) by means of batch experiments. The effect of Zn2+ ions adsorption 

on the BioSeNPs' colloidal stability and residual BioSeNPs concentration in the filtrate 

was determined with the increase in Qe-Zn. The adsorption of Zn2+ ions on the 

BioSeNPs was characterized using electrophoretic measurements and XPS analysis. 

For future practical application, removal of Zn2+ ions from synthetic wastewater at low 

pH by the BioSeNPs present in the simulated effluent of an UASB reactor was 

investigated. 

2. MATERIALS AND METHODS 

2.1 BioSeNPs production and purification 

BioSeNPs were produced by incubating anaerobic granular sludge (13 g L−1 wet weight) 

in an oxygen-free growth medium at 30 °C and pH 7.3 for 14 days. The growth medium 

and incubation conditions were applied as these were successfully used for the 

reduction of selenate using the same inoculum [26]. The growth medium contained (in 

mg L−1): NH4Cl (300.1), CaCl2
.2H2O (14.7), KH2PO4 (245.0), Na2HPO4 (283.9) and KCl 

(245.9). Acid & alkaline trace elements and vitamins were not added to growth medium 

to avoid their interaction with the formed BioSeNPs. 2.24 g L−1 of sodium lactate and 

0.86 g L−1 of sodium selenite were used, respectively, as carbon and selenium source. 

This medium was flushed with nitrogen to maintain anaerobic conditions. Anaerobic 

granular sludge from a full scale UASB reactor used for treating paper mill wastewater 

in Eerbeek (The Netherlands), described in detail by Roest et al [27], was used as 

inoculum.  
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The production of elemental selenium was confirmed by the appearance of red 

colorization of the medium. The supernatant was collected by simple decanting and 

concentrated by centrifuging (Hermle Z36 HK) at 37,000 g and 4 oC. The pellet was re-

suspended in Milli-Q (18MΩ*cm) water and purified by the protocol from Dobias et al 

[28] with minor modification. Briefly, the concentrated BioSeNPs were sonicated in ice 

cold water for 1 hour at 100 watt and 42 kHz. NaOH (6 N) was added to raise the pH to 

12.5 and the concentrated BioSeNPs were again sonicated at 42 kHz in ice cold water 

for 2 hours to lyse any remaining biomass present in the supernatant. The pH was 

lowered back to 7.3 by addition of 1 N HCl. An equal volume of n-hexane was added 

and the resultant mixture was kept overnight in a separatory funnel. The BioSeNPs 

were collected from the aqueous phase and washed three times with Milli-Q (18MΩ*cm) 

water. After washing, the BioSeNPs were re-suspended in Milli-Q water and the pH was 

adjusted to 7.3 by the addition of a few drops of 1 N NaOH before adding them for 

adsorption experiments. The BioSeNPs preparation was carried out in duplicate to 

ensure that the characteristics of the nanomaterial were reproducible. 

2.2 Batch adsorption experiments 

Batch isotherm studies were carried out at different initial zinc concentrations (5.8 -

 215.0 mg L−1, 960 minutes of shaking, pH 6.5, added as ZnCl2). Time-dependency 

studies were carried out at different contact times (1 - 960 minutes, pH 6.5, 70 mg L−1 of 

initial zinc concentration). No background electrolyte was added for isotherm and time-

dependency studies. 3 mL of 0.917 g L−1 BioSeNPs at pH 7.3 were added as 

adsorbent. The experiments were carried out at 30 °C, under atmospheric conditions for 

16 hours (this duration was found sufficient to reach equilibrium as observed from 
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kinetic experiments).  Adsorption of Zn2+ ions was also carried out at various initial zinc 

solution pH (2.0 - 7.2) values with an initial zinc concentration of 70 mg L−1. The 

theoretical pH values varied from 2.7 to 7.2, and were determined by calculating the 

final concentration of H+ ions in the samples while discounting any adsorption reactions. 

For example, when 3 mL of BioSeNPs at pH 7.3 (H+ concentration is 10−7.3 M) was 

added to 7 mL of zinc metal ion solution of pH 3 (H+ concentration will be 10−3 M), the 

final H+ ion concentration and the theoretical pH in the sample will be approximately 

7×10−4 M and 3.2, respectively. The adsorption experiments were also carried out at 

various ionic strengths (0.7 - 70.0 mM NaCl) and in the presence of competing cations 

(Ca2+, Mg2+ and Fe2+, added as CaCl2
.2H2O, MgCl2 6H2O and FeCl2

.4H2O, respectively). 

The zinc and competing ions were added simultaneously at the beginning of the 

adsorption experiments. Simulation by Visual MINTEQ software confirmed that more 

than 98% of the total initial zinc added was in the Zn2+ speciation in all the batch 

adsorption experiments.  

As the volumes used in the batch experiments were low, the use of gravity settling for 

solid-liquid separation was difficult. The samples were, therefore, filtered with a 0.45 µm 

syringe filter (cellulose acetate, Sigma Aldrich) to be analyzed for the residual zinc 

concentration. Control experiments were carried out to discard the possibility of 

adsorption of Zn2+ ions to the filter material or by precipitation (more details in 

Supporting Information (SI)). All the experiments were carried out in duplicate. If the 

difference in two measurements exceeded 10%, experiments were repeated. The 

average values and errors of duplicate measurements are presented in the figures. 

 



  

Manuscript submitted to Chemical Engineering Journal 
 

10 

2.3 Analysis of BioSeNPs loaded with Zn2+ ions 

5 mL of BioSeNPs (0.22 g L−1, pH 7.3) was used for adsorbing different initial zinc 

concentrations (0.9 - 90.9 mg L−1, pH 5.5). The final volume of the samples was 5.5 mL 

and the final pH of the samples varied between 5.8 and 6.5. The ζ-potential of the 

BioSeNPs loaded with different concentrations of Zn2+ ions was measured (more details 

in SI). The samples were then filtered with a 0.45 µm syringe filter (cellulose acetate, 

Sigma Aldrich) and analyzed for the selenium concentration in the filtrate by ICP-MS.  

For XPS analysis of BioSeNPs loaded with Zn2+ ions, 90.1 mg L−1 of zinc were added to 

BioSeNPs (0.917 g L−1). The final pH of the BioSeNPs loaded with zinc after adsorption 

was 6.2. Prior to XPS analysis, the samples were centrifuged at 37,000 g for 15 minutes 

followed by re-suspension in Milli-Q water (see SI for details). 

2.4 Adsorption experiments with simulated wastewaters  

Synthetic wastewater containing zinc was generated by adding chloride salts of Zn2+ (30 

mg L−1), Mg2+ (64.6 mg L−1), Ca2+ (24 mg L−1) and NH4
+ (60 mg L−1) as described in 

Zhao et al. [29], but the pH was adjusted to 2.9 to prove applicability of the proposed 

technology for more challenging wastewater. The effluent of an UASB reactor 

containing BioSeNPs was simulated by using effluent of batch incubations without any 

post treatment [26]. This effluent contained Cl− (766 mg L−1), NO3
− (29 mg L−1), PO4

3− 

(50 mg L−1), SO4
2− (159 mg L−1), BioSeNPs (34.2 mg L−1) and 860 mg L−1 of Carbon 

Oxygen Demand. The synthetic zinc containing wastewater was mixed with simulated 

effluent containing BioSeNPs at a ratio of 1:1 and 1:1.5 for 60 minutes followed by 60 

minutes of gravity settling. No filtration was used for solid-liquid separation. After the 
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setting, residual zinc and selenium concentrations were measured in the supernatant. 

The control experiments were carried out by the same effluent but after removal of 

BioSeNPs by centrifuging at 37,000 g and collecting the supernatant. 

2.5 Analytics 

Residual zinc, calcium, magnesium and iron concentrations were measured by Atomic 

Absorption Spectroscopy (see SI for details). The selenium content of the BioSeNPs 

was determined by ICP-MS after being dissolved in concentrated HNO3 (see SI for 

details). The produced BioSeNPs were characterized by SEM-EDX spectra, XRD, 

ζ-potential measurements and XPS (more details in SI). All chemicals were of analytical 

grade and purchased from Sigma Aldrich (The Netherlands).  

3. RESULTS  

3.1 Characterization of the BioSeNPs 

The BioSeNPs' particles were spherical in shape (Figure 1a) and mainly composed of 

selenium (Figure 1b). In addition, carbon, oxygen as well as small amounts of nitrogen 

and sulfur were detected by EDX spectra of the SEM (Figure 1b). The presence of 

carbon, oxygen, nitrogen and sulfur can be attributed to the presence of extracellular 

polymeric substances (EPS) attached to the BioSeNPs, which was further confirmed by 

the XPS data: the C 1s, N 1s and O 1s peaks were found in the XPS analysis of 

BioSeNPs (see Figure S1 in SI). These EPS bound to the surface of the BioSeNPs 

particles provide colloidal stability to the BioSeNPs at different pH values [9]. Note that 
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the large Si signal in Figure 1b was due to the use of a silicon wafer during the SEM-

EDXS measurements. 

The BioSeNPs diameter varied between 80 and 260 nm with a median of 160 - 180 nm 

(see Figure S2 in SI). When filtering the BioSeNPs with 1.0 µm and 0.45 µm filters, the 

filtrate fraction of BioSeNPs obtained was 13.9% and 5.2% of the original concentration, 

respectively, suggesting retention of the BioSeNPs to the filter. The presence of EPS 

(Figure 1b, S1 in SI), that can interact with filter material and also increase the hydro-

dynamic diameter, can be the cause of this retention [30,31]. XRD patterns of 

BioSeNPs after purification (see Figure S3 in SI) only show hints for diffuse scattering, 

suggesting an amorphous nature of the BioSeNPs (Figure S3 in SI), as observed in 

previous studies [17,32]. 
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Figure 1. a) Secondary electron SEM image of the BioSeNPs deposited onto a piece of 

Si wafer and b) EDXS analysis of BioSeNPs.  

 

3.2 Adsorption of Zn2+ ions by BioSeNPs 

3.2.1 Time-dependency study 

The equilibrium pH of the samples was 6.5 at all contact times tested. More than 70% of 

the Zn2+ ions were adsorbed in the first minute of reaction (Figure 2a). The uptake of 

Zn2+ ions was completed within 4 hours and remained unchanged for longer contact 
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times. All the further experiments were thus carried out for 16 hours to ensure 

adsorption equilibrium was achieved. 

  

 

 Figure 2. Batch adsorption experiment of Zn2+ ions by BioSeNPs. a) Adsorption at pH 

6.5, initial zinc concentration of 70 mg L−1 and no background electrolyte with time. 
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Zoomed adsorption kinetics for the first 30 minutes presented in the inset.  Each data 

point represents an independent sample; b) Adsorption isotherm at pH 6.5 with different 

initial (□ with dotted line) and equilibrium (∆) zinc concentration; c) Adsorption at 70 mg 

L−1 zinc with theoretical pH (× with dotted line) and equilibrium pH (∆); d) Adsorption at 

pH 6.5 and 1.0 mM initial zinc concentration with different competing cations, (e) ζ-

potential measurements of BioSeNPs (◇) and BioSeNPs exposed to 1 mM zinc (Δ) at 

a background electrolyte concentration of 5 mM NaCl, (f) ζ-potential measurements of 

BioSeNPs (◊) and % concentration of BioSeNPs in the filtrate (□)  after exposure to 

increasing zinc concentrations. The % of BioSeNPs' concentration in the filtrate was 

calculated compared to filtration of BioSeNPs without Zn2+ ions adsorption. 

 

 3.2.2 Adsorption isotherms 

The equilibrium pH remained at 6.5 for all the initial zinc concentrations tested. The 

adsorption of Zn2+ ions increased with increase in initial zinc concentration (Figure 2b). 

The adsorption increased sharply when the initial zinc concentration was increased from 

5.8 mg L−1 to 21 mg L−1. The plateau was reached at an initial zinc concentration of 

36 mg L−1. A further increase in initial zinc concentration from 36 mg L−1 to 215 mg L−1 

led to an increase in the adsorption of Zn2+ ions and a second plateau was reached. 

The maximum adsorption capacity of BioSeNPs achieved was 60 mg of zinc adsorbed 

per g of BioSeNPs. The adsorption isotherms were modeled with the Langmuir and 

Freundlich models to obtain the theoretical adsorption capacity (Figure S4 in SI) as 

explained in Shin et al [33]. The R2 values obtained for Langmuir and Freundlich were 
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0.980 and 0.977, respectively. The Qe-Zn predicted by the Langmuir and Freundlich are 

62.1 and 45.5 mg of zinc per g of BioSeNPs. The maximum Qe-Zn predicted by the 

Langmuir model was close to that observed in the experiments, while the one predicted 

by the Freundlich model was 25% lower than that observed in the experiments. 

3.2.3 Effect of variation of pH 

In the pH study, the amount of Zn2+ ions adsorbed increased with increasing theoretical 

and equilibrium pH (Figure 2c). The Qe-Zn was 21.1 mg g−1 (35% of the maximum 

adsorption) at a theoretical and equilibrium pH value of 3.2 and 5.6, respectively. A 

steep increase in Qe-Zn to 38.6 mg g−1 (64% of the maximum adsorption value) was 

observed when the theoretical and equilibrium pH value was increased from 3.2 to 3.5 

and 5.6 to 6.4, respectively. The maximum adsorption at 70 mg L−1 initial zinc 

concentration was 45 mg g−1 (75% of the maximum adsorption), achieved at theoretical 

pH values above 3.9 and almost equal equilibrium pH value of 6.5 to 6.6. 

3.2.4 Effect of competing monovalent and divalent cations 

NaCl was used as background electrolyte in the Zn/Na ratios: 1.0/0.7, 1.0/7 and 1.0/70 

mM/mM to observe their effect on the adsorption of the Zn2+ ions onto BioSeNPs 

(Figure 2d). The initial and equilibrium pH values were constant at 6.5. For the 1.0/0.7 

and 1.0/7 mM/mM ratio, the adsorption was 100% as compared to the control 

experiment (without any electrolyte). With the further decrease in the Zn/Na ratio to 

1.0/70 mM/mM, the adsorption was 95% of the zinc adsorption in the absence of any 

background electrolyte.  
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Ca and Mg were used as competing cations in the Zn/X (where X = Ca or Mg) ratios: 

1.0/1.0, 1.0/5.0 and 1.0/10.0 mM/mM to observe potential competing effects on the 

adsorption of Zn2+ ions on BioSeNPs (Figure 2d). The initial and equilibrium pH values 

were 6.5. The Qe-Zn at 1.0 mM (65.4 mg L−1) initial zinc concentration was 45 mg g−1 in 

the absence of any competitive ions (Figure 2b). At similar initial experimental 

conditions, the Qe-Ca (mg of Ca adsorbed per g of BioSeNPs) was 18.7 and 

51.7 mg g−1, at respectively, 1 and 5 mM of calcium in the absence of zinc. Similarly, the 

Qe-Mg (mg of Mg adsorbed per g of BioSeNPs) was 62.6 and 113.8 mg g−1, at 

respectively, 1 and 5 mM magnesium in the absence of zinc. It is important to note that 

though the initial experimental conditions were identical for all experiments, the final pH 

for Mg2+, Ca2+ and Zn2+ was 8.3, 8.3 and 6.5, respectively.. 

With calcium as the competing ion in the ratio (Zn/Ca): 1.0/1.0, 1.0/5.0 and 1.0/10.0 

mM/mM, the respective Qe-Zn was 98%, 87% and 76% (42.8, 39.2 and 34.2 mg g−1) of 

the control experiments (45 mg g−1). The presence of Ca2+, thus, decreases the 

adsorption of Zn2+ ions at a Zn/Ca ratio < 1.0/1.0. With MgCl2 as background electrolyte, 

the Qe-Zn was almost equal to control experiments (45 mg g−1): 104%, 99% and 100% 

(46.8, 44.6 and 45 mg g−1) at the Zn/Mg ratio of 1.0/1.0, 1.0/5.0 and 1.0/10.0 mM/mM, 

respectively. Thus, Mg2+ does not impact zinc ion adsorption under the applied 

experimental conditions.  

To see the competitive effect of Fe2+, 0.18 mM (10 mg L−1) of Fe2+ was added externally 

at an initial metals ion pH of 4.0 (Zn concentration was 70 mg L−1). The equilibrium pH 

of this experiment was 5.0. The Qe-Zn in these conditions was reduced to 60% (27 mg 
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g−1) of the maximum (45 mg g−1), showing iron has a strong competitive adsorption 

effect. 

 3.2.5 Colloidal stability of BioSeNPs  

The ζ-potential of the BioSeNPs particles produced by anaerobic granules was −31.0 

mV at pH 7 and 5 mM background electrolyte concentration (Figure 2e). Similar 

negative ζ-potential values of BioSeNPs produced by Bacillus cereus and Bacillus 

selenatarsenatis were reported in other studies [8,9]. The iso-electric point of BioSeNPs 

particles was at pH 3.8 as compared to 3.5 of selenium nanoparticles produced by B. 

selenatarsenatis [9]. The adsorption of zinc on BioSeNPs has led to less negative ζ-

potential values (Figure 2e, f). No appreciable change in the iso-electric point of 

BioSeNPs loaded with Zn2+ ions was observed. In Figure 2f, with the increase in Qe-Zn 

from 0 to 23.0, ζ-potential values changed from −36.7 to −13.4 mV. When the Qe-Zn 

value increases to 64.5, the ζ-potential became less negative (−10.2 mV). Figure 2f also 

shows a decrease in concentration of BioSeNPs in the filtrate after adsorption of zinc 

with the increase in Qe-Zn. The concentration of BioSeNPs decreased by more than 

92% (240 µg L−1 in the filtrate after adsorption and filtration as compared to 3200 µg L−1 

in the filtrate after filtration only) with a Qe-Zn of 62 mg of zinc adsorbed per g of 

BioSeNPs. It is important to note that after adsorption and filtration, 99.9% of the added 

BioSeNPs were retained in the filter.                                                                                                                               

3.3 XPS analysis  

During the XPS analysis of BioSeNPs, the Se 3d5/2 binding energy for the BioSeNPs 

was observed at 55.3 eV (Figure 3a). This is in good agreement with binding energy 
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values previously reported in the literature for elemental selenium (see Tables S1 and 

S2 in SI). The assignment of the doublet of Se 3d3/2 and Se 3d5/2 is often overlooked in 

the literature and authors only refer to Se 3d, probably due to the use of non-

monochromatic X-ray excitation. In agreement with observations of Guo and Lu [34], the 

binding energies of the different elemental selenium phases, e.g. amorphous, trigonal or 

monoclinic are comparable. No additional peaks at binding energies corresponding to 

other selenium oxidation states were detected (Figure 3a). XPS confirmed, therefore, 

the formation of BioSeNPs particles via selenium(IV) reduction.  

At 53.7 eV, a peak corresponding to the Fe 3p elemental line was observed. The 

presence of Fe is due to the use of anaerobic granular sludge for BioSeNPs production. 

The total Fe concentration measured after dissolving BioSeNPs in HNO3 was 5.4±2.5% 

(n=4) w/w of the BioSeNPs. As the signals of Fe in XPS were weak, assignment of the 

oxidation state of Fe was not possible. Since XPS is a surface probing technique, this 

suggests that most Fe was not present on the surface of the BioSeNPs but entrapped 

inside the BioSeNPs.  
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Figure 3. (a) XPS spectra of BioSeNPs confirming the production of elemental selenium 

Se 3d lines of BioSeNPs and XPS spectra of BioSeNPs loaded with zinc, (b) Se 3d lines 

and (c) Zn 2p3/2 lines. 

The signal of C 1s can be fitted into three components with binding energies located at 

284.8, 286.3 and 288.1 eV, corresponding to hydrocarbon chains (CxHy), alpha-carbon 

(α-C) + C-N, and carboxylic acid (COOH groups), respectively [35,36]. The N 1s peak is 

centered at 400.1 eV and lays in the range corresponding to nitrogen containing groups 

(such as amine or amide groups) [17,36,37]. The O 1s signal can be fitted into two 

components at 531.7 and 532.9 eV, corresponding to hydroxyl (─OH) and carboxylate 

(─COOH) groups, respectively [38] (see Figure S1 in the SI). 
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During the XPS analysis of BioSeNPs loaded with zinc, the Se 3d5/2 binding energy of 

the Zn2+ ions loaded on the BioSeNPs was centered at 55.1 eV (Figure 3b), while the 

Se 3p3/2 line was found at 161.4 eV. These binding energy values are in agreement with 

the energies found for the no zinc exposed BioSeNPs, corresponding also to elemental 

selenium (see Tables S1 and S2 in SI). No significant differences in the C 1s, N 1s and 

O 1s lines were observed after interaction with Zn2+ ions. 

The binding energy of the Zn 2p3/2 signal is located at 1022.2 eV (Figure 3c). The 

difficulty of attributing this binding energy is due to the fact that Zn compounds such as 

ZnO, ZnSe, ZnCO3 or Zn(OH)2 (NIST Database) [39] show similar Zn 2p3/2 binding 

energies (refer to Table S3 in SI). 

3.4 Zinc removal from synthetic wastewater 

Figure 4 demonstrates the zinc removal from simulated zinc containing wastewater. The 

final pH, after the mixing and settling of the synthetic metal wastewater fed with the 

simulated UASB effluent containing BioSeNPs and without BioSeNPs, was between 7.6 

- 7.8. 97.2±0.2% and 97.2±0.1% of the total zinc was removed at 1:1 and 1:1.5 ratios, 

respectively, fed with BioSeNPs containing UASB effluent. In the control experiments, 

80.7±0.7%, and 79.4±4% of total zinc was removed 1:1 and 1:1.5 ratios, respectively. 

The enhanced removal of zinc in synthetic wastewaters in comparison to control 

experiments is due to the presence of BioSeNPs. The removal of zinc in control 

experiments was due to precipitation of zinc in form of ZnO, Zn(OH)2, Zn3(PO4)2 and 

complexes with organic carbon as predicted by Visual MINTEQ. The final zinc 

concentrations, when BioSeNPs were added, for ratio 1:1 and 1:1.5 were 0.39 and 0.32 
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mg L-1, respectively, which is well below the regulatory discharge limits [21, 22, 23] and 

10 times less than zinc concentration in the control experiments. More than 97 and 80% 

of added BioSeNPs could be retained in the settled sludge (comprising BioSeNPs and 

Zn) at the ratio of 1:1 and 1:5, respectively. 

 

Figure 4. Zinc removal efficiency (■) and BioSeNPs retention (■) in the effluent and 

settled sludge, respectively, at different ratios of synthetic metal wastewater and 

simulated UASB effluent containing BioSeNPs. Zinc removal efficiency in the control 

experiments (□) at different ratio when synthetic metal wastewater is mixed with UASB 

effluent without BioSeNPs.  

 

4. DISCUSSION 

4.1 Mechanisms of Zn2+ adsorption onto BioSeNPs at near-neutral pH 

This study demonstrated, for the first time, that adsorption of Zn2+ ions on BioSeNPs is 

carried out by different mechanisms depending on the initial zinc concentrations. The ζ-
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potential of BioSeNPs loaded with Zn2+ ions vs Qe-Zn (Figure 2f) has the same double-

plateau as the adsorption isotherm of Zn2+ ions (Figure 2b), suggesting two kinds of 

sorption mechanisms prevail at near neutral pH values.  The double-plateau isotherm 

for Zn2+ adsorption on BioSeNPs observed at initial and equilibrium pH of 6.5 (Figure 

2b) might be due to the presence of high and medium affinity sites on the surface of the 

adsorbent, as suggested in the adsorption of zinc, cadmium, copper and nickel by 

amorphous hydrous manganese dioxide [40] or zinc adsorption by hydroxy intercalated 

Al and Zr-pillared bentonite [41]. Alternatively, the double-plateau adsorption isotherm 

can be explained by the BET type IV isotherm [42].  This type of isotherm proposes the 

formation of adsorbate monolayers on the site, followed by precipitation of adsorbate in 

the pores of the adsorbent.  

XPS analysis of BioSeNPs loaded with Zn2+ confirms the formation of zinc precipitates 

on the surface of BioSeNPs (Figure 3c), as predicted in BET type IV isotherm. However, 

the XPS analysis of BioSeNPs loaded with Zn2+ does not allow to assign 

unambiguously the zinc compound found on the surface, since ZnO, Zn(OH)2, ZnCO3 

and ZnSe exhibit very similar Zn 2p3/2 binding energies (see Table S3 in SI). The 

possibility of the presence of ZnO, Zn(OH)2 and ZnCO3 can be explained on the basis of 

increased concentrations of Zn2+ ions in the electrical double layer as compared to the 

bulk solution due to electrostatic attractions between the high negative ζ-potential of 

BioSeNPs and the positive charge of the Zn2+ ions leading to precipitation of Zn(OH)2, 

ZnO or ZnCO3 on the surface of the BioSeNPs. 

 ZnSe could also be present on the surface of BioSeNPs following the 

disproportionation of elemental selenium to selenium(IV) and selenium(−II) leading to 
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ZnSe formation [43,44,45]. Indeed, based on solubility products, the formation of HgSe 

and Ag2Se through disproportionation of elemental selenium into selenide and selenite 

was reported to be highly favorable, in comparison to ZnSe whose formation was 

considered to be less favorable [43]. Such a disproportionation reaction of elemental 

selenium was experimentally observed during synthesis of CuSe and Ag2Se in alkaline 

and hydrothermal conditions [46], however not at the experimental conditions applied in 

this study (pH = 6.5, T = 30 oC). Preliminary analysis of Extended X-ray Absorption Fine 

Structure (EXAFS) data of BioSeNPs loaded with Zn2+ ions at Zn K-edge suggests that 

the first neighbor of Zn is O (data not shown). The Zn precipitate can be either ZnO, 

Zn(OH)2, ZnCO3 or even Zn-organic complexes, rather than ZnSe. To better evaluate 

the chemical environment of zinc at the BioSeNPs surface, further analysis of the 

EXAFS data is required, which is beyond the scope of the present study. 

4.2 Mechanisms of Zn2+ ions adsorption onto BioSeNPs at different pH 

The adsorption of Zn2+ ions on BioSeNPs follows different mechanisms at different 

solution pH. At initial pH values from 2.9 to 3.8 (the theoretical pH values were 

calculated to be 3.0 to 4.0 and the equilibrium pH values varied from 4.4 to 6.6), the 

Zn2+ ions adsorption on BioSeNPs followed a ligand-like (type II) adsorption mechanism 

[40]. In the ligand-like adsorption, ligands can bind to solid surfaces by replacing OH− 

and decreasing repulsion between solids and cations, which in turn assist in binding of 

the cations to the same site as the ligand or at some other sites. Ligands also increase 

the number of sites taking part in adsorption by maintaining electro-neutrality on the 

surface of the adsorbent. The excess of OH− or lack of H+ ions was observed in the 

samples while carrying out the mass balance for H+ ions for the adsorption of Zn2+ ions 
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by BioSeNPs at initial pH values of 2.9 to 3.8. The Zn2+ ions adsorption was highly 

correlated to the H+ sorbed during this pH range (R2 = 0.99, see Figure S5 in SI). This 

high correlation suggests that at low pH, a release of OH− ions or adsorption of H+ ions 

takes place during the interaction of Zn2+ ions with the BioSeNPs. A similar increase in 

equilibrium pH was reported during adsorption of Cu2+ at initial pH of 3.0 by polyglycidyl 

methacrylate and polyethyleneimine [47]. The equilibrium pH varied between 4.8 and 

5.9, increasing with increase of the background chloride ion concentrations, suggesting 

ligand-like (type II) assisted adsorption [40].  

To quantify the amount of the chloride ions adsorbed, experiments were carried out at 

an initial zinc concentration of 60.0 mg L−1, chloride ion concentration of 82.8 mg L−1, pH 

of 3.7 and with 2.2 g L−1 of BioSeNPs. The Qe-Cl was 1.8 mg of chloride adsorbed per 

g of BioSeNPs (see details for Cl− measurement in SI). The adsorption of Cl− points to 

the possibility of the presence of anion assisted Zn2+ ions adsorption by BioSeNPs [40]. 

Since the Qe-Cl is much lower than that of Qe-Zn (25.5 mg g−1) at these experimental 

conditions, anion assisted Zn2+ ions adsorption is most likely not the dominant 

mechanism or is only valid for a small pH range. 

At the theoretical pH value of 7.2, the replacement of the H+ ion by Zn2+ ions on the 

surface of BioSeNPs was suggested by the drop in the equilibrium pH to 6.5 from 

theoretical pH of 7.2. This release of H+ ion was also observed when the theoretical pH 

value was increased from 4.0 to 5.7.  

4.3 Effect of competing ions on Zn2+ ions adsorption  
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The effect of Zn2+ ions adsorption on BioSeNPs in the presence of common competing 

ions as Na, Ca, Mg and Fe is important to assess the applicability of BioSeNPs for real 

wastewaters. To this point, it was observed that the increase in NaCl concentration from 

0.001 M to 0.1 M, there was no significant effect on the zinc ion adsorption by 

BioSeNPs (Figure 2d). This suggests that the Zn2+ ions are adsorbed on the surface of 

BioSeNPs via inner sphere complexation [48].  

The relative increase in adsorption of the cations either follows a decrease in ionic 

radius or an increase in electronegativity of the metal ion or an increase in ratio of the 

ionisation potential and ionic radius [49]. Qe-Mg > Qe-Zn > Qe-Ca, which is explained 

by the trend in ionic radius of the ions: Mg2+ < Zn2+ < Ca2+ (see Table S4 in SI). 

However, the relative preference of cations for adsorption by BioSeNPs follows the 

trend in the ratio of ionisation potential and ionic radius, which is the highest for Zn2+ 

(−1.03), lower for Ca2+ (−2.89) and the lowest for Mg2+ (−3.63), thus implying that Zn2+ 

would outcompete calcium and magnesium at the equimolar ratios.  

The ratio of ionization potential and ionic radius for Fe2+ (−0.77) exceeds that of Zn2+ 

(−1.03), thus Fe2+ would outcompete zinc at equimolar ratio. The effect of entrapped Fe 

in BioSeNPs on its adsorption capacity could not be measured as it is impossible to 

remove Fe entirely from the BioSeNPs without altering or destroying them. The 

entrapped Fe is, however, unlikely to have inhibited the adsorption of Zn2+ on BioSeNPs 

as the majority of Fe was not present on the surface of BioSeNPs (Figure 3a).  

4.4 Colloidal stability of BioSeNPs  



  

Manuscript submitted to Chemical Engineering Journal 
 

27 

The increase of Zn2+ ions adsorption with increasing pH can be ascribed to the change 

in ζ-potential of the BioSeNPs. The ζ-potential of the BioSeNPs is negative at pH values 

above the iso-electric point (pH 3.8) and becomes more negative with increasing pH. 

The negative charge on the surface of BioSeNPs attracts the Zn2+ ions and thus, the 

more negative charge, the stronger will be the attraction and hence increases the 

adsorption [4]. Furthermore, the change in pH leads to deprotonation of functional 

groups present on the surface of BioSeNPs (see Figure S1 in SI) which, in turn, 

provides more binding sites to Zn2+ ions and thus increases adsorption. 

The interaction of Zn2+ ions and BioSeNPs leads to less negative BioSeNPs loaded with 

zinc, suggesting that the zinc is adsorbed either by electrostatic interactions or by 

covalent bond formation (Figures 2e, f and Table S5 in SI). The same trend was 

observed for interaction of BioSeNPs with Ca2+ and Mg2+ (see Figure S6 in SI) and was 

also observed during the interaction of calcium ions with BioSeNPs produced by 

Bacillus selenatarsenatis [9]. No appreciable shift in iso-electric point of BioSeNPs 

loaded with zinc was observed (Figure 2e). This can be attributed to the relatively small 

amount of zinc adsorption at an equilibrium pH value of 4. A similar observation was 

made during adsorption of U(VI) on MnO2 [48].  

The ζ-potential becomes less negative at increasing Qe-Zn (Figure 2f, Table S5 in SI). 

This suggests that as the load of Zn2+ ions on the surface of BioSeNPs increases, the 

colloidal stability of BioSeNPs decreases. The effect of lower colloidal stability of 

BioSeNPs loaded with Zn2+ ions led to settling and a lower concentration of BioSeNPs 

in the filtrate: 99.9% of retention of total added BioSeNPs on the filter was achieved 

(240 µg L−1 of selenium concentration after zinc adsorption and filtration; 3200 µg L−1 
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after only filtration, 220,000 µg L−1 of added BioSeNPs, Figure 2f). Thus, the heavy 

metals loaded on BioSeNPs can be separated from the liquid phase by simple gravity 

settling.  

4.5 Practical implications 

This study demonstrated that the adsorption of Zn2+ ions can be performed at acidic pH 

values (pH 3.9). This is an interesting characteristic as the pH of the metal containing 

wastewaters such as electroplating industry wastewater or acid mine drainage 

wastewater [26] varies from highly acidic to near neutral [29,50,51,52], where activated 

carbon is unable to adsorb zinc [53]. Though the adsorption capacity of BioSeNPs is 

low in comparison to Dowex HCR S/S resin (Qe 172.2 mg g−1) [54], NaA and NaX 

zeolites (Qe 118.9 and 106.4 mg g−1) [55], the adsorption capacity of BioSeNPs is 

higher than most of the common adsorbents used for zinc removal such as 

aluminosilicates, non-modified zeolite, bentonite or activated carbon (see Table 1). 

Table 1. Maximum Qe-Zn of common adsorbents for Zn2+ ions at relevant conditions  

Adsorbent 
Q max  

(mg g−1) 
pH 

Concentration 

(mg L−1)                 

i = initial conc.               

e = equilibrium  

conc. 

Reference 

BioSeNPs 60 6.5 200 (i) This study 

Hydrous manganese 

dioxide 
57.2, 85.0 6.0 

18.3 (e) 

3.3 (e) 
[40,56] 

Graphene oxide 345  5.0 100 (e) [57] 
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Aluminosilicates 6.5 6.5 65.4 (i) [58] 

Al2O3 22.9 6.5 195.9(i) [58] 

PVA/EDTA resin 38.7 6.0 40 (i) [54] 

Dowex HCR S/S resin 172.2 6.0 18 (e) [54] 

Sodium rich bentonite 23.6 6.9 97.3 (e) [41] 

AI-pillared Na-rich 

bentonite 
31.8 6.9 97.3 (e) [41] 

Commercial activated 

powder carbon 
20.5 7.0 400 (e) [53] 

 

This study opens perspectives to develop a novel adsorption technology where 

BioSeNPs present in the effluent of an UASB reactor treating selenium oxyanions 

containing wastewater [9,26] is used as a metal adsorbent. It is important to note that 

the BioSeNPs are always present in the fore mentioned effluent due to microbial 

conversion of dissolved selenium oxyanions to BioSeNPs and these BioSeNPs has to 

be removed prior to discharging of the effluent [9]. Figure 4 demonstrated that the 

regulatory discharge concentration of zinc can be achieved by use of BioSeNPs at the 

tested conditions. It was also observed that at the appropriate metal to BioSeNPs ratio, 

1:1 in this study, more than 97% of BioSeNPs can be retained in the settled sludge or 

removed from the effluent of an UASB reactor treating selenium oxyanion wastewater 

by a simple cost-effective gravity settling. The settled BioSeNPs loaded with zinc metal 

then can be used for recovery of the heavy metal and BioSeNPs.  

5. CONCLUSION 



  

Manuscript submitted to Chemical Engineering Journal 
 

30 

In this study, the adsorption of Zn2+ ions on BioSeNPs was investigated. Adsorption of 

Zn2+ ions on BioSeNPs follows a two-step process at near-neutral pH values and 

follows ligand-like (type II) mechanisms at acidic pH. Furthermore, Zn2+ ions adsorbs to 

BioSeNPs mainly through inner-sphere complexation. Major advantages of using 

BioSeNPs as an adsorbent are the material's fast kinetics and capacity to adsorb more 

than 75% of the maximum adsorption capacity even at pH values below 3.9. The 

ζ-potential of BioSeNPs changed from −31 mV to −15 mV after interaction with the Zn2+ 

ions, leading to aggregation of the BioSeNPs and subsequent settling of the colloidal 

suspension. This allows recovering the metal loaded BioSeNPs by simple gravity 

settling as observed in experiments with synthetic zinc wastewaters. This study 

provides understanding of Zn2+ ions adsorption onto BioSeNPs, which can be exploited 

to develop a new heavy metal removal process based on BioSeNPs produced out of 

effluents of UASB reactors treating selenium oxyanions rich wastewaters. 

ASSOCIATED CONTENT 
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HIGHLIGHTS 

• 70% of Zn2+ adsorption on BioSeNPs was completed in first minute of the 

reaction. 

• Adsorption of Zn2+ on BioSeNPs follows two-step mechanism at near-neutral pH. 

• Adsorption of Zn2+ on BioSeNPs follows ligand-like (type II) mechanism at low 

pH.  

• BioSeNPs loaded with Zn2+ have lower colloidal stability vis-a-vis BioSeNPs 

without Zn2+. 

 

 


