
HAL Id: hal-01066663
https://hal.science/hal-01066663v4

Submitted on 7 Nov 2016 (v4), last revised 26 Oct 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

xR2RML: Relational and Non-Relational Databases to
RDF Mapping Language

Franck Michel, Loïc Djimenou, Catherine Faron Zucker, Johan Montagnat

To cite this version:
Franck Michel, Loïc Djimenou, Catherine Faron Zucker, Johan Montagnat. xR2RML: Relational and
Non-Relational Databases to RDF Mapping Language. [Research Report] ISRN I3S/RR 2014-04-FR,
CNRS. 2016. �hal-01066663v4�

https://hal.science/hal-01066663v4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

1

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES

DE SOPHIA ANTIPOLIS

UMR7271

xR2RML: Relational and Non-Relational Databases

to RDF Mapping Language

Franck Michel, Loïc Djimenou, Catherine Faron-Zucker, Johan Montagnat

Equipe SPARKS

Rapport de Recherche

ISRN I3S/RR 2014-04-FR

Version 4, Nov. 2016, 44 pages

Document history:

Version Date Description

v1 2014-09-22 Initial version

v2 2014-10-08 Fix spelling mistakes.

v3 2014-10-20 Convergence with RML language definitions, moving of

reference formulation from language to processor environment,

fix misc. minor mistakes.

V4 2016-11-07 Add property xrr:uniqueRef in logical source. Many rewordings

and clarifications.

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS

2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France
http://www.i3s.unice.fr

http://www.i3s.unice.fr/

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

2

1 Introduction .. 4

1.1 Document Conventions ... 4

1.2 Query Languages and Data Models ... 4

1.3 xR2RML mapping graphs and mapping documents .. 6

1.4 xR2RML processors ... 6

2 xR2RML Overview and Examples .. 8

2.1 Mapping CSV data ... 8

2.2 Mapping JSON data ... 9

2.3 Mapping XML data .. 10

2.4 Mapping data with mixed formats .. 11

2.5 Generating an RDF collection from a list of values ... 12

2.6 Generating an RDF container with a referencing object map ... 13

3 Language description .. 15

3.1 Mapping Logical Sources to RDF with Triples Maps .. 15

3.1.1 xR2RML Triples Map ... 15

3.1.2 Defining a Logical Source.. 15

3.1.3 xR2RML Triples Map Iteration Model .. 19

3.2 Creating RDF terms with Term Maps .. 21

3.2.1 xR2RML Term Maps ... 21

3.2.1.1 Constant-, Column-, Reference- and Template-valued Term Maps 21

3.2.1.2 Term Types of Term Maps .. 22

3.2.1.3 Nested Term Maps ... 22

3.2.2 Referencing data elements .. 24

3.2.2.1 Referencing simple data elements ... 24

3.2.2.2 Referencing data elements with mixed data formats .. 25

3.2.2.3 Production of multiple RDF terms .. 26

3.2.2.4 Production of RDF collections or containers .. 30

3.2.3 Parsing nested structured values ... 32

3.2.4 Multiple Mapping Strategies .. 35

3.2.5 Default Term Types .. 36

3.3 Reference relationships between logical sources ... 37

3.3.1 Reference relationship with structured values .. 38

3.3.2 Generating RDF collection/container with a referencing object map 40

3.3.3 Generating RDF collection/container with a referencing object map in the relational case..... 42

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

3

4 References ... 44

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

4

1 Introduction
This document describes xR2RML, a language for expressing customized mappings from various types of

databases (XML, object-oriented, NoSQL) to RDF datasets.

xR2RML is an extension of the R2RML [1] mapping language, and relies on some properties of the RML

mapping language [4][3]. R2RML addresses the mapping of relational databases to RDF. RML extends R2RML

to address the mapping of heterogeneous data formats (CSV, XML, JSON) to RDF, but does not investigate

the constraints that arise when dealing with different types of heterogeneous databases. xR2RML extends

this scope to a wide range of non-relational databases. This document leverages the R2RML specification

and mainly describes extensions. It also leverage the RML specification [2] (Draft, 17 Sept. 2014), either

explicitly reusing RML properties when applicable, or by extending existing properties. Consequently, the

reader should have a good understanding of both R2RML and RML before reading this document.

xR2RML is backward compatible with R2RML.

1.1 Document Conventions

In this document, examples assume the following namespace prefix bindings unless otherwise stated:

Prefix IRI

rr: http://www.w3.org/ns/r2rml#

rml: http://semweb.mmlab.be/ns/rml#

ql: http://semweb.mmlab.be/ns/ql#

xrr: http://www.i3s.unice.fr /ns/xr2rml#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

ex: http://example.com/ns#

Vocabulary definitions are formatted in such grey boxes:

Definition

1.2 Query Languages and Data Models

R2RML is specifically focused on the translation of relational databases into RDF datasets. xR2RML extends

this scope to non-relational databases. Although it is illusory to seek universal support of any database, our

endeavor is to equally support most common relational and non-relational databases. In our approach, we

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

5

more specifically analyze the requirements to support NoSQL and XML databases. Yet, xR2RML may not

support all NoSQL databases, given the large variety of systems behind this word. Nevertheless, we argue

that our work can be generalized to some other types of database, for instance object-oriented and

directory (LDAP) databases.

Query languages:

Relational databases all support ANSI SQL (or at least a subset of it), and most XML databases support

XQuery and XPath (which is subset of XQuery). By contrast, NoSQL is a catch-all term referring to very

diverse systems [6][5]. They have heterogeneous access methods ranging from low-level APIs to expressive

query languages. Despite several propositions of common query language (N1QL1, UnQL2, SQL++ [8],

ArangoDB Query Language3, CloudMdsQL[7]), no consensus has emerged yet, that would fit most NoSQL

databases. Therefore, until a standard eventually arises, xR2RML must be agile enough to cope with various

query languages and protocols.

Remark: R2RML relies on the ability of relational databases to support a declarative query language. xR2RML

does the same assumption with regards to other types of databases, although this may be limitative. For

instance, most NoSQL key-value stores provide simple key-based operations (such as put, get, delete) by

means of APIs used in imperative programming languages, but they hardly provide a declarative query

language. If such a system is to be mapped to RDF using xR2RML, an xR2RML processor should implement a

mechanism to bridge this gap. In other words the xR2RML processor should define its own query language to

be interpreted and compiled using an imperative programming language.

Data models:

Relational databases comply with a row-based model in which all rows have the same columns.

NoSQL systems have heterogeneous data models (key-value store, document store, extensible column-store,

graph store). Some of them also comply with the row-based model, such as extensible column-stores (also

known as column family stores) with the difference that all rows do not necessarily share the same columns

(BigTables, Cassandra…). Other databases in which data is formatted in JSON (document stores such as

MongoDB, CouchDB…) or XML (native XM databases such as BaseX, eXistDB) can hardly be reduced to a row-

based model. JSON or XML documents consist of structured (hierarchical) values representing collections or

key-value associations:

 A JSON dictionary is an ordered association of keys and values, both keys and values may be of any

type. A JSON array is an ordered collection of elements, it is a specific case of dictionary in which

keys are implicit integer indexes: 0, 1, 2, etc.

 Similarly, a set of XML elements having the same parent element can be seen as an ordered

association of keys (element names) and values (element values). A set of XML elements of the same

1 http://www.couchbase.com/communities/n1ql
2 http://unql.sqlite.org/index.html
3 http://docs.arangodb.org/Aql/README.html

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

6

type, having the same parent element, can be seen as an ordered collection. Besides, attributes of

an XML element can be seen as a specific type of key-value association.

The model of structured values described above for JSON and XML can easily be applied to other databases.

In an object-oriented model, an object can be approximated by as a key-value association: keys are attribute

names while values are either a scalar, another object (composition or aggregation relationship), or a

collection (depending on capabilities of the modeling language: list, map, etc). Similarly, an LDAP directory is

organized as a tree. Each node has an identifier and a set of attributes represented as ''name=value'' that

are nothing else than a key-value association. A set of attributes with the same name can be interpreted as

either as a collection or a key-value association in which keys are not unique. Thus, xR2RML must be able to

map data elements from rows as well as structured values (nested collections and key-value associations) to

RDF terms.

Note: Below, we shall use the term "structured values" to refer to collections and key-value associations,

whatever the representation syntax used.

1.3 xR2RML mapping graphs and mapping documents

An xR2RML mapping defines a mapping from a database to RDF; it is represented as an RDF graph called an

xR2RML mapping graph.

An xR2RML mapping document is any document written in the Turtle RDF syntax that encodes an xR2RML

mapping graph.

Any R2RML mapping graph is a valid xR2RML mapping graph (backward compatibility).

1.4 xR2RML processors

An xR2RML processor, or processing engine, is a system that, given an xR2RML mapping and an input

database, provides access to the output RDF dataset.

An xR2RML processor has access to an execution environment consisting of:

 An xR2RML mapping document, as defined above.

 A connection to the input database, used by the xR2RML processor to evaluate queries against the input

database. It must be established with sufficient privileges for read access to all database elements

(tables, views, documents, objects…) that are referenced in the xR2RML mapping.

 A reference formulation (optional): this concept, introduced by RML, names a syntax used to reference

data elements within results of a query run against the database connection. The reference formulation

is not mentioned in the mapping language, but is typically provided as configuration parameter. If it is

not provided, it defaults to “column name” in order to ensure backward compatibility with R2RML.

 A query language identifier (optional) identifies which query language shall be used to query the

database, in case several languages are supported.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

7

 A base IRI used in resolving relative IRIs produced by the xR2RML mapping (optional).

It is the responsibility of an xR2RML processor developer to document how to provide the processor with

this context information.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

8

2 xR2RML Overview and Examples
This section gives a brief overview of the xR2RML mapping language, followed by simple examples of

mapping various types of database to RDF.

An xR2RML mapping refers to logical sources to retrieve data from the input database. A logical source can

be either an xR2RML base table (for input databases where tables or views exist, such as SQL views), or an

xR2RML view representing the result of executing a query against the input database. An xR2RML processor

is provided an xR2RML mapping description, a connection to the database and a reference formulation that

specifies the syntax used to refer to data elements retrieved from the input database: this can be a column

name in the case of row-based systems (RDB, extensible column-store), a JSONPath expression in case of a

NoSQL document store, an XPath expression in case of an XML native database, an LDAP path in case of an

LDAP directory, etc.

Each logical source is mapped to RDF using a triples map. As in R2RML, a triples map consists of a subject

map that generates the subject of all RDF triples that will be generated from data elements, and multiple

predicate-object maps that produce the predicate and object terms of triples.

2.1 Mapping CSV data

The input database in the example below consists of one CSV document. It is assumed that the xR2RML

processor is provided a connection to that file, e.g. by means of a descriptor to a file on the local file system

or a URL to locate the file on a web server. Data elements will be referenced using column names, i.e. the

reference formulation passed to the xR2RML processor.

As a CSV file simply consists of a single unnamed table, the logical source can simply be left empty.

Input data title, year, director

Manhattan, 1979, Woody Allen

Annie Hall, 1979, Woody Allen

2046, 2004, Wong Kar-wai

In the Mood for Love, 2000, Wong Kar-wai

Mapping graph <#CSVTriplesMap>

 rr:subjectMap [rr:template "http://example.org/movie/{title}";];

 rr:predicateObjectMap [

 rr:predicate ex:directedBy;

 rr:objectMap [xrr:reference "director";];

].

RDF triples <http://example.org/movie/Manhattan> ex:directedBy "Woody Allen".

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

9

produced <http://example.org/movie/Annie%20Hall> ex:directedBy "Woody Allen".

<http://example.org/movie/2046> ex:directedBy "Wong Kar-wai".

<http://example.org/movie/In%20the%20Mood%20for%20Love> ex:directedBy "Wong

Kar-wai".

2.2 Mapping JSON data

The input database in the example below is a MongoDB database (document store). The query in the logical

source uses the proprietary JavaScript-based query language of MongoDB. It retrieves one JSON document

from collection "movies", that lists movie directors and movies they directed.

Without further instruction on how to parse the document, JSONPath expressions referring to data elements

in the subject and object map will be evaluated against the whole document. For instance, a subject using

expression "$.directors.name" will return two terms, while an object map using expression

"$.directors.movies.*" will return four terms, one for each movie whatever its director. This will result in

mixing up directors and movies. To avoid this, an rml:iterator property is added to the logical source,

specifying that the triples map iteration should occur on each element of the array of directors.

References to data elements (rr:template, xrr:reference), as well as the iterator pattern, are expressed in

JSONPath (i.e. the reference formulation, passed to the xR2RML processor along with the database

connection).

Input data { "directors": [

 { "name": "Wong Kar-wai", "movies": ["2046", "In the Mood for Love"] },

 { "name": "Woody Allen", "movies": ["Manhattan", "Annie Hall"] }

]}

Mapping graph <#Directors>

 xrr:logicalSource [

 xrr:query "db.movies.find({ directors: { $exists: true} })";

 rml:iterator "$.directors.*";

];

 rr:subjectMap [rr:template "http://example.org/director/{$.name}";];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [xrr:reference "$.movies.*";];

].

RDF triples

produced

<http://example.org/director/Woody%20Allen> ex:directed "Manhattan".

<http://example.org/director/Woody%20Allen> ex:directed "Annie Hall".

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

10

<http://example.org/director/Wong%20Kar-wai> ex:directed "2046".

<http://example.org/director/Wong%20Kar-wai> ex:directed "In the Mood for Love".

2.3 Mapping XML data

The example below is very similar to the previous one, using an XML database supporting XQuery. The query

in the logical source retrieves "director" XML elements. As in the previous example, to avoid mixing up

directors and movies, an rml:iterator property is added to the logical source, specifying that the triples map

iteration should occur on each "director" XML element.

References to data elements (rr:template, xrr:reference), as well as the iterator pattern, use the XPath

syntax (i.e. the reference formulation, passed to the xR2RML processor along with the database connection).

Input data <directors>

 <director name="Wong Kar-wai">

 <movies>

 <movie>2046</movie>

 <movie>In the Mood for Love</movie>

 </movies>

 </director>

 <director name="Woody Allen">

 <movies>

 <movie>Manhattan</movie>

 <movie>Annie Hall</movie>

 </movies>

 </director>

</directors>

Mapping graph <#Directors>

 xrr:logicalSource [

 """for $i in //directors/director

 where $i/country eq "China"

 return $i; """;

];

 rr:subjectMap [

 rr:template "http://example.org/director/{/director/@name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

11

 rr:objectMap [xrr:reference "//movie";];

].

RDF triples

produced

<http://example.org/director/Woody%20Allen> ex:directed "Manhattan".

<http://example.org/director/Woody%20Allen> ex:directed "Annie Hall".

<http://example.org/director/Wong%20Kar-wai> ex:directed "2046".

<http://example.org/director/Wong%20Kar-wai> ex:directed "In the Mood for Love".

2.4 Mapping data with mixed formats

In some use cases, it is common to store values in a format which is not the native database format. For

instance, an application designer may choose to embed JSON, CSV, or XML values in the cells of a relational

database, for performance concerns or application design constraints.

xR2RML allows to reference data elements within such mixed contents with mixed-syntax paths. A path with

mixed-syntax consists of the concatenation of several path expressions separated by the slash '/' character.

Each individual path is enclosed in a syntax path constructor: Column(column-name), CSV(column-name),

TSV(column-name), JSONPath(JSONPath-expression), XPath(XPath-expression).

In the example below, the logical source is a relational table with two columns. The second column, Movies,

holds values formatted as JSON arrays. The xrr:reference property of the object map uses a mixed-syntax

path: Column(Movies)/JSONPath($.*). This expression selects values from column "Movies" and evaluates

JSONPath expression "$.*" against the values.

Input data Table DIRECTORS:

Name Movies

Wong Kar-wai ["2046", "In the Mood for Love"]

Woody Allen ["Manhattan", "Annie Hall"]

Mapping graph <#Directors>

 rr:logicalTable [

 rr:tableName "DIRECTORS";

];

 rr:subjectMap [rr:template "http://example.org/director/{Name}";];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [xrr:reference "Column(Movies)/JSONPath($.*)";];

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

12

].

RDF triples

produced

<http://example.org/director/Woody%20Allen> ex:directed "Manhattan".

<http://example.org/director/Woody%20Allen> ex:directed "Annie Hall".

<http://example.org/director/Wong%20Kar-wai> ex:directed "2046".

<http://example.org/director/Wong%20Kar-wai> ex:directed "In the Mood for Love".

2.5 Generating an RDF collection from a list of values

As illustrated by the previous example, several RDF terms can be generated by a term map during one triples

map iteration step. While this can lead to the generation of several triples, this can also be used to generate

hierarchical values in the form of RDF collections or containers.

The example below was already presented in section 2.2. In the object map we simply add an rr:termType

property with value xrr:RdfList. All RDF terms produced by the object map during one triples map iteration

step are then grouped as members of one term of type rdf:List (denoted as "(a b c…)" in Turtle syntax).

Additionally, assume we want to add a language tag to the movie titles. The object map describes the

generation of RDF lists, hence it would not make sense to add an rr:language property. To state properties

about the members of the generated RDF list, we need a nested term map, introduced by the

xrr:nestedTermMap property. A nested term map accepts the same properties as a term map, but it applies

to members of RDF collection/container terms generated by its parent term map.

Input data { "directors": [

 { "name": "Wong Kar-wai", "movies": ["2046", "In the Mood for Love"] },

 { "name": "Woody Allen", "movies": ["Manhattan", "Annie Hall"] }

]}

Mapping graph <#Directors>

 xrr:logicalSource [

 xrr:query "db.movies.find({ directors: { $exists: true} })";

 rml:iterator "$.directors.*";

];

 rr:subjectMap [rr:template "http://example.org/director/{$.name}";];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [

 xrr:reference "$.movies.*";

 rr:termType xrr:RdfList;

 xrr:nestedTermMap [rr:language "en";]

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

13

];

].

RDF triples

produced

<http://example.org/director/Woody%20Allen> ex:directed [

 a rdf:List;

 rdf:_1 "Manhattan"@en;

 rdf:_2 "Annie Hall"@en;

]

<http://example.org/director/<Wong%20Kar-wai> ex:directed

("2046"@en "In the Mood for Love"@en).

2.6 Generating an RDF container with a referencing

object map

The example below uses a referencing object map to describe a cross-reference relationship between logical

resources. In addition, it generates an RDF bag from the result of the join condition in the referencing object

map.

Triples map <#Movies> generates IRIs for the movies. The referencing object map in triples map

<#Directors> uses IRI generated in triples map <#Movies> as the members of an RDF bag (property

rr:term:Type xrr:RdfBag).

The join condition in triples map <#Directors> produces a result if a movie title (rr:parent "$.title") matches

at least one movie in the list of movies associated with each director (rr:child "$.movies.*").

Input data { "directors": [

 { "name": "Wong Kar-wai", "movies": ["2046", "In the Mood for Love"] },

 { "name": "Woody Allen", "movies": ["Manhattan", "Annie Hall"] }

]}

{ "movies": [

 { "title": "Manhattan", "year": "1979" },

 { "title": "Annie Hall", "year": "1977" },

 { "title": "2046", "year": "2004" },

 { "title": "In the Mood for Love", year: "2000"}

]}

Mapping graph <#Movies>

 xrr:logicalSource [

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

14

 xrr:query "db.movies.find({ movies: { $exists: true} })";

 rml:iterator "$.movies.*";

];

 rr:subjectMap [rr:template "http://example.org/movies/{$.title}";].

<#Directors>

 xrr:logicalSource [

 xrr:query "db.movies.find({ directors: { $exists: true} })";

 rml:iterator "$.directors.*";

];

 rr:subjectMap [rr:template "http://example.org/director/{$.name}";];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [

 rr:parentTriplesMap <#Movies>;

 rr:joinCondition [

 rr:child "$.movies.*";

 rr:parent "$.title";

];

 rr:termType xrr:RdfBag;

];

].

Generated RDF

triples

<http://example.org/director/Woody%20Allen> ex:directed [

 a rdf:Bag;

 rdf:_1 <http://example.org/movie/Manhattan>";

 rdf:_1 <http://example.org/movie/Annie%20Hall>.

].

<http://example.org/director/<Wong%20Kar-wai> ex:directed [

 a rdf:Bag;

 rdf:_1 <http://example.org/movie/2046>";

 rdf:_2 <http://example.org/movie/In%20the%20Mood%20for%20Love>.

].

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

15

3 Language description

3.1 Mapping Logical Sources to RDF with Triples Maps

3.1.1 xR2RML Triples Map

An xR2RML triples map specifies a rule for translating data elements of a logical source to zero or more RDF

triples. The RDF triples generated from one data element (row, document, set of XML elements, etc.) in the

logical source all share the same subject.

An xR2RML triples map extends R2RML triples map by referencing a logical source (next section) instead of a

logical table. An xR2RML triples map is represented by a resource that references the following resources:

 It must have exactly one xrr:logicalSource property. Its object is a logical source that specifies a table

or a query result to be mapped to triples.

 It must have exactly one subject map that specifies how to generate a subject for each data element

of the logical source (row, document, set of XML elements, etc.). A subject map may be specified in

two ways:

- using the rr:subjectMap property, whose value must be the subject map, or

- using the constant shortcut property rr:subject.

 It may have zero or more rr:predicateObjectMap properties, whose values must be predicate-object

maps. They specify pairs of predicate maps and object maps that, together with the subjects

generated by the subject map, may form one or more RDF triples for each data element.

3.1.2 Defining a Logical Source

R2RML logical table: An R2RML logical table is a data set on which a triples map applies: this may be a

relational table, an SQL view, or the result of a valid SQL query (property rr:sqlQuery).

RML logical source:

- An RML logical source extends the R2RML logical table. It points to a source containing the data to be

mapped, denoted by property rml:source. In some cases, it brings database connection details (such as

the protocol, URL or login provided by a connection string) into the mapping. Whereas this enables

several triples maps to refer to difference data sources, it opposes the implicit R2RML idea that such

specificities should be kept out of the scope of the mapping. Besides, it is unclear how this property

relates to property rml:query. The latter in defined in the RML ontology, although it is not described or

exemplified in the language specification nor in RML Web pages. It is only briefly mentioned in an article

[Dimou et al., 2013] where authors propose that property rml:query subsume properties rr:sqlQuery

and rml:xmlQuery. But this conflicts with requirement 2 since a specific property has to be defined for

each supported query language.

- The RML reference formulation concept (property rml:referenceFormulation) of an RML logical source

names the syntax of data element reference syntaxes (ql:CSV, ql:JSONPath, ql:XPath, ql:CSS3 and

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

16

rr:SQL2008). This binds the mapping language with a predefined set of syntaxes, which conflicts with

requirement 1 and hampers the extensibility to a wider scope of database.

The discussion above underlines that it would not be suitable for xR2RML to extend RML's logical source

concept. Instead, the xR2RML logical source extends the R2RML logical table, while relevant RML properties

are used or extended separately.

Below we define the xR2RML logical source that extends the R2RML logical source to cope with a wider

scope of input databases.

A logical source (property xrr:logicalSource) extends the R2RML concept of logical table (property

rr:logicalTable) in the case of non-relational databases. A logical source is the result of a query applied

to the input database, to be mapped to RDF triples. A logical source is either an xR2RML base table or

an xR2RML view.

An xR2RML base table is a logical source containing data from a table in the input database. It simply

extends the concept of R2RML table or view to the context of tabular databases beyond relational

databases (e.g. CSV, extensible column store). An xR2RML base table is represented by a resource that

has exactly one rr:tableName property. Its object is a string literal representing the table name.

An xR2RML view is a logical source whose content is the result of executing a query against the input

database. It is represented by a resource that has exactly one xrr:query property. Property xrr:query

extends RML property rml:query. The object of property xrr:query is a string literal representing a

valid expression with regards to the query language supported by the input database.

A logical source may have one data property rml:iterator that specifies the iteration pattern to apply

on data retrieved from the input database (section 3.1.3). Its object is an expression written according

to the syntax specified by the reference formulation (section 1.4). The rml:iterator property is ignored

in the context of tabular result sets in which data is accessed by column names.

A logical source may have any number of properties xrr:uniqueRef that specify a unique data element

reference within the documents retrieved by the xrr:query property. This property may be used for

query optimization when rewriting a SPARQL query into the target database query language. The

unique data element reference is an expression written according to the syntax specified by the

reference formulation (section 1.4).

Note that xR2RML logical source and R2RML logical table definitions may equally be used in the case of a

relational database. Examples:

R2RML logical table Equivalent xR2RML logical source

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

17

[] rr:logicalTable [

 rr:tableName "SOME_TABLE".

]

[] xrr:logicalSource [

 rr:tableName "SOME_TABLE";

]

[] rr:logicalTable [

 rr:sqlQuery

 "SELECT NAME, DATE FROM MOVIES".

]

[] xrr:logicalSource [

 xrr:query

 "SELECT NAME, DATE FROM MOVIES".

]

The table below shows examples of xR2RML logical source definition with different flavors of input

databases.

Type of database Logical source definition

Relational database [] rr:logicalTable [

 rr:sqlQuery """

 SELECT TITLE FROM MOVIES

 WHERE YEAR > 1980

 ORDER BY YEAR

 LIMIT 10""";

];

XML file. The xR2RML processor is provided with a file

URL, e.g. http://example.org/movies.xml, and the

XPath reference formulation. Therefore no further

query is required (no xrr:query property).

An iterator defines the pattern of XML elements to

iterate on. XPath is used to refer to data elements

within the XML data returned by the database.

[] xrr:logicalSource [

 rml:iterator "//movie";

];

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

18

REST-based web service returning an XML stream

based on parameters passed in the HTTP GET query

string. The service URL (e.g.

http://example.org/service) and XPath reference

formulation are passed to the xR2RML processor by

configuration, while the HTTP query string is provided

by the xrr:query property.

[] xrr:logicalSource [

 xrr:query "?minYear=1980&limit=10";

 rml:iterator "//movie";

];

XML database supporting XQuery.

XPath is used to describe the iterator and later on to

refer to data elements within the XML data returned

by the database.

[] xrr:logicalSource [

 xrr:query """for $i in //movies/movie

 where $i/year gt 1980

 order by $i/@title

 return $i/@title""";

 rml:iterator "//movie";

];

JSON file. The xR2RML processor is provided with file

URL and the JSONPath reference formulation. No

further query is required (no xrr:query property).

An iterator defines the pattern to iterate on.

[] xrr:logicalSource [

 rml:iterator "$.movies.*";

];

MongoDB database (document store). MongoDB Shell

Query Language is used to search for documents in

collection "movies". Then, JSONPath is used to refer to

data elements within the JSON documents returned by

the database.

[] xrr:logicalSource [

 xrr:query '''db.movies.find({"year":{$gt: 1980}})''';

 xrr:uniqueRef "$.movieId"

];

Cassandra (extensible column store) using Cassandra

Query Language (CQL). Data element are referenced

by column name (reference formulation passed to the

xR2RML processor).

[] xrr:logicalSource [

 xrr:query """SELECT TITLE, YEAR FROM Movies

 LIMIT 10""";

];

AllegroGraph (RDF graph store) using SPARQL.

The column name reference formulation is applied to

a SPARQL result set: the result set is considered as a

table in which columns are named after variable

names.

[] xrr:logicalSource [

 xrr:query """select ?title ?year

 where { ?movie a ex:Movie;

 ex:name ? title;

 ex:year ?year. }

 filter (?year > "1980"^^xsd:integer)

 order by ?year

 limit 10""";

];

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

19

3.1.3 xR2RML Triples Map Iteration Model

In R2RML, the row-based iteration implicitly occurs on a set of rows read from a logical table. xR2RML

applies this principle to other row-based systems such as CSV/TSV files and extensible column stores, but

also SPARQL result sets as already mentioned. In the context of non row-based databases, the model is

implicitly extended to a document-based iteration model: a document is one result of a result set, whatever

the form of such result. Typically, the document-based iteration applies to a set of JSON documents

retrieved from a NoSQL document store, or a set of XML documents retrieved from an XML database. In the

case of data sources that do not natively provide iterators over results, for instance a simple XML file or a

web service returning an XML stream at once, then a single iteration occurs on the whole document

retrieved.

The document-based iteration model alone may not be sufficient to fulfill any iteration needs. This is

particularly true for hierarchical data models such as JSON and XML. Let us consider the JSON document

below that describes movie directors and respective movies:

{ "directors": [

 { "name": "Wong Kar-wai",

 "movies": ["2046", "In the Mood for Love"] },

 { "name": "Woody Allen",

 "movies": ["Manhattan", "Annie Hall"] }

]}

We consider the following xR2RML following mapping graph:

<#Directors>

 xrr:logicalSource [

 xrr:query "db.movies.find({ directors: { $exists: true} })";

];

 rr:subjectMap [

 rr:template "http://example.org/director/{$.name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [xrr:reference "$.directors.*.movies.*";];

].

In this mapping, the subject map returns two terms (one per director) while the object map returns four

terms (one per movie in the document). Consequently, triples are generated that mix up all directors and

movies:

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

20

<http://example.org/director/Woody%20Allen> ex:directed "Manhattan".

<http://example.org/director/Woody%20Allen> ex:directed "Annie Hall".

<http://example.org/director/Woody%20Allen> ex:directed "2046".

<http://example.org/director/Woody%20Allen> ex:directed "In the Mood for Love".

<http://example.org/director/Wong%20Kar-wai> ex:directed "Manhattan".

<http://example.org/director/Wong%20Kar-wai> ex:directed "Annie Hall".

<http://example.org/director/Wong%20Kar-wai> ex:directed "2046".

<http://example.org/director/Wong%20Kar-wai> ex:directed "In the Mood for Love".

To deal with such cases, xR2RML relies on the concept of iterator defined in RML:

An iterator is defined within an xR2RML logical source by means of the rml:iterator property. It

specifies the iteration pattern to apply to data retrieved from the input database. The object of an

rml:iterator property is a valid path expression written using the syntax specified by the reference

formulation (section 1.4).

With the rml:iterator property, the previous example is modified as shown below:

<#Directors>

 xrr:logicalSource [

 xrr:query "db.movies.find({ directors: { $exists: true} })";

 rml:iterator "$.directors.*";

];

 rr:subjectMap [

 rr:template "http://example.org/director/{$.name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:directed;

 rr:objectMap [xrr:reference "$.directors.*.movies.*";];

].

The rml:iterator property indicates that, within the document retrieved, the triples map iteration should be

performed on each director element rather than on the whole document, thus producing the expected

results:

<http://example.org/director/Woody%20Allen> ex:directed "Manhattan".

<http://example.org/director/Woody%20Allen> ex:directed "Annie Hall".

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

21

<http://example.org/director/Wong%20Kar-wai> ex:directed "2046".

<http://example.org/director/Wong%20Kar-wai> ex:directed "In the Mood for Love".

3.2 Creating RDF terms with Term Maps

3.2.1 xR2RML Term Maps

R2RML defines a term map as a function that generates RDF terms from a logical table row.

A term map is either a subject map, predicate map, object map or graph map.

A term map must be exactly one of the following types:

● a constant-valued term map (property rr:constant)

● a column-valued term map (property rr:column)

● a template-valued term map (property rr:template).

R2RML treats all values from the input database as literals expressed in built-in data types. To deal with

structured values such as collections or key-value associations, xR2RML term maps extend R2RML term

maps so that structured values can be parsed, and data elements within structured values can be selected to

build RDF terms. xR2RML extensions are described in this section.

3.2.1.1 Constant-, Column-, Reference- and Template-valued Term Maps

R2RML properties rr:column and rr:template reference columns of a logical table. xR2RML not only

references columns but also any data element within structured values. xR2RML relies on the rml:reference,

that extends property rr:column. Its object is a column name (in the case of an RDB, CSV/TSV file, extensible

column store, SPARQL result set, etc.), an XPath expression (in the case of XML data) and a JSONPath

expression (in the case of JSON data). Furthermore, xR2RML introduces the possibility to reference data

elements in data with mixed formats (§3.2.2.2). Thus, xR2RML extends property rml:reference with property

xrr:reference. This leads to the following definition of an xR2RML term map. xR2RML changes to R2RML are

highlighted.

A constant-valued term map is represented by a resource that has exactly one rr:constant property. A

constant-valued term map always generates the same RDF term.

A column-valued term map has exactly one rr:column property. The value of the rr:column property is

a valid column name.

A reference-valued term map has exactly one xrr:reference property. The value of the xrr:reference

property is a valid reference to a data element, expressed using the syntax defined by the reference

formulation (section 1.4).

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

22

A template-valued term map has exactly one rr:template property. The value of the rr:template

property is a valid string template. A string template is a format string used to build strings from

multiple components. It uses valid references to data elements by enclosing them in curly braces ("{"

and "}"). Each reference is expressed using the syntax defined by the reference formulation (section

1.4).

3.2.1.2 Term Types of Term Maps

RDF terms generated by a term map have a term type (rr:termType) that may be one of the three R2RML

term types: rr:Literal, rr:BlankNode or rr:IRI.

xR2RML extends the rr:termType property with four new values, hereafter referred to as RDF

collection or container term types:

- A term map with xrr:RdfList as value of property rr:termType generates an RDF collection of type

rdf:List;

- A term map with xrr:RdfSeq: as value of property rr:termType generates an RDF container of type

rdf:Seq;

- A term map with xrr:RdfBag: as value of property rr:termType generates an RDF container of type

rdf:Bag;

- A term map with xrr:RdfAlt: as value of property rr:termType generates an RDF container of type

rdf:Alt.

3.2.1.3 Nested Term Maps

Structured data such as JSON or XML documents commonly have more than one level of nesting, resulting in

tree-like values that may need to be parsed in depth to nest RDF collections and containers, e.g. to build an

RDF collection of RDF collections.

An xR2RML term map may have an xrr:nestedTermMap property, whose range is the

xrr:NestedTermMap class.

In a column-valued or reference-valued term map, the xrr:nestedTermMap property describes how to

translate values produced by the rr:column or xrr:reference properties into RDF terms.

In a template-valued term map, the xrr:nestedTermMap property describes how to translate values

produced by applying the template string to input values into RDF terms.

In a constant-valued term map, it is invalid to define a nested term map.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

23

A nested term map may have the properties below:

- xrr:reference bears the same semantics as in the context of a term map. Its object is a valid path

expression (possibly a mixed-syntax path, see §3.2.2.2). Evaluation of the path expression is

performed against values retrieved by the parent of the nested term map. This parent may be a

term map or a nested term map.

- rr:template bears the same semantics as in the context of a term map. References enclosed in

capturing curly braces are valid path expressions (possibly mixed-syntax paths), they apply to

values retrieved in the parent of the nested term map. This parent may be a term map or a nested

term map.

- xrr:nestedTermMap is used to recursively parse any depth of nested structured values;

- rr:termType bears the same semantics as in the context of a term map;

- rr:language bears the same semantics as defined in R2RML;

- rr:datatype bears the same semantics as defined in R2RML.

A simple nested term map is a nested term map that has no xrr:reference nor rr:template property. A

simple nested term map is used to qualify terms of an RDF collection or container generated by its

parent term map or nested term map, i.e. assign them an optional term type, data type or language

tag.

A reference-valued nested term map is a nested term map that has exactly one xrr:reference

property.

A template-valued nested term map is a nested term map that has exactly one rr:template property.

xrr:nestedTermMap vs. rr:termType:

A nested term map N describes how to translate into RDF terms values produced by its parent P, P may be a

term map or a nested term map.

If P has no rr:termType property, it simply returns values produced by N, therefore the term type of P is that

of N.

If P has an rr:termType property with an RDF collection or container term type as object, then values

produced by N will be assembled in an RDF collection or container.

Lastly, P should not have an rr:termType property with an R2RML term type (literal, blank node, IRI) or in

other words, a nested term map cannot be used in the context of a term map or nested term map that has

an R2RML term type (literal, IRI, blank node). Thus:

If a term map or nested term map has an xrr:nestedTermMap property, then it should have either no

rr:termType property or an rr:termType property with an RDF collection or container term type.

Formally:

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

24

?P is an rr:TermMap or xrr:NestedTermMap.

?P xrr:nestedTermMap ?N.

?P rr:termType ?tt.

⇒ ?tt is one of xrr:RdfList, xrr:RdfSeq, xrr:RdfBag or xrr:RdfAlt

A term map or nested term map with an RDF collection or container term type and no

xrr:nestedTermMap property is assumed to have a default xrr:nestedTermMap property defined as

follows:

- If the parent term map or nested term map is reference-valued:

xrr:nestedTermMap [rr:termType rr:Literal];

- If the parent term map or nested term map is template-valued:

xrr:nestedTermMap [rr:termType rr:IRI];

Finally, as defined in R2RML, properties rr:language and rr:datatype apply when generating literals only:

A term map or nested term map may have an rr:language or rr:datatype property only if its term type

is rr:Literal (either stated by property rr:termType or inferred as a default value).

Nested term maps are exemplified in section 3.2.3.

3.2.2 Referencing data elements

3.2.2.1 Referencing simple data elements

The table below exemplifies the use of properties rr:column, xrr:reference and rr:template to reference

simple data elements (i.e. with non-mixed data formats) from the logical source.

Logical source Term map

Relational database: either rr:column or xrr:reference

can be used to name a column.

[] rr:column "NAME".

[] xrr:reference "NAME".

[] rr:template "{NAME}".

Extensible column store: properties xrr:reference and

rr:template reference data elements by column

names.

[] xrr:reference "NAME".

[] rr:template "{NAME}".

XML database supporting: properties xrr:reference and

rr:template reference data elements by XPath

expressions.

[] xrr:reference "//name".

[] rr:template "{//name }".

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

25

NoSQL document store: xrr:reference and rr:template

reference data elements using a valid JSONPath expression.

[] xrr:reference "$.name".

[] rr:template "{$.name }".

RDF graph store accessed using a SPARQL SELECT query:

xrr:reference and rr:template reference data elements

by name of variable returned in the SPARQL result set.

[] xrr:reference "?name".

[] rr:template "{?name }".

Remark: If a term map references a structured value but does not parse it using a nested term map, then

generated RDF terms are string literals containing a simple serialization of structured values. Example:

Input data { "person": { "FirstName":"John", "LastName":"Smith" } }

Term map [] rr:objectMap [

 xrr:reference "$.person";

];

Generated RDF term The structured value matching the JSONPath expression "$.person" is returned as

a string literal in quotes:

'{ "FirstName":"John", "LastName":"Smith" }'

3.2.2.2 Referencing data elements with mixed data formats

In some use cases, databases are commonly used to store values written in a data format that they cannot

interpret. For instance, an application designer may choose to embed JSON, CSV, or XML values in the cells

of a relational table, for performance concerns or application design constraints.

To reference data elements within such mixed contents, xR2RML allows a term map to reference data

elements with mixed-syntax paths:

Properties xrr:reference and rr:template may use mixed-syntax paths to reference data elements

across data in different formats. A mixed-syntax path consists of the concatenation of several path

expressions separated by the slash '/' character. Each individual path is enclosed in a syntax path

constructor naming the path syntax explicitly. Existing constructors are:

- Column(column-name): applies to row/column databases such as relational database and

extensible column-store.

- CSV(column-name), TSV(column-name): applies to data formatted as comma-separated or tab-

separated values. Column-name may be a 0-based column index, or an actual column name if a

head line provides column names.

- JSONPath(JSONPath-expression): applies to any data formatted in JSON.

- XPath(XPath-expression): applies to any data formatted in XML.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

26

In expressions enclosed in a syntax path constructor, special characters '/', '(', ')', '{' and '}' must be

escaped with a '\'. Since, in Turtle syntax, the '\' character itself must be escaped with an additional

'\', special characters are escaped with '\\'.

Example:

Input data Relational table with one column:

Name

{ "FirstName":"John", "LastName":"Smith" }

Logical source definition

and Term map

[] xrr:logicalSource […];

 ...

 rr:objectMap [

 xrr:reference "Column(Name)/JSONPath($.FirstName)";

 rr:language "en";

];

Generated RDF term "John"@en

From the example above, it can be noticed that (i) the leftmost syntax path constructor (Column) is

consistent with the reference formulation (section 1.4), and (ii) data elements referenced by mixed-syntax

path "Column(Name)/JSONPath($.FirstName)" are formatted in JSON, corresponding to the rightmost syntax

path constructor. More generally:

The leftmost syntax path constructor of a mixed-syntax path must be consistent with the reference

formulation (section 1.4).

- Constructors Column(), CSV() and TSV() apply with the column name reference formulation ,

- Constructor XPath() applies with the XPath reference formulation,

- Constructor JSONPath() applies with the JSONPath reference formulation.

The format of data retrieved by a mixed-syntax path is the format of the rightmost syntax path

constructor.

3.2.2.3 Production of multiple RDF terms

In a row-based logical source, a column reference returns exactly one scalar value per triples map iteration

step: the value of the cell identified by "column name" in the current row. Thus, an R2RML term map

generates zero or one RDF term during each iteration step, ultimately a triples map generates zero or one

triple during each iteration step.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

27

Due to the tree-like nature or JSON and XML data formats, JSONPath and XPath expressions allow addressing

not only literals but also structured values. Thus, using the xrr:reference or rr:template properties with a

JSONPath or XPath expression may return multiple values during each triples map iteration step. Hence the

introduction of the term map iteration.

A term map iteration is a process that occurs in a term map during each triples-map iteration step.

Thus a reference-valued or template-valued term map generates zero to any number of RDF terms

during each triples-map iteration step.

Examples:

Input data

retrieved in one

triples-map

iteration step

{

 "FirstNames":

 ["John", "Albert"],

 "LastName": "Smith"

}

<person>

 <FirstNames>

 <item>John</item>

 <item>Albert</item>

 </FirstNames>

 <LastName>Smith</LastName>

</person>

Term map [] rr:objectMap [

 xrr:reference

 "$.FirstNames.*";

];

[] rr:objectMap [

 xrr:reference

 "/person/FirstNames/item";

];

Generated RDF

terms

"John"

"Albert"

"John"

"Albert"

The term map iteration applies identically in the context of mixed-syntax paths. Example:

Input data <person>

 <name>John Smith</name>

 <items>[1,2,3]</items>

</person>

XML element "items" contains a value expressed as a JSON array.

Term map [] xrr:logicalSource [...]

 …

 rr:objectMap [

 xrr:reference "XPath(\\/person\\/items)/JSONPath($.*)";

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

28

 rr:datatype xsd:integer;

]

The last expression of the mixed-syntax path, "JSONPath($.*)", indicates that (i) value

"[1,2,3]" is formatted in JSON syntax, and (ii) it must be parsed as such using the "$.*"

JSONPath expression.

Generated RDF

terms

1^^xsd:integer

2^^xsd:integer

3^^xsd:integer

A template-valued term map may reference several data elements from the logical source, captured by curly

braces ('{' and '}'). If at least one of the data elements referenced in a template string produces several

terms, then the following applies:

A template-valued term map produces RDF terms by performing a Cartesian product between all

values produced by all data elements referenced in the template.

Example:

Input data {

 "FirstNames": '["John", "Albert"]',

 "LastName": "Smith"

}

Term map [] xrr:logicalSource […];

 rr:subjectMap [

 rr:template "http://example.org/{$.FirstNames.*}/{$.LastName}";

] ;

Generated RDF

terms

The template performs a Cartesian product between "Smith" and ["John", "Albert"],

resulting in two terms:

<http://example.org/John/Smith>

<http://example.org/Albert/Smith>

Finally, below we define the behavior of a triples map in which one or several term maps generate multiple

RDF terms during a single triples map iteration step:

During each iteration of an xR2RML triples map, triples are generated as the Cartesian product

between RDF terms produced by the subject map and each predicate-object map. Predicate-object

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

29

couples result of the Cartesian product between RDF terms produced by each predicate and object

map.

Note that a graph map may also produce multiple terms, in which case triples are produced

simultaneously in several target graphs.

xR2RML vs. RML: RML makes the restriction that a subject map should return zero or one value during each

triples map iteration. In the case of xR2RML, we make no such restriction so that the Cartesian product be

possibly applied between multiple subjects, multiple predicate-object couples, and multiple graph IRIs.

Besides, RML does not describe how a template with several multi-valued references is processed. xR2RML

states that the Cartesian product applies equally in this case, whether the template be used as a subject,

predicate, object or graph map.

In the example below, during one triples map iteration step, the subject map produces two RDF terms

<http://example.org/company/Dell> and <http://example.org/company/Asus>, while the object map

produces two literals "Laptop" and "Desktop". A Cartesian product between the two subjects and the two

objects results in the production of four triples:

Input data: one

row retrieved

from a relational

table, values are

formatted in JSON

in column “cos”,

and XML in

column

“products”

cos products

["Dell", "Asus"] <list>

 <product>Laptop</product>

 <product>Desktop</product>

</list>

Mapping graph [] xrr:logicalSource [...];

 rr:subjectMap [

 rr:template "http://example.org/{Column(cos)/JSONPath($.*)}";

];

 rr:predicateObjectMap [

 rr:predicate ex:produces;

 rr:objectMap [

 xrr:reference "Column(products)/XPath(\\/list\\/*)";

];

];

Generated triples <http://example.org/Dell> ex:produces "Laptop".

<http://example.org/Dell> ex:produces "Desktop".

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

30

<http://example.org/Asus> ex:produces "Laptop".

<http://example.org/Asus> ex:produces "Desktop".

3.2.2.4 Production of RDF collections or containers

A term map with an RDF collection or container term type generates one RDF term during each triples map

iteration step. The elements of the collection or container are the RDF terms produced by the term map,

whether using property rr:column, xrr:reference or rr:template.

In the example below, the triples map generates one triple per iteration step, the object of this triple is an

RDF bag (itself consisting of several triples):

Input data: JSON

document

retrieved in a

single iteration

step

<company "name"="Dell">

 <products>

 <product>Laptop</product>

 <product>Desktop</product>

 </products>

</company>

Mapping graph [] xrr:logicalSource [...];

 rr:subjectMap [

 rr:template "http://example.org/{/company/@name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:builds;

 rr:objectMap [

 xrr:reference "//company/products/*";

 rr:termType xrr:RdfBag;

];

];

Generated triples <http://example.org/Dell> ex:builds [

 a rdf:Bag;

 rdf:_1 "Laptop";

 rdf:_2 "Desktop" .

] .

Unlike RDF terms of type IRI or blank node, RDF terms of type RDF collection or container cannot be used as

subject or predicate of an RDF triple, nor as a graph IRI. Consequently:

A term map with term type xrr:RdfList, xrr:RdfSeq, xrr:RdfBag or xrr:RdfAlt is an object map (hence it

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

31

cannot be a subject map, predicate map nor graph map).

Formally:

?X an rr:TermMap.

?X rr:termType ?tt.

?tt is one of xrr:RdfList, xrr:RdfSeq, xrr:RdfBag or xrr:RdfAlt

⇒ ?X an rr:ObjectMap.

A nested term map (property xrr:nestedTermMap) can be used to specify a term type, language tag or data

type of members of an RDF collection or container. The example below illustrates the usage of a nested term

map to generate an RDF collection of IRIs (first example), and an RDF sequence of data-typed literals (second

example):

Input data { "key1": ["url1", "url2"] } { "key1": [10, 20] }

Term map [] rr:objectMap [

 xrr:reference "$.key1.*";

 rr:termType xrr:RdfList;

 xrr:nestedTermMap [

 rr:termType rr:IRI;

];

];

[] rr:objectMap [

 xrr:reference "$.key1.*";

 rr:termType xrr:RdfSeq;

 xrr:nestedTermMap [

 rr:termType rr:Literal;

 rr:datatype xsd:integer;

];

];

Generated RDF

terms

In Turtle abbreviated notation: (<url1>

<url2>)

[a rdf:Seq;

 rdf:_1 10^^xsd:integer;

 rdf:_2 20^^xsd:integer.

];

In a template-valued term map, the xrr:nestedTermMap property applies to values resulting from the

application of the template string to the input values. In the first example below, term type rr:IRI applies to

the result of the template string. The same principle applies in the second example with term type rr:Literal

and datatype xsd:string.

Input data {

 "FirstNames": '["John", "Albert"]',

"LastName": "Smith"

}

{

 "FirstNames": '["John", "Albert"]',

"LastName": "Smith"

}

Term map [] rr:objectMap [

 rr:template "http://example.org/

[] rr:objectMap [

rr:template

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

32

 {$.FirstNames.*}/{$.LastName}";

 rr:termType xrr:RdfList;

 xrr:nestedTermMap [

 rr:termType rr:IRI;

];

];

 "{$.FirstNames.*} {$.LastName}";

 rr:termType xrr:RdfList;

 xrr:nestedTermMap [

 rr:termType rr:Literal;

 rr:datatype xsd:string;

];

];

Generated

RDF terms

(<http://example.org/John/Smith>

 <http://example.org/Albert/Smith>)

("John Smith"^^xsd:string

 "Albert Smith"^^xsd:string)

3.2.3 Parsing nested structured values

The example below illustrates the use of a nested term map to (i) parse nested structured values ("teams"

are collections of "team" elements, which are collections of "member" elements) and (ii) translate those

nested structured values into RDF terms of class rdf:List.

Input data <teams>

 <team>

 <member>John</member>

 <member>Paul</member>

 </team>

 <team>

 <member>Cathy</member>

 <member>Ed</member>

 </team>

</teams>

Term map [] rr:objectMap [

 xrr:reference "/teams/team";

 xrr:nestedTermMap [

 xrr:reference "/member";

 rr:termType xrr:RdfList;

];

];

The first xrr:reference property ("/teams/team") selects "team" elements from the XML

input, each "team" element being the root of an XML tree whose descendants are

"member" elements.

The second xrr:reference property ("/member"), within the xrr:nestedTermMap

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

33

property, is evaluated sequentially against the results of the parent reference

expression. Thus, the xrr:RdfList term type successively applies to "member" elements

of the first team, then to "member" elements of the second team. Finally the term map

generates two RDF collections, one per team element.

Generated RDF

terms

("John" "Paul")

("Cathy" "Ed")

Note: the object map has no rr:termType property, therefore its term type is that of its

nested term type, that is xrr:RdfList.

The subsequent example generates one RDF sequence of nested RDF collections. Elements of the inner RDF

collections are typed as rr:Literal and assigned a language tag using a second nested xrr:nestedTermMap

property.

Input data { "teams": [["John", "Paul"] , ["Cathy", "Ed"]] }

Term map [] rr:objectMap [

 xrr:reference "$.teams.*";

 rr:termType xrr:RdfSeq; # represent "teams" as an rdf:Seq

 # Describe the elements of the RDF sequence

 xrr:nestedTermMap [

 rr:template "Player {$.*}";

 rr:termType xrr:RdfList; # represent each team as an rdf:List

 # Type members of each team as literals with language "en"

 # using a simple nested term map

 xrr:nestedTermMap [

 rr:termType rr:Literal;

 rr:language "en";

];

];

];

Generated RDF

terms

[a rdf:Seq;

 rdf:_1 ("Player John"@en "Player Paul"@en);

 rdf:_2 ("Player Cathy"@en "Player Ed"@en);

]

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

34

As already mentioned, in a template-valued term map, property xrr:nestedTermMap applies to values

resulting from the application of the template string to input values. Thus, defining a nested term map in a

template-valued term map suggests that the template produces a valid expression with regards to the

current data format, that, in turn, is interpreted against a path expression provided by an xrr:reference or

rr:template property.

For instance, applying the template string:

'\{ "first": "{FirstNames}", "last": "{LastName}" \}'

would produce a string formatted as a JSON dictionary, like:

 { "first": "John", "last": "Smith" }

This use case is illustrated in the example below:

Input data {

 "FirstNames": '["John", "Albert"]',

 "LastName": "Smith"

}

Term map [] rr:objectMap [

 rr:template '\{ "first": "{$.FirstNames.*}", "last": "{$.LastName}" \}';

 xrr:nestedTermMap [

 xrr:reference "$.*";

 rr:termType xrr:RdfList;

];

]

Generated RDF

terms

("John" "Smith")

("Albert" "Smith")

Two values are generated by applying the template string, those values are formatted

as JSON arrays:

{ "first": "John", "last": "Smith" }

{ "first": "Albert", "last": "Smith" }

The xrr:nestedTermMap property instructs to parse those values using the JSONPath

expression "$.*" (property xrr:reference), and generates an RDF collection (rdf:List) for

each of them.

Note: this use case may seem rather awkward and probably of little use, but insofar as it is consistent with

the xR2RML language definition, we think it should be considered as valid.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

35

3.2.4 Multiple Mapping Strategies

The flexibility offered by nested term maps allows the same mapping to be written using various strategies:

path expressions of properties xrr:reference and rr:template can be split in several levels of term map and

nested term map.

For instance, both term maps below produce equivalent results. In the first case (left), the JSONPath

expression ($.teams.*.*) retrieves all team members at once. In the second case (right), teams are retrieved

first ($.teams.*), then the xrr:nestedTermMap property runs a second JSONPath evaluation to retrieve and

datatype team members.

Input data { "teams": [["John", "Paul"] ,

 ["Cathy", "Ed"]] }

Term maps [] xrr:logicalSource […];

 rr:objectMap [

 xrr:reference "$.teams.*.*";

 rr:datatype xsd:string;

];

[] xrr:logicalSource […];

 rr:objectMap [

 xrr:reference "$.teams.*";

 xrr:nestedTermMap [

 xrr:reference "$.*";

 rr:datatype xsd:string;

];

];

Generated

RDF terms

"John"^^xsd:string

"Paul"^^xsd:string

"Cathy"^^xsd:string

"Ed"^^xsd:string

It is likely that the first case will be more efficient as only one JSONPath evaluation is performed, whereas in

the second case two JSONPath evaluations are performed in sequence.

Similarly, the example below shows how a mixed-syntax path can be split into a term map and a nested term

map:

[] xrr:logicalSource […];

 rr:objectMap [

 xrr:reference

 "Column(col)/XPath(\\/person\\/name)";

 rr:datatype xsd:string;

];

[] xrr:logicalSource […];

 rr:objectMap [

 rr:column "col";

 xrr:nestedTermMap [

 xrr:reference "XPath(\\/person\\/name)";

 rr:datatype xsd:string;

];

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

36

];

Both mappings are likely to be equally efficient, as both evaluations (column selection and XPath expression

evaluation) need to be done anyway.

3.2.5 Default Term Types

This section is an adaptation of section 7.4 (http://www.w3.org/TR/r2rml/#termtype) of the R2RML

specification. xR2RML additions to R2RML are highlighted.

If the term map has an optional rr:termType property then its term type is the value of that property. The

value MUST be one of the following options:

- If the term map is a subject map: rr:IRI or rr:BlankNode

- If the term map is a predicate map: rr:IRI

- If the term map is an object map: rr:IRI, rr:BlankNode, rr:Literal, rdf:List, rdf:Seq, rdf:Bag, rdf:Alt.

- If the term map is a graph map: rr:IRI.

If the term map does not have an rr:termType property, then its term type is:

- rr:Literal, if it is an object map and at least one of the following conditions is true:

- It is a column-based term map.

- It has an rr:language property (and thus a specified language tag).

- It has an rr:datatype property (and thus a specified datatype).

- It does not have an rr:language property and it has a nested term map that has an rr:language

property.

- It does not have an rr:datatype property and it has a nested term map that has an rr:datatype

property.

- the term type of the value of its nested term map.

- rr:IRI, otherwise.

A corollary of this definition is that the xrr:nestedTermMap property may be used in a subject map,

predicate map or graph map only if it produces IRIs. Consequently:

A term map with an xrr:nestedTermMap property may be a subject map or graph map only if (i) it

does not have an rr:termType property and (ii) its nested term map has an rr:termType property with

object rr:IRI or rr:BlankNode.

A term map with an xrr:nestedTermMap property may be a predicate map only if (i) it does not have

an rr:termType property and (ii) its nested term map property has an rr:termType property with

object rr:IRI.

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fr2rml%2F%23termtype&sa=D&sntz=1&usg=AFQjCNFiwk6hlu5mKZmNYxEpFeLtd2G9YA

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

37

3.3 Reference relationships between logical sources

The following definitions are an adaptation of R2RML specification section 8

(http://www.w3.org/TR/r2rml/#foreign-key). xR2RML additions to R2RML are highlighted.

A referencing object map allows using the subjects of another triples map as the objects generated by

a predicate-object map. Since both triples maps may be based on different logical sources, this may

require a join between the logical sources.

A referencing object map resource has exactly one rr:parentTriplesMap property (its value is a triples

map), and optional rr:joinCondition properties. A join condition has exactly one rr:child property and

one rr:parent property. The rr:child property references the join condition's child data element, the

rr:parent property references the join condition's parent data element. Data element references are

valid path expressions with regards to the reference formulation (section 1.4), possibly using mixed-

syntax paths.

A referencing object map may have an rr:termType property with an RDF collection or container term

type (see further details in §3.3.2).

The child query of a referencing object map is the query or source name of the logical source of the

triples map containing the referencing object map.

The parent query of a referencing object map is the query or source name of the logical source of the

referencing object map's parent triples map.

Properties rr:child and rr:parent use valid path expressions to reference data elements. As described in

§3.2.2.3, such path expressions may produce multiple terms. Consequently, the equivalent joint query of a

referencing object map must take into account the fact that child and parent references be multi-valued.

More precisely, a join between two multi-valued references should be satisfied if at least one data element

of the first reference matches one data element of the second reference.

The joint query of a referencing object map is defined below using SQL syntax (SELECT... FROM... AS...

WHERE) and first order logic for the description of WHERE conditions:

If a referencing object map has no join condition, its joint query is:

SELECT * FROM ({child-query}) AS tmp

If a referencing object map has at least one join condition, its joint query is:

SELECT * FROM ({child-query}) AS child, ({parent-query}) AS parent

http://www.w3.org/TR/r2rml/#foreign-key

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

38

WHERE ∃ c1 ∈ eval(child, {child-ref1}), ∃ p1 ∈ eval(parent, {parent-ref1}), c1 = p1

AND ∃ c2 ∈ eval(child, {child-ref2}), ∃ p2 ∈ eval(parent, {parent-ref2}), c2 = p2

AND ...

where {child-refn} and {parent-refn} are the child reference and parent reference of the nth join

condition, and eval(source, {ref}) is the result of the evaluation of expression "{ref}" on data "source".

Note: when applied to a relational database, in which child and parent references are single-valued, this

definition can be simplified into the R2RML joint query definition:

SELECT * FROM ({child-query}) AS child, ({parent-query}) AS parent

WHERE child.{child-ref1} = parent.{parent-ref1}

AND child.{child-ref2} = parent.{parent-ref2}

AND …

3.3.1 Reference relationship with structured values

The relational database example below models the relation between medical doctors and the studies for

which they are investigators. Column "Doctor.studies" contains JSON arrays of which elements are

references (similar to foreign keys) to column "Study.study_id".

Input data Table Study

study_id study_name

1 study1

2 study2

3 study3

Table Doctor

doc_id doc_name studies

1 D1 [1,2]

2 D2 [3]

Mapping graph <#Study>

 rr:logicalTable [rr:tableName "Study"];

 rr:subjectMap [

 rr:template "http://example.org/study/{study_name}";

].

<#Doctor>

 rr:logicalTable [rr:tableName "Doctor"];

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

39

 rr:subjectMap [

 rr:template "http://example.org/doc/{doc_name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:investigatorOf;

 rr:objectMap [

 rr:parentTriplesMap <#Study>;

 rr:joinCondition [

 rr:parent "study_id";

 rr:child "Column(studies)/JSONPath($.*)";

];

];

].

The rr:child property uses a mixed-syntax path specifying that the data retrieved is

formatted in JSON, and that each element of this structured value is considered in

the join operation.

Generated triples <http://example.org/doc/D1>

 ex:investigatorOf <http://example.org/study/study1> .

<http://example.org/doc/D1>

 ex:investigatorOf <http://example.org/study/study2> .

<http://example.org/doc/D2>

 ex:investigatorOf <http://example.org/study/study3> .

According to the equivalent joint query definition, the joint query is as follows

("child" and "parent" notations have been removed for readability):

SELECT * FROM Doctor, Study

WHERE ∃ c ∈ eval(Doctor, Column(studies)/JSONPath($.*)),

 ∃ p ∈ Study.study_id,

 c = p

where eval(Doctor, Column(studies)/JSONPath($.*)) represents the evaluation of

mixed-syntax path "Column(studies)/JSONPath($.*)" on table Doctor.

Since Study.study_id is single-valued, we can rewrite the query as:

SELECT * FROM Doctor, Study

WHERE ∃ c ∈ Doctor.Column(studies)/JSONPath($.*),

 c = Studies.study_id

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

40

The join query results in this table:

doc_id doc_name studies study_id study_name

1 D1 [1,2] 1 study1

1 D1 [1,2] 2 study2

2 D2 [3] 3 study3

3.3.2 Generating RDF collection/container with a referencing object map

In R2RML, referencing object maps do not have an rr:termType property as they should only produce RDF

terms of type rr:IRI. In xR2RML however, the result of a joint query may be translated into an RDF collection

or container using property rr:termType. The rr:termType has a specific semantics here: it groups joint query

results by subjects of the generated triples, i.e. by child reference, and renders all objects in the same

grouping as an RDF collection or container.

If a referencing object map has no rr:termType property, then its term type is rr:IRI (compliant with

the R2RML definition).

A referencing object map may have an rr:termType property with an RDF collection or container term

type (xrr:RdfList, xrr:RdfSeq, xrr:RdfBag or xrr:RdfAlt). In that case, members of the collection or

container are necessarily of type rr:IRI.

In a referencing object map with an RDF collection or container term type, results of the joint query

pertaining to the same subject term are grouped together. The objects of the triples map are grouped

in a single object of type RDF collection or container, as instructed by the rr:termType property.

In the example below the referencing object map has an rr:termType property with value xrr:RdfList:

Input data JSON documents retrieved by the query in the <#Study> triples map:

 { "study_id":1, "study_name":"study1" }

 { "study_id":2, "study_name":"study2"}

 { "study_id":3, "study_name":"study3"}

JSON documents retrieved by the query in the <#Doctor> triples map:

 { "doc_name":"D1", "studies": [1,2] }

 { "doc_name":"D2", "studies": [2,3] }

Mapping

graph

Below, queries to retrieve Studies and Doctors are referred to as <Study query> and

<Doctor query>.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

41

<#Doctor>

 xrr:logicalSource [xrr:query "<Doctor query>";];

 rr:subjectMap [

 rr:template "http://example.org/doc/{$.doc_name}";

].

<#Study>

 xrr:logicalSource [xrr:query "<Study query>";];

 rr:subjectMap [

 rr:template "http://example.org/study/{$.study_name}";

];

 rr:predicateObjectMap [

 rr:predicate ex:hasInvestigators;

 rr:objectMap [

 rr:parentTriplesMap <#Doctor>;

 rr:joinCondition [

 rr:child "$.study_id";

 rr:parent "$.studies.*";

];

 rr:termType xrr:RdfList;

];

].

Generated RDF

triples

<http://example.org/study/study1> ex:hasInvestigators

 (<http://example.org/doc/D1>).

<http://example.org/study/study2> ex:hasInvestigators

 (<http://example.org/doc/D1>

 <http://example.org/doc/D2>).

<http://example.org/study/study3> ex:hasInvestigators

 (<http://example.org/doc/D2>).

Explanation: according to the equivalent joint query definition, the joint query is as

follows:

SELECT * FROM (<Study query>) as child,

 (<Doctor query>) as parent

WHERE ∃ p ∈ eval(parent, $.studies.*),

 p = eval(child, $.study_id)

where eval(parent, $.studies.*) represents the evaluation of path "$.studies.*" on the

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

42

result of the parent query, and eval(child, $.study_id) represents the evaluation of path

"$.study_id" on the result of the child query.

The equivalent joint query results in the following documents:

{ "study_id":1, "study_name":"study1", "doc_name":"D1", "studies": [1,2] }

{ "study_id":2, "study_name":"study2", "doc_name":"D1", "studies": [1,2] }

{ "study_id":2, "study_name":"study2", "doc_name":"D2", "studies": [2,3] }

{ "study_id":3, "study_name":"study3", "doc_name":"D2", "studies": [2,3] }

Then, term type xrr:RdfList instructs to group results pertaining to the same subject, i.e. by

"study_id".

3.3.3 Generating RDF collection/container with a referencing object map

in the relational case

An interesting consequence of using the rr:termType in a referencing object map is the ability, in the case of

a relational database with standard SQL values, to build an RDF collection or container reflecting a one-to-

many relation. In the example below, foreign key Study.doctor relates each study to its investigator in a

many-to-one relation (several studies may have the same investigator). Considered the other way round, it

can be seen as a one-to-many relation (one doctor investigates several studies). The mapping graph

describes the generation of each doctor along with the list of studies he/she investigates.

Input data Table Study

study_id study_name doctor

1 study1 1

2 study2 1

3 study3 2

Table Doctor

doc_id doc_name

1 D1

2 D2

Mapping graph <#Study>

 rr:logicalTable [rr:tableName "Study"];

 rr:subjectMap [

 rr:template "http://example.org/study/{study_name}";

].

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

43

<#Doctor>

 rr:logicalTable [rr:tableName "Doctor"];

 rr:subjectMap [

 rr:template "http://example.org/doc/{doc_name}";

].

 rr:predicateObjectMap [

 rr:predicate ex:investigatesStudies;

 rr:objectMap [

 rr:parentTriplesMap <#Study>;

 rr:joinCondition [

 rr:child "doc_id";

 rr:parent "doctor;

];

 rr:termType xrr:RdfList;

];

].

Generated RDF

triples

<http://example.org/doc/D1> ex: investigatesStudies

 (<http://example.org/study/study1>

 <http://example.org/study/study2>) .

<http://example.org/doc/D2> ex: investigatesStudies

 (<http://example.org/study/study3>) .

The equivalent joint query results in this table:

doc_id doc_name study_id study_name doctor

1 D1 1 study1 1

1 D1 2 study2 1

2 D2 3 study3 2

Results are grouped by subjet, i.e. by column "doc_name" to generate RDF lists.

xR2RML: Relational and Non-Relational Databases to RDF Mapping Language

44

4 References
[1] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, (2012).

[2] A. Dimou, M.V. Sande, RDF Mapping Language (RML) Unofficial Draft 17 September 2014, (2014).

[3] A. Dimou, M. Vander Sande, P. Colpaert, E. Mannens, R. Van de Walle, Extending R2RML to a source-

independent mapping language for RDF, in: Workshop Proceedings, 12th International Semantic Web

Conference Posters & Demos, Sydney, Australia, 2013: pp. 237–240.

[4] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML: A Generic

Language for Integrated RDF Mappings of Heterogeneous Data, in: Proceedings of the 7th Workshop on

Linked Data on the Web (LDOW2014), Seoul, Korea, 2014.

[5] S.K. Gajendran, A Survey on NoSQL Databases (technical report), 2013.

[6] R. Hecht, S. Jablonski, NoSQL Evaluation: A Use Case Oriented Survey, in: Proceedings of the 2011

International Conference on Cloud and Service Computing, IEEE Computer Society, Washington, DC,

USA, 2011: pp. 336–341.

[7] B. Kolev, P. Valduriez, R. Jimenez-Peris, N. Martínez-Bazan, J. Pereira, CloudMdsQL: Querying

Heterogeneous Cloud Data Stores with a Common Language.pdf, in: Proceeding of the BDA 2014

Conference, Autrans, France, 2014.

[8] K.W. Ong, Y. Papakonstantinou, R. Vernoux, The SQL++ Unifying Semi-structured Query Language, and

an Expressiveness Benchmark of SQL-on-Hadoop, NoSQL and NewSQL Databases (submitted), CoRR.

abs/1405.3631 (2014).

