
HAL Id: hal-01066617
https://hal.science/hal-01066617v1

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the welded Tube map
Benjamin Audoux

To cite this version:
Benjamin Audoux. On the welded Tube map. Knot theory and its applications. ICTS program
knot theory and its applications (KTH-2013), IISER Mohali, India, December 10–20, 2013, 2016,
�10.1090/conm/670/13457�. �hal-01066617�

https://hal.science/hal-01066617v1
https://hal.archives-ouvertes.fr


ON THE WELDED TUBE MAP

BENJAMIN AUDOUX

Abstract. This paper investigates the so-called Tube map which connects welded knots, that is a quotient of the
virtual knot theory, to ribbon torus-knots, that is a restricted notion of fillable knotted tori in S 4. It emphasizes the
fact that ribbon torus-knots with a given filling are in one-to-one correspondence with welded knots before quo-
tient under classical Reidemeister moves and reformulates these moves and the known source of non-injectivity
of the Tube map in terms of filling changes.

This papers investigates a known connection between two notions of distinct nature : welded knots,
which are combinatorial elements of a quotient of the virtual knot theory; and ribbon torus-knots, which are
a restricted notion of topological knotted surfaces in S 4.

Virtual knots are a completion of usual knots, seen from the diagrammatical point of view. Knot diagrams
can be thought of as abstract oriented circles with a pairing, that is a finite number of signed pairs of ordered
“merged” points. Indeed, as shown in Figure 1, every such ordered and signed pair describes a crossing
and the rest of the circle prescribes how the ends of these crossings are connected; up to isotopy, this data
is sufficient to recover a diagram and hence a knot in R3. However, not all pairings are realizable as a
diagram since it may be impossible to connect, in the plane, all ends as prescribed without introducing some
additional crossing. A virual knot is such an abstract circle with a pairing, whether it is realizable or not, up
to some relevant moves inherited from the usual knot theory. Equivalently, it can be described as a diagram
with possibly some additional virtual crossings, represented as circled crossings, which are not reported in
the pairing.
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−
↓

+

↓

−
↓

Figure 1. Correspondance between oriented and signed pairs and crossings

Virtual knots can be interpreted as knots in thickened surfaces modulo handle stabilization [CKS02,
Kup03]. Because of the stabilizations, this does not provide a well defined notion of complement; in spite
of that, the usual notion of knot group, i.e. fundamental group of the complement, can be combinatorially
extended to the virtual case [Kim00, SW00, BB14]. Knot groups happens to be invariant under the so-called
over-commute move (OC), a move (see Figure 7) which, in general, modifies virtual knots. There are other
topological invariants which, similarly, can be combinatorially extended and proved to be invariant under
OC. This motivates the definition of welded knots which are the quotient of virtual knots under these moves.
Welded knotted objects first appeared in a work of Fenn-Rimanyi-Rourke in the more algebraic context of
braids [FRR97]. At this stage, one can hope that welded knots admit a deeper topological interpretation
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Figure 2. Summary of the combinatorial and/or topological sets and their connections

than virtual knots do, yielding back a topological nature for the combinatorial extension of the invariants
mentioned above.

The theory of knotted surfaces in 4–space takes its origins in the mid-twenties from the work of Artin
[Art25]. However, the systematic study of these objects only really began in the early sixties, notably through
the work of Kervaire, Fox and Milnor [KM61, Ker65, FM66], but also in a series of papers from Kansai area,
Japan (see references in [Suz76]). From this early stage, the class of ribbon surfaces was given a particular
attention. Roughly speaking, an embedded surface in S 4 is ribbon if it can be filled by an immersed 3-
manifold whose singular set is a finite number of rather simple singularities called ribbon disks. Asking
for the surface to be fillable does not change the notion of isotopy but restrict the equivalence classes we
are looking at. Indeed, an ambiant isotopy transport as well any given filling, so two isotopic surfaces are
simultaneously fillable or not. On the contrary, asking for a surface to be actually filled multiplies the number
of equivalence classes since a single surface may have several non isotopic fillings. Asking for filledness
better than for fillability is hence more constraining but — at least, this is what the present paper tends to
show — it is easier to handle. Fillable surfaces are furthermore obtained as the quotient of filled surfaces
under filling changes.

The case of the torus was already addressed in [Yaj62] under the name of ribbon torus-knots. In his paper,
T. Yajima laid the foundation of the so-called Tube map which inflates usual knot into ribbon torus-knots. In
[Sat00], S. Satoh shows that this map can actually be extended to all welded knots. He proves moreover that
the map is then surjective, that the welded combinatorial knot group corresponds to the fundamental group
of the complement in S 4 of the image, and that it commutes with the orientation reversals — what is not
direct from the definition but a consequence of the torus eversion in S 4. Ribbon torus-knots are hence good
candidates for a topological interpretation of welded knots. However the Tube map is not injective and the
lack of injectivity is not fully understood yet: the Tube map is known to be invariant under a global reversal
move (see Prop. 3.4 in [IK12] or Prop. 2.7 in the present paper) but it is not known whether the Tube map
quotiented by this move is injective.

This paper contains no new result, but it reviews and reformulates the construction of the Tube map. In
particular, it emphasizes the fact that ribbon torus-knot with a given filling are in one-to-one correspondence
with welded knots before quotient under classical Reidemeister moves. We interpret then invariance of the
Tube map under Reidemeister moves, and notably Reidemeister move I which is the most intricated one, in
terms of local filling changes.The global reversal move which let the Tube map invariant is also interpreted
as a co-orientation change in the filling. Another goal of this paper is to clarify the relationship between
three kind of objects:

• ribbon ones which are 2 or 3–dimensional objects inside a 4–dimensional space;
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• broken ones, which are decorated 2–dimensional objects inside a 3-dimensional space;
• welded ones which are decorated 1–dimensional objects inside a 2–dimensional space. There is also

one exceptional item, namely welded Gauss diagrams, which is purely combinatorial.
They are, respectively, denoted with a small “r”, “b” or “w” prefix.

The paper is organized as follows. The first section defines all the topological and/or combinatorial
notions of knotted objects. There is a lot of redundancy in these notions; a summary of them is given in
Figure 2. In the second section, all maps between the different notions are defined, in particular the Tube
map. The non-injectivity is discussed there. The last section addresses the notion of wen, which is a special
portion of ribbon torus-knot embedded in S 4 as a Klein bottle cut along a meridional circle. Wens shall
appear as items we want to avoid when projecting ribbon torus-knots in S 3, but also as a useful tool for
addressing Reidemeister move I and the commutation of the Tube map with the orientation reversals.

Acknowledgments. This paper was initiated after a talk of the author at the conference “Advanced school and
discussion meeting on Knot theory and its applications”, organized at IISER Mohali in december 2013. The
author is grateful to Krishnendu Gongopadhyay for inviting him. He also warmly thanks Ester Dalvit, Paolo
Bellingeri, Jean-Baptiste Meilhan and Emmanuel Wagner for encouraging and stimulating conversations,
and Hans Boden for pointing out a mistake in a previous version. This work is supported by the French
ANR research project “VasKho” ANR-11-JS01-00201.

1. Ribbon, broken and welded objects

1.1. Ribbon tori and ribbon torus-knots. By convention, an immersion shall actually refer to the image
Im(Ỹ # X) ⊂ X of the immersion, whereas the immersed space Ỹ shall be referred to as the associated
abstract space. Throughout this paper, every immersion Y ⊂ X shall be considered locally flat, that is
locally homeomorphic to a linear subspace Rk in Rm for some positive integers k ≤ m, except on ∂Y (resp.
∂X), where Rk (resp. Rm) should be replaced by R+ × R

k−1 (resp. R+ × R
m−1); and every intersection

Y1 ∩ Y2 ⊂ X shall be considered flatly transverse, that is locally homeomorphic to the intersection of two
linear subspaces Rk1 and Rk2 in Rm for some positive integers k1, k2 ≤ m, except on ∂Y1 (resp. ∂Y2, ∂X),
where Rk1 (resp. Rk2 , Rm) should be replaced by R+ ×R

k1−1 (resp. R+ ×R
k1−1, R+ ×R

m−1).
Here, we shall consider 3–dimensional spaces immersed in S 4 in a quite restrictive way, since we allow

only the following type of singularity.

Definition 1.1. An intersection D := Y1 ∩ Y2 ⊂ S 4 is a ribbon disk if it is isomorphic to the 2–dimensional
disk and satisfies D ⊂ Y̊1, D̊ ⊂ Y̊2 and ∂D is an essential curve in ∂Y2.

Before defining the main topological objects of this paper, we want to stress the fact that, besides a
3–dimensional orientation, a solid torus can be given a co-orientation, that is a 1–dimensional orientation
of its core. Note that orientation and co-orientation are independent notions and that the 3–dimensional
orientation can be equivalently given as a 2–dimensional orientation on the boundary. We say that a solid
torus is bi-oriented if it is given an orientation and a co-orientation.

Definition 1.2. A ribbon torus is a bi-oriented immersed solid torus D2 × S 1 ⊂ S 4 whose singular set
consists of a finite number of ribbon disks.
We define rT as the set of ribbon tori up to ambient isotopy.

Definition 1.3. A ribbon torus-knot is an embedded oriented torus S 1 × S 1 ⊂ S 4 which bounds a ribbon
torus. We say that it admits a ribbon filling.
We define rK as the set of ribbon torus-knots up to ambient isotopy.

Definitions 1.2 and 1.3 use the same notion of ambient isotopy. By forgetting its interior and keeping only
its boundary, one sends hence any ribbon torus to a ribbon torus-knot. However, a given ribbon torus-knot
may have several non isotopic ribbon filling. It follows that rK may be seen as the non trivial quotient rT

/
∂,

where ∂ is the equivalence relation generated by T
∂
' T ′ ⇔ ∂T = ∂T ′.

Remark 1.4. To emphasize the connection with welded diagrams, we have chosen to deal with ribbon torus-
knots, but other ribbon knotted objects in 4–dimensional spaces can be defined similarly, such as ribbon 2–
knots [Yaj64, Yan69, Suz76, Coc83, KS02], ribbon 2–links, ribbon torus-links or ribbon tubes [ABMW14].
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Figure 3. Around a ribbon disk

Since our considerations shall be local, most of the material in this paper can be transposed to any of these
notions.

1.2. Broken torus diagrams. Away from ribbon disks, pieces of a ribbon torus-knot are just annuli which
can be properly projected into tubes in R3. Around any ribbon disk, the local flatness assumption allows a
local parametrization as B3 × [0, 1], where the last summand is seen as a time parameter so that the ribbon
torus-knot locally corresponds to the motion of two horizontal circles, one flying through the other. Note
that these flying circles arise naturally as the boundary of flyings disks in R3. By projecting along the time
parameter, that is by keeping the residual track of the flying disks, we obtain two tubes, one passing through
the other. In doing so, it creates two singular circles. But the tubes do not cross in S 4 so it means that for
each singular circle, the time parameter separates the two preimages. There are hence one circle preimage
on each tube, one having time parameters smaller than the other. By convention, we erase from the picture a
small neighborhood of the preimage with the lowest projecting parameter. See Figure 3 for a picture. As we
shall see, these local projections can actually be made global, and they motivate the following definition.

Definition 1.5. A broken torus diagram is a torus immersed in R3 whose singular set is a finite number of
transverse singular circles, each of which is equipped with an order on its two preimages. As noted above
and by convention, this order is specified on picture by erasing a small neighborhood of the lowest preimage.
The broken surface diagram is furthermore said symmetric if it is locally homeomorphic to either

or .

This means singular circles are pairwise matched in such a way that, for any pair, both circle has

• an essential preimage: they are consecutive on a tube and the piece of tube in-between is empty of
any other singular circle;
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RI: o / RII: o /

RIII: o /

Figure 4. Broken Reidemeister moves bReid for broken torus diagrams:

in these pictues, each singularity of type can be turned into a type one;

however, the two singularities of move RII and the two singularities on the widest tube of move RIII

must be then turned simultaneously

V: o /

Figure 5. Virtual move for broken torus diagrams

• a non essential preimage: they are in the same connected component of the torus minus all essen-
tial preimages, and they are respectively higher and lower than their essential counterparts for the
associated orders.

As is clear from the pictures above, a symmetric broken torus diagram comes with an obvious solid
torus filling which is naturally oriented by the ambient space. It is hence sufficient to enhance it with a
co-orientation to provide a bi-orientation. As a consequence, a symmetric broken torus diagram is said bi-
oriented if its natural filling is given a co-orientation.
We define bD the set of bi-oriented symmetric broken torus diagrams up to ambient isotopy. Unless other-
wise specified, we shall assume, in the following, that all broken torus diagrams are symmetric.

A local move is a transformation that changes a diagrammatical and/or topological object only inside a
ball of the appropriate dimension. By convention, we represent only the ball where the move occurs, and
the reader should keep in mind that there is a non represented part, which is identical for each side of the
move. Broken torus diagrams are higher-dimensional counterpart of usual knot diagrams. As such, we shall
quotient them by some local moves.
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R1 : ↔ ↔ R2 : ↔

R3a : ↔ R3b : ↔

classical Reidemeister moves Reid

vR1 : ↔ vR2 : ↔ vR3 : ↔

virtual Reidemeister moves vReid

mR3a : ↔ mR3b : ↔

mixed Reidemeister moves mReid

Figure 6. Generalized Reidemeister moves gReid on virtual diagrams

OC : ←→

Figure 7. Over commute move on virtual diagrams

Definition 1.6. We define bReid, the broken Reidemeister moves, and V, the virtual move, on broken torus
diagrams as the local moves shown, respectively, in Figure 4 and 5. Moreover, we define the set bT :=
bD
/
V of broken tori as the quotient of broken torus diagrams under the virtual move; and the set bK :=

bD
/
bReid,V of broken knots as the quotient of broken torus diagrams under virtual and broken Reidemeister

moves, or equivalently as the quotient of broken tori under broken Reidemeister moves.

1.3. Welded knots. Broken torus diagrams appeared as a partially combinatorial “ 2# 3”–dimensional
description of ribbon objects; but, as we shall see, this description can be cut down one dimension more.

Definition 1.7. A virtual diagram is an oriented circle immersed inR2 whose singular set is a finite number
of transverse double points, called crossing, each of which is equipped with a partial order on its two preim-
ages. By convention, this order is specified by erasing a small neighborhood of the lowest preimage, or by
circling the crossing if the preimages are not comparable.
If the preimages of a crossing are comparable, then the crossing is said classical; otherwise it is said virtual.
Moreover, a classical crossing is said positive if the basis made of the tangent vectors of the highest and
lowest preimages is positive; otherwise, it is said negative.
We define vD as the set of virtual diagrams up to ambient isotopy.
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Figure 8. Diagrams, welded Gauss diagrams and Gauss diagrams

Definition 1.8. We define the generalized Reidemeister moves gReid — separated into classical moves
Reid, virtual moves vReid and mixed moves mReid — and the over commute move OC on virtual dia-
grams as the local moves shown, respectively, in Figure 6 and 7. Moreover, we define the set wT :=
vD
/
vReid,mReid,OC of welded tori as the quotient of virtual diagrams under virtual Reidemeister, mixed

Reidemeister and over commute moves; and the set wK := vD
/
gReid,OC of welded knots as the quotient of

virtual diagrams under generalized Reidemeister and over commute moves, that is as the quotient of welded
tori under classical Reidemeister moves.

Classical Reidemeister moves are vestiges of the diagrammatical description of the usual knot theory.
Virtual and mixed Reidemeister moves essentially states that only classical crossings and the abstract con-
nections between their endpoints are meaningful, and not the actual strands which realize these connections.
Over commute move states that two classical crossings connected by a strand which is the highest strand for
both crossing can be commuted. As a matter of fact, it only matters the cyclic order of lowest preimages
of classical crossings, as they are met while running positively along the immersed oriented circle, and the
unordered sets of highest preimages which are located between two consecutive lowest preimages. This
motivates the following definition:

Definition 1.9. A welded Gauss diagram is a finite set C given with a cyclic order and a map from C to
C × {±1}.
We define wGD the set of welded Gauss diagram.

Proposition 1.10. There is a one-to-one correspondence between wGD and wT .

Proof. To a virtual diagram D, we associate a welded Gauss diagram as follows. When running along D,
every crossing is met twice, once on the highest strand and once on the lowest one. So first, we consider C,
the set of classical crossing of D, ordered by the order in which the crossings are met on the lowest strand
while running positively along D. Then, to c ∈ C, we associate the sign of c and the last crossing met on the
lowest strand, while running positively along D, before meeting c on the highest strand.

It is straightforwardly checked that this is invariant under virtual Reidemeister, mixed Reidemeister and
over commute moves and that it defines a one-to-one map from wT to wGD. This last statement can be
verified by hand or, for readers who know about usual Gauss diagrams, by defining an inverse map, using
item (2) in Remark 1.11 and the fact that Gauss diagrams up to tail commute moves are in one-to-one
correspondance with welded diagrams. See Figure 8 for an illustration. �

Remarks 1.11.
(1) It is quite straightforward to define relevant moves on welded Gauss diagrams, denoted epony-

mously by Reid in Figure 2, that correspond to classical Reidemeister moves. The quotient is
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oo

44

**

Figure 9. Inflating classical and virtual crossings

one-to-one with wK , but since we shall not need them in this paper, we refer the interested reader
to [ABMW14, Section 4.1] for a formal definition.

(2) To a welded Gauss diagram G : C → C × {±1}, one can associate a more traditional Gauss diagram
(see [PV94, GPV00, Fie01, BND14a] for definitions and Figure 8 for an illustration) by
• using the cyclic order on C to mark one point for each element in C on an ordered circle;
• between the point marked by c ∈ C and its direct successor on the oriented circle, marking one

more point for each preimage in G−1
(
c,±1

)
, no matter in which order;

• for every c ∈ C, drawing arrows from the point marked by c′ to the point marked by c with sign
ε where (c′, ε) = G(c).

2. The Tube map

In this section, we define some maps between ribbon and welded objects. Broken objects shall appear as
an in-between.

First, we define B̃ : vD → bD as follows. Let D be a virtual diagram and consider it as a singular circle
lying in R2 × {0} ⊂ R3. Now, consider the boundary of a neighborhood of it in R3. This is an handlebody
whose boundary is the union of 4–punctured spheres, one for each crossing, attached along their boundaries.
Every such punctured sphere is hence decorated by a partial order. We define B̃(D) to be the broken torus
diagram obtained by modifying locally each punctured sphere according to its partial order as shown in
Figure 9. It is oriented by the ambient orientation of R3 and co-oriented by the orientation of D.

Remark 2.1. The piece of broken torus diagram associated to a classical crossing does not depend only on
the crossing sign but also on the actual orientation. Indeed, reversing the orientation preserves signs but flips
upside down Figure 9. For instance, depending on the orientation, a positive crossing can be sent to

or ,

which are not isotopic when fixing the boundaries. In particular, reversing the orientation of a diagram does
not just reverse, in general, the co-orientation of the associated broken torus diagram. To realize such an
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x0

xess

⊂ S4

δess

δ0

x

δ

Figure 10. A picture for T̃

operation, the orientation should be reversed, but some virtual crossings should also be added before and
after the crossing, and the sign of the crossing should moreover be switched. As a matter of fact, and

are send to similar pieces of broken torus diagram with opposite co-orientations. This observation
shall also follow from the behavior of the map W defined below under the co-orientation reversal.

Now, we define R̃ : bD → rT as follows. Let T be a broken torus diagram and consider it as lying in
R3 × {0} ⊂ S 4. Then, near each singular circle, the thinnest tube can be pushed slightly above or below in
the fourth dimension, depending on the order associated to this singular circle. The torus is then embedded
in S 4. But a symmetric broken torus diagram comes naturally with a filling by a solid torus and the pushing
can be performed so that every pair of associated singular circles leads to a single ribbon disk singularity.
We define R̃(T ) to be this immersed solid torus with the bi-orientation induced by the one of T .

Lemma 2.2. The maps B̃ and R̃ descend to well-defined maps B : wT → bT and R : bT → rT .

Proof. To prove the statement on R̃, it is suficient to prove that two broken torus diagrams which differ
from a virtual move have the same image by R̃. Figure 13 gives an explicit isotopy showing that. Another
projection of this isotopy can found at [Dal14]

Concerning B̃, it sends both sides of moves vR1 and OC on broken torus diagrams which are easily seen
to be isotopic. For any of the other virtual and mixed Reidemeister moves, some preliminary virtual moves
may be needed before the broken torus diagrams become isotopic. For instance, among the represented
strands, one can choose one with two virtual crossings on it and, up to the virtual move, pull out its image
by B̃ in front of the rest; then both sides of the move are sent to isotopic broken torus diagrams. �

Notation 2.3. We denote by T : wT → rT the composite map R ◦ B.

The map T is actually a bijection. To prove this, we introduce W : rT → wGD � wT defined as follows.
Let T be a ribbon torus and T̃ its abstract solid torus. We denote by C the set of ribbon disks of T . Each δ ∈ C
has two preimages in T̃ : one with essential boundary in ∂T̃ , that we shall call essential preimage and denote
by δess; and the other one inside the interior of T̃ , that we shall call contractible preimage and denote by δ0.
See Figure 10 for a picture. The co-orientation of T induces a cyclic order on the set of essential preimages
and hence on C. Moreover, essential preimages cut T̃ into a union of filled cylinders. For each δ ∈ C, we
define h(δ) as the element of C such that δ0 belongs to the filled cylinder comprised between h(δ)ess and its
direct successor. To δ, we also associate ε(δ) ∈ {±1} as follows. Let x be any point in the interior of δ, xess its
preimage in δess and x0 its preimage in δ0. Let (u, v,w) be the image in TxS 4 of a positive basis for Tx0 T̃ and
z the image in TxS 4 of a normal vector for δess at xess which is positive according to the co-orientation of T .
Then (u, v,w, z) is a basis of TxS 4 and we set ε(δ) := 1 if it is a positive basis and ε(δ) := −1 otherwise. See
Figure 10 for a picture. We define W(T ) to be the welded torus corresponding to the welded Gauss diagram
G : C → {±1} ×G defined by G(δ) =

(
ε(δ), h(δ)

)
.



10 BENJAMIN AUDOUX

Proposition 2.4. The map T : wT → rT is a bijection.

Proof. It is straightforwardly checked that W ◦ T = IdwT . It is hence sufficient to prove that either T is
surjective or W is injective. It follows from the work of Yanagawa in [Yan69] and Kanenobu–Shima in
[KS02] that T is surjective. More detailed references can be found in the proof of Lemmata 2.12 and 2.13 of
[ABMW14]. Nevertheless, we shall sketch here an alternative proof which only uses a much less involved
result — namely, that flatly embedded 3–balls in B4 can be put in a position so they project onto embedded
3–balls in B3 — and shows instead that W is injective.

Let T1 and T2 be two ribbon tori such that W(T1) = W(T2). There is hence a bijection ψ : C1 → C2,
where Ci is the set of ribbon disks of Ti, which preserves the cyclic orders induced by the co-orientations.
We consider T̃1 and T̃2 the abstract solid tori of T1 and T2. Let δ ∈ C1, we extend δ0 ⊂ T̃1 into a disk δ′0
which is disjoint from the other disk extensions and from the essential preimages, and whose boundary is
an essential curve in ∂T̃1. Moreover, the co-orientation of T1 on δess and δ′0 provide two normal vectors for
δ. We choose δ′0 so that, up to isotopy, these vectors coincide. Note that, in doing such an extension of
contractible preimages, we fix an arbitrary order on the contractible preimages which are in the same filled
cylinder; and, more globally, a cyclic order on the union of essential and contractible preimages. Now, for
every ribbon disk δ ∈ C1, we consider a small neighborhood V(δ) of the image of δ′0 in S 4. Locally, it looks
like in Figure 3 and V(δ) ∩ T1 is the union of four disks that we shall call the ribbon disk ends of δ. By
considering a tubular neighborhood of a path which visits each V(δ) successively but avoids T1 otherwise,
we extend t

δ∈C1
V(δ) into a 4–ball B∗ ⊂ S 4 which meets T1 only in t

δ∈C1
V(δ).

Similarly, we extend the contractible preimages of T2 in such a way that the global cyclic order on all
preimages corresponds, via ψ, to the one of T1 — this is possible only under the assumption that W(T1) =

W(T2) — and we perform an isotopy on T2 so T2 ∩ B∗ = T1 ∩ B∗ with ribbon disks identified via ψ. In
particular, ribbon disk ends of T1 and T2 coincide. Outside B∗, T1 and T2 are now both disjoint unions of
embedded 3–balls which associate pairwise all the ribbon disk ends in the same way. We put them in a
position in BC := S 4 \ B̊∗ � B4 so that they project onto disjoint embedded 3–balls in B3. The fact that each
3–ball is twice attached by disks to ∂B∗ may introduce several wens, but since all ribbon disk ends can be
oriented coherently using the co-orientation, for instance, of T1, there are an even number of them on each
component and, as we shall see in the next section, they cancel pairwise. The projections are then the tubular
neighborhoods of two string links in B3 on which the local isotopy shown in Figure 13 allows us to perform
crossing changes. It follows that T2 ∩ BC can be transformed into T1 ∩ BC , so T1 = T2 in rT . The map W is
then injective. �

Welded tori are then a faithfull combinatorial description of ribbon tori. Since a contraction-to-the-
core inverse shows easily that the map B : wT → bT is surjective, broken tori are also in one-to-one
correspondence with ribbon and welded tori.

Proposition 2.5. The map T descends to a well-defined surjective map Tube : wK → rK .

Proof. It is sufficient to prove that any two broken tori which differ by a broken Reidemeister move only are
sent through T to ribbon tori which can be realized with same boundary (but different fillings). This is done
in Figure 14, 15, 16 and 17. There, the upper lines give 4–dimensional movies of filled tubes which project
along the height axis —time becomes then the new height parameter— to the pieces of broken torus diagram
shown on Figure 4 as the left hand sides of the broken moves; and the lower lines give another fillings of the
very same tubes, which, after a suitable deformation, project along the height axis to the right hand sides of
the same broken moves. Movies are hence read from left to right, one line out of two. For instance, line 1
continues on line 3. For Reidemeister moves II and III, we have dropped the left–right motion of the disks
since it plays no role, complicates uselessly the pictures and can be easily added in the reader’s mind.

Surjectivity is immediate by Proposition 2.4. �

Now, we can address the question of the Tube map injectivity. It is directly checked that classical Reide-
meister moves on welded tori are in one-to-one correspondance with broken Reidemeister moves on broken
tori. It follows that the notions of welded and broken knots do coincide. So, basically, it remains to un-
derstand whether Reidemeister moves on broken tori are sufficient to span the whole ∂–equivalence relation
on rT . As noticed in [Win09], the answer is no. Indeed, since it forgets everything about the filling, the
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−→ −→

Figure 11. Signs reversal on virtual diagrams

∂–equivalence is insensitive to a change of co-orientation. However, as noted in Remark 2.1, it is not suf-
ficient to reverse the orientation of a welded torus for its image under B to be identical but with reversed
co-orientation: one also need to reverse all the crossing signs and add virtual crossings on both sides of each
classical crossing.

Notation 2.6. For any virtual diagram D, we define −D to be the virtual diagram obtained by reversing the
orientation of D and by D the diagram obtained by applying to each classical crossing of D the operation
described in Figure 11. These operations on vD factor through the quotients wT and wK . From the welded
Gauss diagram point of view, the second is nothing but to the reversal of all signs.
We define a global reversal as the simultaneous reversing of both the orientation and the signs; it is denoted
by glRev in Figure 2.

It follows from the discussion above that:

Proposition 2.7. The Tube map is invariant under global reversal, that is Tube(K) = Tube(−K) for every
welded knot K.

3. A digression on wens

In this section, we focus on a particular portion of ribbon torus-knot, called wen in the literature. A
detailed treatment of them can be found in [KS02], [BND14a, Sec. 2.5.4] and [BND14b, Sec. 4.5]. In
general, a wen is an embedded Klein bottle cut along a meridional circle. Locally, it can be described as a
circle which makes a half-turn inside a 3–ball with an extra time parameter.

Definition 3.1. A wen is an embedded annulus in S 4 which can be locally parametrized as(
γt(C), t

)
t∈[0,1] ⊂ B3 × [0, 1] ⊂ S 4

where C ⊂ B3 is a fixed circle and (γt)t∈[0,1] a path in Diff(B3; ∂B3), the set of smooth diffeomorphisms of
B3 which fix the boundary, such that γ0 is the identity and γ1 a diffeomorphism which sends C on itself but
with reversed orientation.

A wen by itself is rather pointless since the reparametrization ϕ(x, y, z, t) :=
(
γ−1

t (x, y, z), t
)

sends it on
a trivially embedded annuli and, reciprocally, any annuli can be reparametrized as a wen. However, as
a portion of a ribbon torus-knots, we shall be interested in modifying a wen without altering the rest of
the ribbon torus-knot. In this prospect, we shall consider only isotopies of S 4 which fix the boundary
components of wens. We shall say then that the wens are ∂–isotopic.

Generically, a wen projects in B3 into one of the four pieces of non symmetric broken torus diagram
shown in Figure 12. However, we can speak of a wen unambiguously since the following result holds:

Proposition 3.2. [KS02, Lem. 3.1] Any two wens are ∂–isotopic in S 4.

It has the following corollary, depicted in the last four pictures of Figure 18:

Corollary 3.3. The gluing of any two wens along one of their boundary circles is ∂–isotopic to a trivially
embedded cylinder.

Although it is a direct consequence of T. Kanenobu and A. Shima’s result, we shall sketch an alternative
proof which strongly relies on the Smale conjecture proved by A. Hatcher in [Hat83].
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Figure 12. The four projections of wens

Proof. We consider two paths (γ1
t )t∈[0,1] and (γ2

t )t∈[0,1] in Diff(B3; ∂B3) which parametrizes, respectively, the
first and the second wen. By composing the second path with γ1

1 and gluing it to the first one, we obtain
a parametrization of the two wens as

(
γ0

t (C), t
)

t∈[0,1] where γ0 is a path in Diff(B3; ∂B3) which starts at the
identity and ends at γ2

1◦γ
1
1 which is a smooth diffeomorphism of B3 sending C to itself with same orientation.

To define an ambient isotopy of S 4, it would be more convenient that γ0 also ends at the identity. This
can be achieved by slightly packing down the two wens from the top, and reparametrizing the small piece
of trivially embedded annulus that it creates. In this prospect, we define now a path (γt)t∈[0,1] of elements in
Diff(B3; ∂B3) which starts at γ0

1 = γ2
1 ◦ γ

1
1, ends at the identity and preserves globally C for each t ∈ [0, 1].

Since the set Diff+(S 1) of orientation preserving smooth diffeomorphisms of S 1 is path connected, there is a
path between the restriction of γ0

1 to C and the identity on C. It can be used to deform γ0
1 in a neigborhood of

C into a diffeomorphism γ 1
3

which fixes both ∂B3 and C. Then, we choose an arbitrary path λ from a point of
C to a point of ∂B3. Possibly up to an infinitesimal deformation of γ 1

3
, we may assume that λ and γ 1

3
(λ) meet

only at their extremities, so λ ∪ γ 1
3
(λ) is a closed curve embedded in B3. Let D be any disk in B3 bounded

by this curve. The diffeomorphism γ 1
3

can now be deformed in a neighborhood of D so the image of λ is
pushed along D to λ. It results a diffeomorphism which fixes ∂B3, C and λ. We can deform it furthermore so
we obtain a diffeomorphism γ 2

3
which fixes a tubular neighborhood N of C ∪ λ ∪ ∂B3. But S 3 \ N is a solid

torus — gluing another 3–ball B to B3 gives a 3–sphere, and the union of B with N is an unknotted torus
whose complement in the 3–sphere is also a torus — and since Diff(S 1 × D2; ∂S 1 × D2) is contractible, see
formulation (9) of the Smale conjecture in [Hat83, Appendix], there is path from γ 2

3
to the identity.

After being packed down, the two wens are now reparametrized as
(
γ0

t
1−ε

(C), t
)

t∈[0,1−ε]∪
(
γ t−1+ε

ε
(C), t

)
t∈[1−ε,1],

for some small ε > 0. This defines a loop of smooth diffeomorphisms of B3 which fixes ∂B3. But since
Diff(B3; ∂B3) is contractible, see formulation (1) of the Smale conjecture in [Hat83, Appendix], it is homo-
topic to the trivial loop. This provides an homotopy of B3 × [0, 1] ⊂ S 4 which deforms the two glued wens
into a trivially embedded annulus. Since it fixes the boundary of B3 × [0, 1], it can be extended by identity
to an homotopy of S 4. �

Now we enumerate three consequences of Corollary 3.3.

Untwisting twisted 3–balls: Wens are no obstruction for a torus in S 4 to admit a ribbon filling. In-
deed, one can similarly flip disks instead of circles, and all the arguments above apply to wens filled
in this way. This is used in the proof of Proposition 2.4: when rectifying 3–balls so they project
properly in B3, some twisting may arise near the fixed ribbon disk ends. This can be untwisted using
filled wens, and those cancel pairwise thanks to the filled version of Corollary 3.3.

Reidemeister I move for ribbon surfaces: Since it cannot be interpreted in terms of flying rings, it
may be worthwhile to pay more attention to move RI on broken torus diagrams. So, besides its
realization as a change of filling given in Figure 14 and 15, we provide in Figure 18 an isotopy in
S 4, seen from the (non symmetric) broken torus diagram point of view, which realizes a move RI
with the help of Proposition 3.2. The left handside of move RI in Figure 4 can indeed be seen to be



ON THE WELDED TUBE MAP 13

isotopic to the last picture in Figure 18 by pulling one singular circle next to the other. Note that the
last five pictures can be replaced by a single use of Corollary 3.3.

Commutation of the Tube map with the orientation reversals: A consequence of Corollary 3.3 is
that a trivially embedded torus can be inverted in S 4. Indeed, one can choose any portion of the
torus and create ex nihilo a pair of wens. Then, one of the wens can travel all along the torus,
inverting on its way the orientation. Once done, wens can cancel back one each other.1

The same isotopy can be performed even if the torus is knotted, but then the passage of the wen
will modify the neigborhood of each ribbon disk. Indeed, as explained in [BND14b, Sec. 4.5],
it will reverse the sign associated to each ribbon disk. Starting with Tube(K), for K any welded
knot, the isotopy will hence end at −Tube(K). The torus inversion process in S 4 induces then the
following:

Proposition 3.4. For every welded knot K, Tube(K) = −Tube(K).

Together with Proposition 2.7, it implies:

Proposition 3.5. For every welded knot K, Tube(−K) = Tube(K) = −Tube(K).

Question 3.6. Is there a one-to-one correspondence between ribbon torus-knots and welded knots up to
global reversal? Equivalently, do the classical Reidemeister local moves and the co-orientation reversal
generate all possible change of filling?
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[FRR97] Roger Fenn, Richárd Rimányi, and Colin Rourke, The braid-permutation group, Topology 36 (1997), no. 1, 123–135.
[GPV00] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of virtual and classical knots, Topology 39 (2000), 1045–

1168.
[Hat83] Allen E. Hatcher, A proof of the Smale conjecture, Diff(S 3) ' O(4), Ann. of Math. (2) 117 (1983), no. 3, 553–607.
[IK12] Atsushi Ichimori and Taizo Kanenobu, Ribbon torus knots presented by virtual knots with up to four crossings, Journal of

Knot Theory and Its Ramifications 21 (2012), no. 13, 1240005.
[Ker65] Michel A. Kervaire, Les nœuds de dimensions supérieures., Bull. Soc. Math. Fr. 93 (1965), 225–271 (French).
[Kim00] Se-Goo Kim, Virtual knot groups and their peripheral structure., J. Knot Theory Ramifications 9 (2000), no. 6, 797–812.
[KM61] M.A. Kervaire and John W. Milnor, On 2-spheres in 4-manifolds., Proc. Natl. Acad. Sci. USA 47 (1961), 1651–1657

(English).
[KS02] T. Kanenobu and A. Shima, Two filtrations of ribbon 2-knots, Proceedings of the First Joint Japan-Mexico Meeting in

Topology (Morelia, 1999), vol. 121, 2002, pp. 143–168.
[Kup03] Greg Kuperberg, What is a virtual link?, Algebr. Geom. Topol. 3 (2003), 587–591.
[PV94] M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, Internat. Math. Res. Notices (1994), no. 11,

445ff., approx. 8 pp. (electronic).
[Sat00] S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531–542.

1An illustration can be found at https://www.youtube.com/watch?v=kQcy5DvpvlM

http://science.unitn.it/~dalvit/visualization/virtualcrossingrings/
http://science.unitn.it/~dalvit/visualization/virtualcrossingrings/
https://www.youtube.com/watch?v=kQcy5DvpvlM


14 BENJAMIN AUDOUX

[Suz76] Shin’ichi Suzuki, Knotting problems of 2-spheres in 4-sphere., Mathematics Seminar Notes Vol. 4, No.3, 241-371. Kobe,
Japan: Kobe University. (1976)., 1976.

[SW00] Daniel S. Silver and Daniel S. Williams, Virtual knot groups., Knots in Hellas ’98. Proceedings of the international con-
ference on knot theory an its ramifications, European Cultural Centre of Delphi, Greece, August 7–15, 1998, Singapore:
World Scientific, 2000, pp. 440–451.

[Win09] B. Winter, The classification of spun torus knots., J. Knot Theory Ramifications 18 (2009), no. 9, 1287–1298 (English).
[Yaj62] Takeshi Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962),

63–71. MR 0151960 (27 #1941)
[Yaj64] T. Yajima, On simply knotted spheres in R4, Osaka J. Math. 1 (1964), 133–152.
[Yan69] T. Yanagawa, On ribbon 2-knot. The 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969), 447–464.

↑

↑

↑

↑

→

↑

↑

↑

↑

→

↑

↑

↑

↑

→

↑

↑

↑

↑

→

↑

↑

↑

↑

−−−−−−−−−−−−−−−−−−→
isotopy

Figure 13. Isotopy for the virtual move
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Figure 14. RI seen as a filling change (part 1)
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Figure 15. RI seen as a filling change (part 2)
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Figure 16. RII seen as a filling change
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Figure 17. RIII seen as a filling change
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Figure 18. RI seen as a wen cancellation
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