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Abstract
This paper aims at modeling all the uncertainties which are encountered when simulating the high-speed train
dynamic response for a given track portion. The built model allows us to observe the long-time evolution
of the train dynamic response for this track portion. The knowledge of the evolution of such a system is
of great concern for the railway industry, in order to maintain a high level of safety and comfort in the
trains. A double approach is used to build the model. First, the global stochastic model of track irregularities
previously defined is adapted to the given track portion. Then, modeling uncertainties in the computational
model of the train are represented by a noise added to the output response of the train dynamics simulation.
This additive noise is represented by a polynomial chaos expansion which is identified with measurements.
Robust train-dynamics indicators are set up to observe the long-time evolution of the train dynamic response.

1 Introduction

1.1 Objectives

The tracks for the high speed trains are submitted to more and more solicitations, because of the increase
of the train traffic, the load and the speed of the trains. These solicitations induce degradations of the track
geometry, making evolve track irregularities. Such degradations impact the train dynamic response in return.
The knowledge of the effects of the track geometry on the train dynamic response needs to be increased (see
[4]). In this framework robust indicators must be defined for the simulated train dynamic response, in order
to characterize its evolution.

The goal of this work is to set up robust indicators [3], able to describe the long-time evolution of the
train dynamic response, under the influence of the evolution of the track irregularities. The distinction
has to be done between the long-time evolution, which will be denoted byτ , and the time of the train
dynamics (denoted byt). Actually, the vehicle-track system is a complex system, with high nonlinearities
and coupling between inputs (track geometry, track stiffness, track mass) and outputs (train responses).
The track geometry is the main source of excitation for the train. Measurements of the track geometry are
performed very precisely and frequently, which provides us information on the track geometry in the long



time τ . A global stochastic model of the track geometry has been built by Perrinet al. in [5] using a very
large experimental data basis concerning the French railway network for high-speed trains. The stochastic
modeling is very useful to carry out nonlinear stochastic dynamic analysis of the train excited by the random
track geometry. We need now to adapt the stochastic model for a given track portion, in order to be able to
start off maintenance operations for this track portion.

1.2 Proposed approach

For the long-time evolution analysis of a given track portion, for which measurements are periodically carried
out, the global stochastic model of the track is adapted to this portion introducing a noise which allows
measurement errors and variability to be taken into account. Using this adapted stochastic model of the
track geometry for such a given portion, the train dynamic response is numerically simulated. The inputs
of the simulation are the track design, the track irregularities modeled with the adapted stochastic model,
and a model of the train. The model of the train used for the simulation is a multibody dynamical model
whose dynamic responses are computed using a commercial software (Vampire). The simulation outputs are
accelerations in the train and contact forces between the wheels and the rails.

Moreover, the model of the train used for the simulation, as well as the simulation model itself, contain
uncertainties. Those uncertainties are due to numerical approximations, wrong values of parameters in the
vehicle model, etc. In order to increase the robustness of the chosen dynamic indicators, model uncertainties
have to be taken into account in the modeling. Those uncertainties are estimated using comparisons with
experimentations, allowing us to identify a noise to be added to the dynamic indicators.

Section 2 will focus on the adapted stochastic modeling of the track irregularities, taking into account the
measurements for the studied given track portion. Indicators for the train dynamics will be defined to assess
the train behavior on this given portion. In Section3, model uncertainties will be identified in order to have
dynamic indicators more robust.

2 Stochastic modeling of track irregularities

2.1 Track measurements

The track geometry is measured very precisely and very frequently by SNCF company using a measuring
train equipped with laser cameras. The track is described by two data sets:

• the initial track design, which corresponds to the theoretical track (as it was planned before the con-
struction), and which is made of straight lines and curves.

• the irregularities of the track, which appear during the track life cycle, and which have to be added to
the track design.

The track irregularities are modeled by a vector-valued random fieldY denoted by

s �→ Y(s; τ) = (Y1(s; τ), Y2(s; τ), Y3(s; τ), Y4(s; τ)) , (1)

indexed bys in Ω = [0, S], whereS is the portion length, and which depends on long-time parameterτ .
Long timeτ is a discrete parameter that rises between successive measurements of the given track portion,

τ0 < τ1 < τ2 < ... < τντ , (2)

in which τ0 is the time of the first measurement performed just after a maintenance operation, and where
τ1, τ2, ..., τντ correspond to the successive long times for which there are measurements of the track geome-
try, andτντ is the time of the last measurement before the next maintenance operation.



2.2 Global stochastic modeling of the track irregularities

A global stochastic model of the track irregularities has been proposed in [5] and detailed in [6, 7, 8, 9, 10].
This model has been built solving an inverse statistical problem using a very large experimental data basis
related to the French railway network. It is very robust with respect to measurement errors and has the
capability to generate a track irregularity for any given portion belonging to the French railway network.

The track irregularities vectorY = (Y1, Y2, Y3, Y4) is modeled by a vector-valued random field, defined on a
probability space(Θ,F ,P), indexed byΩ = [0, S], with values inR4. It has been proven that random field
Y is neither Gaussian nor stationnary (not homogeneous).

Random fieldY is centered,
E{Y(s)} = 0 , ∀s ∈ [0, S] , (3)

whereE{.} is the mathematical expectation. The continuous vector-valued random field{Y(s), s ∈ Ω},
is replaced by its spatial discretization at curvilinear abscissasn = nh with h the spatial step andn =
0,. . . , Ns, whereS = Nsh. Keeping the same notation for the continuous random field and its spatial
discretization, the following random vectorX = (X1,X2,X3,X4) with values inR4(Ns+1), is introduced
such that

X
k = (Yk(0), Yk(h), Yk(2h), . . . , Yk(Nsh)) , k = 1, 2, 3, 4 , (4)

with values inRNs+1.

In this construction, the random vectorX is written using a principal components decomposition that is
written as:

X ≃ [U ] [λ]1/2 η , (5)

where [λ] gathers the most influencing modes, where the columns of[U ] are the associated eigenvectors
of the covariance matrix[CXX] of X, and whereη is theR

Nη -valued random vector of the generalized
coordinates of the global stochastic model. Introducing

[Q] = [U ] [λ]1/2 , (6)

X can be rewritten as
X ≃ [Q]η . (7)

Nevertheless, as explained in Section 1, we are interested in constructing a stochastic model adapted to the
given track portion. The objective of this adapted stochastic model that has to be constructed is to take into
account uncertainties induced by (i) measurement noise associated with local measurementsx

meas
τ0 ,xmeas

τ1 ,
x

meas
τ2 , . . ., and (ii) the local variability of the given track portion in order to decrease the “statistical distance”

between the global stochastic model and the local measurements.

2.3 Local stochastic modeling

The local stochastic modeling aims at constructing an adapted stochastic model of the track irregularities
related to a given track portion. The method proposed to construct this adapted stochastic model consists in
introducing a random field noise for which the spatial properties are driven by the global stochastic model
and whose intensity of its statistical fluctuations is identified at long timeτ0 using measurementxmeas

τ0 . For
k = 1, . . . , 4, Xk is the random vector of dimensionNs + 1 defined (using Eq. (7)) as

X
k = [Qk]η , (8)

in which the((Ns+1)×Nη) real matrix[Qk] is extracted from matrix[Q]. The proposed adapted stochastic
model is written as

X̃
k(δk) = [Qk]

(
η + δk G

k
)

, k = 1, 2, 3, 4 , (9)



in which δ = (δ1, δ2, δ3, δ4) is the vector-valued hyperparameter allowing the uncertainty level to be con-
trolled, and which has to be identified for each track portion using experimental data. For fixedk, Gk is
a R

Nη -valued random noise. In the model proposed,G = (G1,G2,G3,G4) is chosen as aR4Nη -valued
Gaussian second-order centered random variable, defined on the probability space(Θ′,F ′,P ′), for which its
covariance matrix is the unity matrix. From Eq. (9), the adapted stochastic model can be rewritten as

X̃
k(δk) = X

k +B
k(δk) , (10)

in which the random vectorBk(δk) that depends onδk is such that

B
k(δk) = δk [Q

k]Gk . (11)

The optimal valueδopt of hyperparameterδ is estimated by using the maximum log-likelihood method with
experimental data applied to the observation random vectorW(δ) = (W1(δ1),W2(δ2),W3(δ3),W4(δ4)),
in which

Wk(δk) =
‖X̃k(δk)‖

E{‖Xk‖}
, (12)

where‖Xk‖ = ‖X̃k(0)‖ is the Euclidean norm of the global stochastic modelX
k, as explained in [3]. The

experimental observation vectorwmeas = (wmeas
1 , wmeas

2 , wmeas
3 , wmeas

4 ), that corresponds to experimental
measurements is such that

wmeas
k =

‖xk,meas‖

E{‖Xk‖}
, 1 ≤ k ≤ 4 . (13)

Let LW(wmeas; δ) = log pW(wmeas; δ) be the log-likelihood in whichpW(wmeas; δ) is the value of the
probability density functionw �→ pW(w; δ) of random vectorW for w = w

meas. The optimal valueδopt

is then identified solving the following optimization problem,

δopt = argmax
δ

{LW(wmeas; δ)} . (14)

The quantitypW(wmeas; δ) is computed using independent realizations ofW generated with the adapted
stochastic model, and fitted by using the multivariate Gaussian kernel method (see for instance [12, 1]). As
an illustration, and fork = 1, Fig. 1 displays the variation of the marginal probability density function (PDF)
wk �→ pWk(δk)(wk; δk) of random variableWk(δk) as a function ofδk.
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Figure 1: Graphs the PDF,w1 �→ pW1(δ1)(w1; δ1), in function ofδ1 (the bold line is obtained forδ1 = δ
opt
1 ).



2.4 Adapted stochastic modeling of the track irregularities

For the given track portion, the optimal valueδopt of δ is identified using the measurementx
meas
τ0 =

(x1,meas
τ0 , x

2,meas
τ0 , x

3,meas
τ0 , x

4,meas
τ0 ) of the portion at timeτ0 (Eq. (14) for the first timeτ0).

δopt = argmax
δ

{LW(wmeas
τ0 , δ)} . (15)

It is then assumed that this optimal value is representative of the level of uncertainties (noise and variability)
for all the values of the long time of this given track portion. The adapted stochastic modeling of the long-
time evolution for this given track portion is constructed as follows. At long timeτ , the measurement of the
track portion isxmeas

τ = (x1,meas
τ , x

2,meas
τ , x

3,meas
τ , x

4,meas
τ ). We then have to calculate the realizationηmeas

τ

of random vectorη of the generalized coordinates of the global stochastic model introduced in Eqs. (5) and
(6). This realization is calculated as the projection of the measurement on the global stochastic model, which
yields

ηmeas
τ = [λ]−1 [Q]T x

meas
τ . (16)

At long timeτ , the adapted stochastic model is then defined as

X̃
k
τ (δ

opt
k ) = [Qk]

(
ηmeas
τ + δ

opt
k G

k
)

, k = 1, 2, 3, 4 . (17)

As an illustration,x1,meas
τ0 and the confidence region at95% of X̃1

τ0(δ
opt
1 ) are compared in Fig. 2. It can

be noticed that the geometrical and physical properties of the irregularities are preserved with the identified
adapted stochastic modeling.
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Figure 2: Irregularityx1,meas
τ0 and confidence region at95% of X̃1

τ0(δ
opt
1 ) for the given track portion.

2.5 Dynamic response of the train

For fixed long timeτ , the stochastic model of the track irregularities is given byX̃τ (δ
opt) = (X̃1

τ (δ
opt
1 ),

X̃
2
τ (δ

opt
2 ), X̃3

τ (δ
opt
3 ), X̃4

τ (δ
opt
4 )), defined by Eq. (17). The stochastic response of the train is then computed

using the Monte-Carlo method. For each realizationX̃τ (δ
opt; θ′), with θ′ in Θ′, the deterministic realization

of the train response is computed. The set of these realizations allows statistical estimators to be constructed
for analyzing the stochastic responses through dynamic indicators. The chosen dynamic indicators are based
on criteria described in norm UIC 518 [13] for the homologation of railway vehicles. Forj = 1, . . . , NC , the
indicators simulated with the computational model are denoted byCsim

j (τ) at long timeτ , and are function



of the dynamic outputs, denoted by{Asim
j (s, τ), s ∈ Ω}, which are forces and accelerations in the train.

IndicatorsC sim
j (τ) are defined by

C sim
j (τ) = max

s∈Ω
|A sim

j (s, τ)| , j = 1, . . . , NC . (18)

For givenj and for given long timeτ , the probability density function (PDF) of random variableCsim
j (τ) is

plotted in Fig. 3.
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function of timeτ .

3 Taking into account modeling errors in the train dynamics compu-
tational model

The goal of this section is to take into account the uncertainties on the train response output, induced by both
the system parameters uncertainties and the modeling errors in the train dynamics computational model.
The stochastic model of these uncertainties consists in adding an output noise to the dynamic indicators
C sim
j (τ) , j = 1, . . . , NC , defined in Section 2.5. The stochastic modelCmod

j (τ) of the dynamic indicators
is defined as

C mod
j (τ) = C sim

j (τ) (1 + B̃j) , j = 1, . . . , NC . (19)

The noiseB̃ = (B̃1, ... , B̃NC
) is aRNC -valued non-Gaussian second-order random vector to be identified

comparing simulated dynamic indicatorsCsim
j (τ) , j = 1, . . . , NC with the corresponding dynamic indi-

catorsC exp
j (τ) , j = 1, . . . , NC that are experimentally measured. The non-Gaussian random vectorB̃ is

represented by a polynomial chaos expansion with a uniform germ [2, 11], and the coefficients are estimated
using the maximum likelihood with the experiments [7, 10].



4 Long-time evolution of the stochastic model of the dynamic indi-
cators

The long-time evolution of the dynamic indicators are analyzed using the complete stochastic model includ-
ing the adapted stochastic model of the track irregularities and the output noise. For the given track portion
used in Section 2, for each long timeτ , 2, 000 realizations̃X(τ ; θ′1), . . . , X̃(τ ; θ′2,000) of the track geometry
are generated using the adapted stochatic model. The train stochastic dynamic response is simulated by the
Monte-Carlo method. The random simulated dynamic indicatorsC

sim(τ ; θ′), with θ′ in Θ′, are computed
using Eq. (18). Besides, at each long timeτ , 2,000 independent realizations of the output noiseB̃(τ) are
generated by the polynomial chaos expansion. The realizations ofCmod

j (τ) are computing using Eq. (19).

For givenj and for long timeτ , the PDF of random dynamic indicatorCmod
j (τ) is plotted in Fig. 4.
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The constructed indicators are robust enough, because the uncertainties induced by the modeling errors in
the computational model of the train dynamics have been removed in the construction of the stochastic
representation of the output (this phenomemon can be viewed comparing Fig.4 and Fig. 3). Fig. 4 allows us
to observe the PDF of the random indicators as a function of the long time.

5 Conclusion and prospects

This work provides a reliable frame to analyze the evolution of the train dynamic response for a given track
portion, knowing the evolution of the track geometry irregularities measured at several long times. The
stochastic model that is proposed has been constructed using a very large experimental data basis related to
all the French railway network for the high speed trains, and consequently, can be considered as robust. It



takes into account both the track geometry uncertainties and the uncertainties on the train response output
induced by the modeling errors in the computational model of the train dynamics. In future works, this
model will be used to characterize the long-time evolution of the train dynamic response, in order to identify
a long-time evolution model.
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