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Abstract
In this research, we are interested in predicting the dynamical response of complex structures characterized
by the presence of numerous local elastic modes that appear immediatly in the low-frequency range. Where
the modal analysis method would classically provide a small-dimension basis constituted of global displace-
ments for the construction of a robust and accurate reduced-order model adapted to the case of a low modal
density, it is not the case considered here. Unlike global displacements, the local displacements are very
sensitive to both parameters uncertainties and model uncertainties induced by modeling errors. This paper
presents an original methodology which allows us to separate the admissible displacements space into the
two algebraically independent subspaces of global and local displacements. This global/local separation al-
lows a separated nonparametric probabilistic model of uncertainties to be implemented and thus allows the
variabilities of the global displacements and of the local displacements to be controlled separately.

1 Introduction

In general, the low-frequency range is characterized by the presence of a few well-separated resonances
associated with global elastic modes corresponding to large-wavelength vibrations [1]. In contrast, the high-
frequency regime is characterized by a smooth frequency response associated with a high modal density
constituted of small-wavelength vibrations modes. These local elastic modes are very sensitive to both mod-
elisation errors and system-parameters uncertainties. The medium-frequency band constituted of both global
modes and numerous local elastic modes is thus also very sensitive to uncertainties introduced in the com-
putational model. The modal analysis method [2, 1] then allows the construction of an accurate and robust
small-dimension reduced-order model adapted to the low-frequency range whereas Statistical Energy Anal-
ysis (SEA, see [3, 4]) is adapted to the high-frequency band.
Beyond the first resonances, the model uncertainties associated with the modeling errors, the system-parame-
ters uncertainties, and the manufacturing variabilities make the use of a deterministic model not robust and
thus not sufficiently predictive. The parametric probabilistic approach of uncertainties [5, 6] allows the
system-parameters uncertainties to be addressed. The nonparametric probabilistic approach allows the mod-
eling errors to be taken into account [7]. Both the system-parameters uncertainties and the modeling errors
can be modeled using a generalized approach [8].
In this research, we are interested in predicting the dynamical response of complex structures in a broad fre-
quency band that includes the low-frequency band, and for which their increasingly detailed finite element



models yield an emergence of numerous elastic modes immediately in the low-frequency range, captured
with the modal analysis method. We consider structures made up of a stiff master structure supporting flexi-
ble components, which are responsible for the occurrence of such local elastic modes among the usual global
elastic modes. A recent methodology has been developed [9, 10], which consists in splitting the admissible
displacements space into two independent admissible displacements subspaces defined as the global dis-
placements space and the local displacements space. The introduction of such global and local coordinates
allows us to adapt the model of uncertainties to each type of coordinates. The bases associated with these
two spaces are not constituted of usual elastic modes since the latter cannot always be defined either as global
or as local elastic modes. Indeed, an elastic mode is, in general, a combination of global and local displace-
ments contributions. These unusual bases are constructed solving generalized eigenvalue problems for which
the kinetic energy is modified (kinematics reduction) while the elastic energy is kept exact. More precisely,
such a kinematics reduction associated with the mass matrix allows local elastic modes to be filtered. In
this paper, we present an extension of this methodology consisting in splitting the admissible displacements
space into several admissible displacements subspaces that correspond to the different spatial scales of the
structure. This way, the model of uncertainties can then be adapted to each scale.
The theoretical dethronements relative to this multiple separation are presented considering three spatial
scales denoted as L, M, and H, respectively associated with the low-frequency (LF), medium-frequency
(MF), and high-frequency (HF) bands. A numerical application is then presented for a heterogeneous thin
plate constituted of three structural scales.

2 Nominal computational dynamical model

We are interested in predicting, within the frequency band of analysis B = [ωmin, ωmax], the dynamical
response of a tridimensional linear damped structure occupying a bounded domain Ω , fixed on a part of its
boundary and subjected to external loads on the other part. The nominal computational dynamical model
is constructed using the finite element method [11, 12]. For all ω in B, the complex vector U(ω) of the m
degrees of freedom is the solution of the following matrix equation,

(−ω2 [M] + iω [D] + [K])U(ω) = F(ω) , (1)

where [M], [D], and [K] are the symmetric positive-definite (m × m) real mass, damping and stiffness
matrices, and where F(ω) is the complex vector associated with the external forces.

3 Modal analysis method

As it is well known [1, 2], the eigenfrequencies ωα and the associated elastic modes ϕα in R
m are obtained

solving the generalized eigenvalue problem associated with the conservative dynamical system,

[K]ϕα = λα [M]ϕα , (2)

where the real eigenvalues λα = ω2
α are such that 0 < λ1 ≤ λ2 ≤ . . . ≤ λm . The elastic modes form

a vector basis of Rm, and the modal analysis method consists in approximating vector U(ω) ∈ C
m in the

subspace spanned by the first n elastic modes ( n � m ), such that

∀ω ∈ B, U(ω) � Un(ω) =

n∑
α=1

qα(ω)ϕα = [Φ] q(ω) , (3)

where [Φ] = [ϕ1 . . .ϕn] is the (m× n) real matrix constituted of the first n elastic modes (associated with
the n smallest eigenvalues), and where the complex vector q(ω) in C

n of the generalized coordinates is
obtained solving, for all ω in B,

(−ω2[M ] + iω[D] + [K])q(ω) = F(ω) , (4)



where [M ] = [Φ]T [M] [Φ] , [D] = [Φ]T [D] [Φ], and [K] = [Φ]T [K] [Φ] are the symmetric positive-definite
(n × n) real generalized mass, damping and stiffness matrices, and where F(ω) = [Φ]T F(ω) is the gen-
eralized force. The modal contributions of elastic modes associated with higher eigenfrequencies are thus
neglected.

4 Frequency-multiscale decomposition of the admissible
displacements space

4.1 Kinematics decomposition for the kinetic energy

Let H1
r be a subspace of Rm of dimension d1r and let, for U in R

m, the vector Ur
1 be the orthogonal projection

of U on H
1
r with respect to the M-inner product defined as 〈v,w〉

M
= wT [M]v, for v and w in R

m . The
projection matrix [Hr

1 ] of rank d1r is such that Ur
1 = [Hr

1 ]U . The residual Uc
1 = U − U

r
1 , verifying the

orthogonality property (Uc
1)

T [M]Ur
1 = 0, belongs to the complementary space denoted H

1
c , image of the

projection matrix [Hc
1] = [Im]− [Hr

1 ] of rank d1c = m− d1r , such that Rm = H
1
r ⊕H

1
c .

Similarly, suppose H
2
r be a subspace of Rm of dimension d2r > d1r verifying H

2
r ⊃ H

1
r and let, for U in

Rm, the vector Ur
2 be the orthogonal projection of U on H2

r with respect to the M-inner product. The pro-
jection matrix [Hr

2 ] of rank d2r is such that Ur
2 = [Hr

2 ]U and the residual Uc
2 = U − U

r
2 belongs to the

complementary space denoted H
2
c , image of the projection matrix [Hc

2] = [Im]− [Hr
2 ] of rank d2c = m−d2r ,

such that Rm = H
2
r ⊕H

2
c .

We now introduce the three subspaces HL , HM , and HH of Rm , associated with the three spatial scales
L, M, and H for which we aim to separate the displacements. Let HL be such that HL = H

1
r , HH be

such that HH = H
2
c , and HM be such that HM = H

2
r ∩ H

1
c . As a consequence, space HL is the image

of the projection matrix [HL] = [Hr
1 ] of rank dL = d1r , space HH is the image of the projection matrix

[HH] = [Hc
2] of rank dH = d2c , and space HM is the image of the projection matrix [HM] = [Hr

2 ] − [Hr
1 ]

of rank dM = d2r − d1r . It can be shown that these subspaces are independant and that their union is Rm , i.e.

R
m = HL ⊕HM ⊕HH . (5)

This decomposition will be used to restrict the displacement-vectors space for the kinetic energy to appro-
priate subspaces such that the displacements be spatially filtered for each scale.

4.2 Decomposition of the admissible displacements space and construction of the
associated vector bases

Let S be L, M, or H. The generalized eigenvalue problem associated with the conservative S-scale dynam-
ical system is defined as

[K]ϕS
β = λS

β [M
S ]ϕS

β , (6)

where the positive-semidefinite matrix [MS ] of rank dS is the S-scale modified mass matrix, for which the
associated kinetic energy is built upon displacements vectors that are restricted to the S-scale displacements
space HS , and which is constructed as

[MS ] = [HS ]T [M][HS ] , (7)

such that the dS S-scale real eigenvectors
{
ϕS

β , β = 1, . . . , dS
}

associated with the dS finite positive eigen-

values 0 < λS1 ≤ λS
2 ≤ . . . ≤ λS

dS allow the S-scale admissible displacements space, VS , to be spanned.



We denote as [ΦS ] the (m × nS) real matrix constituted of the first nS S-scale eigenvectors such that
[ΦS ] = [ϕS

1 . . .ϕS
nS ] with nS ≤ dS . The S-scale elastic modes ψS are then defined as

ψS = [ΦS ]ψ̃
S
, (8)

where the generalized S-scale elastic modes ψ̃
S

are the solutions of the generalized eigenvalue problem

[KSS ]ψ̃
S
= μS [MSS ]ψ̃

S
, (9)

in which [KSS ] = [ΦS ]T [K][ΦS ] and [MSS ] = [ΦS ]T [M][ΦS ] are symmetric positive-definite (nS × nS)
real matrices. The S-scale eigenfrequencies ωS are such that ωS =

√
μS and the S-scale elastic modes ψS

are obtained using Eq. (8). The (m × nS) real matrix [ΨS ] constituted of the nS S-scale elastic modes is

such that [ΨS ] = [ψS
1 . . .ψS

nS ] and is a vector basis of a subspace V
(nS)
S of VS .

The construction of the L-, M-, and H-scale displacements spaces HL, HM, and HH defined in Section 4.1
assures the L-, M-, and H-scale admissible displacements spaces VL , VM , and VH to be such that

R
m = VL ⊕ VM ⊕ VH . (10)

5 Reduced-order models

5.1 Nominal reduced-order model

Let [Ψ] = [ΨL ΨM ΨH] be the (m× nt) real matrix constituted of the L-, M-, and H-scale elastic modes,
with nt = nL + nM + nH . For all ω in B, the generalized coordinates q(ω) in C

nt associated with the
nominal reduced-order model are the solutions of the following matrix equation,

(−ω2[M ] + iω[D] + [K])q (ω) = F (ω) , (11)

where [M ] = [Ψ]T [M][Ψ] , [D] = [Ψ]T [D][Ψ] and [K] = [Ψ]T [K][Ψ] are the symmetric positive-definite
(nt×nt) real generalized mass, damping and stiffness matrices, and where F(ω) = [Ψ]TF(ω) is the general-
ized force. For all ω in B, the approximation UnL,nM,nH(ω) of U(ω) at order (nL, nM, nH) with nL ≤ dL ,
nM ≤ dM, and nH ≤ dH is then such that

U(ω) � UnL,nM,nH(ω) =

nt∑
β=1

qβ(ω)ψβ = [Ψ]q(ω) , (12)

in which ψβ is the β-th column of matrix [Ψ].

5.2 Stochastic reduced-order model

The nonparametric probabilistic approach [7] is used for modeling the uncertainties introduced in the reduced-
order computational model, which are due to modeling errors, system-parameters uncertainties, and manu-
facturing variabilities.
In this section, letter A is used for M , D, or K .

5.2.1 Scale-independent probabilistic model of uncertainties

In the nonparametric probabilistic approach of uncertainties, matrix [A] is replaced by a random matrix [A]
for which the probability distribution has been constructed [7] using the Maximum Entropy Principle [13, 14]
with the following available information:



• Matrix [A] is with values in the set of all the symmetric positive-definite (nt × nt) real matrices.

• E{[A]} = [A] , where E is the mathematical expectation (which means that the mean value is chosen
as the value of the nominal model).

• E{||[A]−1||2F } < +∞ , where ||.||F denotes the Frobenius norm.

As a result, matrix [A] is written as [A] = [L(δA) LA]
T
[L(δA) LA], in which [LA] is the upper triangular

matrix given by the Cholesky factorization of [A] such that [A] = [LA]
T [LA] , and where [L(δA)] is a random

upper triangular (nt × nt) real matrix defined in [7], and where δA is the hyperparameter defined by

δA =
E{||[A] − [A]||2F }

||[A]||2F
, (13)

which allows the level of uncertainties to be controlled.

5.2.2 Scale-dependent probabilistic model of uncertainties

The decomposition explicited in Section 4.2 of the admissible displacements space into several subspaces,
each one of them corresponding to the admissible displacements space related to a given scale S (L, M, or
H), allows the level of uncertainties to be separately defined for each scale. Let [PS ] be the (nt×nS) matrix
that allows the extraction of the sub-matrix in [A] related to the S-scale basis coordinates. The random matrix
[A] is then defined as

[A] = [LA]
T [LA] , (14)

in which the upper triangular (nt × nt) real random matrix [LA] is such that

[LA] =
[
[PL

A] [PM
A ] [PH

A ]
]
, (15)

where the (nt × nS) real random matrices [PS
A] , with S used for L, M, or H, are defined by

[PS
A] = [L(δAS )] [LA] [P

S ] , (16)

with δAS the hyperparameter controlling the level of uncertainties of the S-scale coordinates.

5.2.3 Stochastic reduced-order model

For all ω in B, the random generalized coordinates Q(ω) in C
nt associated with the stochastic reduced-order

model are solved, using the Monte-Carlo simulation method [15],

(−ω2[M] + iω[D] + [K])Q (ω) = F (ω) , (17)

where the symmetric positive-definite real random mass, damping and stiffness matrices [M] , [D], and [K]
are defined by Eq. (14). Then, for all ω in B, the random response UnL,nM,nH(ω) is written as

UnL,nM,nH(ω) =

nt∑
β=1

Qβ(ω)ψβ = [Ψ]Q(ω) , (18)

and allows statistics such as the mean values and the confidence regions to be constructed.



6 Numerical application

6.1 Nominal computational dynamical model

The dynamical system (see Fig. 1) is a heterogenous 0.26 × 0.2m2 plate constituted of a stiff master part
and of 12 flexible panels that each support 4 highly-flexible sub-panels.

Figure 1: Dynamical System

The master structure (or the master frame, see Fig. 1, in red or in medium grey in b&w) is constituted
of isotropic and homogeneous identical plates with width 0.01m or 0.015m (for the plates located at the
edges), with Young modulus 210 × 109 Pa , and with constant thickness 0.001m . Each flexible panel (see
Fig. 1, in light blue or in light grey in b&w) is constituted of isotropic and homogeneous identical plates
with width 0.005m or 0.0075m at the common edges with the master structure, with Young moduli that are
lightly different for each panel and with values around 210×109 Pa , and with different constant thicknesses
around 10−4 m. The highly-flexible sub-panels (see Fig. 1, in dark blue or in dark grey in b&w) are isotropic
and homogeneous square plates with side 0.015m, with Young moduli that are lightly different for each
sub-panel and with values around 210 × 109 Pa , and with different constant thicknesses around 10−5 m.
These small variations are introduced so that the flexible panels and sub-panels vibration modes occur at
distinct eigenfrequencies.

The master structure is modeled with about 14, 500 Kirchhoff plate elements, each flexible panel is modeled
with about 2, 700 Kirchhoff plate elements, and each highly-flexible sub-panel is modeled with 550 Kirchhoff
plate elements, with a total of about 73, 000 elements for the whole structure. As boundary conditions, the
four corner nodes are fixed. The structure has 28, 624 nodes and m = 85, 860 degrees of freedom. The
frequency band of analysis is B = 2π × ]0, 1500] rad/s .

6.2 Reduced-order models

6.2.1 Elastic modes

The elastic modes are computed using Eq. (2). In the frequency band of analysis B , there are 410 elastic
modes. The modal density is plotted in Fig. (2). In low frequency the modal density is low, whereas starting
from around 1000Hz the modal density is high and uniform in frequency.
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Figure 2: Modal density

The flexible panels are responsible for the presence of numerous local elastic modes and the proportion of
global elastic modes rapidly decreases with respect to the frequency. A few elastic-mode shapes are shown
in Fig. 3 and 4 to illustrate what is intended by L-, M-, and H-scale displacements.

Figure 3: First elastic mode (left), 51st elastic mode (right)

The first elastic mode (occuring at f1 = ω1/(2π) = 36Hz) is a global one while the 51st and the 215th
elastic modes are local ones respectively corresponding to displacements of the M and H scales (with
f51 = 390Hz and f215 = 936Hz). The 50th elastic mode presents displacements of all the three scales
(f50 = 380Hz). Most of the elastic modes are, in this same way, constituted of displacements of several
scales.

Figure 4: 215th elastic mode (left), 50th elastic mode (right)



6.2.2 S-scale elastic modes

We aim to construct the three admissible displacements subspaces VL , VM , and VH associated with the
three scales L, M, and H that respectively correspond to the stiff master structure, to the flexible panels, and
to the high-flexible sub-panels. Their construction entirely relies on the definition of the displacements spaces
H

1
r and H

2
r . A first step consists in uniformly partitionning the domain of the structure into 20 subdomains

(these subdomains do not coincide with the different panels, see Fig. 5). Space H
1
r is then defined as the

set of vectors whose translation components vary, in each subdomain, as linear functions (in the present
case, they correspond to rigid body displacements) whereas their rotation components are set to zero. This
reduced kinematics for each subdomain allows the filtering of small-wavelength displacements associated
with the panels and sub-panels (M and H scales) to be performed. Similarly, space H

2
r is constructed such

that the displacements associated with the sub-panels only (scale H) are filtered. It is then defined as the set
of vectors whose translation components vary, in each subdomain, as polynomials of degree 3 whereas their
rotation components are set to zero. This more precise kinematics (H2

r ⊃ H
1
r) is such that displacements of

scale M are preserved while those of scale H are still filtered. For spaces H
1
r and H

2
r , the degrees of the

polynomials are defined such that they roughly satisfy these conditions.

Figure 5: Subdomains

The projection matrices [HL] , [HM] , and [HH] of ranks dL = 60 , dM = 200 − 60 , and dH = m − 200
are constructed accordingly to the subspaces HL = H

1
r , HM = H

2
r ∩ H

1
c , and HH = H

2
c of Rm and allow

the three modified generalized eigenvalue problems defined in Eq. 6 to be constructed. The L-, M-, and
H-scale elastic modes are obtained using Eq. (8) and respectively belong to the subspaces V

(nL)
L , V(nM)

M ,

and V
(nH)
H with nL = 60 ≤ dL , nM = 125 ≤ dM , and nH = 454 ≤ dH. In frequency band of analysis B,

there are 60 L-scale elastic modes, 113 M-scale elastic modes, and 367 H-scale elastic modes. The modal
densities of such S-scale elastic modes are plotted in Fig. 6.
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Figure 6: Modal densities: L-scale elastic modes (blue or dark grey in b&w), M-scale elastic modes (green
or light grey in b&w), and H-scale elastic modes (red or grey in b&w) .



6.2.3 Frequency response functions

For all ω in B , the structure is subjected to an external point load of 1N (following the normal direction)
located in the master structure at the black-marked node depicted in Fig. 1. The generalized damping matrices
are constructed using a modal damping model associated with a damping rate ξ(ω) = ξ0 ω

−α where ξ0 and
α are such that ξ(ω1) = 0.04 and ξ(ω500) = 0.01 with f1 = ω1/(2π) = 36Hz and f500 = ω500/(2π) =
1721Hz. The modulus in log-scale and the unwrapped phase angle of the normal displacement of the
observation node (located in the master structure at the white-marked point depicted in Fig. 1), are calculated
using the reduced-order model (ROM) constructed with the elastic-modes projection basis with convergence
reached in B (n = 500), and are plotted in Fig. 7 and 8.
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Figure 7: Modulus in log-scale using the ROM (converged, with n = 500)
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Figure 8: Phase angle using the ROM (converged, with n = 500)

The analysis of the modulus and of the phase (see Fig. 7 and 8) joined to the analysis of the modal density
(see Fig. 2) lead us to define the three frequency bands as ]0, 200]Hz for LF, ]200, 1000]Hz for MF, and
]1000, 1500]Hz for HF.

Nominal reduced-order models For the different approximations UnL,nM,nH(ω) with { nL = 60, nM =
0, nH = 0 } (L-scale ROM), { nL = 0, nM = 125, nH = 0 } (M-scale ROM), and { nL = 0, nM = 0,
nH = 454 } (H-scale ROM) , the deterministic responses obtained from the nominal reduced-order models
defined in Section 5.1 are plotted in Fig. 9.
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Figure 9: Modulus in log-scale using the ROM (converged reference, n = 500), solid thick line; using the
L-scale ROM (nL = 60), solid thin line; using the M-scale ROM (nM = 125), mixed thin line; using the
H-scale ROM (nH = 454), dashed thin line.

The L-scale ROM is accurate in the low-frequency band but rapidly loses fidelity thereafter. There is a
large difference in the high-frequency band. The M- and H-scales ROM are not accurate anywhere in the
frequency band since the response is never solely driven by one of these two scales.

The deterministic responses associated with the nominal reduced-order models defined in Section 5.1 for the
different approximations UnL,nM,nH(ω) with { nL = 60, nM = 0, nH = 0 } (L-scale ROM), { nL = 60,
nM = 125, nH = 0 } (L ∪M-scales ROM), and { nL = 60, nM = 125, nH = 454 } (L ∪M∪H-scales
ROM) are plotted in Fig. 10.

Figure 10: Modulus in log-scale using the ROM (converged reference, n = 500), solid thick line; using the
L-scale ROM (nL = 60), solid thin line; using the L ∪M-scales ROM (nL + nM = 185), mixed thin line;
using the L ∪M∪H-scales ROM (nL + nM + nH = 639), dashed thin line.

The response obtained using the L ∪M ∪H-scales ROM is superimposed on the reference. The response
obtained using the L∪M-scales ROM is superimposed on the reference up to 500Hz but progressively loses
accuracy in higher frequencies. It should be noted that the reference (exact) response associated with the
ROM does not take into account the fluctuations due to the real system variabilities and due to uncertainties
in the computational model. It can be seen that, the prediction given by the L ∪ M-scales ROM is good
enough in all the frequency band with respect to the prediction given by the ROM.

Stochastic reduced-order models The random responses UnL,nM,nH(ω) with nL = 60, nM = 125,
and nH = 454 obtained from the stochastic reduced-order models defined in Section 5.2.3 using 1000
realizations of the Monte-Carlo simulation method, and constructed using different combinations for the
values of the hyperparameters are plotted: in Fig. 11 for the first combination (SROM1), in Fig. 12 for
the second combination (SROM2), and in Fig. 13 for the third combination (SROM3). The confidence
regions correspond to a probability level Pc = 0.95. The three different combinations for the values of the
hyperparameters are the following:



• δML = δKL = 0.2, δMM = δKM = 0, δMH = δKH = 0, and δDL = δDM = δDH = 0.

• δML = δKL = 0, δMM = δKM = 0.2, δMH = δKH = 0, and δDL = δDM = δDH = 0.

• δML = δKL = 0, δMM = δKM = 0, δMH = δKH = 0.2, and δDL = δDM = δDH = 0.
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Figure 11: Random frequency response in log-scale using SROM1: upper and lower bounds of the confidence
region, solid lines; mean response, dashed line.
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Figure 12: Random frequency response in log-scale using SROM2: upper and lower bounds of the confidence
region, solid lines; mean response, dashed line.
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Figure 13: Random frequency response in log-scale using SROM3: upper and lower bounds of the confidence
region, solid lines; mean response, dashed line.

In Fig. 11, it can be seen that the level of uncertainties, which is confered to the L-scale, results in a dispersion
for the global level of the response while its fluctuations remain with respect to the frequency. In contrast,
Fig. 13 shows that the frequency fluctuations of the random response obtained using SROM3, for which
uncertainties are taken into account only for the H-scale, are diminished, especially in the high-frequency



band. Moreover, compared to the random response obtained using SROM1, the widths of the confidence
regions obtained using SROM2 and SROM3 are larger in the MF and HF bands, while it is not the case in
the LF band.

7 Conclusions

In this paper, we have presented a general methodology, for constructing a frequency-multiscale represen-
tation of the admissible displacements space in the framework of computational structural dynamics. Such
a representation allows us to construct an adapted nonparametric probabilistic model of uncertainties for
each frequency-scale (LF, MF, and HF). The methodology proposed has been validated on a simple structure
which is representative of complex structures exhibiting LF, MF, and HF behaviors. The validation on a
complex industrial structure is in progress.
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