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Abstract

This paper deals with the dynamical analysis of a mistunédstrial rotating integrally bladed disk, for
which the operating regime under consideration takes ictownt the nonlinear geometrical effects induced
by large displacements and deformations. First, a dedicatan nonlinear reduced-order model of the tuned
structure is explicitly constructed using the finite elete@thod. The random nature of the mistuning is
then modeled by using the nonparametric probabilistic @gugir extended to the nonlinear geometric context.
The capability of the methodology to be applied to realigtatustrial models is demonstrated through the
paper. The dynamic analysis of the random response is thefucted in the frequency domain in order to
quantify the impact of the nonlinear geometrical effectsh@mistuned structure.

1 Introduction

In general, the natural cyclic symmetry of turbomachindadbd disks is broken because of manufacturing
tolerances and material dispersions, which create smattians from one blade to another one. Such
phenomena, referred to mistuning, can generate localizatifects combined to a dynamic amplification

of the forced response [1]. Many research efforts have bagied out on this subject, including reduced-
order models with probabilistic approaches in the numenuadeling, for taking into account the random

character of mistuning [2, 6, 3] and giving rise to stratedier the robust design of such structures [4,
5]. Another essential aspect is to consider the geomdtrinahlinear effects in the computational models
occurring when exceptional operating speeds of bladed disk analyzed due to geometric nonlinearities
induced by large deformations and large displacements][BW&h situation is realistic when considering a
flutter kind phenomenon induced by unsteady aerodynamiglioguand yielding low damping levels. Since

the unsteady aerodynamic coupling is not considered inpger, the nonlinear domain is simulated by
increasing the magnitude of the external load, while petfog forced response calculations.

The present paper proposes a methodology adapted to gepnwetinear analysis of mistuned bladed disks
combined with an industrial realistic application. Thetfpart is devoted to the development of an adapted
nonlinear reduced-order computational model for the twstadtture, referred as the mean NL-ROM. It is
explicitly constructed in the context of three-dimensiosalid finite elements [9] by using an appropri-
ate projection basis [10] obtained here by a linear tunedrne@ue analysis. Once the mean NL-ROM is
established, mistuning is taken into account by implenngntincertainties through the nonparametric prob-
abilistic framework [11, 12].
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The paper is organized as follows. Section 2 describes thegtational methodology and the computational
aspects allowing the nonlinear dynamic analysis of mistunéating bladed-disks to be performed. Section
3 is devoted to the application, consisting of a finite-eletrraodel of an industrial integrated bladed disk
with about 2, 000, 000 dof. The geometrically nonlinear @ffeare analyzed and quantified through the
dynamic analysis of the magnification factor in both tuned @istuned cases.

2 Methodology

This Section is devoted to the construction of a methodofogyhe nonlinear mistuning analysis occurring

in rotating bladed-disks structures. In the present rebe#ine bladed-disks under consideration are assumed
(1) to be made up of a linear elastic material and (2) to uralngie displacements and large deformations
inducing geometrical nonlinearities.

Nonlinear dynamics of a tuned bladed-disk

The tuned bladed-disk structure hasMrorder cyclic symmetry. Thus, the geometrical domain, tiademal
constitutive equation and the boundary conditions rel&tethe generating sector are invariant under the
27 /N rotation around its axis of symmetry. Moreover, the bladisét dndergoes a rotational motion around
the axis of symmetry with constant angular sp@ed total Lagrangian formulation is chosen, which means
that the dynamical equations are expressed in the rotatingef of an equilibrium configuration considered
as a prestressed static configuration.

The mean (or nominal) computational model of the tuned hlatisk, which is constructed by the finite
element method (FEM) is written as

[M]u+ (@] +[D])u+ [K@u+ ) = 1)
[K(Q)] = [Ke] + [Ky] + [K(Q)] ,

in which theR"-vectorf corresponds to the finite element discretization of theraateforce fields, which
are derived from the Lagrangian transport into the refaremmfiguration of the physical body/surface force
fields applied in the deformed configuration. The externatilean represent, for instance, the unsteady
pressures applied to the blades. In Eq. (1) Rherectoru corresponds to the finite element discretization of
the unknown displacement field expressed with respect teetheence configuration. In Eq. (1), the matrices
[M ], [D], [K,] and[K.] are the mass, damping, geometrical stiffness and elastiess real matrices with
positive definiteness property. The rotational effectstaken into account through the gyroscopic coupling
matrix [C'(2)] and the centrifugal stiffness matrj%’.(2)], with antisymmetry property and with negative
definiteness property respectively. It should be noted &athese matrices are als§-block circulant
matrices since the structure has &nRorder cyclic symmetry. The geometrical nonlinearitiefees are
taken into account through tH&'-vectorfV*(u) which includes both quadratic and cubic stiffness terms.
Furthermore, the centrifugal effects are assumed to becurfiy small so that the linear stiffness matrix
[K ()] is positive definite, yielding only stable dynamical syssetimbe considered.

In the present case, the presence of the geometric nortineaturally yields the nonlinear equations to be
solved in the time domain, the frequency content of the neali response beirgposterioripost-analyzed
by Fourier transform. The external load is defined in the titomain corresponding to a uniform sweep of
a chosen frequency band of excitation. Bet= —B, U B, be the frequency band of excitation with central
frequencysA w and bandwidthAw defined byB; = [(s — 1/2)Aw, (s + 1/2)Aw]. The external load is
written as

f(t) = fog(t)a )
in which f; is a coefficient characterizing the global load intensihg herea is anR™-vector correspond-
ing to the spatial discretization of the load. In Eq. (2), fiimection g(¢) is chosen as



Aw | tAw
g(t) = TSchﬂ(?) cos(s Awt) (3)

wherex — sinc,(z) is the function defined byinc,(x) = sin(mx)/(7 x). It should be noted that all the
frequencies of the frequency band of excitation are simatiasly excited so that only one nonlinear time-
domain analysis is carried out. With such time-domain eticih, a forced-response problem is considered
and not a time evolution problem with initial conditions. erbonsidered forced-response problem is thus
approximated by an equivalent time-evolution problem wéto initial conditions over a finite time interval,
which includes almost all of the signal energy of the exittat The use of the cyclic symmetry property
by decomposing the nonlinear response according to itsdrdacncomponents is not considered because all
the harmonic components are coupled through the geometniinearity, and does not allow the problem
on a single generator sector to be solved. Moreover, thedatiputation of the nonlinear solution of Eq. (1)
induces a large computational effort, when dealing withiséa models of bladed-disks corresponding to
a large number of DOF. Consequently, for large computatioraels, a reduced-order model strategy is
used, and is adapted to the geometric nonlinear contextr wodsideration (see [13, 14, 9] and [10] for a
complete overview). Let a given vector basis be represdnydtie (n x P) real matrix[®]. The nonlinear
response is expanded as

u=[®q , (4)

in which q is theR” -vector of the generalized coordinates. Replacing Eqni)Eq. (1) yields a nonlinear
reduced set of? coupled differential equations for which all linear, quatitr and cubic terms have to be
known. Inthe present research, the construction of theabgerof such mean nonlinear reduced-order model
(mean NL-ROM) is explicitly carried out in the context of ttieee-dimensional finite element method. Itis
assumed that the finite elements are isoparametric soltd gfements witt8 nodes, and using a numerical
integration with8 Gauss integration points. The elementary internal forcepted on the chosen vector
basis are numerically constructed for each finite elemeiarégerforming its assembly and computing all
linear and nonlinear reduced operators. The detailed guweewhich also uses the symmetry properties of
the linear and nonlinear reduced operators combined wéthilolited computations, can be found in [14]. It
should be noted that each type of reduced operator is sefyamabdeled, keeping open the possibility of
implementing uncertainties issued from independent ghysources.

Nonlinear analysis of a mistuned bladed-disk

The random nature of the mistuning is then considered byemphting the nonparametric probabilistic
approach, which presents the ability to include both théesygparameter uncertainties and the model un-
certainties induced by modeling errors (see [11] for a cetepleview on the subject). It consists in replacing
the operators of the mean NL-ROM by random operators, whasggapility distribution is derived from the
maximum entropy principle.

Let [A] be a(@ x Q) matrix issued from the mean NL-ROM. The corresponding ramaoatrix [.A] is
then written ag.A] = [Ua] [La]” [Ga][La], where[G4] is a(Q x Q) random positive-definite matrix
whose probability model is issued from the MaxEnt princifi2]. When|A] is a mean reduced operator
with positive-definite property, representing either thass) damping, geometrical stiffness or the opposite
of the centrifugal stiffness, we hav@ = P. When[A] is the mean reduced positive-definite operator
issued from the reshaping of the linear elastic, quadratit @ubic stiffness as shown in [15], we have
@ = P(P +1). For these cases tti€) x @) matrix [L 4] is issued from the Cholesky factorization [of]
and matrix[U 4] is the (Q x Q) identity matrix. When[4] is a mean reduced operator with antisymmetry
property such that the gyroscopic coupling matrix, the foesr{U 4] and [L 4] are the(P x P) matrices
defined by{L 4] = [Sa]'/? [Ba]" and[U4] = [A][Ba][Sa] [Ba]”, in which the(P x P) full and diagonal
matrice§ B 4] and[S4] are issued from the single value decomposition (SVD) ofajoef.4]. The dispersion

of each random operator is then characterized by one scgtargarameter. Consequently, the mistuning



level of the bladed-disk is entirely controlled by tR&-vectors = (&x7,0p,dc, K, 0K.,0xK), belonging
to an admissible set.

Numerical computations

The solution of the stochastic NL-ROM is calculated using Monte Carlo numerical simulation. For each
realization, a set o nonlinear coupled differential equations is considered swived with the Newmark
method, for which the averaging acceleration scheme, krtowre unconditionally stable is used. With
this solver, a set of nonlinear equations whose solutioreisoted by thek”-vectorg has to be solved at
each sampling time. Such computation is mainly addressdtebfixed point method because the iterative
scheme does not require the evaluation of the tangentifidests matrix. Nevertheless, when the algorithm
does not converge, it is replaced by the Crisfield arc-lemgéthod [16]. Such algorithm introduces an
additional scalar unknowp that multiplies the right-hand side member of the nonlinequation. It is
solved step by step, each incremental step being chamadeby a given arc length. For a given step,
an iterative scheme requiring one evaluation of the tanmgestiffness matrix allows a solutiofy, p) to be
computed. An adaptive arc length, depending on the numbtarafions necessary to obtain the convergence
of the preceding increment is also implemented. Furtheengince parametegrhas to be controlled to be
equal tol, the state of the algorithm corresponding to the precedisgement has to be stored. Even if
the procedure is time consuming, its main advantage cosdesrcapability of capturing high-nonlinear
mechanical behaviors.

3 Application to an industrial bladed-disk

Nonlinear deterministic analysis
Description of the external load

The structure under consideration in an industrial turge@metry belonging to the class of integrated bladed
disks. Due to proprietary reasons, the numesf blades characterizing the order of the cyclic symmetry of
the structure is not given. The finite element model of thecstire is constructed with solid finite elements
and is constituted of abo@td00 000 degrees of freedom. Fig. 1 displays a part of the finite elémash of
the investigated bladed disk. The structure is in rotatimuiad its revolution axis with a constant velocity
Q = 30,750rpm. Since the dynamic analysis is carried out in the rotatiaghf of the structure, the rigid
body motion due to the rotation of the structure correspdodsfixed boundary condition at the inner radius
of the structure. The bladed disk is made up of a homogensou®pic material. An hysteretic damping
model is added for the bladed disk.

Figure 1: Finite element mesh of a part of the structure



The cyclic symmetry is first used for constructing the redupetrices of the mean linear reduced-order
model (mean L-ROM). The linear generalized eigenvalue Iprolrelated to the tuned bladed-disk is then
solved using this cyclic symmetry property [18, 19]. Lgtoe the first eigenfrequency. Figure 2 displays the
dimensionless eigenfrequencigg of the tuned structure with respect to the circumferentaewnumber

n. The graph is truncated to = 5 because &th engine-order excitation is presently considered around a
veering corresponding to the dimensionless frequencyatian bandB, = [1.78, 2.34] .
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Figure 3: Representation of the external load in the timealorand in the frequency domain: graph of
t/to — g(t) (upper graph) and /vy — g(27v) (lower graph) foB, = [1.78, 2.34] .

Such excitation band of analysis is chosen through the tiomeaih functiong(t¢) according to Eq. (2) such
thats = 4 and Aw/(271p) = 0.5086. The spatial distribution of the load is only concerned witint
excitations located at the tip of each blade along the axiattion. Concerning the numerical sampling,
the initial instant of integratiort;,,; and the total time duratioff’ are chosen according to [17] such that
votini = —11.79 (corresponding to a zero value of functigiit)) andvyT = 184. Figure 3 shows
the graphsyt — g¢(t) andv/vy — §(27v). It should be noted that when only the tuned linear case is
considered, there are only contributions on the th circumferential wave number. The external load is
fixed with f = 2.5 N, which corresponds to an high rate of geometrical nonliteaBuch high loading
can be interpreted as equivalent to a situation for whictddmaping of the bladed disk structure would reach



very small values. Such extreme situations are realistienndpproaching flutter regimes. The frequency
band of analysis is a broad frequency band correspondingetdimensionless frequency band of analysis
B = [0, 3.34]. The Shannon theorem is carried out with a higher sampleuémey v. /vy = 11.12,
yielding the number; of time steps to be, = 4,096. The frequency resolution is then/vy, = 0.0054.

Let g(27v) be the Fourier transform of functigy(¢). Figure 3 shows the graphgt, — ¢(t) andv /vy —
g(2mv).

Nonlinear tuned analysis

Concerning the choice of the vector basis for the constrnaif the mean NL-ROM, the nonlinear equations
are solved in the subspace spanned by the usual linear asititated of theP modal shapes related
to the first increasing natural eigenfrequencies, accgrttin[14]. A convergence analysis is carried out
by increasing the siz& of the reduced-order model. It can be shown tRat= 65 yields a reasonable
convergence. From now on, the converged solution correipgro the observation issued from the mean
NL-ROM is denoted byi(¢). For clarity, when confusion is possible, superscriptand N L will be added
for distinguishing the linear case from the geometric nadr one.

Displacement (mm)
o

-20 0 20 40 60 80 100 120 140
Dimensionless time

-20 0 20 40 60 80 100 120 140
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Displacement (mm)
o

Figure 4: Time domain observatiafit, — v(t) related to the linear (upper graph) and the nonlinear (lower
graph) cases fds, = [1.78, 2.34].

Being interested in the blade yielding the highest vibraamplitude, letjy, = arg max; (maxt ﬂf’L(t))
The observation(t) corresponding to the selected blade out-plane displades@efined by (t) = w;, (t).
Figure 4 displays the graphito — v (t) (upper graph) and)/t, — vV (t) (lower graph). On these graphs,
significant level of geometrical nonlinear effect can beastasd. On this figure, it is seen that the geometric
nonlinearities induce a blade stiffening characterized bgduction of the vibration amplitudes of the blades
from 2mm until 1 mm with respect to the linear case. This stiffening is also ciosd with a strong
irregularity of the blade response shape over time, whidwshan enrichment of the frequency content,
which has to be quantified.

Letky = arg max; (max,,, g ﬁ’;-VL(%w)) for which ﬁ’;vL(%w) is the Fourier transform ai}”(t). In

the frequency domain, the observatiofi27) corresponding to the selected blade out-plane displademen
is defined byw(27v) = ﬁko (27v). Figures 5 displays the grapbgv, — w’(27v) (upper graph) and
v/vg — wNl(27v) (lower graph). As expected, it can be seen that the frequenistent of the blade re-
sponse issued from the linear NL-ROM coincides viith The coupling issued from the strong nonlinear
geometric effects is characterized through secondarpnssppeaks, whose frequency content enlarges with
increasing load rate. It should be noted that there alsd leigjeer frequencies excited through this nonlinear-
ity which are of less importance in the chosen band of araB/shs observed on the graphs, the amplitude
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Figure 5: Frequency domain observatiofv, — w(27v) related to the linear (upper graph) and the nonlin-
ear (lower graph) cases fBg = [1.78, 2.34].

levels from linear and nonlinear cases differ by a factorbmfia 3.5 for the main resonance. Concerning the
nonlinear case, the secondary resonances occurring iowe frequency range are in the same order of
magnitude as the main resonance.

Nonlinear analysis of the mistuned bladed disk

In the present case, the mean NL-ROM is constructed by moddysis without substructuring techniques.

Thus, the uncertainties are not considered as indepenaentdne blade to another one, which is coherent
with the structure under consideration belonging to the<laf integrated bladed disks, which are manu-
factured from a unique solid piece of material. In the preseralysis, for a better understanding of the
phenomenon, only the nonlinear part of the operators arsidered to be deterministic. The mistuning level

is thus controlled by th&>-vectors = (Jur,9p, ¢, Ok, , Oxc).

Sensitivity analysis according to the type of uncertainties

The mistuning analysis is carried out in the frequency dom@quiring a Fourier transform of the obser-
vation. First, a sensitivity analysis is conducted in orteidentify the dispersion parameters yielding the
most significant effects on the mistuned response reprex$diyt the random variabl@” (27) similar to
observationw(27v) in the tuned case. As expected for the linear mistuned casan ibe observed that an
uncertainty level of.1 for the gyroscopic coupling, or/and the centrifugal stffs or/and the dissipation
terms, has a very limited impact on the mistuned linear nespoThus, the mistuned linear response can be
reasonably considered only sensitive to mass and elafitress uncertainties.

Nevertheless, as shown in Figures 6 and 8, correspondihg tmhfidence region of observatidng"  (27v/)
andWE(2zv) with a probability level set t0.95, the nonlinear mistuned behavior is shown to be substan-
tially different. On one side, the nonlinear mistuned resgobehaves almost like its tuned counterpart for the
frequency band of analysis corresponding to the frequenod lof excitation. On the other side, the uncer-
tainties spread throughout the geometrical nonlinearitielding large confidence regions for the nonlinear
mistuned response B\B., more particularly in the dimensionless subfrequency edhg= [1, 1.2].

In Figure 6, corresponding to the case of uncertain gyrasampling, the dynamical analysis i shows
realizations with amplification levels arourddwhereas the mistuned response remains unchanged in the
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Figure 7: Stochastic analysis: frequency domain obsenvatlated to the linear case whégy = 0.1:
mean model (thick line), mean of the stochastic model (thisheéd line), confidence region (gray region).

excitation frequency band. Note that a similar nonlineastamied behavior can be observed for the cases
of uncertain centrifugal stiffness or uncertain dissipati By comparing Figures 7 and 8 corresponding
to the linear and nonlinear cases in presence of mass uintgrta can be seen that the usual mistuning
effects yielding a consequent dynamical amplification far inear mistuned case, are strongly inhibited
in B, for the nonlinear mistuned case yielding amplification Iev&f magnitudel.2. A wide spread of
uncertainties is observed B\B. with amplification levels of magnitud®.5 with respect to subfrequency
bandB,,, = [1, 1.6]. Such amplification levels yield similar response levelntilae nonlinear tuned
response located iB.. Note that a similar behavior is observed for the case ofielasffness uncertainties.
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Nonlinear dynamical analysis of the mistuned response

From now on, the uncertainty level is such that (4,7, dp,dc, k., 0x) = (4,0.2,0.2,0.2,5). A para-
metric analysis according parameters carried out in order to establish a comparison of the mistu
effects between the linear and the nonlinear mistuned c&sedixedv /vy € B, letY (27v) be the random
dynamic observation defined by
W(2
Y (2mv) = (2mv) . (5)

max, /., cp w(27mv)
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Figure 9: Stochastic analysis: frequency domain obsemvati (27v) related to the linear case whép =
oy = 0.02anddéx, = 0c = 0p = 0.2: mean model (thick line), mean of the stochastic model (thin
dashed line), confidence region (gray region).

Figures 9 (or 11) and 10 (or 12) show the confidence regionedfriear and nonlinear observatioYi (27v/)
and YVE(27v) whend = 0.02 (or § = 0.16). Those graphs allows the effects of mass and elastic
uncertainties in presence of uncertainties issued fromatagional effects to be analyzed.
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For frequency bané@., it can be observed that an increase of the mistuning yieldsfarm spread in the
frequency domain around the main resonance, yielding a waalstness with respect to uncertainties. It is
also clearly seen that the linearized assumption tendsctease the extreme values of the response levels.
The geometric nonlinear effects clearly inhibit the amgidifion of the random response. More particularly,
the extreme values related Y0V " (27v) yield moderate amplification even if the confidence regionaia
relatively broad.
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Figure 11: Stochastic analysis: frequency domain observatlated to the linear casg”(27v) when
0k = d0p = 0.16 anddg, = d0c = op = 0.2: mean model (thick line), mean of the stochastic model
(thin dashed line), confidence region (gray region).

For frequency band,,,;, which is highly sensitive to uncertainties, it is seen #maincreasing of the mass
and elastic uncertainty level yield a small spread arouad#tondary resonance accompanied by a moderate
inhibition of the response level. In summary, the geometadnlinear effects seem to mainly act on the un-
certainty propagation by spreading the response on theadtaold of analysis without drastically amplifying
the amplitude of the main resonance. The main drastic coeseg of such result mainly concerns the sub-
frequency band,,,;, for which the geometric nonlinearities act as an intringicitation, yielding secondary
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Figure 12: Stochastic analysis: frequency domain observat™ " (27v) related to the nonlinear case when
0k = 6y = 0.16 anddg, = d¢ = ép = 0.2: mean model (thick line), mean of the stochastic model
(thin dashed line), confidence region (gray region).

resonances. The wide spread of uncertainties through @ kEngdwidth give rise to drastic amplifications
with respect to these secondary resonances.

Forv/vg € B, letY,, be the random magnification factor defined¥y = max, g Y (27v). We then
define the second random magnification factgr such that

Z. — Max, /,eB,,; W (2mv) . ©)

Max, /,,ep,,, W(2TV)
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Figure 13: Quantile analysis of magnification factdf with respect to mistuning level with Po €
{0.5, 0.9, 0.95}

Figures 13 displays the graph of the quantilesydf with respect to mistuning raté This latter graph
displays a strong sensitivity of the random magnificatiaridato uncertainties, exhibiting a maximum from
which robustness areas limiting the amplification phenanearan be defined. Figure 13 compares the sim-
ilar graphs obtained with random observatian§’ and Z¥-. Taking into account the geometric nonlinear
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Figure 14: Quantile analysis of magnification factg$” (upper graph) and Y (lower graph) with respect
to mistuning leveb with P € {0.5, 0.9, 0.95}.

effects yield a drastic decrease of such amplification pimeammn, exhibiting also a limited sensitivity to
uncertainties. Nevertheless, a special attention mustives go observationZY”, which points out not
only its complex sensitivity to uncertainties but also haghplification levels, that may lead to unexpected
amplifications of resonances.

Conclusion

The paper has presented an analysis of the geometricaheanleffects of an uncertain mistuned rotating
industrial integrated bladed disk subjected to a high logdievel. Firs of all, a nonlinear dynamic analysis
of the tuned structure has allowed the effects of the gedenadinlinearities to be characterized in both the
time domain and the frequency domain. The dynamical regpohghe blades has also been investigated
outside the frequency domain of excitation. The linearoesp has its energy concentrated in the frequency
domain of excitation whereas a more complex dynamical titads observed in the nonlinear geometrical
case. It has been seen that the nonlinear response is spireatsale the frequency band of excitation,
yielding secondary resonances with magnitudes compavétiiehe main resonance. A nonlinear analysis
of the mistuned structure has then been proposed. Compattedhe linear mistuned case, the nonlinear
mistuned response predictions yield low vibration ampisi Nevertheless, for a given mistuning rate,
the nonlinear mistuned response predictions are much nobrest to uncertainties in the frequency band
of excitation. One notable result is that the geometricallinearities widely propagate the uncertainties
outside the frequency band of excitation, giving rise toaldr@onfidence regions in the low frequencies.
A complex vibratory situation is observed with the apparitof unexpected secondary resonances, highly
sensitive to uncertainties. Those resonances are noeextitough the loading but through the geometric
nonlinearities.
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