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Abstract
This paper deals with the dynamical analysis of a mistuned industrial rotating integrally bladed disk, for
which the operating regime under consideration takes into account the nonlinear geometrical effects induced
by large displacements and deformations. First, a dedicated mean nonlinear reduced-order model of the tuned
structure is explicitly constructed using the finite element method. The random nature of the mistuning is
then modeled by using the nonparametric probabilistic approach extended to the nonlinear geometric context.
The capability of the methodology to be applied to realisticindustrial models is demonstrated through the
paper. The dynamic analysis of the random response is then conducted in the frequency domain in order to
quantify the impact of the nonlinear geometrical effects onthe mistuned structure.

1 Introduction

In general, the natural cyclic symmetry of turbomachinery bladed disks is broken because of manufacturing
tolerances and material dispersions, which create small variations from one blade to another one. Such
phenomena, referred to mistuning, can generate localization effects combined to a dynamic amplification
of the forced response [1]. Many research efforts have been carried out on this subject, including reduced-
order models with probabilistic approaches in the numerical modeling, for taking into account the random
character of mistuning [2, 6, 3] and giving rise to strategies for the robust design of such structures [4,
5]. Another essential aspect is to consider the geometrically nonlinear effects in the computational models
occurring when exceptional operating speeds of bladed disks are analyzed due to geometric nonlinearities
induced by large deformations and large displacements [7, 8]. Such situation is realistic when considering a
flutter kind phenomenon induced by unsteady aerodynamic coupling and yielding low damping levels. Since
the unsteady aerodynamic coupling is not considered in thispaper, the nonlinear domain is simulated by
increasing the magnitude of the external load, while performing forced response calculations.

The present paper proposes a methodology adapted to geometric nonlinear analysis of mistuned bladed disks
combined with an industrial realistic application. The first part is devoted to the development of an adapted
nonlinear reduced-order computational model for the tunedstructure, referred as the mean NL-ROM. It is
explicitly constructed in the context of three-dimensional solid finite elements [9] by using an appropri-
ate projection basis [10] obtained here by a linear tuned eigenvalue analysis. Once the mean NL-ROM is
established, mistuning is taken into account by implementing uncertainties through the nonparametric prob-
abilistic framework [11, 12].
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The paper is organized as follows. Section 2 describes the computational methodology and the computational
aspects allowing the nonlinear dynamic analysis of mistuned rotating bladed-disks to be performed. Section
3 is devoted to the application, consisting of a finite-element model of an industrial integrated bladed disk
with about 2, 000, 000 dof. The geometrically nonlinear effects are analyzed and quantified through the
dynamic analysis of the magnification factor in both tuned and mistuned cases.

2 Methodology

This Section is devoted to the construction of a methodologyfor the nonlinear mistuning analysis occurring
in rotating bladed-disks structures. In the present research, the bladed-disks under consideration are assumed
(1) to be made up of a linear elastic material and (2) to undergo large displacements and large deformations
inducing geometrical nonlinearities.

Nonlinear dynamics of a tuned bladed-disk

The tuned bladed-disk structure has anN -order cyclic symmetry. Thus, the geometrical domain, the material
constitutive equation and the boundary conditions relatedto the generating sector are invariant under the
2π/N rotation around its axis of symmetry. Moreover, the bladed disk undergoes a rotational motion around
the axis of symmetry with constant angular speedΩ. A total Lagrangian formulation is chosen, which means
that the dynamical equations are expressed in the rotating frame of an equilibrium configuration considered
as a prestressed static configuration.

The mean (or nominal) computational model of the tuned bladed-disk, which is constructed by the finite
element method (FEM) is written as

[M ] ü + ( [C(Ω)] + [D ] ) u̇ + [K(Ω)] u + fNL(u) = f , (1)

[K(Ω)] = [Ke] + [Kg] + [Kc(Ω)] ,

in which theRn-vector f corresponds to the finite element discretization of the external force fields, which
are derived from the Lagrangian transport into the reference configuration of the physical body/surface force
fields applied in the deformed configuration. The external load can represent, for instance, the unsteady
pressures applied to the blades. In Eq. (1), theRn-vectoru corresponds to the finite element discretization of
the unknown displacement field expressed with respect to thereference configuration. In Eq. (1), the matrices
[M ], [D ], [Kg] and[Ke] are the mass, damping, geometrical stiffness and elastic stiffness real matrices with
positive definiteness property. The rotational effects aretaken into account through the gyroscopic coupling
matrix [C(Ω)] and the centrifugal stiffness matrix[Kc(Ω)], with antisymmetry property and with negative
definiteness property respectively. It should be noted thatall these matrices are alsoN -block circulant
matrices since the structure has anN -order cyclic symmetry. The geometrical nonlinearities effects are
taken into account through theRn-vector fNL(u) which includes both quadratic and cubic stiffness terms.
Furthermore, the centrifugal effects are assumed to be sufficiently small so that the linear stiffness matrix
[K(Ω)] is positive definite, yielding only stable dynamical systems to be considered.

In the present case, the presence of the geometric nonlinearity naturally yields the nonlinear equations to be
solved in the time domain, the frequency content of the nonlinear response beinga posterioripost-analyzed
by Fourier transform. The external load is defined in the timedomain corresponding to a uniform sweep of
a chosen frequency band of excitation. LetB̃s = −Bs ∪ Bs be the frequency band of excitation with central
frequencys∆ω and bandwidth∆ω defined byBs = [(s − 1/2)∆ω, (s + 1/2)∆ω]. The external load is
written as

f(t) = f0 g(t)a , (2)

in whichf0 is a coefficient characterizing the global load intensity, and wherea is anRn-vector correspond-
ing to the spatial discretization of the load. In Eq. (2), thefunctiong(t) is chosen as



g(t) =
∆ω

π
sincπ(

t∆ω

2π
) cos(s∆ω t) , (3)

wherex 7→ sincπ(x) is the function defined bysincπ(x) = sin(π x)/(π x). It should be noted that all the
frequencies of the frequency band of excitation are simultaneously excited so that only one nonlinear time-
domain analysis is carried out. With such time-domain excitation, a forced-response problem is considered
and not a time evolution problem with initial conditions. The considered forced-response problem is thus
approximated by an equivalent time-evolution problem withzero initial conditions over a finite time interval,
which includes almost all of the signal energy of the excitation. The use of the cyclic symmetry property
by decomposing the nonlinear response according to its harmonic components is not considered because all
the harmonic components are coupled through the geometric nonlinearity, and does not allow the problem
on a single generator sector to be solved. Moreover, the fullcomputation of the nonlinear solution of Eq. (1)
induces a large computational effort, when dealing with realistic models of bladed-disks corresponding to
a large number of DOF. Consequently, for large computational models, a reduced-order model strategy is
used, and is adapted to the geometric nonlinear context under consideration (see [13, 14, 9] and [10] for a
complete overview). Let a given vector basis be representedby the(n × P ) real matrix[Φ]. The nonlinear
responseu is expanded as

u = [Φ] q , (4)

in which q is theRP -vector of the generalized coordinates. Replacing Eq. (4) into Eq. (1) yields a nonlinear
reduced set ofP coupled differential equations for which all linear, quadratic and cubic terms have to be
known. In the present research, the construction of the operators of such mean nonlinear reduced-order model
(mean NL-ROM) is explicitly carried out in the context of thethree-dimensional finite element method. It is
assumed that the finite elements are isoparametric solid finite elements with8 nodes, and using a numerical
integration with8 Gauss integration points. The elementary internal forces projected on the chosen vector
basis are numerically constructed for each finite element before performing its assembly and computing all
linear and nonlinear reduced operators. The detailed procedure, which also uses the symmetry properties of
the linear and nonlinear reduced operators combined with distributed computations, can be found in [14]. It
should be noted that each type of reduced operator is separately modeled, keeping open the possibility of
implementing uncertainties issued from independent physical sources.

Nonlinear analysis of a mistuned bladed-disk

The random nature of the mistuning is then considered by implementing the nonparametric probabilistic
approach, which presents the ability to include both the system-parameter uncertainties and the model un-
certainties induced by modeling errors (see [11] for a complete review on the subject). It consists in replacing
the operators of the mean NL-ROM by random operators, whose probability distribution is derived from the
maximum entropy principle.

Let [A] be a(Q × Q) matrix issued from the mean NL-ROM. The corresponding random matrix [A] is
then written as[A] = [UA] [LA]

T [GA] [LA], where[GA] is a (Q × Q) random positive-definite matrix
whose probability model is issued from the MaxEnt principle[12]. When[A] is a mean reduced operator
with positive-definite property, representing either the mass, damping, geometrical stiffness or the opposite
of the centrifugal stiffness, we haveQ = P . When [A] is the mean reduced positive-definite operator
issued from the reshaping of the linear elastic, quadratic and cubic stiffness as shown in [15], we have
Q = P (P + 1). For these cases the(Q ×Q) matrix [LA] is issued from the Cholesky factorization of[A]
and matrix[UA] is the(Q × Q) identity matrix. When[A] is a mean reduced operator with antisymmetry
property such that the gyroscopic coupling matrix, the matrices [UA] and [LA] are the(P × P ) matrices
defined by[LA] = [SA]

1/2 [BA]
T and[UA] = [A] [BA] [SA] [BA]

T , in which the(P ×P ) full and diagonal
matrices[BA] and[SA] are issued from the single value decomposition (SVD) of operator[A]. The dispersion
of each random operator is then characterized by one scalar hyperparameter. Consequently, the mistuning



level of the bladed-disk is entirely controlled by theR6-vectord = (δM , δD, δC , δKg , δKc , δK), belonging
to an admissible set.

Numerical computations

The solution of the stochastic NL-ROM is calculated using the Monte Carlo numerical simulation. For each
realization, a set ofP nonlinear coupled differential equations is considered and solved with the Newmark
method, for which the averaging acceleration scheme, knownto be unconditionally stable is used. With
this solver, a set of nonlinear equations whose solution is denoted by theRP -vectorq has to be solved at
each sampling time. Such computation is mainly addressed bythe fixed point method because the iterative
scheme does not require the evaluation of the tangential stiffness matrix. Nevertheless, when the algorithm
does not converge, it is replaced by the Crisfield arc-lengthmethod [16]. Such algorithm introduces an
additional scalar unknown� that multiplies the right-hand side member of the nonlinearequation. It is
solved step by step, each incremental step being characterized by a given arc length. For a given step,
an iterative scheme requiring one evaluation of the tangential stiffness matrix allows a solution(q, �) to be
computed. An adaptive arc length, depending on the number ofiterations necessary to obtain the convergence
of the preceding increment is also implemented. Furthermore, since parameter� has to be controlled to be
equal to1, the state of the algorithm corresponding to the preceding increment has to be stored. Even if
the procedure is time consuming, its main advantage concerns its capability of capturing high-nonlinear
mechanical behaviors.

3 Application to an industrial bladed-disk

Nonlinear deterministic analysis

Description of the external load

The structure under consideration in an industrial turbinegeometry belonging to the class of integrated bladed
disks. Due to proprietary reasons, the numberN of blades characterizing the order of the cyclic symmetry of
the structure is not given. The finite element model of the structure is constructed with solid finite elements
and is constituted of about2 000 000 degrees of freedom. Fig. 1 displays a part of the finite element mesh of
the investigated bladed disk. The structure is in rotation around its revolution axis with a constant velocity
Ω = 30, 750 rpm. Since the dynamic analysis is carried out in the rotating frame of the structure, the rigid
body motion due to the rotation of the structure correspondsto a fixed boundary condition at the inner radius
of the structure. The bladed disk is made up of a homogeneous isotropic material. An hysteretic damping
model is added for the bladed disk.

Figure 1: Finite element mesh of a part of the structure



The cyclic symmetry is first used for constructing the reduced matrices of the mean linear reduced-order
model (mean L-ROM). The linear generalized eigenvalue problem related to the tuned bladed-disk is then
solved using this cyclic symmetry property [18, 19]. Letν0 be the first eigenfrequency. Figure 2 displays the
dimensionless eigenfrequenciesνi/ν0 of the tuned structure with respect to the circumferential wave number
n. The graph is truncated ton = 5 because a5 th engine-order excitation is presently considered around a
veering corresponding to the dimensionless frequency excitation bandBe = [1.78 , 2.34] .
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Figure 2: Natural frequencies with respect to circumferential wave number
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Figure 3: Representation of the external load in the time domain and in the frequency domain: graph of
t/t0 7→ g(t) (upper graph) andν/ν0 7→ ĝ(2πν) (lower graph) forBe = [1.78 , 2.34] .

Such excitation band of analysis is chosen through the time domain functiong(t) according to Eq. (2) such
that s = 4 and∆ω/(2πν0) = 0.5086. The spatial distribution of the load is only concerned withpoint
excitations located at the tip of each blade along the axial direction. Concerning the numerical sampling,
the initial instant of integrationtini and the total time durationT are chosen according to [17] such that
ν0 tini = −11.79 (corresponding to a zero value of functiong(t)) and ν0 T = 184. Figure 3 shows
the graphsν0 t 7→ g(t) andν/ν0 7→ ĝ(2πν). It should be noted that when only the tuned linear case is
considered, there are only contributions on the5 − th circumferential wave number. The external load is
fixed with f0 = 2.5N , which corresponds to an high rate of geometrical nonlinearity. Such high loading
can be interpreted as equivalent to a situation for which thedamping of the bladed disk structure would reach



very small values. Such extreme situations are realistic when approaching flutter regimes. The frequency
band of analysis is a broad frequency band corresponding to the dimensionless frequency band of analysisB = [0 , 3.34]. The Shannon theorem is carried out with a higher sample frequencyνe/ν0 = 11.12,
yielding the numbernt of time steps to bent = 4, 096. The frequency resolution is thenν/ν0,= 0.0054.
Let ĝ(2πν) be the Fourier transform of functiong(t). Figure 3 shows the graphst/t0 7→ g(t) andν/ν0 7→
ĝ(2πν).

Nonlinear tuned analysis

Concerning the choice of the vector basis for the construction of the mean NL-ROM, the nonlinear equations
are solved in the subspace spanned by the usual linear basis constituted of theP modal shapes related
to the first increasing natural eigenfrequencies, according to [14]. A convergence analysis is carried out
by increasing the sizeP of the reduced-order model. It can be shown thatP = 65 yields a reasonable
convergence. From now on, the converged solution corresponding to the observation issued from the mean
NL-ROM is denoted bỹu(t). For clarity, when confusion is possible, superscriptsL andNL will be added
for distinguishing the linear case from the geometric nonlinear one.
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Figure 4: Time domain observationt/t0 7→ v(t) related to the linear (upper graph) and the nonlinear (lower
graph) cases forBe = [1.78 , 2.34] .

Being interested in the blade yielding the highest vibration amplitude, letj0 = arg maxj
(
maxt ũ

NL
j (t)

)

The observationv(t) corresponding to the selected blade out-plane displacement is defined byv(t) = ũj0(t).
Figure 4 displays the grapht/t0 7→ vL(t) (upper graph) andt/t0 7→ vNL(t) (lower graph). On these graphs,
significant level of geometrical nonlinear effect can be observed. On this figure, it is seen that the geometric
nonlinearities induce a blade stiffening characterized bya reduction of the vibration amplitudes of the blades
from 2mm until 1mm with respect to the linear case. This stiffening is also combined with a strong
irregularity of the blade response shape over time, which shows an enrichment of the frequency content,
which has to be quantified.

Let k0 = arg maxj
(
maxν/ν0∈B ̂̃uNL

j (2πν)
)

for which ̂̃uNL

j (2πν) is the Fourier transform of̃uNL
j (t). In

the frequency domain, the observationw(2πν) corresponding to the selected blade out-plane displacement
is defined byw(2πν) = ̂̃uk0(2πν). Figures 5 displays the graphsν/ν0 7→ wL(2πν) (upper graph) and
ν/ν0 7→ wNL(2πν) (lower graph). As expected, it can be seen that the frequencycontent of the blade re-
sponse issued from the linear NL-ROM coincides withBe. The coupling issued from the strong nonlinear
geometric effects is characterized through secondary response peaks, whose frequency content enlarges with
increasing load rate. It should be noted that there also exist higher frequencies excited through this nonlinear-
ity which are of less importance in the chosen band of analysisB. As observed on the graphs, the amplitude
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Figure 5: Frequency domain observationν/ν0 7→ w(2πν) related to the linear (upper graph) and the nonlin-
ear (lower graph) cases forBe = [1.78 , 2.34] .

levels from linear and nonlinear cases differ by a factor of about3.5 for the main resonance. Concerning the
nonlinear case, the secondary resonances occurring in the lower frequency range are in the same order of
magnitude as the main resonance.

Nonlinear analysis of the mistuned bladed disk

In the present case, the mean NL-ROM is constructed by modal analysis without substructuring techniques.
Thus, the uncertainties are not considered as independent from one blade to another one, which is coherent
with the structure under consideration belonging to the class of integrated bladed disks, which are manu-
factured from a unique solid piece of material. In the present analysis, for a better understanding of the
phenomenon, only the nonlinear part of the operators are considered to be deterministic. The mistuning level
is thus controlled by theR5-vectord = (δM , δD, δC , δKc , δK).

Sensitivity analysis according to the type of uncertainties

The mistuning analysis is carried out in the frequency domain, requiring a Fourier transform of the obser-
vation. First, a sensitivity analysis is conducted in orderto identify the dispersion parameters yielding the
most significant effects on the mistuned response represented by the random variableW (2πν) similar to
observationw(2πν) in the tuned case. As expected for the linear mistuned case, it can be observed that an
uncertainty level of0.1 for the gyroscopic coupling, or/and the centrifugal stiffness or/and the dissipation
terms, has a very limited impact on the mistuned linear response. Thus, the mistuned linear response can be
reasonably considered only sensitive to mass and elastic stiffness uncertainties.

Nevertheless, as shown in Figures 6 and 8, corresponding to the confidence region of observationsWNL(2πν)
andWL(2πν) with a probability level set to0.95, the nonlinear mistuned behavior is shown to be substan-
tially different. On one side, the nonlinear mistuned response behaves almost like its tuned counterpart for the
frequency band of analysis corresponding to the frequency band of excitation. On the other side, the uncer-
tainties spread throughout the geometrical nonlinearities, yielding large confidence regions for the nonlinear
mistuned response inB\Be, more particularly in the dimensionless subfrequency rangeBs = [1 , 1.2].

In Figure 6, corresponding to the case of uncertain gyroscopic coupling, the dynamical analysis inBs shows
realizations with amplification levels around2 whereas the mistuned response remains unchanged in the
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Figure 6: Stochastic analysis: frequency domain observation related to the nonlinear case whenδC = 0.1:
mean model (thick line), mean of the stochastic model (thin dashed line), confidence region (gray region).
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Figure 7: Stochastic analysis: frequency domain observation related to the linear case whenδM = 0.1:
mean model (thick line), mean of the stochastic model (thin dashed line), confidence region (gray region).

excitation frequency band. Note that a similar nonlinear mistuned behavior can be observed for the cases
of uncertain centrifugal stiffness or uncertain dissipation. By comparing Figures 7 and 8 corresponding
to the linear and nonlinear cases in presence of mass uncertainty, it can be seen that the usual mistuning
effects yielding a consequent dynamical amplification for the linear mistuned case, are strongly inhibited
in Be for the nonlinear mistuned case yielding amplification levels of magnitude1.2. A wide spread of
uncertainties is observed inB\Be with amplification levels of magnitude2.5 with respect to subfrequency
bandBsub = [1 , 1.6]. Such amplification levels yield similar response level than the nonlinear tuned
response located inBe. Note that a similar behavior is observed for the case of elastic stiffness uncertainties.
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Figure 8: Stochastic analysis: frequency domain observation related to the linear case whenδM = 0.1:
mean model (thick line), mean of the stochastic model (thin dashed line), confidence region (gray region).

Nonlinear dynamical analysis of the mistuned response

From now on, the uncertainty level is such thatd = (δM , δD, δC , δKc , δK) = (δ, 0.2, 0.2, 0.2, δ). A para-
metric analysis according parameterδ is carried out in order to establish a comparison of the mistuning
effects between the linear and the nonlinear mistuned cases. For fixedν/ν0 ∈ B, let Y (2πν) be the random
dynamic observation defined by

Y (2πν) =
W (2πν)

maxν/ν0∈Bw(2πν) . (5)
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Figure 9: Stochastic analysis: frequency domain observationY L(2πν) related to the linear case whenδK =
δM = 0.02 andδKc = δC = δD = 0.2: mean model (thick line), mean of the stochastic model (thin
dashed line), confidence region (gray region).

Figures 9 (or 11) and 10 (or 12) show the confidence region of the linear and nonlinear observationsY L(2πν)
and Y NL(2πν) when δ = 0.02 (or δ = 0.16). Those graphs allows the effects of mass and elastic
uncertainties in presence of uncertainties issued from therotational effects to be analyzed.
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Figure 10: Stochastic analysis: frequency domain observation Y NL(2πν) related to the nonlinear case when
δK = δM = 0.02 andδKc = δC = δD = 0.2: mean model (thick line), mean of the stochastic model
(thin dashed line), confidence region (gray region).

For frequency bandBe, it can be observed that an increase of the mistuning yields auniform spread in the
frequency domain around the main resonance, yielding a weakrobustness with respect to uncertainties. It is
also clearly seen that the linearized assumption tends to increase the extreme values of the response levels.
The geometric nonlinear effects clearly inhibit the amplification of the random response. More particularly,
the extreme values related toY NL(2πν) yield moderate amplification even if the confidence region remain
relatively broad.
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Figure 11: Stochastic analysis: frequency domain observation related to the linear caseY L(2πν) when
δK = δM = 0.16 andδKc = δC = δD = 0.2: mean model (thick line), mean of the stochastic model
(thin dashed line), confidence region (gray region).

For frequency bandBsub, which is highly sensitive to uncertainties, it is seen thatan increasing of the mass
and elastic uncertainty level yield a small spread around the secondary resonance accompanied by a moderate
inhibition of the response level. In summary, the geometricnonlinear effects seem to mainly act on the un-
certainty propagation by spreading the response on the whole band of analysis without drastically amplifying
the amplitude of the main resonance. The main drastic consequence of such result mainly concerns the sub-
frequency bandBsub for which the geometric nonlinearities act as an intrinsic excitation, yielding secondary
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Figure 12: Stochastic analysis: frequency domain observation Y NL(2πν) related to the nonlinear case when
δK = δM = 0.16 andδKc = δC = δD = 0.2: mean model (thick line), mean of the stochastic model
(thin dashed line), confidence region (gray region).

resonances. The wide spread of uncertainties through a large bandwidth give rise to drastic amplifications
with respect to these secondary resonances.

For ν/ν0 ∈ B, let Y∞ be the random magnification factor defined byY∞ = maxν/ν0∈B Y (2πν). We then
define the second random magnification factorZ∞ such that

Z∞ =
maxν/ν0∈Bsub W (2πν)

maxν/ν0∈Bsub w(2πν) . (6)
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Figure 13: Quantile analysis of magnification factorY L
∞

with respect to mistuning levelδ with PC ∈
{0.5 , 0.9 , 0.95}

Figures 13 displays the graph of the quantiles ofY L
∞

with respect to mistuning rateδ. This latter graph
displays a strong sensitivity of the random magnification factor to uncertainties, exhibiting a maximum from
which robustness areas limiting the amplification phenomenon can be defined. Figure 13 compares the sim-
ilar graphs obtained with random observationsY NL

∞
andZNL

∞
. Taking into account the geometric nonlinear
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Figure 14: Quantile analysis of magnification factorsY NL
∞

(upper graph) andZNL
∞

(lower graph) with respect
to mistuning levelδ with PC ∈ {0.5 , 0.9 , 0.95}.

effects yield a drastic decrease of such amplification phenomenon, exhibiting also a limited sensitivity to
uncertainties. Nevertheless, a special attention must be given to observationZNL

∞
, which points out not

only its complex sensitivity to uncertainties but also highamplification levels, that may lead to unexpected
amplifications of resonances.

Conclusion

The paper has presented an analysis of the geometrical nonlinear effects of an uncertain mistuned rotating
industrial integrated bladed disk subjected to a high loading level. Firs of all, a nonlinear dynamic analysis
of the tuned structure has allowed the effects of the geometric nonlinearities to be characterized in both the
time domain and the frequency domain. The dynamical response of the blades has also been investigated
outside the frequency domain of excitation. The linear response has its energy concentrated in the frequency
domain of excitation whereas a more complex dynamical situation is observed in the nonlinear geometrical
case. It has been seen that the nonlinear response is spread all outside the frequency band of excitation,
yielding secondary resonances with magnitudes comparablewith the main resonance. A nonlinear analysis
of the mistuned structure has then been proposed. Compared with the linear mistuned case, the nonlinear
mistuned response predictions yield low vibration amplitudes. Nevertheless, for a given mistuning rate,
the nonlinear mistuned response predictions are much more robust to uncertainties in the frequency band
of excitation. One notable result is that the geometrical nonlinearities widely propagate the uncertainties
outside the frequency band of excitation, giving rise to broad confidence regions in the low frequencies.
A complex vibratory situation is observed with the apparition of unexpected secondary resonances, highly
sensitive to uncertainties. Those resonances are not excited through the loading but through the geometric
nonlinearities.
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