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Abstract
This research is devoted to the identification of a stochastic computational model using experimental eigen-
frequencies and mode shapes measured on several specimens. The objective here is to construct a one-to-one
correspondence between the results provided by the stochastic computational model and the experimental
data that takes into account the random modes crossing and veering phenomena that may occurs from one
realization to another one. Then such a correspondence allows the computed modal quantities to be com-
pared with the experimental data in order to identify the parameters of the stochastic computational model.
The methodology is applied to a booster pump of thermal units.

1 Introduction

We consider the random context for which the available experimental data are related to a family of several
experimental configurations of a given dynamical structure. The observed variability between the experi-
mental configurations of this family is induced (1) by the uncontrolled differences that can appear during the
manufacturing process (manufacturing tolerances) and during the life cycle of the structure (natural damage,
incidents, etc) and (2) by some slight differences which are controlled and are related, for instance, to the
boundary conditions, the embedded equipments, etc. These two types of variability induce differences for
the data measured on two configurations of the given dynamical structure.

In such a random context, we have to construct a stochastic computational model (SCM) for which two
sources of uncertainties have to be taken into account (see for instance [11]): (1) the uncertainties relative
to some model parameters of the nominal computational model (NCM) and (2) the modeling errors. The
stochastic computational model which is constructed with these two sources of uncertainties (and with addi-
tional input and output noises if measurement errors are significant) must have the capability of representing
the variability of all the measured configurations.

In this paper, the uncertainties are taken into account using a probabilistic approach and then the SCM is
constructed including both the model-parameter uncertainties and the model uncertainties in a separate way
(using thegeneralized probabilistic approach of uncertaintiesproposed in [10, 11]). Usually, a SCM is



controlled by a set of hyperparameters such as mean values, coefficients of variation, and so on. These
hyperparameters have to be identified using experimental data and realizations of the SCM. Several types
of observation can be used in order to perform such an identification. The objective of this paper consists
in identifying the hyperparameters of a SCM using natural frequencies and mass-normalized mode shapes
measured for a family of structures. The methodology proposed introduces a random transformation of the
computational observations (computational eigenfrequencies and computational mode shapes) in order to
match them to the experimental observation of each measured structure. This methodology automatically
takes into account the mode crossings and the mode veerings which can appear between two experimental
configurations or between two computational realizations of the SCM. In Section 2, the construction of the
SCM is summarized. Section 3 is devoted to the identification of the hyperparameters of the SCM. Finally,
in Section 4, an application devoted to an industrial pump of a thermal unit is presented.

2 Construction of the stochastic computational model

The NCM is constructed using the FE method and the boundary conditions of the structure are such that there
are no rigid body modes. In this section, a parameterized SCM is constructed using of thegeneralized prob-
abilistic approach of uncertaintiesproposed in [10, 11], for which both the model-parameter uncertainties
and the model uncertainties are taken into account and are separately identified.

2.1 Construction of the probabilistic model of uncertain model parameters

The NCM exhibitsnp uncertain model parameters denotedh1, . . . , hnp
. Let beh = (h1, . . . , hnp

). The
probabilistic model of uncertain model parameters is constructed by replacing vectorh of the uncertain
model parameters by the random vectorH with values inRnp , defined on a probability space(Θpar,T par,

Ppar). The firstn random eigenvalues0 < Λpar
1 ≤ . . . ≤ Λpar

n associated with the random mode shapes
φ
par
1 , . . . ,φpar

n are the solutions of the following random generalized eigenvalue problem,

[K(H)]φpar = Λpar[M(H)]φpar . (1)

Let [Φpar] be them × n random matrix whose columns are the firstn random mode shapes. We then
introduce then × n random mass and stiffness reduced matrices[Mpar] = [Φpar]T [M(H)] [Φpar] and
[Kpar] = [Φpar]T [K(H)] [Φpar]. The random mode shapes are normalized (almost surely) with respect to
the random mass matrix such that

[Mpar] = [In] , (2)

and thus, the random diagonaln× n real matrix[Kpar] is written as

[Kpar] = diag(Λpar
1 , . . . ,Λpar

n ) . (3)

By construction, the random matrices[Mpar] and[Kpar] are positive definite (almost surely) and therefore,
their Cholesky decompositions yield,

[Mpar] = [LM ]T [LM ] , [Kpar] = [LK ]T [LK ] . (4)

Let αpar be the vector whose components are the hyperparameters of the pdfp
H
(h) which is then rewritten

asp
H
(h;αpar).

2.2 Construction of the generalized probabilistic model of uncertainties

Let (Θmod,T mod,Pmod) be another probability space. To take into account model uncertainties (induced by
modeling errors), the dependent random matrices[Mpar] and[Kpar] are replaced by the dependent random



matrices[Mtot], [Ktot], defined on a probability space(Θ = Θpar × Θmod,T = T par ⊗ T mod,P =
Ppar ⊗ Pmod), such that for allθ = (θpar, θmod) in Θ = Θpar ×Θmod,

[Mtot(θ)] = [LM (θpar)]T [GM (θmod)][LM (θpar)] ,

[Ktot(θ)] = [LK(θpar)]T [GK(θmod)][LK(θpar)] ,
(5)

in which the probability distributions of the random matrices[GM ] and [GK ], defined on(Θmod,T mod,

Pmod), are explicitly given in [9] in the context of the nonparametric probabilistic approach of uncertainties.
The probability distributions of[GM ] and[GK ] depend on the dispersion parametersδM andδK respectively.
Let αmod be the vector of the dispersion parameters such thatαmod = (δM , δK).

The random matrices[Mtot] and[Ktot] are not diagonal. In order to calculate the random eigenfrequencies
and the random mode shapes of the SCM with both the model-parameter uncertainties and the model un-
certainties, the following small-dimension random generalized eigenvalue problem is introduced. Let0 <

Λ1 ≤ . . . ≤ Λn be the firstn random eigenvalues associated with the random eigenvectorsφtot1 , . . . ,φtot
n

which are the solutions of the following random reduced generalized eigenvalue problem

[Ktot]φtot = Λ[Mtot]φtot . (6)

Let [Φtot] = [φtot
1 , . . . ,φtot

n ]. These random modes are normalized with respect to the random mass matrix
[Mtot],

[M] = [Φtot]T [Mtot] [Φtot] = [In] , (7)

and we have
[K] = [Φtot]T [Ktot] [Φtot] = diag(Λ1, . . . ,Λn) . (8)

Then the firstn random eigenvalues of the SCM, with both the model-parameter uncertainties and the model
uncertainties, are0 < Λ1 ≤ . . . ≤ Λn and the associated random vectors areφ1, . . . ,φn such that them×n

random matrix[Φ] = [φ1, . . . ,φn] is written as

[Φ] = [Φpar] [Φtot] . (9)

Finally the SCM is parameterized by the vector-valued hyperparameterα = (αpar,αmod) which has to be
identified using experimental modal data. The admissible space for vectorα is denoted byC.

3 Identification of the SCM using experimental modal data

The objective of this section is to identify the parameterα of the SCM using experimental modal data
(eigenfrequencies and mass-normalized mode shapes) and realizations of the modal data calculated using
the SCM.

3.1 Experimental modal data as observations

It is assumed thatnexp experimental configurations of the structure have been tested. For each configuration
j, nj modes have been experimentally identified using an experimental modal analysis method. For two given
configurations, the number of modes, the number and locations of the sensors can be different. For each
configurationj, nj experimental eigenfrequenciesωexp,j1 , . . . , ω

exp,j
nj

associated withnj mass-normalized

experimental mode shapeŝϕexp,j1 , . . . , ϕ̂
exp,j
nj

have been identified formj degrees of freedom (DOFs). Let

[Φ̂exp,j] = [ϕ̂exp,j
1 . . . ϕ̂

exp,j
nj

] be themj × nj matrix of thenj experimental mode shapes of the configuration
j. It is assumed thatnj < n < mj < m for all j in {1, . . . , nexp}. The experimental reduced mass matrix
and the experimental reduced stiffness matrix are then written as

[M̂ exp,j] = [Inj
] , [K̂exp,j] = diag(λexp,j

1 , . . . , λexp,j
nj

) , (10)

in whichλ
exp,j
i = (ωexp,j

i )2.



3.2 Transformation of the modal data

For all j in {1, . . . , nexp}, let [P j] be themj ×m matrix that performs the projection from them DOFs of

the SCM to themj DOFs of the experimental configurationj. Then the projected random modal basis[̃Φ
j
]

of the SCM is defined by

[Φ̃
j
] = [P j] [Φ]. (11)

The experimental modes[Φ̂
exp,j

] cannot directly be compared to the computational modes[̃Φ
j
] because, in

general, there is not a one-to-one correspondence between the experimental modes and the computational
modes. Indeed, some modes may be missing in the experimental modal basis or in the computational modal
basis. Furthermore, due to the experimental variability (variability of the configurations) and the computa-
tional randomness (uncertainties), some mode crossing and/or mode veering [7, 8, 6] phenomena may occur.

Therefore, the projected computational reduced-order model (ROM),{[̃Φ
j
], [K], [M]} has to transformed

into the ROM,{[Φ̂
j
], [K̂j], [M̂j]}, such that

[Φ̂
j
] = [Φ̃

j
] [Qopt,j] , (12)

[K̂j] = [Qopt,j]T [K][Qopt,j] , (13)

[M̂j] = [Qopt,j]T [M][Qopt,j] , (14)

in which [Qopt,j] is a randomn × nj real matrix for which each realization[Q] = [Qopt,j(θ)], for θ in Θ,
must belong to the Stiefel manifold,OSt(n, nj), defined by

OSt(n, nj) = {[Q] ∈ R
n×nj , [Q]T [Q] = [Inj

]} . (15)

For all θ in Θ, orthogonal matrix[Qopt,j(θ)] is calculated by minimizing the distance between the computa-

tional modal basis[Φ̂
j
(θ)] and the experimental modal basis[Φ̂exp,j] (see [1]),

[Qopt,j(θ)] = arg min
[Q]∈OSt(n,nj)

‖ [Φ̃
j
(θ)] [Q]− [Φ̂exp,j] ‖F . (16)

The minimization problem (11) is referred as a Procruste problem [4, 5] for which a solution can be calculated
iteratively (see [4]). It should be noted that, in [2], the authors have proposed an alternative solution to take
into account mode crossings and mode veerings in the identification of the hyperparameters of a SCM.

3.3 Identification of hyperparameter α

Hyperparameterα of the SCM is identified using the maximum likelihood method and experimental modal
data. Then the optimal valuesαopt is solution of the following optimization problem

αopt = argmax
α∈C

nexp∑

j=1

log(p
Wj

(Wexp,j;α)) , (17)

wherep
Wj

(w;α) is the probability density function (pdf) of the random observation vectorWj which is

construction using the random transformed ROM{[Φ̂
j
], [K̂j], [M̂j]} (see [3]).



Figure 1: Industrial mechanical system.

4 Application

4.1 Industrial mechanical system and experimental modal data

We are interested in the dynamical behavior of a one-stage booster pump used by Electricité de France (EDF)
company in its thermal units (see Fig. 1). This pump is made up of a diffuser and a volute, with axial suction
and vertical delivery, and is mounted on a metallic frame. It has been designed forty years ago by Sulzer
Pumps. An experimental modal analysis has been carried out on two specimens of this pump located at two
different thermal units. Therefore, there arenexp = 2 experimental configurations (denoted as Pump1 and
Pump2) which are measured. There are slight differences between Pump1 and Pump2 concerning the joints
between the pumps and their metallic frame. The experimental meshes for the two pumps are not the same.
An experimental modal analysis has been carried for each pump. For Pump1, n1 = 6 modes have been
identified. The three six mode shapes for Pump1 and Pump2 are plotted in Figs. 2 and 3 respectively.

Figure 2: Pump1: First three experimental mode shapes (Thick black line).

Figure 3: Pump2: First three experimental mode shapes (Thick black line).



4.2 Construction of the stochastic computational model

4.2.1 Construction of the nominal computational model

The finite element mesh of the NCM is plotted in Fig. 4. The nominal finite element model is made up of 3D

Figure 4: Finite element mesh of the NCM.

solid elements, Kirchhoff plate elements and spring elements. The assembled model has488, 220 DOFs. The
uncertain model parameters of the NCM are the Young modulusys of the steel, the Young’s modulusyc of
the cast iron, the thicknessest1, t2 andt3 of the plates1, 2 and3 of the metallic frame and the stiffnessesk1,
k2, k3 andk4 of the discrete springs normal to the metallic frame. Leth = (ys, yc, t1, t2, t3, k1, k2, k3, k4)
be the vector of the uncertain model parameters. For the updated NCM of Pump1 and Pump2, the updated
values ofh are denoted byh1 andh2. For each updated NCM,n = 20 modes are calculated . Forh = h1,
the first3 projected mode shapes are plotted in Fig. 5. Forh = h2, the first3 projected mode shapes are

Figure 5: First3 projected mode shapes for Pump1.

plotted in Fig. 6.

Figure 6: First3 projected mode shapes for Pump2.

4.2.2 Construction of the stochastic computational model

The vectorh is modeled by a random vectorH = (Ys, Yc, T1, T2, T3,K1,K2, K3,K4). The Maximum
Entropy principle has been used for constructing the probability distribution ofH. Taking into account the



available information, it can be deduced that (1) all the components ofH are independent random variables;
(2) positive-valued Young moduliYs andYc are Gamma random variables parameterized by their mean
valuesmYs

andmYc
, and by their coefficients of variation (standard deviation divided by the mean value)

δYs
and δYc

; (3) positive-valued random thicknessesT1, T2 and T3 are uniform positive-valued random
variables parameterized by their mean valuesmT1

, mT2
andmT3

, and by their coefficients of variationδT1
,

δT2
andδT3

; (4) positive-valued stiffnessesK1, K2, K3 andK4 are Gamma random variables parameterized
by their mean valuesmK1

, mK2
, mK3

andmK4
, and by their coefficients of variationδK1

, δK2
, δK3

and
δK4

. Thenαpar = (mYs
, δYs

, mYc
, δYs

, mT1
, δT1

, mT2
, δT2

, mT3
, δT3

, mK1
, δK1

, mK2
, δK2

, mK3
, δK3

,
mK4

, δK4
) has18 components to be identified andα = (αpar,αmod) has20 components to be identified.

4.2.3 Identification of the optimal hyperparameter αopt.

The vectorαopt is given by the optimization problem defined by Eq. (17) which is solved using a genetic
algorithm. For each value ofα, the probability density functionsp

W1
(w;α) andp

W2
(w;α) are estimated

using800 realizations of the observation vectorsW1 andW2 calculated with the SCM. The components of
α

opt
par are given in Table 1. The two components ofα

opt
mod areδopt

M = 0.52 andδopt
K = 0.43. These optimal

dispersions of the probability distributions for model uncertainties are relatively high due to the experimental
variability and due to modeling errors introduced in the NCM. These dispersions could be partly decreased
by constructing a more accurate NCM.

Mean value Coefficient of variation
Young’s modulus steelYs mYs

= 1.33 × 1011 Pa δYs
= 0.2

Young’s modulus cast ironYc mYc
= 7.57 × 1010 Pa δYc

= 0.17

ThicknessT1 mT1
= 0.013 m δT1

= 0.12

ThicknessT2 mT2
= 0.011 m δT2

= 0.57

ThicknessT3 mT3
= 0.01 m δT3

= 0.09

StiffnessK1 mK1
= 8.01× 108 N/m δK1

= 0.19

StiffnessK2 mK2
= 5.74× 109 N/m δK2

= 0.13

StiffnessK3 mK3
= 6.30× 107 N/m δK3

= 0.34

StiffnessK4 mK4
= 2.68× 108 N/m δK4

= 0.42

Table 1: Components ofαopt
par.

4.3 Validation of the results

For α = αopt, the marginal pdf of the first three eigenvalues of the matrices[K̂1] and [K̂2] are shown in
Figs. 7 and 8 respectively. It can be seen in these figures that the first3 experimental eigenvalues for Pump1
and Pump2 are predicted by the SCM with a high probability level (very high for Pump1).

For Pump1, the mean value of the MAC matrix between the random modal basis[Φ̃
1
] (before transforma-

tion) of the SCM and the experimental modal basis[̂Φexp,1] is plotted in Fig. 9, while for Pump2, the mean
value of MAC matrix is plotted in Fig. 10. Figures 9 and 10 show that the randomness of the SCM introduces
random mode crossings and random mode veerings which modify the correspondence. For Pump1, the mean

value of the MAC matrix between the random modal basis[Φ̂
1
] (after transformation) of the SCM and the

experimental modal basis[Φ̂exp,1] is plotted in Fig. 11 while for Pump2, the mean value of MAC matrix is
plotted in Fig. 12. In Figs. 11 and 12, it can be seen that the random transformation of the random mode
shapes of the SCM allows to achieve a good correspondence between the random computational modes of
the SCM and the experimental modes.
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Figure 7: Probability density function for the first three eigenvalues of[̂K1]. Vertical lines: corresponding
experimental values (eigenvalues of[K̂exp,1]).
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Figure 8: Probability density function for the first three eigenvalues of[̂K2]. Vertical lines: corresponding
experimental values (eigenvalues of[K̂exp,2]).
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Figure 9: For Pump1, mean value of the MAC matrix between the random mode shapes of the SCM and the
experimental mode shapes before transformation.

5 Conclusion

A methodology for the construction and the identification of a stochastic computational model using ex-
perimental eigenfrequencies and mode shapes has been presented. The model-parameter uncertainties and
the modeling errors are taken into account in the framework of a generalized probabilistic approach of un-
certainties. A transformation of the computational modal quantities is introduced in order to construct a
correspondence between the experimental modal data and the computational modal quantities. This method
allows us to take into account mode crossings and mode veerings that may occur. The methodology has
been applied to the construction a stochastic computational model representing a family of booster pumps of
thermal units.
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Figure 10: For Pump2, mean value of the MAC matrix between the random mode shapes of the SCM and
the experimental mode shapes before transformation.
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Figure 11: For Pump1, mean value of the MAC matrix between the random mode shapes of the SCM and
the experimental mode shapes after transformation.
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