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Abstract

This research is devoted to the identification of a stochastic computational model using experimental eigen-
frequencies and mode shapes measured on several specimens. The objective here is to construct a one-to-one
correspondence between the results provided by the stochastic computational model and the experimental
data that takes into account the random modes crossing and veering phenomena that may occurs from one
realization to another one. Then such a correspondence allows the computed modal quantities to be com-
pared with the experimental data in order to identify the parameters of the stochastic computational model.
The methodology is applied to a booster pump of thermal units.

1 Introduction

We consider the random context for which the available experimental data are related to a family of several
experimental configurations of a given dynamical structure. The observed variability between the experi-

mental configurations of this family is induced (1) by the uncontrolled differences that can appear during the

manufacturing process (manufacturing tolerances) and during the life cycle of the structure (natural damage,
incidents, etc) and (2) by some slight differences which are controlled and are related, for instance, to the
boundary conditions, the embedded equipments, etc. These two types of variability induce differences for
the data measured on two configurations of the given dynamical structure.

In such a random context, we have to construct a stochastic computational model (SCM) for which two
sources of uncertainties have to be taken into account (see for instance [11]): (1) the uncertainties relative
to some model parameters of the nominal computational model (NCM) and (2) the modeling errors. The
stochastic computational model which is constructed with these two sources of uncertainties (and with addi-
tional input and output noises if measurement errors are significant) must have the capability of representing
the variability of all the measured configurations.

In this paper, the uncertainties are taken into account using a probabilistic approach and then the SCM is
constructed including both the model-parameter uncertainties and the model uncertainties in a separate way
(using thegeneralized probabilistic approach of uncertaintiproposed in [10, 11]). Usually, a SCM is



controlled by a set of hyperparameters such as mean values, coefficients of variation, and so on. These
hyperparameters have to be identified using experimental data and realizations of the SCM. Several types
of observation can be used in order to perform such an identification. The objective of this paper consists
in identifying the hyperparameters of a SCM using natural frequencies and mass-normalized mode shapes
measured for a family of structures. The methodology proposed introduces a random transformation of the
computational observations (computational eigenfrequencies and computational mode shapes) in order to
match them to the experimental observation of each measured structure. This methodology automatically
takes into account the mode crossings and the mode veerings which can appear between two experimental
configurations or between two computational realizations of the SCM. In Section 2, the construction of the
SCM is summarized. Section 3 is devoted to the identification of the hyperparameters of the SCM. Finally,
in Section 4, an application devoted to an industrial pump of a thermal unit is presented.

2 Construction of the stochastic computational model

The NCM is constructed using the FE method and the boundary conditions of the structure are such that there
are no rigid body modes. In this section, a parameterized SCM is constructed usingehénalized prob-
abilistic approach of uncertaintieproposed in [10, 11], for which both the model-parameter uncertainties
and the model uncertainties are taken into account and are separately identified.

2.1 Construction of the probabilistic model of uncertain model parameters

The NCM exhibitsn,, uncertain model parameters denoted. .., h,,. Letbeh = (hy,...,h,,). The
probabilistic model of uncertain model parameters is constructed by replacing Yecfothe uncertain
model parameters by the random veddmwith values inR*», defined on a probability spa¢é&r*, 7P2r
Prar). The firstn random eigenvalue8 < A < ... < AR™ associated with the random mode shapes
PV, ..., dP* are the solutions of the following random generalized eigenvalue problem,

[K(H)] ¢ = AP [M(H)] ¢**" . 1)

Let [@P*] be them x n random matrix whose columns are the firstandom mode shapes. We then
introduce then x n random mass and stiffness reduced matride®] = [®P*']7 [M(H)] [®P*] and
[KP] = [@P)T [K(H)] [®P*]. The random mode shapes are normalized (almost surely) with respect to
the random mass matrix such that

P = (L], )

and thus, the random diagonalx n real matrix[KP*'] is written as
[KP¥] = diag(AT™, ..., AP™M). (3)

By construction, the random matricBel**"] and [KP*'] are positive definite (almost surely) and therefore,
their Cholesky decompositions vyield,

[MP] = L] L], [KP™] = [L]" [L]. (4)

Let apar be the vector whose components are the hyperparameters of the(hdfwhich is then rewritten
aspy, (h; apar)-

2.2 Construction of the generalized probabilistic model of uncertainties

Let (@med, gmed pmod) he another probability space. To take into account model uncertainties (induced by
modeling errors), the dependent random matr{dd®*'| and [KP?'] are replaced by the dependent random



matrices[M"!], [K'*!], defined on a probability spag® = 6P x @med T = Fpar g Jmod p —
prar g pmod) "gych that for alp = (#P2*, §™°4) in © = @Par x @mod,
[M8(6)] = [La (87*)] T [Goa (8] [Lns (7))
[K“4(0)] = L (0°)]" [Gr (0™ [Li (677)],
in which the probability distributions of the random matrid€s,] and [G ], defined on(@med, 7med,
Pmod) are explicitly given in [9] in the context of the nonparametric probabilistic approach of uncertainties.

The probability distributions diG,,| and[G x| depend on the dispersion parametgfsanddx respectively.
Let amoq be the vector of the dispersion parameters suchdigd = (s, 0k ).

®)

The random matrice@I**] and [K'**] are not diagonal. In order to calculate the random eigenfrequencies
and the random mode shapes of the SCM with both the model-parameter uncertainties and the model un-
certainties, the following small-dimension random generalized eigenvalue problem is introducéd< Let

Ay < ... < A, be the firstn random eigenvalues associated with the random eigenvegdfors. . , ¢

which are the solutions of the following random reduced generalized eigenvalue problem

[Ktot] ¢tot — A[Mtot] ¢t0t . (6)
Let [@*°'] = [¢'°", ..., ¢!°']. These random modes are normalized with respect to the random mass matrix
[Mtot]’
[M] — [(I)tot]T [Mtot] [q)tot] — [In] 7 (7)
and we have
K] = [@"]" [K™'] [@"] = diag(A1,.., An). (8)

Then the first: random eigenvalues of the SCM, with both the model-parameter uncertainties and the model
uncertainties, aré < A; < ... < A,, and the associated random vectorsere . ., ¢,, such that then x n
random matri{®|] = [¢y, ..., ¢, ] is written as

(@] = [@P] [@'"]. 9)

Finally the SCM is parameterized by the vector-valued hyperpararaeter(opar, aamod) Which has to be
identified using experimental modal data. The admissible space for vwedcsadenoted by.

3 Identification of the SCM using experimental modal data

The objective of this section is to identify the parameteiof the SCM using experimental modal data
(eigenfrequencies and mass-normalized mode shapes) and realizations of the modal data calculated using
the SCM.

3.1 Experimental modal data as observations

Itis assumed that.,, experimental configurations of the structure have been tested. For each configuration
J»nj modes have been experimentally identified using an experimental modal analysis method. For two given
configurations, the number of modes, the number and locations of the sensors can be different. For each
configurationj, n; experimental eigenfrequencie§™”, ..., w, " associated witm; mass-normalized

~exp

experimental mode shapé&‘?‘p’j, s Pny J have been identified fom; degrees of freedom (DOFs). Let
[BoP] = [GTP ... 5oP] be them,; x n; matrix of then; experimental mode shapes of the configuration
j. Itis assumed that; < n < mj; < mforall jin{1,...,n,}. The experimental reduced mass matrix
and the experimental reduced stiffness matrix are then written as

A rexp,il 7>exp,jl _ 11 exp,j exp,j
W) = (1], [Rd) = diag(AS™,.., xoP) (10)

J

i i exXp,j __ (, €XDP,j\2
in which ;™ = (w;™)=.

7



3.2 Transformation of the modal data

Foralljin {1,...,ncsp}, let [P] be them; x m matrix that performs the projection from the DOFs of
the SCM to then; DOFs of the experimental configuratign Then the projected random modal ba{iﬂs}
of the SCM is defined by .

[@'] = [P)][®]. (11)

The experimental mode{@exm] cannot directly be compared to the computational m@ésbecause, in

general, there is not a one-to-one correspondence between the experimental modes and the computational
modes. Indeed, some modes may be missing in the experimental modal basis or in the computational modal
basis. Furthermore, due to the experimental variability (variability of the configurations) and the computa-
tional randomness (uncertainties), some mode crossing and/or mode veering [7, 8, 6] phenomena may occur.

Therefore, the projected computational reduced-order model (R@[&?ﬁ],, K], [M]} has to transformed
into the ROM {[®’], [K’], [Mi]}, such that

@] = @] [Q™], (12)
K] = [QPH]T[K][QPH] (13)
V] = [Q°PH) T [M][Q2PH], (14)

in which [Q°P%] is a randomn x n; real matrix for which each realizatidi@)] = [Q°*(6)], for 6 in ©,
must belong to the Stiefel manifold)St(n, n;), defined by

OSt(n,nj) = {[Q) € R™", [Q"[Q] = [I,,,]} - (15)
For all¢ in ©, orthogonal matri¥Q°Pti(9)] is calculated by minimizing the distance between the computa-
tional modal basi$§>J (#)] and the experimental modal ba{ﬁ>§xm] (see [1]),

QPIO)] = are_ min | 1B (O]Q] - [ | (16)

The minimization problem (11) is referred as a Procruste problem [4, 5] for which a solution can be calculated
iteratively (see [4]). It should be noted that, in [2], the authors have proposed an alternative solution to take
into account mode crossings and mode veerings in the identification of the hyperparameters of a SCM.

3.3 Identification of hyperparameter «

Hyperparameteex of the SCM is identified using the maximum likelihood method and experimental modal
data. Then the optimal value&P! is solution of the following optimization problem

Nexp

Opt _ exr ,'_
ot = argrgggzl 10g(p,,; (WP ax)) (17)
j:

wherep_ (w;a) is the probability density function (pdf) of the random observation veWbmwhich is
construction using the random transformed R({)[@J], (K], [ﬁj]} (see [3]).



Figure 1: Industrial mechanical system.

4 Application

4.1 Industrial mechanical system and experimental modal data

We are interested in the dynamical behavior of a one-stage booster pump used by Electricité de France (EDF)
company in its thermal units (see Fig. 1). This pump is made up of a diffuser and a volute, with axial suction
and vertical delivery, and is mounted on a metallic frame. It has been designed forty years ago by Sulzer
Pumps. An experimental modal analysis has been carried out on two specimens of this pump located at two
different thermal units. Therefore, there axg, = 2 experimental configurations (denoted as Pungmd

Pump2) which are measured. There are slight differences between PamgbPum® concerning the joints
between the pumps and their metallic frame. The experimental meshes for the two pumps are not the same.
An experimental modal analysis has been carried for each pump. For Bump= 6 modes have been
identified. The three six mode shapes for Pungmd Pump® are plotted in Figs. 2 and 3 respectively.

Figure 3: Pump: First three experimental mode shapes (Thick black line).



4.2 Construction of the stochastic computational model
4.2.1 Construction of the nominal computational model

The finite element mesh of the NCM is plotted in Fig. 4. The nominal finite element model is made up of 3D

Figure 4: Finite element mesh of the NCM.

solid elements, Kirchhoff plate elements and spring elements. The assembled ma@slL Bag DOFs. The
uncertain model parameters of the NCM are the Young modylagthe steel, the Young’s modulyg of
the cast iron, the thicknessgst, andts of the platesl, 2 and3 of the metallic frame and the stiffnessges
ko, ks and k4 of the discrete springs normal to the metallic frame. het (v, y., t1,t2, ts, k1, ko, k3, k4)

be the vector of the uncertain model parameters. For the updated NCM of PanmtbPum2, the updated
values ofh are denoted b}' andh?. For each updated NCM, = 20 modes are calculated . Fhr= h',
the first3 projected mode shapes are plotted in Fig. 5. lree 12, the first3 projected mode shapes are

e Spr

Figure 5: First3 projected mode shapes for Pump

plotted in Fig. 6.

Figure 6: First3 projected mode shapes for Pump

4.2.2 Construction of the stochastic computational model

The vectorh is modeled by a random vect®él = (Y;, Y., 71,75, T3, K1, Ko, K3, K4). The Maximum
Entropy principle has been used for constructing the probability distributidd.ofaking into account the



available information, it can be deduced that (1) all the componeriBare independent random variables;
(2) positive-valued Young moduli; and Y. are Gamma random variables parameterized by their mean
valuesmy, andmy,, and by their coefficients of variation (standard deviation divided by the mean value)
dy, anddy,; (3) positive-valued random thicknessés 7> and 73 are uniform positive-valued random
variables parameterized by their mean values, mr, andmg,, and by their coefficients of variatiof, ,

o7, andér,; (4) positive-valued stiffnessds;, K», K3 and K, are Gamma random variables parameterized
by their mean valuesvx,, mg,, mi, andmg,, and by their coefficients of variatiofy, , dx,, dx, and
(5}(4. Thenapar = (mys, (5)/5, my,, (5)/5, mry, 5T11 My, 5T21 mry, 5T31 MK, , (5}(1, MK, 5[(2, MK, (5}(3,
mrk,, 0k, ) hasl8 components to be identified and= (opar, amod) has20 components to be identified.

4.2.3 Identification of the optimal hyperparameter .

The vectora®' is given by the optimization problem defined by Eq. (17) which is solved using a genetic
algorithm. For each value af, the probability density functiong, , (w; «) andp_, (w; ) are estimated
using800 realizations of the observation vectd®' andW? calculated with the SCM. The components of

aphr are given in Table 1. The two componentsagf,, ared5r = 0.52 and 55" = 0.43. These optimal
dispersions of the probability distributions for model uncertainties are relatively high due to the experimental
variability and due to modeling errors introduced in the NCM. These dispersions could be partly decreased

by constructing a more accurate NCM.

Mean value Coefficient of variation
Young'’s modulus steé, my, = 1.33 x 10! Pa Sy, = 0.2
Young’s modulus cast irol, | my, = 7.57 x 10'° Pa Sy, = 0.17
Thicknessly mr, = 0.013m o, =0.12
ThicknessT, mp, = 0.011m o7, = 0.57
ThicknessTli mp, = 0.01m o, = 0.09
Stiffnessk; mp, = 8.01 x 10 N/m Sk, = 0.19
StiffnessKy mp, = 5.74 x 10 N/m Sk, = 0.13
StiffnessK; mr, = 6.30 x 10" N/m Src, = 0.34
StiffnessK, mp, = 2.68 x 10 N/m Sk, = 0.42

Table 1: Components @fpa-

4.3 Validation of the results

Fora = a° the marginal pdf of the first three eigenvalues of the matrffé$ and [IA(Q] are shown in
Figs. 7 and 8 respectively. It can be seen in these figures that the dxperimental eigenvalues for Purhp
and Pump are predicted by the SCM with a high probability level (very high for Pump

For Pumpl, the mean value of the MAC matrix between the random modal t@ils]s{before transforma-
tion) of the SCM and the experimental modal bd®i’&®-!] is plotted in Fig. 9, while for Pump, the mean
value of MAC matrix is plotted in Fig. 10. Figures 9 and 10 show that the randomness of the SCM introduces
random mode crossings and random mode veerings which modify the correspondence. FortRammgan

value of the MAC matrix between the random modal b:{ﬁlls} (after transformation) of the SCM and the
experimental modal bas[@exp’l] is plotted in Fig. 11 while for Pump, the mean value of MAC matrix is

plotted in Fig. 12. In Figs. 11 and 12, it can be seen that the random transformation of the random mode
shapes of the SCM allows to achieve a good correspondence between the random computational modes of
the SCM and the experimental modes.
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Figure 9: For Pump, mean value of the MAC matrix between the random mode shapes of the SCM and the
experimental mode shapes before transformation.

5 Conclusion

A methodology for the construction and the identification of a stochastic computational model using ex-
perimental eigenfrequencies and mode shapes has been presented. The model-parameter uncertainties and
the modeling errors are taken into account in the framework of a generalized probabilistic approach of un-
certainties. A transformation of the computational modal quantities is introduced in order to construct a
correspondence between the experimental modal data and the computational modal quantities. This method
allows us to take into account mode crossings and mode veerings that may occur. The methodology has
been applied to the construction a stochastic computational model representing a family of booster pumps of
thermal units.
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