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On ANOVA decompositions of kernels and
Gaussian random field paths

D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, and N. Lenz

Abstract The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate

functions has been used for high-dimensional model representation and global sen-

sitivity analysis. When the objective function f has no simple analytic form and is

costly to evaluate, a practical limitation is that computing FANOVA terms may be

unaffordable due to numerical integration costs. Several approximate approaches re-

lying on random field models have been proposed to alleviate these costs, where f

is substituted by a (kriging) predictor or by conditional simulations. In the present

work, we focus on FANOVA decompositions of Gaussian random field sample paths,

and we notably introduce an associated kernel decomposition (into 22d terms) called

KANOVA. An interpretation in terms of tensor product projections is obtained, and

it is shown that projected kernels control both the sparsity of Gaussian random field

sample paths and the dependence structure between FANOVA effects. Applications

on simulated data show the relevance of the approach for designing new classes of

covariance kernels dedicated to high-dimensional kriging.

1 Introduction: Metamodel-based Global Sensitivity Analysis

Global Sensitivity Analysis (GSA) is a topic of importance for the study of complex

systems as it aims at uncovering among many candidates which variables and inter-
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actions thereof are influential with respect to some response of interest. FANOVA

(Functional ANalysis Of VAriance) [12, 30, 9, 2] has become commonplace for

decomposing a real-valued function f of d-variables into a sum of 2d functions

(a.k.a. effects) of increasing dimensionality, and quantifying the influence of each

variable or group of variables through non-negative indices summing up to one, the

celebrated Sobol’ indices [31, 25]. In practice f is rarely known analytically and a

number of statistical procedures have been proposed for estimating Sobol’ indices

based on a finite sample of evaluations of f ; see [13] and the references therein. Al-

ternatively, a pragmatic approach to GSA, when the evaluation budget is drastically

limited by computational cost or time, is to first approximate f by employing some

class of surrogate models (e.g., regression, neural nets, splines, wavelets, kriging;

see [35] for an overview) and then to perform the analysis on the obtained cheap-

to-evaluate surrogate model. Here we focus essentially on kriging and Gaussian

random field (GRF) models, with an emphasis on the interplay between covariance

kernels and FANOVA decompositions of corresponding centred GRF sample paths.

While screening and GSA relying on kriging have been used for at least two

decades [38], probabilistic GSA in the Bayesian set-up seems to originate in [22],

where posterior effects and related quantities were derived under a GRF prior. Later

on, posterior distributions of Sobol’ indices were investigated in [20] relying on con-

ditional simulations, an approach revisited and extended to multi-fidelity computer

codes in [18]. From a different perspective, FANOVA-graphs were used in [21] to

incorporate GSA information into a kriging model, and a special class of kernels

was introduced in [6] for which Sobol’ indices of the kriging predictor are analyti-

cally tractable. Moreover, a class of kernels leading to centred GRFs with additive

paths has been discussed in [5], and FANOVA decompositions of GRFs and their

covariance were touched upon in [19] where GRFs with ortho-additive paths were

introduced. More recently, a variant of the kernel investigated in [6] was revisited

in [4] with a focus on GSA with dependent inputs, and a class of kernels related

to ANOVA decompositions was studied in [8, 7]. In a different setting, GRF priors

have been used for Bayesian FANOVA when the responses are curves [14].

In the present paper we investigate ANOVA decompositions both for (symmet-

ric positive definite) kernels and for associated centred GRFs. We show that under

standard integrability conditions, s.p.d. kernels can be decomposed into 4d terms

that govern the joint distribution of the 2d terms of the associated GRF FANOVA

decomposition. This has some serious consequences in kriging-based GSA, as for

instance the choice of a sparse kernel induces almost sure sparsity of the associated

GRF paths, and that such phenomenon cannot be compensated by data acquisition.

2 Preliminaries and notation

FANOVA. We focus on measurable f : D ⊆ R
d −→ R (d ∈ N\{0}). In FANOVA

with independent inputs, D is typically assumed to be of the form D = ∏d
i=1 Di for

some measurable subsets Di ∈ B(R), where each Di is endowed with a probability
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On ANOVA decompositions of kernels and Gaussian random field paths 3

measure νi and D is equipped with the product measure ν =
⊗d

i=1 νi. Assuming

further that f is square-integrable w.r.t. ν , f can be expanded into as sum of 2d

terms indexed by the subsets u⊆ I = {1, . . . ,d} of the d variables,

f = ∑
u⊆I

fu, (1)

where fu ∈ F = L2(ν) depend only on the variables x j with j ∈ u (up to an a.e.

equality, as all statements involving L2 from Equation (1) on). Uniqueness of this

decomposition is classically guaranteed by imposing that
∫

fu ν j(dx j) = 0 for every

j ∈ u, in which case the FANOVA effects fu can be expressed in closed form as

fu : x ∈ D −→ fu(x1, . . . ,xd) = ∑
u
′⊆u

(−1)|u|−|u′|
∫

f (x1, . . . ,xd) ν−u
′(dx−u

′), (2)

where ν−u′ =
⊗

j∈I\u′ ν j and x−u′ = (xi)i∈I\u′ . As developed in [17], Equation (2)

is a special case of a decomposition relying on commuting projections. Denoting by

Pj : f ∈ F −→ ∫

f dν j the orthogonal projector onto the subspace F j of f ∈ F not

depending on x j, the identity on F can be expanded as

IF =
d

∏
j=1

[

(IF −Pj)+Pj

]

= ∑
u⊆I

(

∏
j∈u

(IF −Pj)

)(

∏
j∈I\u

Pj

)

. (3)

FANOVA effects appear then as images of f under the orthogonal projection opera-

tors onto the associated subspaces Fu =
(

⋂

j/∈uF j

)

∩
(

⋂

j∈uF⊥
j

)

, i.e. we have that

fu = Tu( f ), where Tu =
(

∏ j∈u(IF −Pj)
) (

∏ j/∈u Pj

)

. Finally, the squared norm of

f decomposes by orthogonality as ‖ f‖2 = ∑u⊆I ‖Tu( f )‖2 and the influence of each

(group of) variable(s) on f can be quantified via the Sobol’ indices

Su( f ) =
‖Tu( f −T/0( f ))‖2

‖ f −T/0( f )‖2
=

‖Tu( f )‖2

‖ f −T/0( f )‖2
, u 6= /0. (4)

Gaussian random fields (GRFs). A random field indexed by D is a collection of

random variables Z = (Zx)x∈D defined on a common probability space (Ω ,A ,P).
The random field is called a Gaussian random field (GRF) if (Z

x(1)
, . . . ,Z

x(n)
) is n-

variate normally distributed for any x(1), . . . ,x(n) ∈ D (n ≥ 1). The distribution of

Z is then characterized by its mean function m(x) = E[Zx], x ∈ D, and covariance

function k(x,y) =Cov(Zx,Zy), x,y∈D. It is well-known that admissible covariance

functions coincide with symmetric positive definite (s.p.d.) kernels on D×D [3].

A multivariate GRF taking values in R
p is a collection of Rp-valued random vec-

tors Z = (Zx)x∈D such that Z
( j)

x(i)
, 1≤ i ≤ n, 1≤ j ≤ p, are jointly np-variate normally

distributed for any x(1), . . . ,x(n) ∈ D. The distribution of Z is characterized by its Rp-

valued mean function and a matrix-valued covariance function (ki j)i, j∈{1,...,p}.

In both real- and vector-valued cases (assuming additional technical conditions

where necessary) k governs a number of pathwise properties ranging from square-
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integrability to continuity, differentiability and more; see e.g. Section 1.4 of [1] or

Chapter 5 of [28] for details. As we will see in Section 4, k actually also governs the

FANOVA decomposition of GRF paths ω ∈Ω −→ Z•(ω)∈R
D. Before establishing

this result, let us first introduce a functional ANOVA decomposition for kernels.

3 KANOVA: A kernel ANOVA decomposition

Essentially we apply the 2d-dimensional version of the decomposition introduced

in Section 2 to ν ⊗ν-square integrable kernels k (s.p.d. or not). From a formal point

of view it is more elegant and leads to more efficient notation if we work with

the tensor products Tu⊗Tv : F ⊗F −→ F ⊗F . It is well known that L2(ν ⊗ ν)
and F ⊗F are isometrically isomorphic (see [15] for details on tensor products

of Hilbert spaces), and we silently identify them here for simplicity. Then Tu ⊗
Tv = T

(1)
u T

(2)
v = T

(2)
v T

(1)
u , where T

(1)
u , T

(2)
v : L2(ν ⊗ν) −→ L2(ν ⊗ν) are given by

(T
(1)
u k)(x,y) = (Tu(k(•,y))(x) and (T

(2)
v k)(x,y) = (Tv(k(x,•))(y).

Theorem 1. Let k be ν ⊗ν-square integrable.

a) There exist ku,v ∈ L2(ν ⊗ ν) depending solely on (xu,yv) such that k can be

decomposed in a unique way as k = ∑u,v⊆I ku,v under the conditions

∀u,v⊆ I ∀i ∈ u ∀ j ∈ v

∫

ku,v νi(dxi) = 0 and

∫

ku,v ν j(dy j) = 0. (5)

We have

ku,v(x,y) = ∑
u
′⊆u

∑
v
′⊆v

(−1)|u|+|v|−|u′|−|v′|
∫

k(x,y) ν−u
′(dx−u

′) ν−v
′(dy−v

′).

(6)

Moreover, ku,v may be written concisely as ku,v = [Tu⊗Tv]k.

b) Suppose that D is compact and k is a continuous s.p.d. kernel. Then, for any

(αu)u⊆I ∈ R
2d

, the following function is also a s.p.d. kernel:

(x,y) ∈ D×D −→ ∑
u⊆I

∑
v⊆I

αuαvku,v(x,y) ∈ R. (7)

Proof. The proofs are in the appendix (Section 8) to facilitate the reading.

Example 1 (The Brownian kernel). Consider the covariance kernel k(x,y)=min(x,y)
of the Brownian motion on D = [0,1], and suppose that ν is the Lebesgue measure.

The ku,v’s can then easily be obtained by direct calculation: k /0, /0 = 1
3
, k /0,{1}(y) =

y− y2

2
− 1

3
, k{1}, /0(x) = x− x2

2
− 1

3
, and k{1},{1}(x,y) =min(x,y)−x+ x2

2
−y+ y2

2
+ 1

3
.

Example 2. Consider the very common class of tensor product kernels: k(x,y) =

∏d
i=1 ki(xi,yi) where the ki’s are 1-dimensional symmetric kernels. It turns out that

Equation (6) boils down to a sum depending on 1- and 2-dimensional integrals, since
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∫

k(x,y)dν−u(x−u)dν−v(y−v) =

∏
i∈u∩v

ki(xi,yi) · ∏
i∈u\v

∫

ki(xi, ·)dνi · ∏
i∈v\u

∫

ki(·,yi)dνi · ∏
i/∈u∪v

∫∫

kid(νi ⊗νi). (8)

By symmetry of k, Equation (8) solely depends on the integrals
∫∫

kid(νi ⊗νi) and

integral functions t 7→
∫

ki(·, t)dνi, i = 1, . . . ,d. We refer to Section 9 for explicit

calculations using typical ki’s. A particularly convenient case is considered next.

Corollary 1. Let k
(0)
i : Di × Di −→ R (1 ≤ i ≤ d) be argumentwise centred, i.e.

such that
∫

k
(0)
i (·, t)dνi =

∫

k
(0)
i (s, ·)dνi = 0 for all i ∈ I and s, t ∈ Di, and consider

k(x,y) = ∏d
i=1(1+ k

(0)
i (xi,yi)). Then the KANOVA decomposition of k consists of

the terms [Tu⊗Tu]k(x,y) = ∏i∈u k
(0)
i (xi,yi) and [Tu⊗Tv]k = 0 if u 6= v.

Remark 1. By taking k(x,y) = ∏d
i=1(1+k

(0)
i (xi,yi)), where k0

i are s.p.d., we recover

the so-called ANOVA kernels [37, 36, 6]. Corollary 1 guarantees for argumentwise

centred k
(0)
i that the associated k has a simple KANOVA decomposition, with ana-

lytically tractable ku,u terms and vanishing ku,v terms (for u 6= v).

4 FANOVA decomposition of Gaussian random field paths

Let Z = (Zx)x∈D be a centred GRF with covariance function k. To simplify the ar-

guments we make an assumption (for the rest of the article) that is often satisfied in

practice: let Di be compact subsets of R and assume that Z has continuous sample

paths. The latter can be guaranteed by a weak condition on the covariance kernel;

see [1], Theorem 1.4.1. For r ∈ N\ {0} write Cb(D,Rr) for the space of (bounded)

continuous functions D → R
r equipped with the supremum norm, and set in partic-

ular Cb(D) = Cb(D,R). We reinterpret Tu as maps Cb(D)→Cb(D), which are still

bounded linear operators.

Theorem 2. The 2d-dimensional vector-valued random field (Z
(u)
x ,u ⊆ I)x∈D is

Gaussian, centred, and has continuous sample paths again. Its matrix-valued co-

variance function is given by

Cov(Z
(u)
x ,Z

(v)
y ) = [Tu⊗Tv]k (x,y). (9)

Example 3. Continuing from Example 1, let B = (Bx)x∈[0,1] be Brownian motion on

D = [0,1], which is a centred Gaussian random field with continuous paths. Theo-

rem 2 yields that (T/0B,T{1}B) = (
∫ 1

0 Budu, Bx −
∫ 1

0 Budu)x∈D is a bivariate random

field on D, where T/0B is a N (0,1/3)-distributed random variable, while (T{1}Bx)
is a centred Gaussian process with covariance kernel k{1},{1}(x,y) = min(x,y)−
x+ x2

2
− y+ y2

2
+ 1

3
. The cross-covariance function of the components is given by

Cov(T/0B,T{1}Bx) = x− x2

2
− 1

3
.
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Remark 2. Under our conditions on Z and using the notation from the proof of

Theorem 1, we have a Karhunen–Loève expansion Zx = ∑∞
i=1

√
λiεiφi(x), where

ε = (εi)i∈N\{0} is a standard Gaussian white noise sequence and the series converges

uniformly (i.e. in Cb(D)) with probability 1 (and in L2(Ω)); for d = 1 see [16, 1].

Thus by the continuity of Tu, we can expand the projected random field as

Z
(u)
x = Tu

(

∞

∑
i=1

√

λiεiφi(x)

)

=
∞

∑
i=1

√

λiεiTu (φi)(x), (10)

where the series converges uniformly in x with probability 1 (and in L2(Ω)). This

is the basis for an alternative proof of Theorem 2. We can also verify Equation (9)

under these conditions. Using the left/right-continuity of cov in L2(Ω), we obtain

indeed cov
(

Z
(u)
x ,Z

(v)
y

)

= ∑∞
i=1 λi Tu(φi)(x)Tv(φi)(y) = ku,v(x,y).

Corollary 2. (a) For any u⊆ I the following statements are equivalent:

(i) Tu(k(•,y)) = 0 for every y ∈ D

(ii) [Tu⊗Tu]k = 0

(iii) [Tu⊗Tu]k(x,x) = 0 for every x ∈ D

(iv) P(Z(u) = 0) = 1

(b) For any u,v⊆ I with u 6= v the following statements are equivalent:

(i) [Tu⊗Tv]k = 0

(ii) Z(u) and Z(v) are two independent GRFs

Remark 3. A consequence of Corollary 2 is that choosing a kernel without u compo-

nent in GRF-based GSA will lead to a posterior distribution without u component

whatever the assimilated data, i.e. P(Z(u) = 0 |Zx1
, . . . ,Zxn) = 1 (a.s.). Indeed, an a.s.

constant random element remains a.s. constant under any conditioning.

However, the analogous result does not hold for cross-covariances between Z(u)

and Z(v) for u 6= v. Let us take for instance D = [0,1], ν arbitrary, and Zt =U +Yt ,

where U ∼ N (0,σ2) (σ > 0) and (Yt) is a centred Gaussian process with argumen-

twise centred covariance kernel k(0). Assuming that U and Y are independent, it is

clear that (T/0Z)s = 0 and (T{1}Z)t = Yt , so cov((T/0Z)s,(T{1}Z)t ) = 0. If in addition

Z was observed at a point r ∈ D, Equation (9) yields cov((T/0Z)s,(T{1}Z)t |Zr) =

(T/0 ⊗T{1})(k(•,⋆)− k(•,r)k(r,⋆)/k(r,r))(s, t), where k(s, t) = σ2 + k(0)(s, t) is the

covariance kernel of Z. By Equation (6) we obtain cov((T/0Z)s,(T{1}Z)t |Zr) =

−σ2k(0)(t,r)/(σ2 + k(0)(r,r)), which in general is nonzero.

Remark 4. Coming back to the ANOVA kernels discussed in Remark 1, Corol-

lary 2(b) implies that for a centred GRF with continuous sample paths and covari-

ance kernel of the form k(x,y) = ∏d
i=1(1+ k

(0)
i (xi,yi)), where k

(0)
i is argumentwise

centred, the FANOVA effects Z(u), u⊆ I, are actually independent.

To close this section, let us finally touch upon the distribution of Sobol’ indices

of GRF sample paths, relying on Theorem 2 and Remark 2.
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Corollary 3. For u⊆ I, u 6= /0, we can represent the Sobol’ indices of Z as

Su(Z) =
Qu(ε,ε)

∑v 6= /0 Qv(ε,ε)
,

where the Qu’s are quadratic forms in a standard Gaussian white noise sequence.

In the notation of Remark 2, Qu(ε,ε) = ∑∞
i=1 ∑∞

j=1

√

λiλ j〈Tuφi,Tuφ j〉εiε j , where the

convergence is uniform with probability 1.

Remark 5. Consider the GRF Z′ = Z −T/0Z with Karhunen–Loève expansion Z′
x =

∑∞
i=1

√

λ ′
i φ ′

i (x)εi. From Equation (4) and (the proof of) Corollary 3 we can see that

Su(Z) = Su(Z
′) = ∑∞

i, j=1 g′i jεiε j

/

∑∞
i=1 λ ′

i ε2
i , where g′i j =

√

λ ′
i λ ′

j〈Tuφ ′
i ,Tuφ ′

j〉. Trun-

cating both series above at K ∈ N, applying the theorem in Section 2 of [27] and

then Lebesgue’s theorem for K → ∞, we obtain

ESu(Z) =
∞

∑
i=1

g′ii

∫ ∞

0

(

(1+ 2λ ′
i t)

3/2 ∏
l 6=i

(1+ 2λ ′
l t)

1/2
)−1

dt,

ESu(Z)
2 =

∞

∑
i=1

∞

∑
j=1

(g′iig
′
j j + 2g′i j

2)

∫ ∞

0
t
(

(1+ 2λ ′
i t)

3/2 ∏
l 6∈{i, j}

(1+ 2λ ′
l t)

1/2
)−1

dt.

5 Making new kernels from old with KANOVA

While kernel methods and Gaussian process modelling have proven efficient in a

number of classification and prediction problems, finding a suitable kernel for a

given application is often judged difficult. It should simultaneously express the

desired features of the problem at hand while respecting positive definiteness, a

mathematical constraint that is not straightforward to check in practice. In typical

implementations of kernel methods, a few classes of standard stationary kernels

are available for which positive definiteness was established analytically based on

the Bochner theorem. On the other hand, some operations on kernels are known

to preserve positive-definiteness, which enables enriching the available dictionary

of kernels notably by multiplication by a positive constant, convex combinations,

products and convolutions of kernels, or deformations of the input space. The sec-

tion Making new kernels from old of [24] (Section 4.2.4) covers a number of such

operations. We now consider some new ways of creating admissible kernels in the

context of the KANOVA decomposition of Section 3. Let us first consider as before

some square-integrable symmetric positive definite kernel kold and take u⊆ I.

One straightforward approach to create a kernel whose associated Gaussian ran-

dom field has paths in Fu is then to plainly take the “simple” projected kernel

knew = πukold with πu = Tu⊗Tu. (11)
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8 D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, N. Lenz

From Theorem 1(b) it is clear that such kernels are s.p.d.; however, they will gener-

ally not be strictly positive definite.

Going one step further, one obtains a richer class of 22d
positive definite kernels

by considering parts of P(I), and designing kernels accordingly. Taking U ⊂P(I),
we obtain a further class of projected kernels as follows:

knew = πU kold with πU = TU ⊗TU = ∑
u∈U

∑
v∈U

Tu⊗Tv, where TU = ∑
u∈U

Tu. (12)

The resulting kernel is again s.p.d., which follows from Theorem 1(b) by choosing

αu = 1 if u ∈ U and αu = 0 otherwise. Such a kernel contains not only the co-

variances induced by the effects associated with the different subsets of U , but also

cross-covariances between these effects. Finally, another relevant class of positive

definite projected kernels can be designed by taking

knew = π⋆
U kold with π⋆

U = ∑
u∈U

Tu⊗Tu. (13)

This kernel corresponds to the one of a sum of independent random fields with

same individual distributions as the Z(u) (u ∈U). In addition, projectors of the form

πU1
,π⋆

U2
(U1,U2 ⊂P(I)) can be combined (e.g. by sums or convex combinations) in

order to generate a large class of s.p.d. kernels, as illustrated here and in Section 6.

a. kf ull b. kA∗ c. kA

e. kanova f. kA∗+O g. kA+O∗

d. kinter

h. kspar se

Fig. 1 Schematic representations of a reference kernel kfull and various projections or sums of

projections. The expressions of these kernels are detailed in Section 6.

Example 4. Let us consider A = { /0,{1},{2}, . . .,{d}} and O, the complement of A

in P(I). While A corresponds to the constant and main effects forming the additive

component in the FANOVA decomposition, O corresponds to all higher-order terms,

referred to as ortho-additive component in [19]. Taking πAk =(TA⊗TA)k amounts to
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On ANOVA decompositions of kernels and Gaussian random field paths 9

extracting the additive component of k with cross-covariances between the various

main effects (including the constant); see Figure 1(c). On the other hand, π⋆
Ak =

∑u∈A πuk retains these main effects without their possible cross-covariances; see

Figure 1(b). In the next theorem (proven in [19]), analytical formulae are given for

πAk and related terms for the class of tensor product kernels.

Theorem 3. Let Di = [ai,bi] (ai < bi) and k =∏d
i=1 ki, where the ki are s.p.d. kernels

on Di such that ki(xi,yi)> 0 for all xi,yi ∈ Di. Then, the additive and ortho-additive

components of k with their cross-covariances are given by

(πAk)(x,y) =
a(x)a(y)

E
+E ·

d

∑
i=1

(

ki(xi,yi)

Ei

− Ei(xi)Ei(yi)

E 2
i

)

(TO ⊗TAk)(x,y) = (TA ⊗TOk)(y,x) = E(xxx) ·
(

1− d+
d

∑
j=1

k j(x j,y j)

E j(x j)

)

− (πAk)(x,y)

(πOk)(x,y) = k(x,y)− (TA ⊗TOk)(x,y)− (TO ⊗TAk)(x,y)− (πAk)(x,y)

where Ei(xi) =
∫ bi

ai
ki(xi,yi) dyi, E(x) = ∏d

i=1 Ei(xi), Ei =
∫ bi

ai
Ei(xi)νi(dxi), E =

∏d
i=1 Ei, and a(x) = E

(

1− d+∑d
i=1

Ei(xi)
Ei

)

.

6 Numerical experiments

We now consider a 30 dimensional numerical experiment where we compare the

prediction abilities of various sparse kernels obtained from the KANOVA decompo-

sition of a squared-exponential kernel

kfull(x,y) = exp(−||x− y||2), x,y ∈ (0,1)30. (14)

As detailed in the previous sections, kfull can be expanded as a sum of 430 terms,

and sparsified versions of kfull can be obtained by projections such as in Example 4.

We will focus hereafter on seven sub-kernels (all summations are over u, v⊆ I):

kanova = ∑πuk kA⋆ = ∑|u|≤1 πuk

kA = ∑|u|≤1 ∑|v|≤1(Tu⊗Tv)k kA⋆+O = πOk+ kA⋆

kA+O⋆ = kanova − kA⋆ + kA kinter = ∑|u|≤2 πuk

ksparse = (π /0 +π{1}+π{2}+π{2,3}+π{4,5})k.

(15)

A schematic representation of these kernels can be found in Figure 1. Note that

the tensor product structure of kfull allows to use Theorem 3 in order to get more

tractable expressions for all kernels above. Furthermore, the integrals appearing in

the Ei and Ei terms can be calculated analytically as detailed in Section 9.

We now compare the predictions obtained by GRF modelling with these kernels

on a benchmark of test functions given by sample paths from centred GRFs pos-
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10 D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, N. Lenz

sessing the same set of kernels (200 paths per kernel). Whenever the kernel used

for prediction is not the same as the one used for simulation, a Gaussian observa-

tion noise with variance τ2 is assumed in the models used in prediction, where τ2

is chosen so as to reflect the part of variance that cannot be approximated by the

model.

We consider a training set Xtrain of 500 points and a test set Xtest of 200 points

given by a Latin Hypercube design with optimized maximin criterion [26, 10]. The

accuracy of the fit is measured using the following criterion :

C = 1− ∑(yi − ŷi)
2

∑y2
i

(16)

where y is the vector of the test function values at the test points and ŷ is the vector

of predicted values. This criterion is equal to one when the prediction error is null

and it is equal to zero when the model predicts as bad as the null function.

The values of the criterion for all couples of test functions and models are sum-

marized in Table 1. Let us stress three important points from these results.

First, this example illustrates that, unless the correlation range is increased, pre-

dicting a GRF based on 500 points in dimension 30 is hopeless when the covariance

structure is full or close to full (first four rows of Table 1) no matter what sub-kernel

is chosen for prediction. However, for GRFs with sparser covariance, prediction

performances are strongly increased (last four rows of Table 1).

Second, still focusing on the four last lines of Table 1, kinter seems to offer a nice

compromise as it works much better than other sub-kernels on Zinter and achieves

very good performances on the sparser GRF sample paths. Besides this, it is not

doing much worse than the best sub-kernels on lines 1 to 4.

Third, we observe that neglecting cross-correlations between blocks has very lit-

tle or no influence on the results, so that the Gaussian kernel appears to have a

structure relatively close to a diagonal one. This point remains to be studied analyti-

cally.

kfull kanova kA⋆+O kA+O⋆ kinter kA⋆ kA ksparse

Zfull 0.06 0.05 0.06 0.05 0.05 0.03 0.04 0.01

Zanova 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.01

ZA⋆+O 0.05 0.04 0.05 0.04 0.04 0.03 0.03 0.01

ZA+O⋆ 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.01

Zinter 0.33 0.37 0.34 0.37 0.7 0.28 0.28 0.07

ZA⋆ 0.67 0.76 0.71 0.75 0.96 1 1 0.2

ZA 0.69 0.77 0.71 0.77 0.96 1 1 0.18

Zsparse 0.75 0.83 0.8 0.78 0.95 0.9 0.9 1

mean 0.33 0.37 0.35 0.36 0.47 0.41 0.42 0.19

Table 1 Average value of C over the 200 replications of the experiment. Lines correspond to

classes of test functions (GRF models used for simulation) while columns correspond to the kernels

used for prediction. The four last lines of the kinter column are coloured to highlight the superior

performances of that kernel when the class of test functions is as sparse or sparser than Zinter.
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7 Conclusion and perspectives

We have proposed an ANOVA decomposition of kernels (KANOVA), and shown

how KANOVA governs the probability distribution of FANOVA effects of Gaussian

random field paths. This has enabled us in turn to establish that ANOVA kernels cor-

respond to centred Gaussian random fields with independent FANOVA effects, to

make progress towards the distribution of Sobol’ indices of Gaussian random fields,

and also to suggest a number of operations for making new symmetric positive def-

inite kernels from existing ones. Particular cases include the derivation of additive

and ortho-additive kernels extracted from tensor product kernels, for which a closed

form formula was given. Besides this, a 30-dimensional numerical experiment sup-

ports the hypothesis that KANOVA may be a useful approach to designing kernels

for high-dimensional kriging, as the performances of the interaction kernel suggest.

Perspectives include analytically calculating the norm of terms appearing in the

KANOVA decomposition to better understand the structure of common GRF mod-

els. From a practical point of view, a next challenge will be to parametrize decom-

posed kernels adequately so as to recover from data which terms of the FANOVA

decomposition are dominating and to automatically design adapted kernels from

this.
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8 Proofs

Proof (Theorem 1). a) The first part and the concrete solution (6) follow directly

from the corresponding statements in Section 2. Having established (6), it is easily

seen that [Tu⊗Tv]k = T
(1)
u T

(2)
v k coincides with ku,v.

b) Under these conditions Mercer’s theorem applies (see [32] for an overview

and recent extensions). So there exist a non-negative sequence (λi)i∈N\{0}, and

continuous representatives (φi)i∈N\{0} of an orthonormal basis of L2(ν) such that

k(x,y) = ∑∞
i=1 λiφi(x)φi(y), x,y ∈ D, where the convergence is absolute and uni-

form. Noting that Tu,Tv are also bounded as operators on continuous functions,

applying T
(1)
u T

(2)
v from above yields that

∑
u⊆I

∑
v⊆I

αuαvku,v(x,y) =
∞

∑
i=1

λiψi(x)ψi(y), (17)

where ψi = ∑u⊆I αu(Tuφi). Thus the considered function is indeed s.p.d.

Proof (Corollary 1). Expand the product ∏d
l=1(1 + k

(0)
l (xl ,yl)) and conclude by

uniqueness of the KANOVA decomposition, noting that
∫

∏l∈u k
(0)
l (xl ,yl)νi(dxi) =

∫

∏l∈u k
(0)
l (xl ,yl)ν j(dy j) = 0 for any u⊆ I and any i, j ∈ u.

Proof (Theorem 2). Sample path continuity implies product-measurability of Z

and Z(u), respectively, as can be shown by an approximation argument; see e.g.

Prop. A.D. in [29]. Due to Theorem 3 in [33], the covariance kernel k is continu-

ous, hence
∫

DE|Zx|ν−u(dx−u) ≤ (
∫

D k(x,x)ν−u(dx−u))
1/2 < ∞ for any u ⊆ I and

by Cauchy–Schwarz
∫

D

∫

DE|ZxZy|ν−u(dx−u)ν−v(dy−v) < ∞ for any u,v ⊆ I. Re-

placing f by Z in Formula (2), taking expectations and using Fubini’s theorem yields

that Z(u) is centred again. Combining (2), Fubini’s theorem, and (6) yields

Cov(Z
(u)
x ,Z

(v)
y )

= ∑
u
′⊆u

∑
v
′⊆v

(−1)|u|+|v|−|u′|−|v′| Cov

(

∫

Zx ν−u
′(dx−u

′),

∫

Zy ν−v
′(dy−v

′)

)

= ∑
u′⊆u

∑
v′⊆v

(−1)|u|+|v|−|u′|−|v′|
∫

Cov(Zx,Zy) ν−u′(dx−u′) ν−v′(dy−v′)

= [Tu⊗Tv]k (x,y). (18)

It remains to show the joint Gaussianity of the Z(u). First note that Cb(D,Rr) is

a separable Banach space for r ∈ N \ {0}. We may and do interprete Z as a ran-

dom element of Cb(D), equipped with the σ -algebra BD generated by the evalua-

tion maps [Cb(D) ∋ f 7→ f (x) ∈ R]. By Theorem 2 in [23] the distribution PZ−1

of Z is a Gaussian measure on
(

Cb(D),B(Cb(D))
)

. Since Tu is a bounded lin-

ear operator Cb(D) → Cb(D), we obtain immediately that the “combined operator”

T : Cb(D)→Cb(D,R2d
), defined by (T( f ))(x) = (Tu f (x))u⊆I , is also bounded and
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linear. Corollary 3.7 of [34] yields that the image measure (PZ−1)T−1 is a Gaus-

sian measure on Cb(D,R2d
). This means that for every bounded linear operator

Λ : Cb(D,R2d
) → R the image measure ((PZ−1)T−1)Λ−1 is a univariate normal

distribution, i.e. Λ(TZ) is a Gaussian random variable. Thus, for all n ∈N, x(i) ∈ D

and a
(u)
i ∈R, where 1 ≤ i ≤ n, u ⊆ I, we obtain that ∑n

i=1 ∑u⊆I a
(u)
i (TuZ)x(i) is Gaus-

sian by the fact that [Cb(D) ∋ f 7→ f (x) ∈ R] is continuous (and linear) for every

x ∈ D. We conclude that TZ = (Z
(u)
x ,u⊆ I)x∈D is a vector-valued Gaussian random

field.

Proof (Corollary 2). (a) If (i) holds, [Tu⊗Tu]k= T
(2)
u (T

(1)
u k)= 0 by (T

(1)
u k)(•,y)=

Tu(k(•,y)); thus (ii) holds. (ii) trivially implies (iii). Statement (iii) means that

Var(Z
(u)
x ) = 0, which implies that Z

(u)
x = 0 a.s., since Z(u) is centred. (iv) follows by

noting that P(Z
(u)
x = 0) = 1 for all x ∈ D implies P(Z(u) = 0) = 1 by the fact that

Z(u) has continuous sample paths and is therefore separable. Finally, (iv) implies (i)

because Tu(k(•,y)) = Cov(Z
(u)
• ,Zy) = 0; compare (18) for the first equality.

(b) For any m,n ∈N and x1, . . . ,xm,y1, . . . ,yn ∈ D we obtain by Theorem 2 that

Z
(u)
x1

, . . . ,Z
(u)
xm ,Z

(v)
y1

, . . . ,Z
(v)
yn are jointly normally distributed. Statement (i) is equiv-

alent to saying that Cov(Z
(u)
x ,Z

(v)
y ) = 0 for all x,y ∈ D. Thus (Z

(u)
x1

, . . . ,Z
(u)
xm ) and

(Z
(v)
y1

, . . . ,Z
(v)
yn ) are independent. Since the sets

{( f ,g) ∈ R
D ×R

D : ( f (x1), . . . , f (xm)) ∈ A,(g(y1), . . . ,g(yn)) ∈ B} (19)

with m,n ∈ N, x1, . . . ,xm,y1, . . . ,yn ∈ D, A ∈ B(Rm), B ∈ B(Rn) generate BD ⊗
BD (and the system of such sets is stable under intersections), statement (ii) follows.

The converse direction is straightforward.

Proof (Corollary 3). By Remark 2, there is a Gaussian white noise sequence

ε = (εi)i∈N\{0} such that Zx = ∑∞
i=1

√
λiεiφi(x) uniformly with probability 1. From

Z
(u)
x = ∑∞

i=1

√
λiεiTuφi(x), we obtain ‖Z(u)‖2 = Qu(ε,ε) with Qu as defined in the

statement. A similar calculation for the denominator of Su(Z) leads to ∑v 6= /0 Qv(ε,ε),
which concludes the proof.

9 Additional examples

Here we give useful expressions to compute the KANOVA decomposition of some

famous tensor product kernels with respect to the uniform measure on [0,1]d . For

the sake of simplicity we denote the 1-dimensional kernels that they are based on by

k (corresponding to the notation ki in Example 2). The uniform measure on [0,1] is

denoted by λ .

Example 5 (Exponential kernel). If k(x,y) = exp
(

− |x−y|
θ

)

, then:
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• ∫ 1
0 k(.,y)dλ = θ × [2− k(0,y)− k(1,y)]

• ∫∫

[0,1]2 k(., .)d(λ ⊗λ ) = 2θ (1−θ +θe−1/θ)

Example 6 (Matérn kernel, ν = p+ 1
2
). Define for ν = p+ 1

2
(p ∈ N):

k(x,y) =
p!

(2p)!

p

∑
i=0

(p+ i)!

i!(p− i)!

( |x− y|
θ/

√
8ν

)p−i

× exp

(

− |x− y|
θ/

√
2ν

)

.

Then, denoting ζp =
θ√
2ν

, we have:

∫ 1

0
k(.,y)dλ = ζp

p!

(2p)!
×
[

2cp,0 −Ap

(

y

ζp

)

−Ap

(

1− y

ζp

)]

,

where

Ap(u) =

(

p

∑
ℓ=0

cp,ℓu
ℓ

)

e−u with cp,ℓ =
1

ℓ!

p−ℓ

∑
i=0

(p+ i)!

i!
2p−i.

This generalizes Example 5, corresponding to ν = 1/2. Also, this result can be writ-

ten more explicitly for the commonly selected value ν = 3/2 (p = 1,ζ1 = θ/
√

3):

• k(x,y) =
(

1+ |x−y|
ζ1

)

exp
(

− |x−y|
ζ1

)

• ∫ 1
0 k(.,y)dλ = ζ1 ×

[

4−A1

(

y

ζ1

)

−A1

(

1−y

ζ1

)]

with A1(u) = (2+ u)e−u

• ∫∫

[0,1]2 k(., .)d(λ ⊗λ ) = 2ζ1

[

2− 3ζ1+(1+ 3ζ1)e
−1/ζ1

]

Similarly, for ν = 5/2 (p = 2,ζ2 = θ/
√

5):

• k(x,y) =
(

1+ |x−y|
ζ2

+ 1
3
(x−y)2

(ζ2)2

)

exp
(

− |x−y|
ζ2

)

• ∫ 1
0 k(.,y)dλ = 1

3
ζ2 ×

[

16−A2

(

y

ζ2

)

−A2

(

1−y

ζ2

)]

with A2(u) = (8+5u+u2)e−u

• ∫∫

[0,1]2 k(., .)d(λ ⊗λ ) = 1
3
ζ2(16− 30ζ2)+

2
3
(1+ 7ζ2+ 15(ζ2)

2)e−1/ζ2

Example 7 (Gaussian kernel). If k(x,y) = exp
(

− 1
2
(x−y)2

θ 2

)

, then

• ∫ 1
0 k(.,y)dλ = θ

√
2π ×

[

Φ
(

1−y
θ

)

+Φ
(

y
θ

)

− 1
]

• ∫∫

[0,1]2 k(., .)d(λ ⊗λ ) = 2(e−1/(2θ 2)− 1)+θ
√

2π ×
(

2Φ
(

1
θ

)

− 1
)

where Φ denotes the cdf of the standard normal distribution.
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