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Various models of tumor growth are available in the litterature. A first class describes the evolution of the cell number density when considered as a continuous visco-elastic material with growth. A second class, describes the tumor as a set and rules for the free boundary are given related to the classical Hele-Shaw model of fluid dynamics.

Following the lines of previous papers where the material is described by a purely elastic material, or when active cell motion is included, we make the link between the two levels of description considering the 'stiff pressure law' limit. Even though viscosity is a regularizing effect, new mathematical difficulties arise in the visco-elastic case because estimates on the pressure field are weaker and do not imply immediately compactness. For instance, traveling wave solutions and numerical simulations show that the pressure may be discontinous in space which is not the case for the elastic case.

The cell model with visco-elastic flow

We consider a mechanical model of tumor growth considered as a visco-elastic media. We denote the number density of tumor cells by n(x, t), the pressure by p(x, t) and we assume a Brinkman flow that means the macroscopic velocity field is given by ∇W for a potential W closely related to the pressure. With these assumptions, the model for tumor growth writes

∂ t n k -div(n k ∇W k ) = n k G p k , (1) 
-ν∆W k + W k = p k (x, t) := Π k (n k ), (2) 
where we choose the pressure law given by:

Π k (n) = k k -1 n k-1 , k > 2. (3) 
Following [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF][START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF], we assume that growth is directly related to the pressure through a function G(•) that satisfies

G ∈ C 1 (R), G ′ (•) ≤ -α < 0, G(P M ) = 0 for some P M > 0. (4) 
The pressure P M is usually called the homeostatic pressure . We complete equation ( 1), [START_REF] Allaire | Homogenization of the Navier-Stokes equations and derivation of Brinkman's law[END_REF] with a family of initial data n 0 k satisfying (for some constant C independent of k)

0 ≤ n 0 k , Π k (n 0 k ) ≤ p M , n 0 k L 1 (R d ) ≤ C. (5) 
The viscosity coefficient, ν > 0, is supposed to be constant; when viscosity is neglected, that means equation [START_REF] Allaire | Homogenization of the Navier-Stokes equations and derivation of Brinkman's law[END_REF] with ν = 0, we recover Darcy's law for which an important literature is available, see [START_REF] Chatelain | Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture[END_REF][START_REF] Sherratt | A new mathematical model for avascular tumour growth[END_REF][START_REF] Friedman | A hierarchy of cancer models and their mathematical challenges[END_REF][START_REF] Roose | Mathematical models of avascular tumor growth[END_REF][START_REF] Cristini | Nonlinear simulations of solid tumor growth using a mixture model : invasion and branching[END_REF][START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] and the references therein. In that case only friction with the cell surrounding (extra-cellular matrix) is considered. Viscosity is a way to represent friction between cells themselves, considered as a Newtonian fluid and Brinkman's law has been derived rigorously for inhomogenous materials [START_REF] Allaire | Homogenization of the Navier-Stokes equations and derivation of Brinkman's law[END_REF]. Viscoelastic models for tumor growth, based on Stokes' or Brinkman's law have also been used in the context of tumor growth is [START_REF] Zheng | Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method[END_REF][START_REF] Bresch | A viscolelastic model for avascular tumor growth[END_REF][START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF] with a major difference, namely the pressure does not follow a law-of-state (4) but follows from the tissue incompressibility. However, Stokes' or Brinkman's law are also used considering the tissue as 'compressible' [START_REF] Bittig | Dynamics of anisotropic tissue growth[END_REF][START_REF] Basan | Homeostatic competition drives tumor growth and metastasis nucleation[END_REF]. To use Laplacian in [START_REF] Allaire | Homogenization of the Navier-Stokes equations and derivation of Brinkman's law[END_REF], rather than Stokes viscosity terms, is to simplify the presentation and presentation of the mathematical ideas. Indeed, this is not central for our aim here, which is to explain the derivation of such 'incompressible' models from the 'compressible' equations. Note that the theory of mixtures allows for a general formalism containing both Darcy's law and Brinkman's law [START_REF] Byrne | A two-phase model of solid tumor growth[END_REF][START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF][START_REF] Preziosi | Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications[END_REF].

Our interest is in the 'stiff pressure law' limit of this model towards a free boundary model which generalizes the classical Hele-Shaw equation. That is the limit k → ∞ and we first explain formally what can be expected. The limit uses strongly the equation satisfied by the pressure. Multiplying equation (1) by Π ′ k (n) and using the chain rule, we deduce

∂ t p k -n k Π ′ k (n k )∆W k -∇p k • ∇W k = n k Π ′ k (n k )G(p k ).
From our choice for the law of state (3), we deduce that

nΠ ′ k (n) = kn k-1 = (k -1)Π k (n).
Injecting this expression into the above equation, we deduce that

   ∂ t p k -∇p k • ∇W k = k-1 ν p k Q k , Q k = W k -p k + νG(p k ) := W k -H -1 (p k ) (6)
where we have defined the function H, coming with some properties, as

H := (I -νG) -1 , p m := H(0) > 0; H is increasing, H ′ (•) < 1. (7) 
Indeed, G is non-increasing and thus (I -νG) is invertible on [0, P M ] onto [-νG(0), P M ]. Furthermore, notice that (I -νG) ′ > 1.

Back to the limit k → +∞, at least when p k converges strongly, from (3), we first find the relation

p ∞ (1 -n ∞ ) = 0. ( 8 
)
Letting k → +∞ and asuming we can pass into the limit in all terms, we formally deduce

p ∞ ∆W ∞ + G(p ∞ ) = 0.
Therefore, at the limit we can distinguish between two different regions. The first region is defined by the set

Ω(t) := {p ∞ (•, t) > 0} (9) 
on which we have the system :

n ∞ = 1, (10) 
-ν∆W ∞ + W ∞ = p ∞ , (11) 
∆W ∞ + G(p ∞ ) = 0. ( 12 
)
Thus the latter system reduces to :

n ∞ = 1, p ∞ = H(W ∞ ), x ∈ Ω(t), -ν∆W ∞ + W ∞ -H(W ∞ ) = 0.
On the second region, R d \ Ω(t), the limiting system writes

p ∞ = 0, ∂ t n ∞ -div(n ∞ ∇W ∞ ) = n ∞ G(0), -ν∆W ∞ + W ∞ = 0.
To establish rigorously this limit, we need some additional assumption on the initial data. Namely, we need that the family n 0 k is 'well-prepared'. By this, we mean that, for some open set Ω 0 ,

Π k (n 0 k ) -→ k→∞ p 0 ∞ = H(W ∞ ) a.e. in Ω 0 , n 0 k = 0 in R d \Ω 0 . ( 13 
)
Note that, with the notation in [START_REF] Bittig | Dynamics of anisotropic tissue growth[END_REF], this assumption implies that Q 0 k ≡ 0 and n 0 k -→ k→+∞ 1 Ω 0 . For this purpose, the latter assumption can be slightly relaxed to n 0 k ≪ e -A/k for all A > 0 in R d \Ω 0 . With our present proof, we need to avoid the existence of a domain where n 0 k remains strictly between 0 and 1, a case which we leave open at this stage.

Our goal is to prove the Theorem 1.1 Under assumptions (4), ( 5) and (13), consider a solution of the system (1)- [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF]. After extraction of subsequences, both the density n k and the pressure p k converge strongly in L 1 loc (0, T ) × R d , for all T > 0, as k → +∞ towards respectively n ∞ and p ∞ belonging to L 1 ∩ L ∞ (0, T ) × R d ; up to a subsequence, W k converges strongly in L 1 (0, T ), W 1,q loc (R d ) , for all q ≥ 1, towards W ∞ . Moreover, these functions satisfy

∂ t n ∞ -div(n ∞ ∇W ∞ ) = n ∞ G(p ∞ ), n ∞ (t = 0) = n 0 ∞ = 1 {Ω 0 } , (14) 
-ν∆W ∞ + W ∞ = p ∞ , (15) 
p ∞ = H(W ∞ )1 {p∞>0} , p ∞ (1 -n ∞ ) = 0, ( 16 
)
p ∞ p ∞ -W ∞ -νG(p ∞ ) = 0, a.e. ( 17 
)
The first relation in ( 16) is equivalent to the statement [START_REF] Perthame | Existence of solutions of the hyperbolic Keller-Segel model[END_REF] and replaces the usual 'complementary relation' in Hele-Shaw flow, p ∞ (∆p ∞ + G(p ∞ )), see [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF][START_REF] Elliotta | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF].

Because the function H(•) does not vanish, we conclude from the first relation in [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF], that p ∞ is discontinuous. This is a major difference with elastic materials (Darcy's law), then p ∞ is continous in space, and this is illustrated by traveling wave solutions we build in Section 3. The pressure jump is however related to the potential W ∞ , a difference with models including surface tension where the jump is related to the free boundary curvature, see [START_REF] Alikakos | Convergence of the Cahn-Hilliard Equation to the Hele-Shaw Model[END_REF][START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF] and the reference therein.

We first prove Theorem 1.1 in several steps. In a first step, we derive a priori estimates. Because they do not give compactness for the pressure, we analyze possible oscillations using a kinetic formulation. From properties of solutions of the corresponding kinetic equation, we conclude that strong compactness occurs. All these steps are in Section 2. The one dimensional traveling wave profiles are presented in Section 3 with numerical illustrations. The final Section is devoted to a conclusion and presentation of some perspective.

Proof of the Hele-Shaw limit

We divide the proof of our main result Theorem 1.1 in several steps. We begin with several bounds which are useful for the sequel. Then, in order to prove strong convergence of the pressure p k , we analyze possible oscillations using the kinetic formulation of (6) in the spirit of [START_REF] Perthame | Existence of solutions of the hyperbolic Keller-Segel model[END_REF].

Estimates

Lemma 2.1 (A priori estimates) Under previous assumptions, for all T > 0, the uniform bounds with respect to k hold

n k , p k and W k ∈ L ∞ (0, T ); L 1 ∩ L ∞ (R d ) , p k ≤ P M , W k ∈ L ∞ (0, T ); W 1,q (R d ) , for 1 ≤ q ≤ ∞, D 2 W k ∈ L ∞ (0, T ); L q (R d ) , for 1 < q < ∞, ∂ t W k ∈ L 1 (0, T ); L q (R d ) , for 1 ≤ q ≤ ∞, ∂ t ∇W k ∈ L 1 (0, T ); L q (R d ) , for 1 < q < d d-1 .
For some nonnegative constant C(T ), independent of k, we have

k T 0 R d p k p k -W k -νG(p k ) dxdt ≤ C(T ). ( 18 
)
We can draw several consequences of this Lemma. First, after extracting subsequences, it is immediate that the following convergences hold as k → ∞:

n k → n ∞ ≤ 1, p k → p ∞ ≤ P M weakly -⋆ in L ∞ (0, +∞) × R d ,
and these limits belong to L ∞ (0, T ); L 1 (R d ) for all t > 0. Also, we have

W k → W ∞ < P M , ∇W k → ∇W ∞ locally in L q (0, T ) × R d , 1 ≤ q < ∞.
Passing to the limit in ( 2) and in the left hand side of (1), we get

-ν∆W ∞ + W ∞ = p ∞ . ( 19 
)
The second consequence concerns the backward flow with velocity ∇W k defined as

d ds X (k) (x,t) (s) = -∇W k (X (k) (x,t) (s), s), X (k) (x,t) (t) = x, (20) 
as well as the forward flow

d dt Y (k) (x) (t) = -∇W k (Y (k) (x) (t), t), Y (k) (x) (t = 0) = x. (21) 
Even though, ∇W k is not uniformly Lipschitz continuous but slightly less, and according to DiPerna-Lions theory [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], these flow are well defined a.e. and, after extraction of subsequences as in Lemma 2.1, it converges a.e. to the limiting flows defined by (41) for the backward flow and by (28) for the forward flow.

The third conclusion uses a combination of the above flow with equation ( 6). We have

p k (x, t) = 0 for x ∈ R d \Ω k (t), Ω k (t) = Y (k) (t)[Ω 0 ] (22) Proof. 1st step. A priori bounds in L 1 ∩ L ∞ . Clearly n k is nonnegative provided n k (t = 0) ≥ 0. Inte- grating, we deduce a bound for n k in L ∞ (0, T ); L 1 (R d ) , uniformly with respect to k.
By definition of p k in (3), we clearly have that Π ′ k (n k ) ≥ 0 when k > 1. We can apply the maximum principle of [START_REF] Tang | Composite waves for a cell population system modelling tumor invasion[END_REF]Lemma 2.1] to obtain the uniform bound

0 ≤ p k ≤ P M .
Therefore, still using relation (3), we have

n k = k-1 k p k 1/(k-1) and n k is uniformly bounded in L ∞ (0, +∞) × R d . Then, writing p k ≤ n k n k k-2 ∞ , we deduce an uniform bound of (p k ) k in L ∞ (0, T ); L 1 (R d ) . 2nd step. Representation of W k . Using elliptic regularity on (2), we conclude that for all t ∈ [0, T ], W k (t, •) is bounded in W 2,q (R d ).
Moreover, denoting by K the fondamental solution of -ν∆K + K = δ 0 , we have

W k = K ⋆ p k , K(x) = 1 4π ∞ 0 e -π |x| 2 4sν + s 4π ds s d/2 . ( 23 
)
We recall that

   K ∈ L q (R d ), ∀1 ≤ q < d d-2 , (1 ≤ q ≤ +∞ for d = 1), ∇K ∈ L q (R d ), ∀1 ≤ q < d d-1 , and that K ≥ 0, R d K(x) dx = 1, which we use below.
Taking the convolution of ( 6), we deduce

∂ t W k = K ⋆ [∇p k • ∇W k + k -1 ν p k Q k ]. ( 24 
)
3rd step. Bounds on Q k . Then, by definition of Q k and using ( 6), we compute

∂ t Q k -∇Q k • ∇W k + k -1 ν 1 -νG ′ (p k ) p k Q k = -|∇W k | 2 + K ⋆ [∇p k • ∇W k + k -1 ν p k Q k ].
Therefore, from a standard computation, we deduce

∂ t |Q k | -∇|Q k |.∇W k + k -1 ν 1 -νG ′ (p k ) p k |Q k | ≤ |∇W k | 2 + |K ⋆ [∇p k .∇W k ]| + k -1 ν K ⋆ [p k |Q k |].
We may integrate in x and t. Because p k and W k are uniformly bounded in L 1 ∩ L ∞ , and |G ′ | ≥ α from (4), we find

α(k -1) T 0 R d p k |Q k | dxdt ≤ R d |Q k (x, 0)|dx - R d |Q k (x, T )|dx + T 0 R d |∇W k | 2 dxdt + T 0 R d -|Q k | ∆W k + |K ⋆ [∇p k • ∇W k ]| dxdt.
The three first terms in the right hand side are all controlled uniformly and, to conclude the bound [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF], we have to estimate last two terms. Using (2), the first term is

- T 0 R d |Q k |∆W k dxdt = 1 ν T 0 R d |Q k | (p k -W k ) dxdt ≤ 1 ν T 0 R d |Q k | p k dxdt,
and this term is controlled, for k large enough, by the αk term in the left hand side. The second term is

K ⋆ [∇p k • ∇W k ] = ∇K ⋆ [p k • ∇W k ] -K ⋆ [p k ∆W k ].
Using the uniform bounds on p k , we have that

p k • ∇K * p k is uniformly bounded, with respect to k, in L ∞ (0, T ); L q (R d ) , 1 ≤ q ≤ ∞, and thus, ∇K ⋆ [p • ∇W k ] is also uniformly bounded in L ∞ (0, T ); L q (R d ) , 1 ≤ q ≤ ∞. Finally, p k ∆W k is also uniformly bounded in L ∞ (0, T ); L q (R d ) , 1 ≤ q ≤ ∞.
This immediately concludes the proof of estimates [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF].

4th step. Estimate on ∂ t W k . Finally, using the above estimate and equation ( 24), we deduce that

∂ t W k is uniformly bounded with respect to k in L ∞ (0, T ); L q (R d ) , 1 ≤ q ≤ ∞.
For the estimate for ∂ t ∇W k , we can use again the above calculation and write

∂ t ∇W k = -D 2 K ⋆ [p k • ∇W k ] + ∇K ⋆ [p k ∆W k ] + k -1 ν ∇K * [p k Q k ].
Since D 2 K is a bounded operator in L 1 , we conclude the last bound in Lemma 2.1.

Which oscillations for the pressure?

We deduce from Lemma 2.1 that, up to a subsequence, the sequence (W k ) k converges strongly in L 1 ((0, T ), W 1,q loc ). However, we only get weak convergence for the pressure (p k ) k and the density (n k ) k . Here, we give an argument showing that the only obstruction to strong compactness, is oscillations of p k between the values p k ≈ 0 and p k ≈ H(W ∞ ). Lemma 2.2 Let T > 0 and let H be defined in [START_REF] Bresch | A viscolelastic model for avascular tumor growth[END_REF] with the assumptions (4). Consider real numbers β 1 > 0, β 2 > 0 small enough, and let p k be as in Lemma 2.1, then we have

meas β 1 ≤ p k (x, t) ≤ H(W ∞ (x, t)) -β 2 -→ k→+∞ 0, meas p k (x, t) ≥ H(W ∞ (x, t)) + β 2 -→ k→+∞ 0,
where meas denotes the Lebesgue measure.

Proof. Let 0 < β 1 < β 2 < p m , p m being defined in (7), we have for all k ∈ N T 0 R d 1 {β 1 ≤p k ≤H(W∞)-β 2 } dxdt ≤ T 0 R d p k β 1 1 {β 1 ≤p k ≤H(W∞)-β 2 } dxdt. (25) 
From assumption (4), the function I -νG is increasing and by definition ( 7), (

I -νG)(H(W ∞ )) = W ∞ ≥ 0 (the nonnegativity is because W ∞ is a solution of (19)). Therefore, on the set {p k ≤ H(W ∞ ) -β 2 }, we have, for some ω(β 2 ) > 0, (I -νG)(p k ) ≤ (I -νG)(H(W ∞ ) -β 2 ) ≤ W ∞ -ω(β 2 ), W ∞ -(I -νG)(p k ) ≥ ω(β 2 ).
Thus we can estimate

T 0 R d p k 1 {β 1 ≤p k ≤H(W∞)-β 2 } dxdt ≤ 1 ω(β 2 ) {β 1 ≤p k ≤H(W∞)-β 2 } p k |(I -νG)(p k ) -W ∞ | dxdt ≤ 1 ω(β 2 ) T 0 R d p k |(I -νG)(p k ) -W k | dxdt + {β 1 ≤p k } p M |W ∞ -W k |dxdt .
Additionally, using estimate [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF], and the strong convergence of W k , we deduce that

lim k→+∞ T 0 R d p k 1 {β 1 ≤p k ≤H(W∞)-β 2 } dxdt = 0. ( 26 
)
We notice, for future use, that in the same spirit we also have that

lim k→+∞ T 0 R d p k 1 {p k ≤H(W∞)-β 2 } dxdt = 0. ( 27 
)
Thus estimates ( 25)-( 26) prove the first statement of Lemma 2.2.

The second statement can be proved in the same way.

Strong convergence of the pressure

However, we need strong convergence to recover the asymptotic limit, in particular the equation satisfied by p ∞ . A difficulty here is that we do not have estimates on the derivatives on p, unlike in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF]. Then we develop another strategy based on estimate [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] to obtain the following strong convergence result :

Lemma 2.3 (Strong convergence of p k ) Up to a subsequence, p k converges strongly locally in L 1 (0, T ) × R d towards p ∞ . Moreover, p ∞ = H(W ∞ )1 {p∞>0} a.e.
Furthermore, we have

Ω(t) = {p ∞ (•, t) = H(W ∞ (•, t))} = R d \{p ∞ (•, t) = 0}
is the image of Ω 0 by the limiting flow Y (x) (t), defined by

d dt Y (x) (t) = -∇W ∞ (Y (x) (t), t), Y (x) (t = 0) = x. (28) 
Finally, we have for all T > 0,

k T 0 R d p k (x, t)|Q k (x, t)|dxdt -→ k→+∞ 0. ( 29 
)
Proof. The strategy is to pass to the limit in the equation ( 6) for p k and to combine this information with the possible oscillations of p k as described by Lemma 2.2. For that, we need a representation of the weak limit of p k which we can obtain thanks to a kinetic representation.

1st step. Representation of nonlinear weak limits. Our first result is that there is a measurable function 0 ≤ f (x, t) ≤ 1 such that for all smooth function S : [0, ∞) → R, we have, up to a subsequence,

S(p k ) ⇀ k→+∞ S(0)(1 -f ) + S(H(W ∞ ))f, (30) 
and

S(0)(1 -f ) + S(H(W ∞ ))f = ∞ 0 S ′ (ξ)χ(ξ) dξ + S(0), χ(x, ξ, t) = f (x, t)1 {0<ξ<H(W∞(x,t))} . (31)
Interpreted in terms of Young measures, this means that p k oscillates between the values 0 and H(W ∞ (x, t)) with the weights 1 -f (x, t) and f (x, t). Notice that for S(p) = p, we find

p ∞ = f H(W ∞ ). ( 32 
)
To prove these results, we define

χ k (x, ξ, t) = 1 {0<ξ<p k (x,t)}
and we write

S(p k ) -S(0) = ∞ 0 S ′ (ξ)χ k (x, ξ, t)dξ. (33) 
We can extract a subsequence, still denoted (p k ) k , such that

1 {0<ξ<p k } converges in L ∞ ((0, ∞) × R d ) -
weak⋆ towards a function χ(x, ξ, t) which satisfies 0 ≤ χ(x, ξ, t) ≤ 1. Then S(p k ) converges weakly to S(0)

+ ∞ 0 S ′ (ξ)χ(x, ξ, t)dξ.
We define,

f (x, t) = w-lim 1 {p k (x,t)≥pm/2}
where we recall that p m is defined in [START_REF] Bresch | A viscolelastic model for avascular tumor growth[END_REF]. Since H(W ∞ ) > p m , we may use Lemma 2.2 to conclude (30)-(31).

2nd step. Equation satisfied by χ k . We use the equation ( 6)

∂ t p k -∇p k • ∇W k = k -1 ν p k Q k , Q k = W k -p k + νG(p k ).
For any function S ∈ C 2 (R; R), multiplying it by S ′ (p k ) leads to

∂ t S(p k ) -∇S(p k ) • ∇W k = (k -1)p k Q k S ′ (p k ).
Denoting δ the Dirac mass, we can rewrite the later equation as

∂ t ∞ 0 S ′ (ξ)χ k dξ -∇ ∞ 0 S ′ (ξ)χ k dξ • ∇W k = ∞ 0 S ′ (ξ)µ k (x, ξ, t) dξ, (34) 
µ k (x, ξ, t) := k -1 ν p k Q k δ {ξ=p k } = k -1 ν p k [W k -p k + νG(p k )]δ {ξ=p k } . (35) 
Eliminating the test function S ′ (•), this is equivalent to write

∂ t χ k -∇χ k • ∇W k = µ k . (36) 
However, this formula is not enough to pass to the limit k → ∞ and we need the divergence form,

∂ t S(p k ) -div S(p k )∇W k ] + S(p k ) W k -p k ν = (k -1)p k Q k S ′ (p k ) = ∞ 0 S ′ (ξ)µ k (dξ).
Therefore, using (33) and the fact that

S(p k )p k = ∞ 0 S(ξ) + ξS ′ (ξ) χ k dξ, we have ∞ 0 S ′ (ξ) ∂ t χ k -div[χ k • ∇W k ] + χ k W k -ξ ν dξ - ∞ 0 S(ξ) -S(0) ν χ k dξ = ∞ 0 S ′ (ξ)µ k (dξ). (37) Because χ k (ξ) = -∂ ∂ξ ∞ ξ χ k (x, η, t
)dη, and integrating by parts, we have

∞ 0 S(ξ) -S(0) ν χ k dξ = ∞ 0 S ′ (ξ) ν ∞ ξ χ k (x, η, t)dηdξ.
Therefore, (37) is equivalent to our final formulation

∂ t χ k -div[χ k ∇W k ] + χ k W k -ξ ν - 1 ν ∞ ξ χ k (x, η, t)dη = µ k . ( 38 
)
One can simplify this relation and write

∂ t χ k -div[χ k ∇W k ] + χ k W k -ξ ν - (p k -ξ) + ν = µ k .
Finally, (37) is equivalent to

∂ t χ k -div[χ k ∇W k ] + χ k W k -p k ν = µ k .
In particular, integrating in ξ we recover the expected formula

∂ t p k -div[p k ∇W k ] + p k ν [W k -p k ] = µ k dξ.
3rd step. Equation satisfied by f . We may pass to the limit in (38). For all T > 0, the sequence

µ k is uniformly bounded in L 1 (R d × R × [0, T ]
) thanks to estimate [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF]. Thus we can extract a subsequence converging, in the weak sense of measures, towards a measure denoted µ in

M b (R d × R × [0, T ]). Because Q k (x, ξ, t) = W k -ξ + νG(ξ) is positive for ξ ≤ p m , we have µ(x, ξ, t) ≥ 0 for ξ ≤ p m .
Therefore passing to the limit k → +∞ into (38), in the sense of distributions,

∂ t χ -div[χ • ∇W ∞ ] + χ W ∞ -ξ ν - 1 ν ∞ ξ χ(x, η, t)dη = µ.
This last equation can also be written with (31)

∂ t χ -div[χ • ∇W ∞ ] + χ W ∞ -ξ ν -f (x, t) (H(W ∞ ) -ξ) + ν = µ,
and thus

∂ t χ -div[χ • ∇W ∞ ] + χ W ∞ -H(W ∞ ) ν = µ. ( 39 
)
Using the assumption [START_REF] Elliotta | A variational inequality approach to Hele-Shaw flow with a moving boundary[END_REF], this equation is complemented with the initial condition

χ(x, ξ, t = 0) = 1 Ω 0 1 {0<ξ<H(W∞(x,t=0))} and f (x, t = 0) = 1 Ω 0 := f 0 (x).
It is useful to keep in mind the equivalent form of this equation,

∂ t χ -∇χ • ∇W ∞ + χ p ∞ -H(W ∞ ) ν = µ ≥ 0.
and thus, using (32),

∂ t χ -∇χ • ∇W ∞ + χ H(W ∞ ) f -1 ν = µ ≥ 0. ( 40 
)
We can also integrate (39) and recover

∂ t p ∞ -div[p ∞ • ∇W ∞ ] + p ∞ ν [W ∞ -H(W ∞ )] = µdξ.
4th step. The set {g(x, t) = 1 and ξ < p m }. It is useful to consider the function

g(x, t) = f 0 X (x,t) (s = 0) ,
with the characteristics defined by

d ds X (x,t) (s) = -∇W ∞ (X (x,t) (s), s), X (x,t) (t) = x. (41)
This function g is the solution of the transport equation

∂ t g -∇g • ∇W ∞ = 0, g 0 = f 0 .
Using (40) and 0 ≤ f ≤ 1, we find

∂ t f -∇f • ∇W ∞ = µ(x, ξ, t) + χ H(W ∞ ) 1 -f ν ≥ 0. ( 42 
)
From the comparison principle, we conclude that f (x, t) ≥ g(x, t) and we conclude that,

   f (x, t) = g(x, t) = 1, in the set {g(x, t) = 1}, µ(x, ξ, t) = 0 in the set {g(x, t) = 1 and ξ < p m }. ( 43 
)
5th step. Strong convergence of p k . Another wording for step 4, is that

Ω(t) = Y (x) (t)[Ω 0 ] = {p ∞ (•, t) > 0}, with Y (x) (t) the limiting flow of Y (k) (x) (t 
) defined in [START_REF] Preziosi | Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications[END_REF]. Indeed, from [START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF] and the strong convergence of the flow, we infer that

p ∞ (•, t) = 0 in Y (x) (t)[R d \Ω 0 ].
Then we have f (x, t) = 1 Ω(t) = 1 {p∞(x,t)>0} . We recall that by definition, f = w-lim k→+∞ 1 {p k ≥pm/2} . We show that it implies the strong convergence locally in L 1 ((0, T )×R d ) of p k towards H(W ∞ )1 {p∞>0} . Let U be an open bounded subset of R d , we have

T 0 U |p k -H(W ∞ )1 {p∞>0} | dx ≤ I k + II k + III k , (44) 
with

I k = T 0 U 1 {p k ≥pm/2} |p k -H(W ∞ )| dx, II k = T 0 U 1 {p k <pm/2} p k dx, III k = T 0 U H(W ∞ ) 1 {p k ≥pm/2} (1 -1 {p∞>0} ) + 1 {p k <pm/2} 1 {p∞>0} dx.
For the first term I k , we have that

I k ≤ T 0 U 1 {p k ≥pm/2} |p k -H(W k )| dx + T 0 U 1 {p k ≥pm/2} |H(W k ) -H(W ∞ )| dx ≤ 2 p m T 0 U p k |p k -H(W k )| dx + C T 0 U |W k -W ∞ | dx.
Using estimate [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF], we deduce that the first term of the right hand side goes to 0 as k → +∞. From the local strong convergence of W k towards W ∞ , the second term of the right hand side converges to 0 too. We conclude that lim k→+∞ I k = 0. Moreover, it has been proved in Lemma 2.2, see equation ( 27), that lim k→+∞ II k = 0. For the last term, we have, using the fact that W ∞ is bounded in L ∞ , that for some nonnegative constant C,

III k ≤ C U 1 {p k ≥pm/2} 1 -1 {p∞>0} + 1 -1 {p k ≥pm/2} 1 {p∞>0} dx
We have shown in the 4th step above that 1 {p k ≥pm/2} converges weakly towards 1 {p∞>0} . Then passing to the limit k → +∞ in the latter inequality, we deduce that lim k→+∞ III k = 0. We conclude from (44) that, for any open bounded subset U ,

T 0 U |p k -H(W ∞ )1 {p∞>0} | dx -→ k→+∞ 0.
By uniqueness of the weak limit, we deduce that p ∞ = H(W ∞ )1 {p∞>0} a.e.

6th step. Derivation of (29). From definition (35), this limit is now a consequence of

k T 0 R d p k (x, t)|Q k (x, t)| dxdt = T 0 R d (0,∞) |µ k (x, ξ, t)| dξdxdt.
But µ k vanishes for k → ∞ because from (42) we infer that µ = 0 both when f = 1 and f = 0. Therefore, we find (29).

Proof of Theorem 1.1

The proof of the Theorem 1.1 can now be easily deduced from Lemma 2.3. First, up to a subsequence, we have that p k converges a.e. towards p ∞ . On the one hand, recalling that the sequence (p k ) is uniformly bounded in L ∞ , we use the Lebesgue dominated convergence Theorem to show that, for any bounded open U ,

T 0 U p k |p k -W k -νG(p k )| dx -→ k→+∞ T 0 U p ∞ |p ∞ -W ∞ -νG(p ∞ )| dx.
On the other hand, we have from estimate (18) that

T 0 U p k |p k -W k -νG(p k )| dx -→ k→+∞ 0.
We deduce that p ∞ p ∞ -W ∞ -νG(p ∞ ) = 0 a.e. that is [START_REF] Perthame | Existence of solutions of the hyperbolic Keller-Segel model[END_REF]. We may apply the strong convergence for transport equations, as in [START_REF] Ben Belgacem | Compactness for nonlinear transport equations[END_REF][START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], to conclude that, since the term G(p k ) converges strongly, n k , which solves the transport equation (1), itself converges strongly. Note in particular that, from assumption (13), we have n 0 k -→ k→+∞ 1 Ω 0 . Passing to the limit in the equation (1), we recover the limit equation for n ∞ [START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF]. Finally, passing to the limit in the relation, 16) is then a direct consequence of Lemma 2.3.

n k p k = k k -1 1-1 k-1 p k/(k-1) k , we deduce that (1 -n ∞ )p ∞ = 0. The relation (

One dimensional traveling waves

In order to examplify Theorem 1.1 and to give a simple case, with a solution that can be build analytically, we look for a one dimensional traveling wave solution to the Hele-Shaw limit.

Because, traveling waves are defined up to a translation, we may set, in the moving frame, Ω(t) = R + . Then, the system rewrites p = 0, -σn ′ -(nW ′ ) ′ = nG(0), -νW ′′ + W = 0, for x > 0, (45)

n = 1, -νW ′′ + W -H(W ) = 0, p = H(W ), for x < 0. ( 46 
)
Moreover, the jump condition at the interface x = 0 implies -σ[n] -[nW ′ ] = 0, which leads to the traveling velocity σ = -W ′ (0).

We denote W 0 := W (0). For x > 0, we have

W (x) = W 0 e -x/ √ ν , (47) 
from which we deduce that σ = W 0 √ ν .

Then we can rewrite the first equation in (45) as

-n ′ (x) W 0 √ ν - W 0 √ ν e -x/ √ ν = n(x) G(0) + W 0 ν e -x/ √ ν .
Taking the limit x → 0 leads to n(0) = 0. Moreover, since n ′ ≤ 0, we deduce that n = 0 on (0, +∞). For x < 0, we solve the second order ODE for W with boundary condition W (0) = W 0 and W ′ (0) = -W 0 / √ ν. As an example, we choose for the growth term the function G(p) = P M -p, and thus

H(W ) = W + νP M 1 + ν . (48) 
Then equation (46) for W rewrites :

-(ν + 1)W ′′ + W = P M .
The only bounded solution on (-∞, 0) such that W (0) = W 0 is given by

W (x) = P M + (W 0 -P M )e x/ √ ν+1 .
Moreover, the continuity of the derivative implies, from (47), that W ′ (0) = -W 0 / √ ν. We deduce the value for W 0 :

W 0 = √ ν √ ν + √ ν + 1 P M .
Then we conclude that for x < 0,

W (x) = P M 1 - 1 1 + ν/(ν + 1) e x/ √ ν+1 .
The pressure is then given by :

p(x) = P M 1 - 1 ν + 1 + ν(ν + 1) e x/ √ ν+1 .
and the traveling velocity

σ = P M √ ν + √ ν + 1 .
We notice that the pressure is nonnegative and has a jump at the interface x = 0. The height of the jump is given by P M 1 -1/(ν + 1 + ν(ν + 1)) . We observe moreover that σ is a decreasing function of ν. Letting ν → 0, we recover the result for the Hele-Shaw model for purely elastic tumors [START_REF] Perthame | Traveling Wave Solution of the Hele-Shaw Model of Tumor Growth with Nutrient[END_REF][START_REF] Tang | Composite waves for a cell population system modelling tumor invasion[END_REF].

Figure 1: Plot of the density n (dashed line), pressure p (line with dot), W (continuous line). Left : for ν = 1 and at final time T = 25 s. We notice a jump for the density from 0 to 1 at the front and a jump of the pressure. Right : for ν = 0 and at final time T = 12.5 s. In this case, we have p = W and there is no jump on the pressure; moreover, the velocity of the front is faster. This observation is compatible with the interpretation that viscosity acts as a friction.

Numerical simulations. Finally, we present numerical simulations of the system (1)-(3) in one dimension. We use a discretization thanks to a cartesian grid of a bounded domain [-L, L] of the real line. Equation ( 1) is discretized by a finite volume upwind scheme. Equation ( 2) is discretized thanks to finite difference scheme. Since we focus on the case where k is large, we use k = 100 in the numerical computation. For the initial data, we choose n 0 = 1 [-0.2,0.2] . The growth function G is chosen as in (48) with P M = 1.

In Figure 1, we display the shape of the density n, the pressure p and W obtained by the numerical simulation. The figure on the left displays the result with a viscosity coefficient ν = 1. For the comparison, we plot on the right of Figure 1, the shape in the case without viscosity (ν = 0). Comparing both figures, we observe that in the case ν = 1, we have a jump of the pressure at the interface of the solid tumor, whereas in the case ν = 0, the pressure is continuous at the interface.

We display in Figure 2 the first steps of the formation of the propagating front with the initial data n 0 = 1 [-0.2,0.2] . For this simulation we take ν = 1 and k = 100. The dynamics is represented thanks to the plot at 4 successives times of the density n, pressure p and W . After a transitory regime during which the pressure increases until reaching its maximal value P M = 1, the shape of the traveling waves is obtained and the front of the tumor invades the healthy tissue. 

Conclusion

A geometric model, also called incompressible, has been derived from a cell density model (also called compressible) when the pressure law is stiff. Because the viscosity is considered here, the limiting problem is a free boundary problem for the set Ω(t) of non-zero pressure. The limiting system for the pressure consists in an algebraic relation between the pressure p ∞ and the limiting potential W ∞ (17), coupled with an elliptic equation for the potential W ∞ set in the whole space [START_REF] Friedman | A hierarchy of cancer models and their mathematical challenges[END_REF]. This is a major difference with the case where viscosity is neglected, the so-called Hele-Shaw system [START_REF] Friedman | A hierarchy of cancer models and their mathematical challenges[END_REF][START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF]; then, the pressure is given by an elliptic equation for the pressure in the moving domain Ω(t). A paradox is that the effect of keeping viscosity generates a jump of the pressure at the interface of the region defining the tumor, unlike in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] where the Hele-Shaw problem is complemented with Dirichlet boundary conditions and therefore the pressure is continuous. This point is also observed in the numerical simulations in Section 3. The velocity of the propagating front of the tumor is given by the equation satisfied by the density [START_REF] Escher | Classical solutions for Hele-Shaw models with surface tension[END_REF]. Because the pressure is discontinuous, it has weaker regularity that in the inviscid case treated in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF][START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] and we need to develop a new strategy of proof to derive the incompressible limit. Our approach is based on a kinetic formulation of the equation satisfied by the pressure. This work also opens several additional questions. First, the case of general initial data is not treated here because we assume that n 0 vanishes outside Ω 0 . Then, it would be interesting to consider the case with active motion as in [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF]. In such a case, equation ( 1) is replaced by a parabolic equation. Then the structure of the problem is different but the limiting system should be the same, except the equation for the density which implies then a faster propagation of the region Ω(t). Finally, it is formally clear from ( 10)-( 12) that letting ν → 0, we recover the Hele-Shaw system. However, a rigorous proof of this fact requires compactness of the sequence which we is not directly available with the method developed here.

Figure 2 :

 2 First steps of the formation of the propagating front with k = 100 and ν = 1. The density n (dashed line), the pressure p (line with dot) and the potential W (continuous line) are represented at 4 successives times : a) t = 0.1 s, b) t = 1.25 s, c) t = 3.75 s and d) t = 12.5 s.
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