
HAL Id: hal-01066445
https://hal.science/hal-01066445

Submitted on 19 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Remarks on Avalanches Modelling: An
Introduction to Shallow Flows Models

Enrique D. Fernandez-Nieto, Paul Vigneaux

To cite this version:
Enrique D. Fernandez-Nieto, Paul Vigneaux. Some Remarks on Avalanches Modelling: An Introduc-
tion to Shallow Flows Models. Parés, Carlos; Vazquez Cendon, Carlos; Coquel, Frederic. Advances
in Numerical Simulation in Physics and Engineering - Lecture Notes of the XV ’Jacques-Louis Lions’
Spanish-French School, 3, Springer, pp.51-106, 2014, SEMA SIMAI Springer Series, 978-3-319-02838-5.
�10.1007/978-3-319-02839-2_2�. �hal-01066445�

https://hal.science/hal-01066445
https://hal.archives-ouvertes.fr


Some Remarks on Avalanches Modelling:
An Introduction to Shallow Flows Models

Enrique D. Fernández-Nieto and Paul Vigneaux

These notes are dedicated to D. Antonio Valle Sánchez

(1930–2012). D. Antonio was the first Spanish PhD student of

Jacques-Louis Lions. He can be considered as one of the

founders of modern Applied Mathematics in Spain.

Abstract The main goal of these notes is to present several depth-averaged

models with application in granular avalanches. We begin by recalling the classical

Saint-Venant or Shallow Water equations and present some extensions like the

Saint-Venant–Exner model for bedload sediment transport. The first part is devoted

to the derivation of several avalanche models of Savage–Hutter type, using a

depth-averaging procedure of the 3D momentum and mass equations. First, the

Savage–Hutter model for aerial avalanches is presented. Two other models for

partially fluidized avalanches are then described: one in which the velocities of

both the fluid and the solid phases are assumed to be equal, and another one in

which both velocities are unknowns of the system. Finally, a Savage–Hutter model

for submarine avalanches is derived. The second part is devoted to non-newtonian

models, namely viscoplastic fluids. Indeed, a one-phase viscoplastic model can also

be used to simulate fluidized avalanches. A brief introduction to Rheology and

plasticity is presented in order to explain the Herschel–Bulkley constitutive law.

We finally present the derivation of a shallow Herschel–Bulkley model.
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1 Introduction: Shallow Water Equations

The classical shallow water equations were first derived in 1871 by Saint-Venant

(see [46]). This system of equations describe the motion of a shallow layer of fluid

in a channel, a lake, coastal areas, etc.

Several extensions of these classical equations have been proposed in the

literature. For example, in [25] Gerbeau and Perthame propose a viscous Shallow

Water model. They perform the asymptotic analysis of the Navier–Stokes equations

where friction effects at the bottom have been taken into account. While in a first

order approximation the viscous terms do not appear in the equations, a second

order is needed to get them. In [35], a viscous one layer 2D Shallow-Water system

is derived, by including a surface-tension term associated to the capillary effects at

the free surface and a quadratic friction term at the bottom. These terms have been

useful to prove the existence of global weak solutions in [13].

In the simple case of a rectangular channel with constant width and a fixed bottom

topography (see Fig. 1), the Shallow Water equations are

8
<
:
@thC @x.h u/ D 0;

@t .hu/C @x

�
hu2 C 1

2
gh2

�
D �gh@xzb � ghSf ;

(1)

where x denotes the horizontal variable through the axis of the channel and t is the

time variable. u.x; t/ and h.x; t/ represent the velocity and the height of the water

column, respectively. g is the gravity and zb.x/ the bottom topography (see Fig. 1).

The term Sf models the friction forces. In the particular case of the Manning law

we have

Sf D g�2juju
R
4=3

h

; (2)

where � is the Manning’s coefficient and Rh is the hydraulic radius, which can be

approximated by h.

The Saint-Venant–Exner equations take into account the bed-load sediment

transport. In this case, we have the Shallow Water or Saint-Venant system coupled

with a continuity equation to model the evolution of the sediment layer,

8
ˆ̂<
ˆ̂:

@thC @x.h u/ D 0;

@t .hu/C @x

�
hu2 C 1

2
gh2

�
D �gh@xzb � ghSf ;

@t zb C 
@xqb D 0;

(3)

where 
 D 1=.1 �  0/ and  0 is the porosity of the sediment layer. qb D
qb.h; q/ represents the solid transport discharge. The definition of the solid transport
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Fig. 1 Shallow water

equations with a fixed bottom

discharge is set usually by empirical laws. In the Appendix some classical formulae

are presented.

Far to be exhaustive, several extensions of the Shallow Water equations can be

mentioned: models that take into account varying bottom topography [11, 18, 24];

models to study erosion phenomena with local coordinate variable in space and

time [12] or to study flows in rotating drums [27]; models that take into account

dispersive effects [33]; models for two-layer stratified flows with viscosity and

capillarity [39], turbidity currents models [38], multilayer shallow water models

to incorporate tridimensional effects [7, 23] : : :

In the pioneering work of Savage and Hutter [47], a shallow-water type model

has been proposed to study aerial avalanches. In the following section we describe

the derivation of the Savage–Hutter model. The classical Shallow Water system is

the particular case of the Savage–Hutter model obtained by neglecting the Coulomb

friction term. Therefore, its derivation from Navier–Stokes equations is a particular

case of the general study presented in next section.

In the following sections, the derivation of several shallow water type models to

study three different types of avalanches are presented. Sections 2–6 correspond

to Savage–Hutter type models for aerial avalanches, partially fluidized aerial

avalanches and submarine avalanches (see [21]). In Sect. 7, we present a brief

introduction to Rheology and plasticity in order to explain the constitutive equation

of the Herschel–Bulkley model. A depth-averaged Herschel–Bulkley model is pre-

sented in Sect. 8. This model is a one-phase approach to study solid–fluid mixtures

avalanches and represents an alternative to the two-phase Coulomb approach.

2 Savage–Hutter Model for Aerial Avalanches

Numerical modelling of sub-aerial debris or snow avalanches has been extensively

investigated during this last decade with application to both laboratory experiments

dealing with granular flows and geological events (see for example [2, 5, 6, 12, 27,

31, 34, 50]). Most of the models devoted to gravitational granular flows describe

the behavior of dry granular material following the pioneering work of Savage and

Hutter (see [47]) in which a shallow water type model (i.e. thin layer approximation
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Fig. 2 Local coordinates

for a continuum medium) is derived to describe granular flows over a slopping

plane based on Mohr–Coulomb considerations: a Coulomb friction is assumed to

reflect the avalanche/bottom interaction and the normal stress tensor is defined

by a constitutive law relating the longitudinal and the normal stresses through a

proportionality factorK .

New Savage–Hutter models over a general bottom have been proposed. For

example in [11], Bouchut et al., propose a Savage–Hutter type model for aerial

avalanche which takes into account the curvature of the bottom. A two-layer

Shallow Water type model with compressible effects has been introduced in [37]

by Morales de Luna. He considers an upper compressible layer and a lower

incompressible layer.

In this section, we present the derivation of the Savage–Hutter model over a plane

with constant slope. First, we consider the Euler equations in Cartesian coordinates

X D .x; z/,

V D
�

u

w

�
; r � V D 0; (4)

@t .�V/C �V � rXV D �r � P C �rX.g � X/; (5)

where g D .0;�g/, g being the gravity acceleration, V is the velocity field and �,

the density of the granular layer. Moreover, we denote by P the negative Cauchy

stress tensor, also named pressure tensor,

P D
�
px x px z

pzx pz z

�
;

with px z D pzx .

Let us rewrite first the Euler equations in local coordinates .X;Z/ on an inclined

plain whose slope is tan.�/ (see Fig. 2). Z is the distance between the points .x; z/

and . Nx; b. Nx//, where

b. Nx/ D tan.�/ Nx:
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That is, Z is the distance to the bed, measured along the normal direction and X

measures the arc length along the inclined plain. Nx is the x-Cartesian coordinate of

the point .X; 0/ (see Fig. 2).

Let h.x; t/ be the height of the granular layer along the normal direction to the

bed. The domain is

f.X;Z/I X 2 Œ0; L�; 0 < Z < h.X; t/g: (6)

The relation between the Cartesian coordinates X D .x; z/ and the coordinates

. Nx;Z/ is

X D
�

Nx �Zsin �; b. Nx/CZcos �/

�
; (7)

where . Nx; b. Nx// is a point of the bed.

The following definitions will also be used:

• U and W are the tangential and normal velocities, respectively,

�
U

W

�
D

�
cos � sin �

�sin � cos �

�
V:

• And P is the rotated Cauchy stress tensor:

P D
�

cos � sin �

�sin � cos �

�
P

�
cos � �sin �

sin � cos �

�
D

�
PXX PXZ

PZX PZZ

�
:

Note that, as pxz D pxz, then PXZ D PZX .

Equations (4) and (5) are re-written in the new variables as follows:

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/ � �@X.g � X/ D �@X.PXX/� @Z.PXZ/;

�@t .W /C �@X.U W /C �@Z.W
2/ � �@Z.g � X/ D �@X.PZX/� @Z.PZZ/:

(8)

In what follows, the derivation of the model proposed by Savage and Hutter in

[47] to study aerial avalanches is described following the items:

• Œ@� Boundary and kinematic conditions.

• Œ QA� Dimensional analysis.

• Œl� Hydrostatic pressure and constitutive law.

• ŒM � Momentum conservation law.
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• Œ
R

� Integration process.

• Œ,!� Final system of equations.

2.1 Œ@� Boundary and Kinematic Conditions

We denote by nh the unit normal vector to the free granular surface Z D h with

positive vertical component, and by n0 D .0; 1/ the unit normal vector to the bottom

(Z D 0).

The following kinematic condition is considered

@thC U jZDh@Xh�W jZDh D 0; (9)

which means that the particles at the free surface are transported with velocity

.U jZDh;W jZDh/.

The following boundary conditions are imposed:

• On Z D h:

nh � Pnh D 0 (10)

Pnh � nh.nh � Pnh/ D
�

frich.U /

0

�
i D 1; 2; (11)

where frich.U / is the friction term between the granular layer and the air. For the

sake of simplicity we will suppose that frich.U / D 0.

• On Z D 0:

.U;W / � n0 D 0 ) W D 0; (12)

Pn0 � n0.n0 � Pn0/ D
0
@�n0 � Pn0

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0

0

1
A : (13)

This last condition corresponds to a Coulomb friction law, defined in terms of the

angle of repose ı0 (see [47]).

2.2 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (8), the kinematic and boundary

conditions is performed. The non-dimensional variables ( Q: ) read:
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.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.U;W / D .Lg/1=2. QU ; " QW /;

h D H Qh;

.PXX;PZZ/ D gH. QPXX; QPZZ/;

PXZ D gH� QPXZ;

(14)

where:

• � D tan ı0, ı0 being the angle of repose in the Coulomb term.

• By L and H , we denote, respectively, the tangential and normal characteristic

lengths.

• " D H=L, which is supposed to be small: the Savage–Hutter model has been

shown to reproduce experimental granular collapse over horizontal plane for

aspect ratio � 	 0:5, see [34].

Using the above change of variables, the system of Eqs. (8) is re-written as follows:

@X .U /C @Z.W / D 0; (15)

@t .�U /C�U@XUC�W @ZUC�@X .bCZcos �CPXX

�
/" D ��@Z.PXZ/; (16)

"f@t .�W /C �U@X.W /C �W @Z.W /C @X.PXZ/gC

C �@Z.b CZcos �/ D �@Z.PZZ/; (17)

where tildes have been dropped for simplicity.

The kinematic condition (9) is re-written as:

@thC U jZDh@Xh �W jZDh D 0: (18)

Finally, the boundary conditions (10)–(13) are now given by:

• On Z D h, we have nh D .�"@Xh; 1/='S with 'S D
p
1C "2.@Xh/2, then

from (10) and (11) we obtain

� "@XhPXX C �PZX D 0; (19)

� "@Xh�PXZ C PZZ D 0: (20)
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• On Z D 0, we have n0 D .0; 1/, then from (12) and (13) we obtain

W jZD0 D 0; (21)

�PXZ D �PZZ

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0: (22)

2.3 Œl� Hydrostatic Pressure and Constitutive Law

From (17) we obtain

@Z.PZZ/ D ��cos � C O."/: (23)

If we integrate (23) from Z > 0 to h, we have, up to order ",

PZZ D �.h�Z/cos �: (24)

The following constitutive law is considered (see [47])

PXX D KPZZ ;

whereK measures the anisotropy or normal stress effects: whileK D 1 corresponds

to isotropic conditions, K ¤ 1 makes ‘overburden pressures’ different from the

normal stresses parallel to the basal surface. In the case of the Shallow Water

equations,K D 1 is assumed.

The coefficient K is defined according to the motion of the granular layer (see

[45]):

K D
�
Kact if @XU > 0;

Kpas if @XU < 0;

with

Kact=pas D 2sec2�

�
1
 .1 � cos2 � sec2ı0/

1=2

�
� 1;

being � the internal friction angle, defined in terms of the type of grains and size.

The definition of K can be done in different ways. For example, while in [28]

Heinrich et al. consider K D 1, other definitions of K can be found in [29]. The

effects related to the definition of K in numerical modelling of experimental and

natural flows is studied in [43, 45].

Using the previous relations, we have, up to order �,

PXX D KPZZ D K�.h�Z/cos �: (25)
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2.4 ŒM � Momentum Conservation Law: With Hydrostatic
Pressure and Anisotropy of the Normal Stress

By replacing (24) and (25) in (16) and using the incompressibility equation (15), we

obtain, up to second order,

@t .�U /C�@XU
2C�@Z.UW/C�@X

�
bCZcos � CK.h�Z/cos �

�
" D ��@Z.PXZ/:

(26)

2.5 Œ
R

� Integration Process

In this section, the mass equation (15) and the momentum equation (26) are depth-

averaged in the normal direction. Let us introduce the following notation: we denote

by NU the average of the velocity along the normal direction:

NU D 1

h

Z h

0

U.X;Z/dZ:

We also introduce the notation:

U 2 D 1

h

Z h

0

U 2.X;Z/dZ:

If Eq. (15) is integrated from Z D 0 to Z D h, we obtain

0 D @X .h NU /� U jZDh@XhCW jZDh �W jZD0:

Now, using (18) and (21), the averaged mass equation is obtained

@thC @X.h NU / D 0:

Let us now integrate Eq. (26) from Z D 0 to Z D h. As in the previous case, we

use the kinematic condition (18) to obtain

@t .h NU /C @X.hU 2/C
� Z h

0

@X

�
b CZcos � CK.h �Z/cos �

�
dZ

�
"

D ��

�
.PXZ.h/ � PXZ.0//: (27)
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Moreover, we have

Z h

0

@X

�
b CZcos � C .h�Z/cos �K

�
dZ D h@Xb C @X

�
h2

2
cos �K

�
:

By replacing this last expression in (27) we obtain the equation

@t .h NU /C @X

�
hU 2 C "

h2

2
cos �K

�
D �"h@Xb � �

�
.PXZ.h/ � PXZ.0//: (28)

Then, the boundary conditions and the constitutive laws are used to derive � PXZ.h/

and � PXZ.0/:

• From (19), by using (24) and PXX D KPZZ , we have

�PXZ.h/ D "@XhPZZK:

In [27] Gray introduced the assumption that the Coulomb term is of order � for

some � 2 .0; 1/. That is, � D tan ı0 D O."�/. Under this assumption, we have

�PXZ.h/ D O."1C�/: (29)

• Using Eq. (22), we obtain

�

�
PXZ.0/ D �PZZ.0/

�

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0 D �hcos �
U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0:

Therefore, assuming tan ı0 D O."� /, we have

�

�
PXZ.0/ D �hcos �

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0 C O."1C�/: (30)

Finally, substituting (29) and (30) in (28), the averaged momentum equation is

obtained:

@t .h NU /C@X
�
hU 2C"h

2

2
cos �K

�
D �"h@Xb�hcos �

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0CO."1C� /:

2.6 Œ,!� Final System of Equations

Coming back to the original variables, using (14), neglecting terms of order "1C�

and supposing a constant profile of the velocities, the following system is obtained:
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Fig. 3 Savage–Hutter model. Dotted line: initial profile of the granular layer. Continuous line:

stationary profile of the granular layer

8
<
:
@thC @X.h NU / D 0;

@t .h NU /C @X

�
h NU 2 C gcos �

h2

2
K

�
D �gh@Xb C T ;

(31)

where T represents the Coulomb friction term. This term must be understood as

follows:

If jT j � �c ) T D �ghcos �
NU

j NU j tan ı0;

If jT j < �c ) NU D 0; (32)

where �c D gh cos � tan ı0.

Let us illustrate the effects of the Coulomb friction term. We consider a test

case consisting of a granular layer over a flat bottom whose initial profile is

rectangular. The evolution of the layer is simulated by numerically solving System

(31). Let us stress the importance of an adequate treatment of the Coulomb friction

term (32) to obtain satisfactory numerical results (see for example [34]). In Fig. 3

the continuous line corresponds to the stationary profile of the granular layer for

ı0 D 25ı. The initial condition is represented too (dotted line). The main difference

between the classical Shallow Water equations and the Savage–Hutter model is

the presence of the Coulomb friction term: if a closed domain is considered and

the Coulomb friction term is neglected, the stationary solution is a horizontal free

surface, corresponding to water at rest.

In Fig. 4 the evolution of the granular layer surface and its discharge is repre-

sented at several times. Observe that, while at t D 2 the solution is stationary, at

t D 1:5 only the front of the avalanche is still moving.



62 E.D. Fernández-Nieto and P. Vigneaux

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

qt = 0.1 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

qt = 0.5 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

qt = 1 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

qt = 1.5 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–06

–0.4

–0.2

0

0.2

0.4

0.6

qt = 2 s.h

Fig. 4 Savage–Hutter model. Left: continuous line: granular free surface. Right: dashed line:

discharge
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3 Fluid–Solid Mixture Aerial Avalanches

In most practical applications to real debris flows, the fluid which is present in the

granular material can not be neglected. Recent attempts have been developed to

describe mixtures of grains and fluid in shallow water two-phase or mixture models

[29, 42, 44].

The model introduced by Jackson in [30] allows to model geophysical mass flows

containing a mixture of solid and fluid materials, by taking into account buoyancy

effects. It is defined by the mass and momentum equations for each phase.

Let us use the following notation: subscript “s” refers to the solid phase and

subscript “f ” to the fluid one. The solid volume fraction is denoted by '. The grain

density, �s and the fluid density, �f , are supposed to be constant.

Then, the two-phase model is defined by the following mass and momentum

equations:

@t .�s'/C div.�s'Vs/ D 0; (33a)

@t .�f .1 � '//C div.�f .1 � '/Vf / D 0; (33b)

�s'.@tVs C VsrVs/ D �divPs C f0 C �s'r.g � X/; (33c)

�f .1 � '/.@tVf C Vf rVf / D �divPf � f0 C �f .1 � '/r.g � X/:

(33d)

Where Ps and Pf represent the stress tensors for the solid and the fluid phase,

respectively. f0 represents the averaged value of the resultant force exerted by the

fluid on a solid particle.

To obtain Jackson’s model, the force f0 is decomposed into the buoyancy force

fB and all the remaining contributions f according to [4]:

f0 D fB C f D �'rpf C f; (34)

where pf denotes the fluid pressure. The term f collects the drag force, the lift

force and the virtual mass force (see [4, 30] for details). Here, we assume that f

reduces to the drag force.

If we assume that the viscous forces related to the fluid are negligible, then the

fluid stress tensor reduces to the pressure term:

r � Pf D rpf : (35)
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By taking this expression into (33c) and (33d), we obtain the system (33a), (33b)

and

�s'.@tVs C VsrVs/ D �divPs � 'rpf C f C �sr.g � X/; (36a)

�f .1 � '/.@tVf C Vf rVf / D �.1 � '/rpf � f C �f .1� '/r.g � X/:

(36b)

The model proposed by Pitman and Le in [44] and reformulated in [42], can be

deduced following a dimensional analysis and an integration process of Jackson’s

model. They suppose a constant vertical profile of the velocity for the solid and

the fluid phase: Us and Uf , respectively. Pitman–Le model can be written as

follows:

@t .h'/C @X.h'Us/ D 0I (37a)

@t .h.1 � '//C @X.h.1 � '/Uf / D 0I (37b)

@t .'hUs/C @X.'hU2
s / D �1

2
.1� r/gh2 cos � @X'

� gh cos � ' @Xh

� gh'@Xb

C ˇh.Uf � Us/C T I (37c)

@t ..1 � '/hUf /C @X..1 � '/hU 2
f / D �gh cos � .1 � '/ @Xh

� gh .1 � '/@Xb

� 1

r
ˇh.Uf � Us/I (37d)

where r D �f =�s , ˇ is a friction coefficient between the phases (see [44]) and T is

the Coulomb friction term.

Let us illustrate the influence of ' in the evolution of the avalanche. We consider

first a test case consisting of a granular layer over a flat bottom whose initial profile

is rectangular. The evolution of the layer is simulated by numerically solving System

(37). We consider r D 0:34, ı0 D 25ı and ' D 0:8. In Fig. 5 the evolution of the

layer is shown. The left column shows the total height, hs C hf (continuous line).

In order to make visible the evolution of the total solid volume fraction, hs is also

plotted in the figures (dotted line). Notice that at the front of the avalanche, the

dotted line practically coincides with the continuous one, meaning that there is only
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Fig. 5 Two-phase avalanche. ' D 0:8. Left: continuous line: granular free surface. Dotted line:

hs ; Right: discharge. Continuous line: qs . Dashed line: qf
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granular material near the front. The right column shows qf and qs . We can observe

that the motion of the solid phase stops before. Figure 6 shows the evolution of

the avalanche for ' D 0:4. The initial condition and the values of r and ı are the

same. Let us remark that at the front the dotted line practically coincides with the

horizontal axis, meaning that there is only fluid near of the front. If we compare

these two simulations, we can also observe that the maximum heights and the total

lengths of spreading of the avalanches are completely different. For ' D 0:4, the

fluid goes out the domain.

The presence of an interstitial fluid in the avalanche, neglected in the Pitman–

Le model, may have a strong influence in its evolution. The flow of fluidized

avalanches can be much more complex than the ones simulated with the Pitman–

Le model. For example, non-hydrostatic pressure effects, related to the pore fluid

pressure, may appear. Iverson and Denlinger extended the Savage–Hutter model

in [29] to study avalanches of fluidized granular masses where the pores between

the grains are assumed to be filled with a fluid, under the assumption that the

velocities of both phases coincide, and by including the bed pore fluid pressure as

an unknown of the system. Let us study now the derivation of a simplified version

of the model proposed by Iverson and Denlinger in [29] to study partially fluidized

aerial avalanches (Fig. 7).

We consider a granular layer of density �s and porosity  0. We assume that the

pores in the granular layer are filled with a fluid of density �w. Then, the density of

the fluidized layer is defined as

� D .1 �  0/�s C  0�w: (38)

As in the previous section, the model will be described in local coordinates over a

plain with constant slope (see Fig. 2). Again U is the velocity parallel to the bottom;

W , the velocity perpendicular to the bottom; and P the rotated pressure tensor.

Let us consider again the system of equations given by Euler equations in local

coordinates:

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/ � �@X.g � X/ D �@X .PXX/ � @Z.PZX/;

�@t .W /C �@X.U W /C �@Z.W
2/� �@Z.g � X/ D �@X.PXZ/ � @Z.PZZ/:

(39)

In a binary mixture model the pressure tensor of the mixture is given by

P D P s C Pf � �w.Uf � Ub/˝ .Uf � Ub/ � �s.Us � Ub/˝ .Us � Ub/;

where Uw is the velocity of the fluid phase, Us is the velocity of the solid phase and

Ub D .�wUw C �wUs/=.�s C �w/ is the barycentric velocity.
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Fig. 6 Two-phase avalanche. ' D 0:4. Left: continuous line: granular free surface. Dotted line:

hs ; Right: discharge. Continuous line: qs . Dashed line: qf
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θ x

z

h(X,t)

Fig. 7 Partially fluidized

avalanches

In order to model the evolution of the granular layer using the Euler equations,

we suppose, following [29], that the velocity of the fluid in the pores and the grains

are the same, Us D Uf D U . Then P can be written as

P D P s C Pf ;

where P s and Pf are the pressure tensor of the solid phase (grains) and the fluid

phase.

The derivation of the model follows the same items as in the previous section.

3.1 Œ@� Boundary and Kinematic Conditions

Let us denote again by nh the unit normal vector to the free granular surface Z D
h with positive vertical component and by n0 D .0; 1/ the unit normal vector to

the bottom (Z D 0). The kinematic condition is defined by (9). For the boundary

conditions, the only difference is the definition of the Coulomb friction term. The

following boundary conditions are imposed:

• On Z D h: Pnh D 0.

• On Z D 0: the non-penetration condition W D 0 and the following Coulomb

friction law are imposed:

Pn0 � n0.n0 � Pn0/ D
0
@�n0 � .P � Pf /n0

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0

0

1
A :

In this last condition, the difference between the stress tensor and the fluid stress

tensor, P � Pf , is used to take into account the buoyancy effects, since Ps D
P � Pf .
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3.2 Œ QA� Dimensional Analysis

The same non-dimensional variables as in the previous section, defined in (14), are

considered. Then,

• The system of equations is defined by (15)–(17).

• The kinematic condition by (18).

• The boundary condition on Z D h by (11) and (20).

• The boundary condition on Z D 0 is different from (22). In this case we have

�PXZ D �.PZZ � P
f
ZZ/

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0; (40)

and the non-penetration conditionW D 0.

3.3 Œl� Hydrostatic Pressure and Constitutive Law

The main difference between the Savage–Hutter model presented in the previous

section and the model for partially fluidized avalanches appears in this item.

From (17) we obtain

@Z.PZZ/ D ��cos � C O."/: (41)

If we integrate (41) from Z > 0 to Z D h, we have, up to order ",

PZZ D �.h�Z/cos �: (42)

But, as P D P s C Pf , we have

Ps
ZZ C Pf

ZZ D PZZ D �cos �.h�Z/: (43)

In order to consider the anisotropy of the solid phase the following constitutive

conditions are again considered (see for example [29, 45]):

P s
XX D KPs

ZZ ; Pf
XX D Pf

ZZ ;

where K measures the anisotropy or normal stress effects in the solid phase (see

previous section).

The difference appears in this step because, in order to impose these two

constitutive conditions, an expression for both P s
ZZ and P

f
ZZ has to be known. But

only the expression of the total pressure PZZ is known.
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In order to model the flow of a grain-fluid mixture, Iverson and Denlinger (see

[29]) assume a linear profile of the normal stress P
f
ZZ , which is consistent with

Eq. (43). Moreover they suppose that P
f
ZZ takes its maximum value at Z D 0 and

is proportional to the pressure in absence of the granular phase. They suppose

P
f
ZZ.Z/ D ��cos �.h�Z/; (44)

being � a parameter of the model. In this case, by (43) we have

Ps
ZZ.Z/ D .1 � �/�cos �.h�Z/: (45)

Remark 1. In [29], the authors propose not to set � as a fixed parameter in time.

Instead, they propose to rewrite the model in terms of the pore fluid pressure

pbed D ��hcos � . Then, they assume that the evolution of pbed can be described

by a convection-diffusion equation. For the sake of simplicity in these notes, � is

considered as a fixed parameter. Let us remark that we can set � D  0, the porosity

of the layer.

3.4 ŒM � Momentum Conservation Law: With Hydrostatic
Pressure and Anisotropy of the Normal Stress of the Solid
Phase

By replacing (44) and (45) in (16) and using the incompressibility equation (15), we

obtain up to second order

@t .U /C @XU
2 C @Z.UW /C @X

�
b CZcos � C .h �Z/cos �.� CK.1 � �//

�
"

D ��

�
@Z.PXZ/: (46)

3.5 Œ
R

� Integration Process

As in the previous section, let us define:

NU D 1

h

Z h

0

U.X;Z/dZ and U 2 D 1

h

Z h

0

U 2.X;Z/dZ:

As there is no difference in the integration process for the mass equation, we focus

here on the momentum equation.
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Let us integrate Eq. (46) fromZ D 0 to Z D h and use the kinematic conditions

(18) to obtain

@t .h NU /C @X.hU 2/C
� Z h

0

@X

�
b CZcos � C .h �Z/cos �.� CK.1 � �//

�
dZ

�
"

D ��

�
.PXZ.h/ � PXZ.0//: (47)

Moreover,

Z h

0

@X

�
b CZcos � C .h�Z/cos �.� CK.1 � �//

�
dZ D h@Xb

C @X

�
h2

2
cos �.� CK.1 � �//

�
:

Then, we obtain the following averaged momentum conservation law,

@t .h NU /C@X
�
hU 2C"h

2

2
cos �.�CK.1��//

�
D �"h@Xb� �

�
.PXZ.h/�PXZ.0//:

(48)

Now, we can use the boundary conditions and the constitutive laws to derive

� PXZ.h/ and � PXZ.0/:

• Using (19) and the constitutive laws Ps
XX D KP s

ZZ , P
f
XX D P

f
ZZ we have

�PXZ.h/ D "@XhP
s
ZZ.K � 1/:

If we suppose again that � is of order � for some � 2 .0; 1/, (� D tan ı0 D
O."� /) then

�PXZ.h/ D O."1C�/: (49)

• Using Eq. (40), we obtain

�PXZ.0/ D �.PZZ.0/� P
f
ZZ.0//

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0:

Now, using (42) and (43) we have

.PZZ.0/� P
f
ZZ.0// D �hcos �.1 � �/C O."/:
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Then,

�

�
PXZ.0/ D �hcos �.1� �/

U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0 C O."1C� /: (50)

Finally, substituting (49) and (50) in (48), the averaged momentum equation is

obtained

@t .h NU /C @X

�
hU 2 C "

h2

2
cos �.� CK.1� �//

�

D �"h@Xb � h.1 � �/cos �
U

jU j

ˇ̌
ˇ̌
ZD0

tan ı0 C O."1C�/:

3.6 Œ,!� Final System of Equations

Coming back to the original variables, using (14), neglecting the terms of order "1C�

and supposing a constant profile of the velocities, the following system is obtained

8
<
:
@thC @X.h NU / D 0;

@t .h NU /C @X

�
h NU 2 C gcos �

h2

2
.� CK.1 � �//

�
D �gh@Xb C T ;

(51)

where T is the Coulomb friction term. In this model this term must be understood

as follows:

If jT j � �c ) T D �gh.1 � �/cos �
NU

j NU j tan ı0;

If jT j < �c ) NU D 0;

where �c D gh.1 � �/ cos � tan ı0.

4 Comparison with Pitman–Le Model

Let us remark that if anisotropy is taken into account in the deduction of the solid

phase momentum equation in the Pitman–Le model, Eqs. (37c) and (37d) will read

as follows:
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@t .'hUs/C @X.'hU
2
s CKgcos �'

h2

2
/ D r

2
gh2 cos � @X'

�gh'@Xb

Cˇh.Uf � Us/C T I
(52a)

@t ..1 � '/hUf /C @X ..1� '/hU 2
f C gcos �.1� '/

h2

2
/ D g

h2

2
cos �@X.1 � '/

�gh .1 � '/@Xb

�1
r

ˇh.Uf � Us/:

(52b)

Let us now consider that Us D Uf D U , that is, the assumption considered in the

deduction of the Iverson–Denlinger model and let us define

� D '�s C .1 � '/�f :

Then, from (37a) and (37b) we obtain

@t .�h/C @X.�hU / D 0:

And from (52a) and (52b) we obtain that

@t .�hU /C @X.�hU
2 C gcos �

h2

2
.� C �s'.K � 1/// D �gh�@Xb C T : (53)

Note that in the two-phase model the pressure of the fluid phase evaluated at Z D
0 is

pPL
bed D g�f cos �.1� '/h;

while in the model proposed by Iverson and Denlinger the pressure at the bottom of

the fluid phase is assumed to be:

pbed D ��gcos �h:

If we set

 D �f

�
.1� '/;
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we have

pPL
bed D  �gcos �h:

On the other hand, we have

� C �s'.K � 1/ D � � �s C  
�

r
CK.�s �  �

r
/:

If we define finally � by

�� D � � �s C  
�

r
;

we have the equality

� C �s'.K � 1/ D �� CK.� � ��/:

Then, we can rewrite system (53) as

@t .�hU/C @X .�hU
2 C gcos �

h2

2
.�� CK.� � ��/// D �gh�@Xb C T :

That is, we have the same structure as the momentum equation of (51) for

the Iverson–Denlinger model. This implies a relation between the hypothesis

considered in [29] and the two-phase model when the velocities of the two phases

coincide:

p
pl

bed D pbedr C .1 � '/.�s � �f /rghcos �:

Let us remark finally that, while in the Pitman–Le model the pressure of the phases

are considered to be hydrostatic, the inclusion of the pressure at the bed in terms

of the parameter � can be understood as a way to introduce a deviation from the

hydrostatic pressure law in the Iverson–Denlinger model.

5 Submarine Avalanches

In this section, we present a simplified version of the two-layer Savage–Hutter

type model proposed in [21], with application to submarine avalanches and tsunami

waves generated by them.

Submarine avalanches or landslides have been poorly studied compared to their

subaerial counterparts. This is however a key issue in geophysics. Indeed, submarine

granular flows driven by gravity participate in the evolution of the sea bottom and

in particular of the continental margins. They also represent a threat to submarine
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Fig. 8 Submarine avalanches

infrastructures, especially for the oil or port industries as well as to many sea shore

inhabitants due to the potential tsunamis that can be triggered by such landslides.

In the model derived in this section, index 1 refers to the upper layer, composed

of an homogeneous inviscid fluid of constant density �1. Index 2 refers to the lower

layer, composed of a granular material of density �s and porosity  0 (see Fig. 8).

The pores of the granular layer are assumed to be filled with the fluid of the upper

layer. Accordingly, the density of layer 2 is given by:

�2 D .1 �  0/�s C  0�1: (54)

We consider the incompressible Euler equations, with unknowns

Vi D
�

ui

wi

�
; i D 1; 2;

being ui and wi , the horizontal and vertical velocity components of each layer,

respectively. Then, the incompressible Euler equations can be written as

divVi D 0; i D 1; 2; (55)

�i @tVi C �iVirVi D �divPi C �ir.g � X/; i D 1; 2; (56)

where Pi , i D 1; 2, represent the pressure tensor of each layer

Pi D
�
pi;x x pi;x z

pi;zx pi;z z

�
; i D 1; 2;

with pi;x z D pi;zx , �i , i D 1; 2, the densities of each layer, X D .x; z/, the Cartesian

coordinates and g D .0;�g/, the gravity.

In order to model the evolution of the granular layer using the Euler equations,

on the one hand we suppose following [29] (see Sect. 3) that the velocity of the fluid

in the pores of the second layer coincides with that of the grains. On the other hand,

P2 is assumed to be decomposed as
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P2 D P s
2 C P

f
2 ;

where P s
2 and P

f
2 are the pressure tensor of the solid phase (grains) and the fluid

phase, respectively.

Next, a change of variables is performed: local variables over a non-erodible

bottom defined by z D b.x/ are considered.X denotes the arc’s length of the bottom

and Z is measured orthogonally to the bottom (see Fig. 8 and Sect. 2).

In what follows, we denote by h1 and h2 the thickness of the fluid and granular

layers, respectively, measured orthogonally to the bottom (see Fig. 8), by S D h1 C
h2 the free water surface. The details of this change of variables have been given in

Sect. 2. Equations (55)–(56) are re-written in the new variables as follows:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

@X.Ui /C @Z.Wi/ D 0; i D 1; 2;

�i @t . Ui /C �i @X .U
2
i /C �i @Z.WiUi /� �i @X .g � X/

D �@X.Pi XX/� @Z.Pi XZ/ i D 1; 2;

�i @t .Wi /C �i @X .Ui Wi/C �i @Z.W
2
i / � �i @Z.g � X/

D �@X.Pi ZX/� @Z.Pi ZZ/ i D 1; 2;

(57)

where Ui , i D 1; 2, represent the velocity parallel to the bottom and Wi , i D 1; 2,

the perpendicular one. The pressure tensor Pi is defined by

Pi D
�

cos � sin �

�sin � cos �

�
Pi

�
cos � �sin �

sin � cos �

�
D

�
Pi;XX Pi;XZ

Pi;ZX Pi;ZZ

�
:

Remember that, as pi;xz D pi;xz, then Pi;XZ D Pi;ZX .

Moreover, let us recall that �1 is the density of the fluid and that �2 is defined by

(54). � is the angle between the tangent vector of the bottom and the horizontal axis

(see Fig. 8).

5.1 Œ@� Boundary and Kinematic Conditions

Let nS , nh2 and n0 D .0; 1/ be the unit normal vector to the free water surface

Z D S (S D h1 C h2), to the interface (Z D h2) and to the bottom (Z D 0),

respectively.

The following kinematic conditions are considered

@tS C U1jZDS@XS �W1jZDS D 0; (58)

@th2 C Ui jZDh2@Xh2 �Wi jZDh2 D 0; i D 1; 2: (59)
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Equation (59) assumes that no water is exchanged between the two layers, which is

a simplification of the model.

Finally, the following boundary conditions are imposed:

• On Z D S :

P1n
S D 0: (60)

• On Z D h2:

nh2 � .P1 � P2/n
h2 D 0 (61)

Pin
h2 � nh2.nh2 � Pin

h2/ D
�

fric.U1; U2/

0

�
i D 1; 2; (62)

where fric.U1; U2/ is a friction term between the layers.

• On Z D 0:

.U2;W2/ � n0 D 0 ) W2 D 0; (63)

P2n
0 � n0.n0 � P2n

0/ D
0
@�n0 � .P2 � P1/n

0 U2

jU2j

ˇ̌
ˇ̌
ZD0

tan ı0

0

1
A : (64)

Let us remark that the term .P2 � P1/ in the Coulomb friction law in Eq. (64)

is used again in order to take into account the buoyancy effects.

5.2 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (57), the kinematic and boundary

conditions is performed. The non-dimensional variables ( Q: ) read:

.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.Ui ;Wi / D .Lg/1=2.eUi ; "fWi/; i D 1; 2;

hi D Hehi ; i D 1; 2;

.Pi XX;Pi ZZ/ D �igH. QPi XX; QPi ZZ/; i D 1; 2;

Pi XZ D �igH�i
QPi XZ; i D 1; 2;

(65)
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where �1 D 1, �2 D tan ı0, ı0 being the angle of repose in the Coulomb term (see

[47]). By L andH we denote, respectively, the characteristic tangential and normal

lengths. We suppose a shallow domain, so " D H=L is supposed to be small.

Using this change of variable, the system of Eqs. (57) are rewritten as (tildes are

omitted):

@X.Ui/C @Z.Wi/ D 0; i D 1; 2; (66)

@t .�iUi /C �iUi@XUi C �iWi@ZUi C �i @X .b CZcos � C Pi XX

�i
/"

D ��i @Z.Pi XZ/ i D 1; 2; (67)

"f@t .�iWi /C �iUi@X.Wi/C �iWi@Z.Wi/C @X .Pi XZ/gC

C �i @Z.b C cos �Z/ D �@Z.Pi ZZ/ i D 1; 2: (68)

The kinematic conditions (58)–(59) are rewritten as:

@tS C U1@XS �W1 D 0jZDS ; @th2 C Ui@Xh2 �Wi D 0jZDh2 ; i D 1; 2:

(69)

Finally, the boundary conditions (60)–(64) are now given by:

• On Z D S , we have nS D .�"@XS; 1/='S with 'S D
p
1C "2.@XS/2, then

from (60) we obtain

� "@XS P1XX C �1P1 ZX D 0; (70)

� "@XS�1P1XZ C P1 ZZ D 0: (71)

• OnZ D h2, we have nh2 D .�"@Xh2; 1/='h2 with 'h2 D
p
1C "2.@Xh2/2, then

from (61) and (62) we obtain

P1 ZZ D P2 ZZ C O."/; (72)

�"Pi XX@Xh2 C �iPi XZ D �.nh2Pin
h2/."@Xh2/C fric.U1; U2/; i D 1; 2;

(73)

� "�iPi ZX@Xh2 C Pi ZZ D .nh2Pin
h2 / i D 1; 2: (74)

• On Z D 0, we have n0 D .0; 1/, then from (63) and (64) we obtain

W2 D 0; (75)

�2P2XZ D �.P2 ZZ � P1 ZZ/
U2

jU2j

ˇ̌
ˇ̌
ZD0

tan ı0: (76)
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5.3 Œl� Hydrostatic Pressure and Constitutive Law

From (68) we obtain

@Z.P1 ZZ/ D ��1cos � C O."/; (77)

@Z.P2ZZ/ D ��2cos � C O."/: (78)

If we integrate (77) from Z � h2 to S , we have, up to order ",

P1 ZZ D �1.S �Z/cos �; (79)

therefore, P1 ZZ.h2/ D �1h1cos � . Using this last expression, taking into account

(72) and integrating (78) from Z > 0 to h2, we have

Ps
2 ZZ C P

f
2 ZZ D P2 ZZ D �1h1cos � C �2cos �.h2 �Z/; (80)

up to first order. This last equation defines the total pressure, P2 ZZ , perpendicular

to the bottom. The constitutive relation for both the grains and the fluid, i. e. Ps
2 ZZ

and P
f
2 ZZ , are required to close the model. The following relations are considered:

P1XX D P1 ZZ ; P s
2XX D KPs

2 ZZ; Pf
2XX D Pf

2ZZ ; (81)

where K measures the anisotropy or normal stress effects in the solid phase (see

Sect. 2).

The same difficulty found in Sect. 3 related to the definition of P s
2 ZZ and P

f
2 ZZ

appears here. The assumptions considered there can be adapted. We suppose

Pf
2 ZZ.Z/ D �1�1h1cos � C �2�1cos �.h2 �Z/; (82)

where �1 and �2 are two parameters. Moreover, by (80), we have

Ps
2 ZZ.Z/ D �1h1cos �.1 � �1/C cos �.h2 �Z/.�2 � �2�1/: (83)

Remark 2. Note that if (82) and (83) are evaluated in Z D h2, we obtain

P
f
2 ZZ.h2/ D �1�1h1cos �; Ps

2ZZ.h2/ D �1h1cos �.1 � �1/I

Then, �1 controls the distribution of the pressure at the interface between the two

phases of the second layer:

• A possible choice is to set �1 D �2 D  0, where  0 is the porosity of the second

layer.

• We can rewrite the model in terms of pbed D �1�1h1cos � C �2�1h2cos � , the

pore-fluid basal pressure. In this case, a more sophisticated model can be defined
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by coupling it with a convection-diffusion equation (as proposed in [29]), as it

has been mentioned in the case of partially fluidized avalanches.

By taking into account the constitutive closure equations (81) we deduce the

following expression of P2XX D P s
2XX C P

f
2XX,

P2XX D KPs
2 ZZ C P

f
2 ZZ

D h1cos ��1.�1 CK.1 � �1//C .h2 �Z/cos �.�2�1 CK.�2 � �2�1//: (84)

5.4 ŒM � Momentum Conservation Laws: With Hydrostatic
Pressure and Anisotropy of the Normal Stress of the Solid
Phase of the Submerged Sediment Layer

By replacing (79) and (84) in (5.2) and using the incompressibility equation (66),

we obtain up to second order

@t .�1U1/C �1@XU
2
1 C �1@Z.U1W1/C �1@X.b C Scos �/" D ��1@Z.P1XZ/;

(85)

and

@t .�2U2/C�2@XU
2
2 C�2@Z.U2W2/C�2@X

�
bCZcos � C 1

�2
Œh1cos ��1.�1CK.1��1//

C .h2 �Z/cos �.�2�1 CK.�2 � �2�1//�

�
" D ��2@Z.P2XZ/: (86)

5.5 Œ
R

� Integration Process

In this section, Eqs. (66), (85) and (86) are depth-averaged along the normal

direction to the topography. Let us introduce the following notation: we denote by
NUi , i D 1; 2 the velocities of each layer averaged along the normal direction to the

basal surface:

NU1 D 1

h1

Z S

h2

U1.X;Z/dZ; NU2 D 1

h2

Z h2

0

U2.X;Z/dZ:

We also define:

U 2
1 D 1

h1

Z S

h2

U 2
1 .X;Z/dZ; U 2

2 D 1

h2

Z h2

0

U 2
2 .X;Z/dZ:
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If Eq. (66) is integrated from Z D h2 to Z D S , we obtain

0 D @X .h1 NU1/� U1.S/@XS CW1.S/C U1.h2/@Xh2 �W1.h2/:

And using the kinematic condition (69), the following equation is derived:

@th1 C @X.h1 NU1/ D 0:

Analogously, by integrating (66) between Z D 0 and Z D h2 we obtain

0 D @X.h2 NU2/ � U2.h2/@Xh2 CW2.h2/ �W2.0/;

and, using the kinematic condition (69) and the boundary condition (75), the

following equation is obtained:

@th2 C @X.h2 NU2/ D 0:

If (85) is integrated from Z D h2 to Z D S , we obtain

�1@t .h1 NU1/C �1@X.h1U
2
1 /� �1U1.S/Œ@t .S/C U1.S/@XS �W1.S/�

C�1U1.h2/Œ@t h2 C U1.h2/@Xh2 �W1.h2/� C �1

� Z S

h2

�
@X.b C Scos �/

�
dZ

�
"

D ��1.P1XZ.S/� P1XZ.h2//: (87)

The expressions of P1XZ.S/ and P1XZ.h2/ are now derived using the boundary

conditions and the constitutive laws:

• Using (70) and (79) and the relation P1XX D P1ZZ the following expression is

obtained:

�1P1 ZX.S/ D �"P1XX.S/@XS D �"P1 ZZ.S/@XS D 0C O."2/: (88)

• Using (73), we have

�1P1XZ.h2/C "@Xh2.P1 ZZ � P1XX/ D fric.U1; U2/C O."2/:

Therefore, applying the constitutive law for the fluid layer, that is, P1XX D
P1 ZZ , the following equality is derived:

�1P1XZ.h2/ D fric.U1; U2/C O."2/: (89)

Using the kinematic condition (69), Eq. (87) and the expressions obtained for

�1P1XZ.S/ (88) and for �1P1XZ.h2/ (89), we obtain
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�1@t .h1 NU1/C�1@X.h1U
2
1 /C�1

� Z S

h2

@X.bCScos �/dZ

�
" D fric.U1; U2/CO."2/:

Next, the integral term in the last equality can be computed as follows:

Z S

h2

@X.b C Scos �/dZ D h1@Xb C @X

�
h21
2

cos �

�
C h1@X.cos �h2/:

Finally, we obtain the equation

�1@t .h1 NU1/C �1@X

�
h1U

2
1 C "

h21
2

cos �

�
D "�1

�
� h1@Xb � h1@X.cos �h2/

�

C fric.U1; U2/C O."2/:

Let us now integrate Eq. (86) from Z D 0 to Z D h2. As in the previous case,

we use the kinematic conditions (69) to obtain

�2@t .h2 NU2/C�2@X .h2U
2
2 /C�2

�Z h2

0

@X

�
bCZcos �C 1

�2
Œh1cos ��1.�1CK.1��1//

C.h2 �Z/cos �.�2�1 CK.�2 � �2�1//�

�
dZ

�
" D ��2.P2XZ.h2/ � P2XZ.0//:

(90)

Let us introduce the densities ratio

r D �1

�2
;

where �1 is the density of the fluid and �2 is defined by (54). We obtain

Z h2

0

@X

�
b CZcos � C 1

�2
Œh1cos ��1.�1 CK.1� �1//

C.h2 �Z/cos �.�2�1 CK.�2 � �2�1//�

�
dZ D h2@Xb

Crh2.K.1 � �1/C �1/@X.h1cos �/

C@X
�
h22
2

cos �.r�2 CK.1 � r�2//

�
:
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Replacing this last expression in (90) and dividing by �2, the following equation is

obtained:

@t .h2 NU2/C @X

�
h2U

2
2 C "

h22
2

cos �.r�2 CK.1 � r�2//

�
D �"h2@Xb

� "rh2.�1 CK.1 � �1//@X.h1cos �/ � �2

�2
.P2XZ.h2/� P2XZ.0//: (91)

Just like in the previous case, the boundary conditions and the constitutive laws are

used to derive �2 P2XZ.h2/ and �2 P2XZ.0/:

• Using (73) and P s
2XX D KP s

2ZZ , P
f
2XX D P

f
2XX , we have

�2P2XZ.h2/ D fric.U1; U2/C �2"@Xh2P
s
2ZZ.K � 1/:

We suppose again that �2 D tan ı0 D O."� / with � 2 .0; 1/. Under this

assumption, we have

�2P2XZ.h2/ D fric.U1; U2/C O."1C�/: (92)

• Using Eq. (76), we obtain

�2P2XZ.0/ D �.P2 ZZ.0/� P1 ZZ.0//
U2

jU2j

ˇ̌
ˇ̌
ZD0

tan ı0:

Now, using (79) and (80) we have

.P2 ZZ.0/� P1 ZZ.0// D h2cos �.�2 � �1/C O."/:

Therefore, assuming tan ı0 D O."� /, we have

�2P2XZ.0/ D �.�2 � �1/h2cos �
U2

jU2j

ˇ̌
ˇ̌
ZD0

tan ı0 C O."1C� /: (93)

Finally, substituting (92) and (93) in (91), we derive the averaged momentum

equation for the second layer

@t .h2 NU2/C @X

�
h2U

2
2 C "

h22
2

cos �.r�2 CK.1 � r�2//

�

D �"h2@Xb � " rh2.�1 CK.1 � �1//@X .h1cos �/

� 1

�2
fric.U1; U2/� ..1 � r/h2cos � C h2 NU 22 dX�/

U2

jU2j

ˇ̌
ˇ̌
ZD0

tan ı0 C O."1C� /:
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5.6 Œ,!� Final System of Equations

Reverting to the original variables [see (65)], neglecting the terms of order "1C� and

supposing a constant profile of the velocities we obtain the following system:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

@th1 C @X.h1 NU1/ D 0I

@t .h1 NU1/C @X.h1 NU 2
1 C g

h21
2

cos �/ D
D �gh1@Xb � gcos �h1@Xh2 C 1

�1
fric.U1; U2/I

@th2 C @X.h2 NU2/ D 0I

@t .h2 NU2/C @X

�
h2 NU 2

2 C g
h22
2

cos �.r�2 CK.1 � r�2//
�

D

D �gh2@Xb � rgcos �h2.�1 CK.1 � �1//@Xh1 � 1

�2
fric.U1; U2/C T I

(94)

where by T , we denote the Coulomb friction term. Again, this term must be

understood as follows:

If jT j � �c ) T D �.g.1 � r/h2cos �/
NU2

j NU2j
tan ı0;

If jT j < �c ) NU2 D 0;

where �c D g..1 � r/h2 cos � tan ı0. Recall that

r D �1

�2
;

where �1 is the density of the fluid and �2 is defined in (54). We can define the

friction term between the layers fric.U1; U2/ under the following structure

fric.U1; U2/ D �Kin � . NU1 � NU2/; with Kin D �1Kinj NU1 � NU2j;

beingKin a positive constant.

In Fig. 9, an example of application of the model is presented. As initial condition

a rectangular granular layer is imposed at the middle of the domain. The water layer

is initially at rest and its free surface is flat. As we can see in the different times

shown in the figure, the avalanche produced by the granular layer interacts with the

fluid and some waves appear. The stationary solution reached consists of water at

rest with a flat free surface over a granular layer in equilibrium. This simulation has
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Fig. 9 Submarine avalanche test. Continuous line: granular free surface; Dashed-dotted line:

water free surface

been obtained by numerically solving System (94) with the finite volume method

introduced in [21]. See also [32], where an application of the model to the case of

tsunamis in the Alboran Sea is studied.

6 Entropy Inequality and Stationary Solutions

of Savage–Hutter Type Models

In this section we state without proof a result concerning the entropy inequality

and the stationary solutions of the Savage–Hutter type models presented in previous

sections for aerial, fluid–solid mixture and submarine avalanches. The following

result can be proved for the submarine avalanche model:
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Theorem 1. System (94) has the following properties:

.i/ It admits an entropy dissipation inequality,

@t

�
r�1h1 NU 2

1 C h2 NU 2
2

2
C gb.r�1h1 C h2/C gcos �

r�1h
2
1 C �2h

2
2

2

C gcos � r�1h1h2

�

C @X

�
r�1h1 NU1

 NU 2
1

2
C gb C cos �.h1 C h2/

!
C h2 NU2

 NU22
2

C gb C gcos �.r�h1 C �2h2/

!�

	 �rKinj NU1 � NU2j.U2 � U1/.U2 � �1U1/ � g..1 � r/h2cos �

C h2dX�. NU 2
2 � gh2cos �

2
//j NU2jtan ı0

C g
h22
2
U2.1 � �2/sin �@X�:

where

�1 D �1 CK .1 � �1/; �2 D r �2 CK .1 � r �2/:

.ii/ It has the family of steady state solutions:

NU1 D 0; NU2 D 0; (95)

b C .h1 C h2/cos � D cst; (96)

j.�2 � r�1/@x.bC h2cos �/C .1 � �2/.@Xb � h2

2
sin �@x�/j 	 .1 � r/tan ı0;

(97)

corresponding to water at rest over a stationary granular layer. �

Note that the models presented in Sects. 2 and 3 can be seen as particular cases

of this one. They can be obtained as follows:

• Savage–Hutter model: set h1 D 0, NU1 D 0, �2 D 0, r D 1, �1 D 1.

• Iverson–Denlinger model: set h1 D 0, NU1 D 0, �2 D �, r D 1, �1 D 1.

Therefore, the properties presented in Theorem 1 are also valid for the Savage–

Hutter and Iverson–Denlinger models.
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Note that the stationary solutions defined by (97) correspond to situations in

which the free surface of the granular layer is in equilibrium with the internal friction

angle. The angle ı0 can be measured in laboratory experiments.

7 Rheology of Complex Avalanches

Several differential models have been proposed in the literature to describe sediment

mixtures: a review is presented in [2]. A possible approximation is given by

the model presented in Sect. 3, based on a two-phase approach and a friction

law proportional to the normal stress and the tangent of the internal friction

angle. Another possibility is the use of visco-plastic models. They represent an

approximation of the rheological behaviors of complex flows, such as debris flows,

lava flows and snow avalanches.

In this section a brief introduction to non-Newtonian fluids is first given in order

to motivate the definition of the stress tensor corresponding to the Herschel–Bulkley

model. This model can be used to study debris flows, fluid–solid mixture avalanches.

As in the previous section we consider local coordinates on a plane slope with

angle � (see Sect. 2 for details on the notation). Let us denote the velocity vector as

U D
�
U

W

�
:

Let us remember that the general system of Eqs. (4) and (5) can be re-written in the

new variables as follows:

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/ � �@X.g � X/ D �@X.PXX/ � @Z.PXZ/;

�@t .W /C �@X.U W /C �@Z.W
2/� �@Z.g � X/ D �@X.PZX/ � @Z.PZZ/;

(98)

where the density � is assumed to be constant.

Let us remark that, although in these notes we are working with the negative stress

tensor P , it is also usual to write the system of equations in terms of � , the positive

Cauchy stress tensor, where

P D ��:

The stress tensor is defined as the sum of the pressure component and the viscous

one (cf. [9]),

� D �pI C � 0;
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where I is the identity matrix. � 0 is called the deviatoric part of � . Note that we can

also write,

P D pI � � 0:

Let us use the notation:

� 0 D
�

� 0
XX � 0

XZ

� 0
ZX � 0

ZZ

�
:

A fluid is said to be Newtonian if � 0 is proportional to the rate of deformation tensor

D.U/, where

D.U/ D rU C rUt D
�

2@XU @XW C @ZU

@XW C @ZU 2@ZW

�
:

Then for a Newtonian fluid, such as water, we have

� 0 D �D.U/;

where � is the viscosity coefficient, depending on the material. In theses notes, we

suppose that � is a constant value.

Let us consider the case of a uniform flow such that

D.U/ D
�

0 @ZU

@ZU 0

�
� 0 D

�
0 � 0
� 0 0

�
;

where � 0 D �XZ D �ZX is the shear stress. In this case the relation which

characterizes the fluid as Newtonian can be easily represented as a straight line in

the plane .@ZU /� .� 0/ with slope � (see Fig. 10).

The behavior of the flows of materials like honey, corn flour or paint cannot be

modelled with such a linear relation. Moreover, the concept of Newtonian fluid is

an idealization: there are always nonlinear relations between the shear stress and the

shear rate. The study of the deviation (from the linear law) of � 0 as a function of

D.U/ belongs to the field called Rheology. The term Rheology is due to Bingham

in 1929. It comes from the Greek “�"!”—“to flow”. It is related to the study of

deformation and flow of complex fluids.

Years around 1900s saw a significant increase of activity on these subjects,

including authors like Maxwell (1868), Boltzmann (1877), Bingham, Blair, Reiner,

Herschel–Bulkley, Weissenberg (all between 1900 and 1930, see [48]). Then

Rheology became a research field of intense activity.

Fluids in which � is a function of D.U/, � D �.D.U//, i.e.

� 0 D �.D.U//D.U/:
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a b

Fig. 10 (a) Representation of a Newtonian fluid in the plane .� 0/ � .@ZU / with viscosity �; (b)

generalized Newtonian fluids

(see Fig. 10) are called Generalized Newtonian fluids; cf [41]). For example:

• Corn flour is a material whose behavior is fluid when it is gently mixed but it

becomes very viscous if it is strongly mixed. That is, “viscosity ” increases with

“shear”. Such materials are shear-thickening.

In the case of a uniform shear-thickening flow, we have � 0 D �.@ZU /@ZU ,

where �.@ZU / is an increasing function of @ZU . They can be represented in the

.� 0/ � .@ZU / plane as follows:

• There are many other materials, like paint, whose viscosity decreases with shear.

These materials are shear-thinning.

In the case of a uniform shear-thinning flow, we have � 0 D �.@ZU /@ZU ,

where �.@ZU / is a decreasing function of @ZU . They can be represented in the

.� 0/ � .@ZU / plane as follows:
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Shear-thinning and shear-thickening fluids can be modelled using power-law

fluids. The viscosity of power-law fluid is defined by �.D.U// D N� jD.U/jn�1, for

some positive constant N� and n � 0. For these, we have

� 0 D N� jD.U/jn�1D.U/;

Let us remark that:

• If n < 1 the material is shear-thinning.

• If n D 1 the fluid is Newtonian and N� is the constant viscosity.

• If n > 1 the fluid is shear-thickening.

Nevertheless, the flow of some materials cannot be modeled by a power-law

model. This is the case of clay, snow or lava that only flow when the shear stress

is bigger than a critical value. These materials are example of what we can call

“threshold” fluids. Below a stress �c the material present a rigid behavior but above

�c the material begins to flow. They are visco-plastic materials. Bingham defined

Plasticity as follows (see [10]):

We may now define plasticity as a property of solids in virtue of which they hold their

shape permanently under the action of small shearing stresses but they are readily deformed,

worked or molded, under somewhat larger stresses.

Bingham law follows this property and it depends on a threshold shear stress �c .

� 0 is defined as follows:

(
j� 0j < �c if jD.U/j D 0

� 0 D �D.U/C �c
D.U/

jD.U/j if jD.U/j ¤ 0:
(99)

Note that this definition implies that, in the case that jD.U/j D 0, we only know

that � 0 is bounded by �c . That is, � 0 is a multivalued function in this case. It is easier

to understand this law by considering the inverse function. Let us suppose that we

perform two experiments of a uniform flow for a plastic material and we measure

the shear rate @ZU in terms of the shear stress � 0. We have marked with crosses in

the following figure two points corresponding to the measures:
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With black dashed line we plot the law corresponding to the case of Newtonian

fluids, that is, straight lines passing by the point of measure and by .0; 0/. Let

us remark that if the fluid is Newtonian then it is enough to look for only one

experiment in order to measure its viscosity. Remember that the viscosity in a

Newtonian fluid is the inverse of the slope of such a straight line. Performing a

second experiment is a way to see if the fluid is Newtonian. If we have a graph as

the one of previous figure in which the second measure does not lead to a point in

the same straight line, then the fluid is not Newtonian.

Conversely, if we consider a straight line passing through these two points, we

obtain the value of the shear threshold �c , as the point at which this line cuts

the horizontal axe. Actually, measurements show that the real behavior of plastic

materials does not follows exactly this straight line. They follow a curve that can be

seen as a regularization of the corner around the point .�c; 0/ (dashed-blue line in

previous figure). The model proposed by Bingham, defined by (99), corresponds to

the graph defined by the union of the two blue straight lines in the previous figure.

The general case combines power-law and plasticity. This is the Herschel–

Bulkley constitutive equation. For the case of uniform flow it can be represented

in the .� 0/ � .@ZU / plane as follows:

Newtonian

Herschel-Bulkley Bingham

Herschel–Bulkley model is characterized by the following stress tensor:

P D pI � � 0; (100)
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where

8
<̂

:̂

� 0 D �c
D.U/

jD.U/j C N�jD.U/jn�1D.U/ if jD.U/j ¤ 0;

j� 0j 	 �c if jD.U/j D 0

with n > 0. In the case of avalanches, we have n 2 .0; 1/. In [3] the dam-

break problem for visco-plastic Herschel–Bulkley fluids down a sloping flume is

investigated and laboratory data are presented.

8 A Shallow Herschel–Bulkley Model for Fluid–Solid

Mixture Avalanches

In this section, a shallow Herschel–Bulkley model is deduced (see [1, 14]). One

of the difficulties of Herschel–Bulkley model is that, when jD.U/j D 0, only a

bound of the stress tensor is known. Then, we cannot obtain a shallow Herschel–

Bulkley model following the same steps as in the previous sections. Several types of

shallow Herschel–Bulkley models have been proposed in the literature. For example

in [8, 22] shallow visco-plastic models have been proposed in the case of nearly

steady uniform regime. That is, the reference velocity for the asymptotic analysis is

defined in terms of a stationary solution where the viscous contribution matches the

gravity acceleration. Such a type of models are only valid for � ¤ 0. In these notes,

we present another type of shallow model, which corresponds to the inertial regime,

where inertial and pressure-gradient terms are of the same magnitude.

As mentioned, we cannot follows exactly the same steps as in the derivation

of Savage–Hutter. Basically, we cannot reproduce the items ŒM �: the momentum

conservation law and Œ
R

�: integration process. Nevertheless, note that the integration

process in the derivation of the Savage–Hutter model is equivalent to consider the

variational formulation of the model with test functions that do not depend on

the vertical variable Z. Following this idea, we can consider first the variational

formulation of Herschel–Bulkley model, which has the form of a variational

inequality and then consider test functions that do not depend on the variable Z.

Thus, the derivation of the shallow Herschel–Bulkley model is done following the

items:

• Œ@� Boundary and kinematic conditions.

• Œ
R
M �  .X;Z/ � 0� Momentum conservation law in variational form.

• Œ QA� Dimensional analysis.

• Œ
R
M �  .X/ � 0� Variational inequality for test functions independent on Z.

• Œ,!� Final system of equations.
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8.1 Œ@� Boundary and Kinematic Conditions

Let us remember that nh is the unit normal vector to the free granular surfaceZ D h

with positive vertical component, and n0 D .0; 1/, the unit normal vector to the

bottom (Z D 0), denoted as 
b .

The kinematic condition is considered at the free surface

@thC U jZDh@Xh�W jZDh D 0; (101)

And the following boundary conditions are imposed:

• On Z D h:

nh � Pnh D 0 (102)

P � nh � nh.nh � Pnh/ D
�

frich.U /

0

�
; (103)

where frich.U / is the friction term between the granular layer and the air. For

simplicity, we will suppose that frich.U / D 0.

• On Z D 0:

.U;W / � n0 D 0 ) W D 0; (104)

Pn0 � n0.n0 � Pn0/ D
� �˛ U

0

�
: (105)

That is, we consider a simple linear friction law between the material and

the bottom. This is one of the main differences between the model derived

in this section and the Savage–Hutter one: while in the Savage–Hutter model

the Coulomb friction law controls the yielding of the material, in the shallow

Herschel–Bulkley model this effect is due to the stress tensor definition and, in

particular, to the rigidity coefficient �c (also called yield stress).

8.2 Œ
R
M �  .X;Z/ � 0� Momentum Conservation Law

in Variational Form

In this item, we write the variational formulation of the system defined by (98)–

(100). By the definition of the stress tensor � 0 we obtain a variational inequality

(see [19]).

Let us suppose that the domain filled by the avalanche, ˝.t/, can be written as

follows:
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˝.t/ D f.X;Z/ 2 R2I X 2 Œ0; L�IZ 2 Œ0; h.X; t/� g:

By supposing that h.X; t/, the height of the avalanche, is a bounded function in

space and time we may consider

W .t/ D ˚
� D . ; '/I  ; ' 2 W 1;1Cn.˝.t// =  jXD0 D  jXDL D 0; 'jZD0 D 0

�
:

Then, we look for the solution U.t; �/ 2 W .t/ andp.t; �/ 2 L.1Cn/0.˝.t// satisfying

for every � D . ; '/ 2 W .t/ and for every q 2 L.1Cn/0.˝.t//:
• The incompressibility condition:

Z

˝.t/

q div.X;Z/UdXdZ D 0; 8q 2 L.1Cn/0.˝.t//:

• And the momentum variational inequality:

Z

˝.t/

�

@U

@t
C .U � r.X;Z//U

�
� .� � U/dXdZ

�
Z

˝.t/

�.b CZcos � C p

�
/.div.X;Z/� � div.X;Z/U/dXdZ

C
Z

˝.t/

N�
2

jD.U/jn�1D.U/ W .D.� / �D.U//dXdZ

C �c

2

Z

˝.t/

.jD.� /j � jD.U/j/ dXdZ

C
Z


b.t/

˛U. � U /d� � 0 8 � 2 W .t/ (106)

with n 2 .0; 1/.
Remark 3. The inequality in the weak formulation of the momentum equation is a

consequence of the weak formulation of the rigidity term in the stress tensor. If we

consider the case jD.U/j ¤ 0, we have

�
Z

˝.t/

div.X;Z/.�
0/.� � U/dXdZ D 1

2

Z

˝.t/

� 0 W D.� � U/dXdZ

D 1

2

Z

˝.t/

�c
D.U/

jD.U/j W .D.� / �D.U//dXdZ

C 1

2

Z

˝.t/

N�jD.U/jn�1D.U/ W .D.� / �D.U//dXdZ:
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Moreover,

�c

Z

˝.t/

D.U/

jD.U/j W .D.� / �D.U//dXdZ

D �c

Z

˝.t/

D.U/ W D.� /
jD.U/j dXdZ � �c

Z

˝.t/

jD.U/jdXdZ

and,

�c

Z

˝.t/

D.U/ W D.� /
jD.U/j dXdZ 	 �c

Z

˝.t/

jD.� /jdXdZ:

Observe that this is also true for the case jD.U /j D 0. Therefore, a solution of the

problem in differential form is a solution of the variational inequality. Nevertheless,

it is not trivial to prove rigorously that the solution of the variational inequality is a

solution of the differential problem. Although, formally it is possible to deduce the

differential system from the variational inequality. One can consider as test functions

� D U C �V, � D U � �V and to study the limit when � tends to zero. �

Let us develop the variational inequality (106) in terms of the components of the

vector. As � D . ; '/ and U D .U;W /, we have

Z

˝.t/

�.@t .U /C �U@XU C �W @ZU /. � U /dXdZ

C
Z

˝.t/

�.@t .W /C �U@XW C �W @ZW /.' �W /dXdZ

�
Z

˝.t/

�.b CZcos � C p

�
/.@X. � U /C @Z.' �W //dXdZ

C
Z

˝.t/

N�jD.U/jn�1
�
2@X.U /@X. � U /

C.@X .W /C @Z.U //.@X.' �W /C @Z. � U //C 2@Z.W /@Z.' �W /
�
dXdZ

C�c

Z

˝.t/

�r
.@X /2 C 1

2
.@X' C @Z /2 C .@Z'/2

�
r
.@XU /2 C 1

2
.@XW C @ZU /2 C .@ZW /2

�
dXdZ

C
Z


b

˛U. � U /d� � 0

(107)
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where

jD.U/jn�1 D
�
4.@XU /

2 C 2.@XW C @ZU /
2 C 4.@ZW /

2

�.n�1/=2
:

8.3 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (98), the kinematic and boundary

conditions is performed. The non-dimensional variables ( Q: ) read:

.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.U;W / D .Lg/1=2. QU ; " QW /;

h D H Qh;

˛ D ".Lg/1=2 Q̨ ;

p D gH Qp;

�c D gHe�c ;

N� D Hg.1�
n
2 /L

n
2 QN�:

(108)

Then,

� 0 D gH e� 0 D gH

0
@
e� 0 QX QX e� 0 QX QZ

e� 0 QX QZ e� 0 QZ QZ

1
A :

With

( e� 0 D e�c QD". QU/
j QD". QU/j C Q� QD". QU/ if j QD". QU/j ¤ 0;

je� 0j 	 e�c if j QD". QU/j D 0:

And

QD". QU/ D

0
BBB@

2@ QX QU "@ QX QW C 1

"
@ QZ QU

"@ QX QW C 1

"
@ QZ QU 2@ QZ QW

1
CCCA :
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Using the above change of variables, the system of Eqs. (98) can be also rewritten

as follows (tildes are again omitted):

@X .U /C @Z.W / D 0; (109)

@t .�U /C�U@XU C �W @ZU C �@X.bCZcos � C p

�
/" D "@X.�

0
XX/C @Z.�

0
XZ/;

(110)

"f@t .�W /C �U@X.W /C �W @Z.W / � @X.� 0
XZ/gC

C�@Z.b C cos �Z/ D �@Z.p/C @Z.�
0
ZZ/: (111)

For the momentum variational inequality (107), we also consider the following non-

dimensional test functions:

� D . ; '/ D .Lg/1=2 . Q ; " Q' /:

The variational inequality (107) is rewritten as (tildes are omitted again):

Z

˝.t/

�.@t .U /C �U@XU C �W @ZU /. � U /dXdZ

C"2
Z

˝.t/

�.@t .W /C �U@XW C �W @ZW /.' �W /dXdZ

C
Z

˝.t/

�".@Xb. � U /C cos �.' �W //dXdZ

�
Z

˝.t/

�"
p

�
.@X. � U /C @Z.' �W //dXdZ

C
Z

˝.t/

N�jD".U/jn�1
�
2"@X.U /@X. � U /C "."@X.W /C 1

"
@Z.U //."@X.' �W /

C1

"
@Z. � U //

C 2"@Z.W /@Z.' �W /

�
dXdZ

C�c

Z

˝.t/

"

�r
.@X /2 C 1

2
."@X' C 1

"
@Z /2 C .@Z'/2

�
r
.@XU /2 C 1

2
."@XW C 1

"
@ZU /2 C .@ZW /2

�
dXdZ

C
Z


b

˛U. � U /d� � 0

(112)
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where

jD".U/jn�1 D
�
4.@XU /

2 C 2."@XW C 1

"
@ZU /

2 C 4.@ZW /
2

�.n�1/=2
:

Let us also remark that for the inclined plane case considered in these notes we have

@Xb D sin �:

8.4 Œ
R
M �  .X/ � 0� Variational Inequality for Test

Functions Independent of Z

In this section, we obtain the mass and momentum equations of a Shallow Herschel–

Bulkley model. To obtain it, we neglect the second order terms (O."2/) and we

consider test functions which are independent of Z.

Let us remark that to consider test functions independent of Z is analogous

to depth average the mass and momentum equations. In fact, we can see that if

�c D 0, then we have a variational equality for the momentum conservation and the

procedure described below is another way of deriving the Shallow Water equations.

And, if the Coulomb friction law is considered at the bottom, the Savage–Hutter

model deduced in Sect. 2 is recovered.

First, note that if q 2 L.1Cn/0.˝.t// is independent of Z then

Z

˝.t/

q div.X;Z/U D
Z L

0

q.X/

� Z h

0

div.X;Z/UdZ

�
dX D 0:

By using the kinematic conditions, we obtain

Z L

0

q.X/

�
@thC @X.hU/

�
dX D 0; 8q 2 L.1Cn/0.Œ0; L�/:

This gives a different way to obtain the mass conservation equation:

@thC @X.hU/ D 0:

Let us now consider test functions � D . ; '/ where  is independent of Z.

Analogously to previous sections, we assume that the velocity parallel to the bottom

U is independent ofZ. Then, if we neglect second order terms (O."2/) in (112), we

obtain
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Z L

0

�h.@t .U /C �U@XU /. � U /dXdZ

C
Z

˝.t/

�".@Xb. � U /C cos �.' �W //dXdZ

�
Z

˝.t/

�"
p

�
.@X. � U /C @Z.' �W //dXdZ

C
Z

˝.t/

N� 22n�2
�
.@XU /

2 C .@ZW /
2

�n�1�
2"@X.U /@X. � U /

C2"@Z.W /@Z.' �W /

�
dXdZ

C�c

Z

˝.t/

"

�p
.@X /2 C .@Z'/2 �

p
.@XU /2 C .@ZW /2

�
dXdZ

C
Z L

0

˛U. � U /d� � 0:

(113)

Moreover, by using the incompressibility condition, by choosing also test

functions with zero divergence whose vertical component vanishes at the bottom—

to be consistent with boundary condition (104)—we have

W D �Z@XU; and ' D �Z@X : (114)

By using (114) we get:

Z

˝.t/

.@Xb. �U /Ccos �.'�W //dXdZ D
Z L

0

�
h@XbC@X.h

2

2
cos �/

�
. �U /dX:

Finally, using this last equality and (114), we obtain from (113):

Z L

0

�h.@t .U /C �U@XU /. � U /dXdZ

C
Z L

0

�

�
h@Xb C @X .

h2

2
cos �/

�
. � U /dX

C
Z L

0

23n�1 N�j@XU jn�1"@X.U /@X. � U /dX

C2�c
Z L

0

"h.j@X j � j@XU j/dX

C
Z L

0

˛U. � U /d� � 0:

(115)
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8.5 Œ,!� Final System of Equations

Coming back to the original variables and using (108), we obtain the following

system:

• Mass conservation:

Z L

0

�
@thC @X.hU /

�
q.X/dX D 0; 8q 2 L.1Cn/0.Œ0; L�/: (116)

• Momentum variational inequality: 8 2 W 1;1Cn.Œ0; L�/,

Z L

0

�

�
h@t .U /C �hU@XU C gh@Xb C g@X.

h2

2
cos �/

�
. � U /dXdZ

C
Z L

0

23n�1 N�j@XU jn�1@X.U /@X. � U /dX

C2�c
Z L

0

h.j@X j � j@XU j/dX

C
Z L

0

˛U. � U /d� � 0:

(117)

Note that the first line corresponds to convection and pressure terms in Shallow

Water systems and the second one to viscous effects. The third line contains the

terms associated to the rigidity properties of the material. Last line of previous

equation correspond to the bottom friction term.

Let us remark that (116) and (117) corresponds to the weak formulation of the

following partial differential system:

8
ˆ̂<
ˆ̂:

@thC @X.hU / D 0;

h

�
@tU C U@xU C g.b C h cos �/

�
C ˛U � @X.h� 0/ D 0

(118)

where

8
ˆ̂̂
<
ˆ̂̂
:

� 0 D 23n�1 N�j@XU jn�1@XU C 2�c
@XU

j@XU j if j@xU j ¤ 0

j� 0j 	 2�c if j@xU j D 0:

(119)

As mentioned before, it is easy to see that if �c D 0, n D 1 and the linear friction law

is replaced by the Coulomb friction law (13) then the Savage–Hutter model deduced

in Sect. 2—with standard viscous terms—is obtained.
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Fig. 11 Initial condition. Dashed-dotted line: free surface of the viscoplastic material. Continuous

line: bottom

We refer to [1] for the discretization of this shallow-Herschel–Bulkley model.

Let us present an example. As initial condition a rectangular layer is considered on

a closed domain with a plain with a slope of 30ı (see Fig. 11).

Figure 12 shows the evolution of the avalanche of the visco-plastic material

corresponding to n D 1, �c D 4, N� D 10�2, ˛ D 10�2. The left column shows the

evolution of the free surface at times t 2 f 0.4, 1, 2.4, 4 g s. The right column shows

the velocity profile. This simulation shows a typical behavior of visco-plastic fluids:

at the beginning it moves as a rigid body and then it starts to flow as a viscous fluid.

Indeed, notice that for t D 0:4 and t D 1 s the velocity profile is nearly constant on

all the domain filled by the avalanche, but this is no more the case for t D 2:4 s. For

t D 4 s. the material is at rest. These different behaviors are due to the definition of

the stress tensor (119).

Appendix: Bed-Load Sediment Transport Formulae

In this appendix we present several possible definitions of the solid transport

discharge, qb , that allow one to close the Saint-Venant Exner system (see Sect. 1).

The study of the definition of the solid transport discharge can be seen as a

deterministic problem or a probabilistic one. For example, deterministic methods

have been proposed by Meyer-Peter & Müller [36] and probabilistic methods by

Einstein [20].

In general, the models take into account the fact that motion of the granular

sediment begins when the shear stress (�) is bigger than a certain critical shear stress

(�c). Moreover, shear stress can be written in terms of the hydrodynamic unknowns

h and u by

� D �RhjSf j: (120)
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Fig. 12 Complex avalanche: Herschel–Bulkley model. Left: free surface; Right: velocity

Here Sf is defined by (2) and � is the specific weight of fluid � D g�w, where �w is

the water density.

Shear stress appears usually in non-dimensional form in the formula of qb . If

�� and ��c represent the non-dimensional shear stress and the critical shear stress,

respectively, then
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�� D �

.�s � �/d
; ��c D �c

.�s � �/d
: (121)

Here d is the sediment grain size and �s is the specific sediment weight �s D g�s ,

where �s is the sediment density.

Using (120) and (121), �� can be written as a function of the specific gravity or

the relative density of fluids r D �s=�w.

�� D g�2u2

.r � 1/dR
1=3

h

:

To determine ��c many experiments have been performed in different works.

Concretely, Shields proposed the well-known Shields-diagram (cf. [40], p. 107).

Some usual formulae for rivers are the following:

• Grass (see [26]) proposed the following formula for the solid transport discharge,

qb D Agu jujmg�1 ; 1 6 mg 6 4;

where the constant Ag (s2=m) must take into account the grain diameter and the

kinematic viscosity. It is usually obtained by experimental data. The usual value

of exponentmg is set to mg D 3.

• Meyer-Peter & Müller (see [36]) developed one of the most popular formulae for

the solid transport discharge,

qb D
q
.r � 1/gd3sgn .u/8 .�� � ��c/3=2 ;

where ��c usually is set to 0:047.

• Van Rijn (see [49]) developed the following formula for the solid transport

discharge,

qb D
q
.r � 1/gd3

0:005

C 1:7
D

�
d

h

�0:2
�
1=2
� sgn .u/



�
1=2
� � �

1=2
�c

�2:4
;

where CD is the drag coefficient.

• Nielsen (see [40]) developed the following formula

qb D
q
.r � 1/gd3sgn .u/12

p
��.�� � ��c/:

In this case the usual value of ��c is set equal to ��c D 0:05.
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All these formulae have a range of application which depends on the grain size,

the slope of the bottom, the Froude number and the relative density r . For example,

the M-P&M formula can be applied if 0:4 	 d 	 29mm, the slope of the bottom is

smaller than 0:02 and 1:25 	 r 	 4:2. For more details see [15–17].

�
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