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AbstratIn this paper, we address M-QAM blind equalization by �tting the probabilitydensity funtions (pdf) of the equalizer output with the onstellation sym-bols. We propose two new ost funtions, based on kernel pdf approximation,whih fore the pdf at the equalizer output to math the known onstellationpdf. The kernel bandwidth of a Parzen estimator is updated during iterationsto improve the onvergene speed and to derease the residual error of thealgorithms. Unlike related existing tehniques, the new algorithms measurethe distane error between observed and assumed pdfs for the real and imag-inary parts of the equalizer output separately. The advantage of proeedingthis way is that the distributions show less modes, whih failitates equalizeronvergene, while as for multi-modulus methods phase reovery keeps be-ing preserved. The proposed approahes outperform CMA and lassial pdf�tting methods in terms of onvergene speed and residual error. We alsoanalyse the onvergene properties of the most e�ient proposed equalizervia the ordinary di�erential equation (ODE) method.Preprint submitted to Signal Proessing May 7, 2014



Keywords: Blind equalization, pdf, Parzen windowing, Performaneanalysis, ODE1. IntrodutionIn transmissions, multipath propagation introdues intersymbols interfer-ene (ISI) that an make it di�ult to reover transmitted data. Thus, anequalizer an be used to redue the ISI. Time domain equalization or alter-natively frequeny domain equalization an be onsidered. The latter is veryinteresting for broadband wireless ommuniations. Indeed, for long hannelsit is omputationally simpler than the orresponding time domain equaliza-tion with the same e�ieny. However, in this paper, we onsider multipathhannels with length less than or equal to about 10 and time domain equal-ization is well suited in this ase beause then both approahes have approxi-mately the same omplexity and the same performane [1℄. Moreover, in thispaper, we are interested in ontinuous �ow transmission rather than bloktransmission where frequeny-domain equalization is more relevant.Without knowledge of the hannel, the �rst equalization methods rely on pe-riodi transmission of training sequenes that are known from the reeiver.Then, adaptation of the equalizer oe�ients is done by minimizing a ostfuntion that measures some distane between the atual equalizer outputand the desired referene signal. When the transmitter sends a trainingsequene, the equalizer taps an be easily adapted by using a stohastioptimization tehnique suh as the Least Mean Squares (LMS) algorithm,the ost funtion of whih minimizes the expetation of the squared error[2℄. However, in many digital ommuniation systems, the transmission of2



a bandwidth onsuming training sequene is not suitable. In order to avoidtraining, blind equalization tehniques have been developped to retrieve sym-bols transmitted through an unknown hannel by only using reeived dataand some knowledge upon the statistis of the original sequene. There ex-ist many blind algorithms. Sato algorithm [3℄ was the �rst blind tehniqueproposed. The Godard algorithm [4℄ and the Constant Modulus Algorithm(CMA) [5℄ whih is a partiular ase of Godard algorithm, are probablythe most popular blind equalization tehniques. However, they require along data sequene to onverge and show relatively high residual error. Tooverome these limitations, several approahes have been proposed in theliterature. For instane, we an mention the Normalized-CMA (NCMA),that aelerates onvergene by estimating the optimal step size of the al-gorithm at eah iteration [6℄. The CMA with a gain stage, where the latteris inserted after the equalizer to ontrol the behaviour of its output powerfor faster onvergene, was proposed in [7℄. The square ontour algorithmminimizes dispersion of the equalizer output from a square for blind equal-ization of QAM modulations [8℄, while the regional multimodulus algorithm,also designed for QAM modulations, performs similar to the supervised nor-malized least-mean-squares algorithm [9℄. The Modi�ed Constant ModulusAlgorithm (MCMA), also known as Multi-Modulus Algorithm (MMA) per-forms blind equalization and arrier phase reovery simultaneously [10℄, bymeasuring the errors of real and imaginary parts of the equalizer output sep-arately. The minℓ1-MMA and MGauss-MMA algorithms [11℄ outperform theMMA by ombining the multi-modulus riterion and an alphabet-mathingpenalty term. 3



In the last deade, new blind equalization tehniques, based on infor-mation theoreti riteria and pdf estimation of transmitted data, have beenproposed. These riteria are optimized adaptively, in general by means ofstohasti gradient tehniques. Among these tehniques, Renyi's entropy hasbeen used as a ost funtion [12℄. It involves pdf estimation with the Parzenwindow kernel method. This equalizer is very sensitive to noise and providesexellent results for some hannels but fails to equalize some others. So, analternative riterion based on foring the pdf at the equalizer output to maththe known onstellation pdf has been proposed in [13℄. As a ost funtion,it uses the Kullbak-Leibler Divergene (KLD) between the pdfs. The Eu-lidean distane has also been proposed in [14℄. It uses Parzen window withGaussian kernels for pdf estimation. In [15℄, a tehnique based on �ttingthe pdf of the equalizer output at some relevant points that are determinedby the modulus of the onstellation symbols was proposed. It is known assampled-pdf �tting. The authors of [15℄ also proposed in [16℄ the Stohastiblind equalization approah that uses the Quadrati Distane (SQD) be-tween the pdf at the equalizer output and the known onstellation pdf as aost funtion. This method is designed for multilevel modulations and worksat symbol rate. Many digital transmission systems with a high number ofstates use QAM modulations. As the multi-modulus approahes are wellsuited for suh modulations, we propose to use these tehniques to equalizeQAM onstellations. Therefore, in this paper, we propose a new family ofblind algorithms based on the SQD �tting, that we all Multi-Modulus SQD-
ℓp (MSQD-ℓp). Unlike the method in [15℄, MSQD-ℓp measures the distaneerror between observed and assumed pdfs for real and imaginary parts of the4



equalizer output separately. The advantage of proeeding this way is thatinvolved distributions show less modes, leading thus to redued omplexity,while preserving phase reovery as for multi-modulus methods. In addition,we bene�t from the fat that 1D pdfs an be aurately estimated with lessdata than 2D pdfs. In this paper, we are partiularly interested in the ase
p = 1 that leads to the MSQD-ℓ1 algorithm that involves the absolute valuesof the real and the imaginary parts of the equalizer output. Thus, the shapeof equalized onstellation modes is Gaussian whih is in aordane with thestatistial behavior of reeived data from a single path propagation, whatthe equalizer tries to ahieve.These tehniques are designed for multilevel modulations, work at the symbolrate and admit a simple stohasti gradient-based implementation. For pdfestimation, we use the Parzen window. The proposed methods outperformCMA and lassial pdf �tting approahes, in terms of onvergene speed andresidual error. As muh as possible, it is interesting to analyze the onver-gene properties of blind equalizers to better understand their performane.In this paper, we fous on performane analysis of the MSQD-ℓ1. To thisgoal, we employ the Ordinary Di�erential Equation (ODE) method. Indeed,the ODE approah supplies a solid theoretial framework for suh a task [17℄.The exat onvergene analysis of adaptive blind equalization algorithms isoften di�ult beause they are derived from nonlinear riteria. Therefore, theonvergene analysis of the MSQD-ℓ1 is onduted under some usual assump-tions that are ommonly met in the related literature. The ontributions ofthis paper to the �eld of blind equalization inlude:1. A new family of blind equalization algorithms named MSQD-ℓp that5



onverges faster than the CMA and the lassial SQD pdf �tting [16℄and ahieves lower residual error;2. Convergene and performane analysis of the most e�etive MSQD-ℓ1algorithm based on the ODE method.This paper is organized as follows. In setion 2, we present the blindequalization problem and the SQD pdf �tting method. In setion 3, wepropose the new ost funtions and their orresponding stohasti gradientexpressions. The onvergene and performane analysis of the MSQD-ℓ1algorithm is developed in setion 4. Simulations are presented in setion 5and onlusions of our work are given in setion 6.2. SIGNAL AND EQUALIZER MODEL2.1. Signal modelTo transmit digital data, a sequene {s(n)}n∈Z of independent identi-ally distributed (i.i.d) omplex symbols belonging to a digital modulationonstellation is sent through a hannel of length Lh with impulse response
h = [h0, h1, ..., hLh−1]

T , where (.)T denotes the transpose operater. Trans-mitted data are a�eted by multipath propagation, resulting in intersymbolinterferene (ISI) at the reeiver side. Therefore, an equalizer is used toredue this ISI. In our work, we are interested in blind equalization thatonly requires knowledge of the modulation used to send the data. The basisheme of a blind equalization system is desribed in Fig.1. We assume that
{s(n)}n∈Z is drawn from a symmetri QAM onstellation.Fig.1 summarizes the transmission model, where b = {b(n)}n∈Z is airular omplex additive white Gaussian noise, independent from s with6



Transmitter Channel h +b(n) Equalizer ws(n) x(n) y(n)Figure 1: Basi sheme of a blind equalization systemvariane σ2
b = E [|b(n)|2], x = {x(n)}n∈Z is the equalizer input, w(n) =

[w0(n), w1(n), ..., wLw−1(n)]
T is the equalizer impulse response, with length

Lw and y(n) is the equalized signal at time n. x(n) and y(n) an be modeledas
x(n) =

Lh−1∑

i=0

hi s(n− i) + b(n) (1)and
y(n) =

Lw−1∑

i=0

wi(n) x(n− i) = w(n)Tx(n) (2)where x(n) = [x(n), x(n− 1), ..., x(n− Lw + 1)]T .The weights of the equalizer will be adapted by using a gradient stohastialgorithm in the form
w(n+ 1) = w(n)− µ∇wJ(w) (3)where µ is the step size and J(w) is the ost funtion to be minimized. Inorder to inrease the performane of the equalizer, in this paper, we proposenew versions of J(w) derived from the SQD pdf �tting tehnique [16℄.2.2. SQD pdf �tting using Parzen Estimator [16℄Equalization tehniques based on pdf mathing intend to minimize somedistane between the data distribution at the equalizer output and sometarget distribution. Transmitted symbols have a disrete distribution. But,7



sine they are a�eted by additive Gaussian noise at the reeiver side, itan be assumed that after removing hannel multipath e�ets, the equalizeroutput should onsist of a Gaussian mixture, with Gaussian modes enteredat the onstellation points. Therefore, a target distribution of this forman be hosen. Then, the stohasti blind equalization based on the Parzenwindow method fores the pdf of the equalizer output to math the targetpdf. In [16℄, a quadrati distane between pdfs for the ost funtion wasproposed. It is given by
J(w) =

∫ ∞

−∞

(
fY p(z)− fSP (z)

)2
dz (4)where, Y p = {|y(n)|p} and Sp = {|sk|p} are the sets of the moduli to thepower p of equalized symbols and onstellation symbols and fZ(z) denotesthe pdf of Z at z. Thus, J(w) is intended to math pth moment distributionsbetween the equalizer output and the noisy onstellation.The Parzen window method is used to estimate the urrent data pdf. Usingthis nonparametri pdf estimator with the L last symbols, the estimates ofthe pdfs at time n are given by:

f̂Y p(z) =
1

L

L−1∑

k=0

Kσ0(z − |y(n− k)|p)

f̂Sp(z) =
1

Ns

Ns∑

k=1

Kσ0(z − |sk|p) (5)where Ns is the number of omplex symbols in the onstellation and Kσ0is a Gaussian kernel with standard deviation σ0, also known as the kernelbandwidth:
Kσ0(x) =

1√
2πσ0

e
− x2

2σ2
0 . (6)8



Aording to [16℄, for p = 2 and L = 1, the expression of the ost funtion isgiven by
J(w) =

1

N2
s

Ns∑

k=1

Ns∑

l=1

Kσ(|s(l)|2 − |s(k)|2)− 2

Ns

Ns∑

k=1

Kσ(|y(n)|2 − |s(k)|2). (7)where, σ =
√
2σ0. Then, the gradient of J(w) with respet to the equalizerweights is given by

∇wJ(w) = − 1

Ns

Ns∑

k=1

K
′
σ(|y(n)|2 − |s(k)|2) y(n)x∗(n) (8)where K

′
σ(x) = − x√

2πσ3 exp(
−x2

2σ2 ) is the derivative of Kσ(x) and (.)∗ denotesthe omplex onjugation operator. Then, the equalizer oe�ients are up-dated at symbol rate by inserting Eq.(8) in Eq.(3). This algorithm is ini-tialized with a tap-entered equalizer. In [16℄, the squared modulus of thesymbols for the kernel variables (p = 2) is used to design J(w). But, squar-ing does not preserve Gaussianity around noisy onstellation points. Fig.4illustrates this fat for p = 2: learly the Gaussianity of modes is not pre-served for p = 2 while it is for p = 1. Then, with a view to make the riterionstatistially more meaningful we propose, in this paper, to also address thease p = 1. Indeed, when p = 1, sine onstellation points are apart fromthe axes, at onvergene |y(n)| will be roughly distributed aording to amixture of Gaussian distributions around the onstellation points that are inthe positive quadrant of the omplex plane. This is true provided the SNRremains in usual ranges for QAM modulations under onsideration. In addi-tion, it is well known that multimodulus approahes suh as MMA [18℄, thatdeompose equalization riteria into an in-phase term and a quadrature one,are more e�ient than riteria suh as the CMA [5℄, that handle in-phase9



and quadrature parts together. In the same way, the riteria that we proposeare made of a sum of two terms related to in-phase and quadrature parts ofthe equalizer output. This will lead to riteria that we name MultimodulusSQD-ℓp (MSQD-ℓp). The advantage of proeeding this way is that involveddistributions show less modes, leading thus to redued omplexity, while pre-serving phase reovery. In addition, we bene�t from the fat that 1D pdfsan be aurately estimated with less data than 2D pdfs as show Fig.2 andFig.3. Indeed, with the SQD algorithm there are M symbols involved in thetarget pdf whereas with the MSQD-ℓp algorithms there are only 2√M modesinvolved, for an M-QAM modulation.3. MSQD algorithms3.1. MSQD-ℓp algorithmMSQD family onsists of algorithms based on ost funtions in the form:
J(w) =

∫ ∞

−∞
(f̂|yr|p(z)− f̂|sr|p(z))

2dz +

∫ ∞

−∞
(f̂|yi|p(z)− f̂|si|p(z))

2dz (9)where yr = ℜ{y}, yi = ℑ{y} and the pdf estimates are in the form
f̂x(z) =

1

Nx

Nx∑

k=1

Kσ0(z − xk) (10)
x is equal to |sr|p, |si|p, |yr|p or |yi|p. Nx = Ns for x = |sr,i|p and Nx = L for
x = |yr,i|p.For �xed p, we denote the orresponding riterion by MSQD-ℓp. ExpendingEq.(9), we get

J(w) =

∫ ∞

−∞
f̂|yr|p(z)

2 dz − 2

∫ ∞

−∞
f̂|yr|p(z) f̂|sr |p(z) dz +

∫ ∞

−∞
f̂|sr|p(z)

2 dz

+

∫ ∞

−∞
f̂|yi|p(z)

2dz − 2

∫ ∞

−∞
f̂|yi|p(z)f̂|si|p(z) dz +

∫ ∞

−∞
f̂|si|p(z)

2 dz (11)10



In a stohasti gradient optimization approah, in general only instantaneousstatistis are involved in the riterion. Thus, we onsider a window length
L = 1 as in [16℄. Then, sine for Gaussian kernels we have

∫ ∞

−∞
Kσ0(y − C1)Kσ0(y − C2)dy =

1

2
Kσ0

√
2(C1 − C2), (12)thus, aording to Eq.(10) and Eq.(11), J(w) beomes

J(w) = − 1

Ns

Ns∑

k=1

Kσ(|yr(n)|p − |sr(k)|p)−
1

Ns

Ns∑

k=1

Kσ(|yi(n)|p − |si(k)|p) + Cst.(13)On another hand, y(n) = w(n)Tx(n) rewrites as
y(n) = [wT

r xr(n)−wT
i xi(n)] + j[wT

r xi(n) +wT
i xr(n)], (14)whih leads to ∂y(n)

∂wr
= x(n) and ∂y(n)

∂wi
= j x(n).Therefore, the derivative of J(w) with respet to equalizer weights is

∇wJ(w) =
∂J(w)

∂wr
+ j

∂J(w)

∂wi

=
p

2
√
2πNsσ3

Ns∑

k=1

(sign (yr(n)) |yr(n)|p−1 (|yr(n)|p − |sr(k)|p) e−
(|yr(n)|p−|sr(k)|p)2

2σ2

+ j sign (yi(n)) |yi(n)|p−1 (|yi(n)|p − |si(k)|p) e−
(|yi(n)|p−|si(k)|p)2

2σ2

)
x∗(n). (15)3.2. MSQD-ℓ2 and MSQD-ℓ1 algorithmsWe onsider �rst the ase p = 2 sine ℓ2 norm is often onsidered in theliterature and for omparison to the ase p = 1 in the simulation part. FromEq.(15) we get the gradient of the MSQD-ℓ2 ost funtion:

∇wJ(w) =
1√

2πNsσ3

Ns∑

k=1

(
yr(n)(|yr(n)|2 − |sr(k)|2) e−

(|yr(n)|2−|sr(k)|2)2
2σ2

+ j yi(n)(|yi(n)|2 − |si(k)|2) e−
(|yi(n)|2−|si(k)|2)2

2σ2

)
x∗(n) (16)11



Then, Eq.(3) is used to update equalizer taps. For the ase p = 1, that isstatistially more meaningful, as disussed in setion 2, we get an updatingterm of the equalizer in the form:
∇wJ(w) =

1

2
√
2πNsσ3

Ns∑

k=1

(sign(yr(n)) (|yr(n)| − |sr(k)|) e−
(|yr(n)|−|sr(k)|)2

2σ2

+ j sign(yi(n)) (|yi(n)| − |si(k)|) e−
(|yi(n)|−|si(k)|)2

2σ2

)
x∗(n)

= φ(y(n))x∗(n) (17)In setion 5, we will show on simulations that, as expeted from the disussionat the end of setion 2, the MSQD-ℓ1 algorithm that we propose is moree�etive than the existing SQD algorithm in terms of mean square error,espeially for larger onstellations. Thus, in the following setion, we willrestrit our interest to performane analysis of the MSQD-ℓ1 algorithm interms of stationary stable points and asymptoti steady state.4. Performane Analysis4.1. The ODE methodPart of the following analysis is based on the ODE method, the prinipleof whih we brie�y reall here. We onsider a stohasti gradient algorithmin the form
θ(n) = θ(n− 1) + µnH(θ(n− 1),x(n)) (18)where, θ(n) is the sequene of estimated parameters and the observation pro-ess, {x(n)}n∈N is assumed to be a Markov and ergodi proess independentof θ, {µn}n∈N∗ is a series of small salar gains and H(θ(n− 1),x(n)) is thefuntion whih de�nes how θ(n) is adapted based on new observations.12



The ODE method assoiates an ordinary di�erential equation to the adap-tation riterion and is de�ned by:
θ̇ = h(θ) = lim

n→+∞
E
[
H(θ,x(n)) |θ

] (19)By assuming a regular behaviour of the funtion H , it was shown in [19℄that the behaviour of the stohasti algorithm Eq.(18) is linked to that ofthe ODE Eq.(19).4.2. Stationary Stable Points of the ODEIn this setion, we denote by θ(t) the solution of the ODE. It depends onthe initial value θ(0) = θ0.A point θ∗ is a stationary point of the ODE if h(θ∗) = 0.4.2.1. Stationary pointsLet us onsider the stohasti MSQD-ℓ1 algorithm:
w(n+ 1) = w(n)− µ∇wJ

(
w(n),x(n)

)
. (20)Letting θ(n) = w(n), identifying Eq.(20) and Eq.(18) leads to

H
(
θ(n),x(n+ 1)

)
= −∇wJ

(
w(n),x(n)

)
= −∇wJ

(
w, y(n)

)
= −φ

(
y(n)

)
x∗(n).(21)Then, the ODE is de�ned by

dθ

dt
= h(w) = lim

n→+∞
E
[
H(w,x(n))|w

]

= lim
n→+∞

−E
[
∇wJ(w, y(n))|w

] (22)13



The stationary points w∗ of the ODE are the solutions of h(w∗) = 0. Thenwe begin by alulating h(w).
h(w) = lim

n→+∞
−E

[
∇wJ(w, y(n))|w

]

= −
∫

R+

∇wJ(w, y)p|Y |(y) dy (23)where, p|Y |(y) is the probability density of |y|. To alulate h(w), we beginby alulating F|Y | |s(k)(y) where, |y| |s(k) = |s(k) + ε| and F|Y | |s(k)(y) is theumulative distribution of |Y | given s(k):
F(|Y | |s(k))(y) = P

(
|Y | ≤ y |s(k)

)

= P
(
− y ≤ Y ≤ y |s(k)

)

= P
(−y − s(k)

σε

≤ Y − s(k)

σε

≤ y − s(k)

σε

|s(k)
)

= FY

(y − s(k)

σε

)
− FY

(−y − s(k)

σε

) (24)where F is the umulative distribution funtion of the N (0, 1) distribution.Indeed, the ISI at the output of the equalizer an be modelled as a Gaussiandistribution [20℄ and thus Y |s(k) ∼ N (s(k), σ2
ε) where σ2

ε is the variane ofthe error (ε) between y and s(k). Then, from Eq.(24) and for y ≥ 0,
p(|Y | |s(k))(y) =

1

2σε

[
N
(y − s(k)

σε

; 0, 1
)
+N

(y + s(k)

σε

; 0, 1
)]

=
1

2

[
N
(
y − s(k); 0, σ2

ε

)
+N

(
y + s(k); 0, σ2

ε

)]
. (25)where, N (y;m, σ2) = 1√

2πσ
e

−(y−m)2

2σ2 . Summing over all possible symbols sk,we �nd the following expression of p|Y |(y):
p|Y |(y) =

1

2Ns

Ns−1∑

k=0

[
N (y − s(k); 0, σ2

ε) +N (y + s(k); 0, σ2
ε)
]
. (26)14



Then, we obtain the following expression of h(w) after replaing J(w, y) byits expression and aounting for symmetry properties of J(w, y) and p|Y |(y),
h(w) =

1

2πN2
s σσε

[
∇w

∫

R+

Ns∑

k=1

e−
(yr−|sr(k)|)2

2σ2

Ns∑

l=1

(
e
− (yr−|sr(l)|)2

2σ2
ε + e

− (yr+|sr(l)|)2
2σ2

ε

)
dyr.(27)Thus, after alulating the integral,

h(w) =
1

2N2
s

√
2π(σ2 + σ2

ε)

[
∇w

Ns∑

k=1

Ns∑

l=1

e
− (|sr(k)|−|sr(l)|)2

2(σ2+σ2
ε)

(
1− erf(−|sr(k)|σ2

ε − |sr(l)|σ2

σσε

√
σ2
ε + σ2

√
2

)
)

+ e
− (|sr(k)|+|sr(l)|)2

2(σ2+σ2
ε)

(
1− erf(−|sr(k)|σ2

ε + |sr(l)|σ2

σσε

√
σ2
ε + σ2

√
2

)
)]

= ∇wA(σ
2
ε )

=
dA(σ2

ε )

dσ2
ε

∇wσ
2
ε . (28)The equalized symbol y(n) an be expressed by y(n) = wTH̃s(n) +wTb(n)where,

H̃ =




h0 h1 · · · hL−1 0 · · · 0

0 h0 h1 · · · hL−1 0 · · · 0

0
. . . h0 h1 · · · hL−1

...
0

... h0 h1 · · · hL−1 0

0 · · · 0 h0 h1 · · · hL−1




(29)
and s(n) =

[
s(D−1), ..., s(kn), ..., s(D−L−Lw+1)

]T whereD is the equalizerdelay. Then, the error between y(n) and the value of the transmitted symbol
15



s(kn) reeived at time n is alulated as follows
σ2
ε = E

[(
y(n)− s(kn)

)(
y(n)− s(kn)

)H]

= E

[(
(wTH̃ − eD)s(n) +wTb(n)

)(
(wTH̃ − eD)s(n) +wTb(n)

)H](30)where, eD = (0, ..., 1, ..., 0)T , eD(i) = δi,D. Then,
σ2
ε = σ2

sw
TH̃H̃Hw∗ − σ2

sw
TH̃eD − σ2

seD
TH̃Hw∗ + σ2

s + σ2
b||w||2 (31)Thus,

h(w) = 2
dA(σ2

ε)

dσ2
ε

[
wT [σ2

sH̃H̃H + σ2
bILw

]− σ2
seD

TH̃H
]T (32)Sine in pratie |sr(kn)| >> σ2 + σ2

ε , only terms with 0 in the exponen-tial will be non negligible, resulting in A(σ2
ε) ≈ 1

2N2
s

√
2π(σ2+σ2

ε)

∑Ns

k=1

(
1 +erf( |sr(kn)|√

2

√
1
σ2 +

1
σ2
ε
)
). Sine at onvergene, 1

σ2 >> 1 and 1
σ2
ε
>> 1, itis easy to hek that dA(σ2

ε )
dσ2

ε
< 0. Thereby, wT

∗ = σ2
seD

TH̃H
[
σ2
sH̃H̃H +

σ2
bILw

]−1 is the only stationnary point. The very nie thing is that w∗ is theMMSE �lter. Thus, we have proved that the MSQD-ℓ1 algorithm has onlyone stationnary point, whih is the MMSE �lter, when σ2 and σ2
ε are muhsmaller than onstellation point amplitudes.4.2.2. Stability analysis of stationary pointsLet us reall that if w∗ is a stationary point of the ODE and λ1, λ2, ...λLware the eigenvalues of dh(w)

dw
|w=w∗ , the stability of w∗ is determined by theeigenvalues of dh(w)

dw
|w=w∗. Indeed we have the following theorem [19℄:

• If ∀i ∈ [|1;Lw|] ,ℜ(λi) < 0, w∗ is asymptotially stable16



• If ∃i ∈ [|1;Lw|] ,ℜ(λi) > 0, w∗ is unstable
• If ∀i ∈ [|1;Lw|] ,ℜ(λi) ≤ 0 and ℜ(λi0) = 0 for i0 ∈ [|1;Lw|], we an notonlude from these values.Then we should alulate dh(w)

dw
|w=w∗ .

dh(w)

dw
=

d

dw

[
d

dσ2
ε

A(σ2
ε)∇wσ

2
ε

]

=
d2A(σ2

ε)

d(σ2
ε)

2
(∇wσ

2
ε)(∇wσ2

ε)
T +

dA(σ2
ε)

dσ2
ε

d
(
∇wσ

2
ε

)

dw
. (33)Here, we are interested in the stability of the stationary point w∗ = σ2

s

[
σ2
sH̃

∗H̃T +

σ2
bILw

]−1
H̃∗eD. Thus,

dh(w)

dw
|w=w∗ =

dA(σ2
ε )

dσ2
ε

[
σ2
sH̃H̃H + σ2

bILw

]T
< 0 (34)sine (σ2

sH̃H̃H + σ2
bI) is a positive de�nite matrix and dA(σ2

ε )
dσ2

ε
< 0. Thus, wehave proved that the MMSE equalizer is the only stationary stable point of theMSQD-ℓ1 algorithm.4.3. Asymptoti Steady-State MSE Analysis4.3.1. onvergene in meanThe ODE analysis holds for small step size µ. In this setion, we study howit should be seleted to guarantee onvergene. In pratie, µ should be hosensmall enough. The maximum possible range for µ depends on the hannel underonsideration and its alulation is supplied in the Appendix (Appendix A). Itan be summarized as follows:Theorem 1. For stepsize 0 < µ < 2

λmax
where λmax is the largest eigenvalue ofthe matrix H̃∗

E
[
s(n)∗φ′(w∗x(n))s(n)T

]
H̃T + σ2

bE [φ′(w∗x(n))] ILw, the MSQD-
ℓ1 algorithm onverges to the MMSE solution, regardless equalizer initialization.17



4.3.2. MSE equalizer analysisThe asymptoti ovariane matrix of the residual error ǫ(n) = (wn − w∗) isdenoted by Σ(n) = E[ǫ(n)ǫ(n)H ]. For small step size µ, we have ȳ(n+D) ≈ s(kn)and aording to [17℄ (p.102 p.103) Σ∞ an be approximated as the solution of thefollowing matrix equation, alled Lyapunov's equation:
RfΣw(∞) +Σw(∞)RH

f = µRg (35)where, Rf = d
dw

h(w)|w=w∗ and
Rg = −E

[
H(w∗,x(n))H(w∗,x(n))

H
]
= −E

[
|φ(ȳ(n+D))|2x∗(n)xT (n)

]
. (36)Aording to Eq.(34), we have

Rf =
(dA(σ2

ε)

dσ2
ε

)
[σ2

sH̃H̃H + σ2
bILw]

T . (37)Let us denote Rx = E[x(n)x(n)H ] = σ2
sH̃H̃H + σ2

bILw = U Λx U
H the eigen-value deomposition of E[x(n)x(n)H ], where Λx = diag(λ1, λ2, ...., λLw ). We aneasily verify that Rf = U∗

Λf U
T (see Eq.(37)), where

Λf (i, i)i=1..Lw ≃ −λi

2Ns

√
2π(σ2+σ2

ε)
3
2
. We an also write Rg ≃ U∗

Λg U
T and we detailthe alulation of the diagonal elements of Λg in the Appendix (Appendix B).Thus, Eq.(35) beomes:

Λf (U
T
Σw(∞)U∗) + (UT

Σw(∞)U∗)Λf = µΛg (38)whih shows that UT
Σw(∞)U∗ is also diagonal: Σw(∞) = U∗

Λw UT with Λw =diag{λw1 , λw2 , ...., λwLw
} and

λwi
≃ µ

Λg(i, i)

Λf (i, i)
≃ 2µNs

√
2π(σ2 + σ2

ε)
3
2E

[
|φ(s(kn))|2

]
. (39)

18



4.3.3. MSEIn this stage, we alulate the MSE. Using the lassial assumption that thetap oe�ient vetor w(n) are independent from the input data vetor x(n) [21℄and that the symbols s(n) are independent of the noise b(n), the MSE is expandedas follows:
σ2
ε(∞) = lim

n→∞
E
[
|y(n)− s(kn)|2

]

= lim
n→∞

E
[
|wT (n)x(n)− s(kn)|2

]

= E
[
|ǫ(∞)Tx(∞) +w∗

Tx(∞)− s(k∞)|2
]

= E
[
ǫ(∞)Tx(∞)x(∞)Hǫ(∞)∗

]
+w∗

T
E
[
x(∞)x(∞)H

]
w∗

∗

+ σ2
s + 2ℜ

[
E
[
ǫ(∞)T

]
E
[
x(∞)x(∞)H

]
w∗

∗ − σ2
s (E [ǫ(∞)] +w∗)

T
H̃eD

](40)As E[ǫ(∞)] = 0 and using the independene between w∗ and x(∞) again, we get:
σ2
ε(∞) = Tr (ΛxΛw) +w∗

TRxw∗
∗ + σ2

s − 2σ2
sℜ[wT

∗ H̃eD] (41)where Tr (ΛxΛw) is the residual error of the equalizer and w∗TRxw∗∗ + σ2
s −

2σ2
sℜ[wT

∗ H̃eD] is the MMSE error term [2℄. What makes the MSQD-ℓ1 algorithmonverge lose to the MMSE error is that the value of the �rst term is very low.However, we had to ondut a detailed performane analysis to alulate the exatvalue of the MSE.5. Simulation Results5.1. Adaptive adjustment of the kernel sizeThe kernel size σ of the Parzen window in�uenes the onvergene speed of thealgorithm and its residual error. At the beginning of onvergene, it is neessary tohoose a large kernel size to enable interation of the equalized symbol with all the19



onstellation symbols and thus ensure a fast onvergene. On the ontrary, whenapproahing the perfet equalization of transmitted symbols, a small kernel sizehas to be used to only allow interation of eah equalized symbol with the losestsymbol in the onstellation. As in [16℄, the kernel size was adaptively ontrolledassuming a linear relationship between the kernel size and the deision error:
σ(n) = aG(n) + b (42)where, G(n) = αG(n − 1) + (1 − α) min︸︷︷︸

k=1,...,Ns

(
(|y(n)|2 − |sk|2)2

), α is a forgettingfator and (a, b) are empirially determined onstants.As mentioned in [16℄, the minimum of the stohasti ost funtion is a saledversion of the desired onstellation. Then, the original symbols |sk|2 in Eq.(8) aresubstituted by |sck|2 as follows:
|sck|2 = Q(σ)|sk|2 (43)where Q(σ) is the ompensation fator that depends on the kernel size and isobtained by ensuring that the zero-ISI solution (y(n) = s(kn)) is a minimum of

E [J(w)]:
E [∇wJ(w)] =

1

Ns

Ns∑

k=1

E

[
K

′
σ(|s(kn)|2 −Q(σ)|sk|2)s(kn)x∗(n)

]
= 0 (44)For MSQD-ℓ2 and MSQD-ℓ1, we adopt the same approah to determine the ade-quate Q(σ) for eah algorithm:

E [∇wJMSQD-ℓ2(w)] = 0 → QMSQD-ℓ2(σ)
E [∇wJMSQD-ℓ1(w)] = 0 → QMSQD-ℓ1(σ).Thus, the real and imaginary parts of the ompensated symbols are related tothe true symbols in the onstellation as follows: |scrk |2 = Q(σ)|srk |2 and |scik |2 =20



Q(σ)|sik |2. Q(σ) is alulated numerially for eah modulation. Fig.5 shows theompensation fator Q(σ) for 16-QAM, 64-QAM and 256-QAM modulations whenusing the MSQD-ℓ1 algorithm. For the MSQD-ℓ1 and MSQD-ℓ2, we implementthe same steps as the algorithm summarized in [16℄, using the appropriate ostfuntions and Q funtions.5.2. Numerial resultsTo ompare blind equalization approahes proposed in this paper, with othersexisting in the literature, we hoosed the same hannel as the one used in [16℄:
H1 = [0.2258, 0.5161, 0.6452,−0.5161]T . (45)Performane of the proposed MSQD-ℓ2 and MSQD-ℓ1 methods are ompared withthose of the CMA, MMA and SQD. For simulations, we employed an equalizer oflength Lw = 21 initialized using the tap-entered strategy. Table 2 summarizes theparameters whih were used to draw the urves in Fig.{6, 7, 8}.To ompare the performane of the proposed algorithms in terms of onvergenespeed, we set the step size µ for eah algorithm suh as they onverge with the samespeed. Thus, in Fig.6, Fig.7 and Fig.8, we an learly notie that MSQD-ℓ2 andMSQD-ℓ1 outperform the SQD, MMA and CMA algorithms in terms of residualerror for 16-QAM, 64-QAM and 256-QAM modulations. On the other hand, whenwe �x the value of µ for eah algorithm suh as they onverge to the same MSE inFig.9 and Fig.10, we notie that MSQD-ℓ2 and MSQD-ℓ1 onverge faster. All these�gures validate the MSQD-ℓ1 performane analysis that we have onduted, sinethe experimental urve of the MSQD-ℓ1 onverges to the theoretial one. To studythe performane of the MSQD-ℓ1 algorithm as a funtion of SNR, we draw in Fig.11the Symbol Error Rate (SER) for the MMA, SQD, MSQD-ℓ1 algorithms and for anAWGN hannel between SNR = 0 dB and SNR=20 dB for a 16-QAM modulation.21



To plot these urves, we take the optimal equalizer for eah algorithm with the sameonvergene rate. It is lear in this �gure that the MSQD-ℓ1 algorithm outperformsthe other algorithms in terms of the SER.We an also notie that for a value ofSER equal to 10−2, the MSQD-ℓ1 has a gain of 1.2 dB ompared to the SQD.Moreover, its performane are very lose to those obtained with an AWGN hannelfor any SNR.The proposed methods were also tested with two other hannels. Fig.12 and Fig.13are obtained when using the omplex hannel with transfer funtion:
H2(z) = 10−2[(4.1 + 1.09i) + (4.95 + 1.23i)z−1 + (6.72 + 1.7i)z−2 + (9.19 + 2.35i)z−3

+ (79.2 + 12.81i)z−4 + (39.6 + 8.71i)z−5 + (27.15 + 4.98i)z−6

+ (22.91 + 4.14i)z−7 + (12.87 + 1.54i)z−8 + (10.32 + 1.19i)z−9] (46)In Fig.12 and Fig.13, it is lear that MSQD-ℓ1 performs better than other equal-izers. A typial hannel met in ommuniations is the frequeny seletive han-nel with an exponential deay pro�le. In Fig.14 and Fig.15, we show the perfor-mane of the proposed methods when using the hannel of length Lh3 = 10 withtransfer funtion H3(z) =
∑Lh−1

l=0 h3(l)z
−l with h3(l) ∼ N (0, Ge−ρl) suh that

∑Lh−1
l=0 E[|h3(l)|2] = 1. For simulations, we hose ρ = 0.7. We an hek that withthis hannel, the MSQD-ℓ1 ouperforms the other algorithms and onverges to theMMSE equalizer.The �gures show that onvergene of the MSQD-ℓ1 algorithm is ahieved after lessthan 10000 iterations.5.3. Computational omplexity analysisFor a square M-QAM modulation, the omputational omplexity is summa-rized in table 1 where Ns =

√
M
2

!

2!(

√
(M)

2
−2)!

+
√
M
2 and N

′
s =

√
M
2 when M > 4 and22



Ns = N
′
s when M = 4. Therefore, we an onlude that the MSQD-ℓ1 is omputa-tionally less demanding than the SQD and slightly more demanding ompared tothe CMA. However, it requires many fewer iterations to onverge to a low MSE.In Fig.9 and Fig.10, we an notie that the MSQD-ℓ1 onverges about 10 timesfaster than the CMA. Fig.16 shows the number of multipliations required by eahalgorithm per iteration and Fig.17 shows the global omputational ost needed toahieve onvergene, aording to Fig.9 and Fig.10. We an notie that the globalomputational omplexity of the MSQD-ℓ1, is lower than that of SQD and CMA.6. ConlusionIn this paper, we have proposed new riteria for kernel based blind equalizationtehniques that fore the pdf of the real and imaginary parts of the equalizer out-put to math that of the true onstellation real and imaginary parts by employingthe Parzen window method to estimate the data pdf. Performane of the proposedmethods has been ompared with that of CMA and SQD. We have shown thatthey onverge faster with a redued residual error. The behaviour of the MSQD-

ℓ1, most powerful proposed method, has been examined by relating the motion ofthe parameter estimate errors to a deterministi ODE. The analysis that we haveonduted and simulation results prove that the MSQD-ℓ1 algorithm brings furthervalidation of the pdf �tting approah for equalization in digital transmission. Al-though in this paper we only addressed QAM modulations, the proposed methodsan be extended to any modulation sine the equalization riterion represents somedistane between the probability distribution of the equalizer output and that oftransmitted data.
23



Table 1: Computational omplexity of CMA, SQD and MSQD-ℓ1 algorithms for oneiteration Multipliations ExponentCMA 8Lw + 4 0SQD 4Ns + 8Lw + 4 NsMSQDℓ1 6N
′
s + 8Lw + 2 2N

′
s

24



Table 2: parameter values used for simulations16 QAM CMA SQD MSQD-ℓ2 MSQD-ℓ1
µ 3.5× 10−5 10−4 1.3× 10−4 7.7× 10−4

a - 3.5 3.5 1.5

b - −9.5 −9.5 −1

1− α - 5× 10−3 5× 10−3 5× 10−3

E0 - 7 7 564 QAM
µ 3.3× 10−7 1.2× 10−6 9× 10−7 4.7× 10−5

a - 3.5 3 2

b - −2 −18 −10

1− α - 10−3 10−2 10−3

E0 - 5 7 6.5256 QAM
µ 4× 10−8 1.5× 10−7 1.5× 10−7 7× 10−5

a - 3.5 2.5 4

b - −4.5 −15 −1

1− α - 5× 10−5 10−4 2× 10−4

E0 - 7 20 7

25



Figure 2: 2D pdfs : M = 16 modesfor the SQD algorithm Figure 3: pdfs along real and imaginaryaxes: 2
√
M = 8 modes for the MSQD-ℓpalgorithm
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Figure 4: Transformed onstellations for l1, (p = 1) and l2 (p = 2) norms of the real andimaginary transmitted data parts for a 16-QAM modulation
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Figure 5: Evolution of the ompensation fator Q(σ) for MSQD-ℓ1 algorithm.
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Figure 6: MSE (dB) for 16-QAM and SNR=30 dB using H1.
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Figure 7: MSE (dB) for 64-QAM and SNR=30 dB using H1.
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Figure 8: MSE (dB) for 256-QAM and SNR=30 dB using H1.

31



0 0.5 1 1.5 2

x 10
5

−20

−15

−10

−5

0

5

10

Iterations

M
S

E

 

 
CMA
MMA
SQD
MSQD−l2
MSQD−l1
MMSE Equalizer

Figure 9: MSE (dB) for 16-QAM and SNR=30 dB using H1.
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Figure 10: MSE (dB) for 64-QAM and SNR=30 dB using H1.
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Figure 11: SER for MMA, SQD, MSQD-ℓ1 algorithms using H1 and 16-QAM modulation.
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Figure 12: MSE (dB) for 16-QAM and SNR=30 dB using H2.
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Figure 13: MSE (dB) for 64-QAM and SNR=30 dB using H2.
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Figure 14: MSE (dB) for 16-QAM and SNR=30 dB using H3.
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Figure 15: MSE (dB) for 64-QAM and SNR=30 dB using H3.
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Figure 16: Number of multiplia-tions per iteration for {16, 64, 256}-QAM modulations Figure 17: Number of multipliationsneeded by the equalizers to onverge for
{16, 64}-QAM modulations
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Appendix A. Calulation of the maximum possible range for µLet us note ȳ(n) = w∗x(n). At onvergene, y(n) − ȳ(n) is small and we anapply the taylor expansion to the funtion φ(y(n)) (see Eq.(17)) at ȳ(n). Then,
φ(yn) = φ(ȳ(n)) + φ′(ȳ(n))(y(n) − ȳ(n))

= φ(ȳ(n)) + φ′(ȳ(n))(H̃s(n) + b(n))T ǫ(n) (A.1)where ǫ(n) = w(n)−w∗ and H̃s(n) + b(n) = x(n). In addition, we have
w(n+ 1) = w(n)− µφ(y(n))x(n)∗. (A.2)Thus, substrating w∗ in both sides of Eq.(A.2) and using Eq.(A.1), we �nd that

ǫ(n+1) = ǫ(n)−µ
(
φ(ȳ(n))x(n)∗+φ′(ȳ(n))(H̃s(n)+b(n))T ǫ(n)(H̃∗s∗(n)+b∗(n))

)(A.3)Taking the expetation on the both side of Eq.(A.3) and using the independenebetween ȳ(n) and ǫ(n), as it was assumed in [21℄, we get
E [ǫ(n+ 1)] = E [ǫ(n)]− µ

(
E [φ(ȳ(n))x∗(n)]

+ E[(H̃∗s∗(n) + b∗(n))φ′(ỹ(n))(H̃s(n) + b(n))T ]E [ǫn]
)(A.4)In [22℄, the authors proved that E [φ(ȳ(n))x∗(n)] = 0 when the ost funtionapproahes one of its minima. Thus, Eq.(A.4) an be simpli�ed to

E [ǫ(n+ 1)] =
(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

bE
[
φ′(ȳn)

]
ILw)

)
E [ǫ(n)] (A.5)where F̃ = 1

σ2
s
E
[
s∗(n)φ′(ȳ(n))s(n)T

]. Consequently
E [ǫ(n+ 1)] =

(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

bE{φ′(ȳ(n))}ILw)
)n

E [ǫ(0)] (A.6)This yields the following ondition upon the step size of the algorithm for onver-gene of the mean error :
0 < µ <

2

λmax
(A.7)where λmax is the largest eigenvalue of σ2

sH̃
∗F̃ H̃T + σ2

bE [φ′(ȳ(n))] ILw.40



Appendix B. Diagonalization of Rg in the basis U∗

Rg = −E
[
H(w∗,x(n))H(w∗,x(n))

H
]

= −E
[
φ(s(nk))x

∗(n)xT (n)φ(s(nk))
∗]

= −H∗
E
[
|φ(s(nk))|2s(n)sT (n)

]
HT − E

[
|φ(s(nk))|2b∗(n)bT (n)

]

= −H∗DHT − σ2
bE

[
|φ(s(nk))|2

] (B.1)where, D = diag(d1, ..., d1, d2, d1, ..., d1) with d1 = σ2
sE

[
|φ(s(nk))|2

] and d2 =

E
[
|s(nk)|2|φ(s(nk))|2

]. We have heked numerially that |d2−d1
d1

|2 is very small(around 10−4). Then, we an onsider that D ≃ d1IL+Lw−1. Thus, we obtain thefollowing expression of Rg:
Rg ≃ −d1H

∗IL+Lw−1H
T − σ2

bE
[
|φ(s(nk))|2

]

≃ −E
[
|φ(s(nk))|2

] (
σ2
sH

∗HT + σ2
bILw

)

≃ −E
[
|φ(s(nk))|2

] (
U∗

ΛxU
T
)

≃
(
U∗

ΛgU
T
) (B.2)where Λg(i, i) ≃ −E

[
|φ(s(nk))|2

]
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