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Abstract

In this paper, we address M-QAM blind equalization by fitting the probability
density functions (pdf) of the equalizer output with the constellation sym-
bols. We propose two new cost functions, based on kernel pdf approximation,
which force the pdf at the equalizer output to match the known constellation
pdf. The kernel bandwidth of a Parzen estimator is updated during iterations
to improve the convergence speed and to decrease the residual error of the
algorithms. Unlike related existing techniques, the new algorithms measure
the distance error between observed and assumed pdfs for the real and imag-
inary parts of the equalizer output separately. The advantage of proceeding
this way is that the distributions show less modes, which facilitates equalizer
convergence, while as for multi-modulus methods phase recovery keeps be-
ing preserved. The proposed approaches outperform CMA and classical pdf
fitting methods in terms of convergence speed and residual error. We also
analyse the convergence properties of the most efficient proposed equalizer

via the ordinary differential equation (ODE) method.

Preprint submitted to Signal Processing May 7, 2014



Keywords: Blind equalization, pdf, Parzen windowing, Performance

analysis, ODE

1. Introduction

In transmissions, multipath propagation introduces intersymbols interfer-
ence (ISI) that can make it difficult to recover transmitted data. Thus, an
equalizer can be used to reduce the ISI. Time domain equalization or alter-
natively frequency domain equalization can be considered. The latter is very
interesting for broadband wireless communications. Indeed, for long channels
it is computationally simpler than the corresponding time domain equaliza-
tion with the same efficiency. However, in this paper, we consider multipath
channels with length less than or equal to about 10 and time domain equal-
ization is well suited in this case because then both approaches have approxi-
mately the same complexity and the same performance [1]. Moreover, in this
paper, we are interested in continuous flow transmission rather than block
transmission where frequency-domain equalization is more relevant.
Without knowledge of the channel, the first equalization methods rely on pe-
riodic transmission of training sequences that are known from the receiver.
Then, adaptation of the equalizer coefficients is done by minimizing a cost
function that measures some distance between the actual equalizer output
and the desired reference signal. When the transmitter sends a training
sequence, the equalizer taps can be easily adapted by using a stochastic
optimization technique such as the Least Mean Squares (LMS) algorithm,
the cost function of which minimizes the expectation of the squared error

[2]. However, in many digital communication systems, the transmission of



a bandwidth consuming training sequence is not suitable. In order to avoid
training, blind equalization techniques have been developped to retrieve sym-
bols transmitted through an unknown channel by only using received data
and some knowledge upon the statistics of the original sequence. There ex-
ist many blind algorithms. Sato algorithm |3| was the first blind technique
proposed. The Godard algorithm [4] and the Constant Modulus Algorithm
(CMA) [5] which is a particular case of Godard algorithm, are probably
the most popular blind equalization techniques. However, they require a
long data sequence to converge and show relatively high residual error. To
overcome these limitations, several approaches have been proposed in the
literature. For instance, we can mention the Normalized-CMA (NCMA),
that accelerates convergence by estimating the optimal step size of the al-
gorithm at each iteration [6]. The CMA with a gain stage, where the latter
is inserted after the equalizer to control the behaviour of its output power
for faster convergence, was proposed in [7]. The square contour algorithm
minimizes dispersion of the equalizer output from a square for blind equal-
ization of QAM modulations [8|, while the regional multimodulus algorithm,
also designed for QAM modulations, performs similar to the supervised nor-
malized least-mean-squares algorithm |9]. The Modified Constant Modulus
Algorithm (MCMA), also known as Multi-Modulus Algorithm (MMA) per-
forms blind equalization and carrier phase recovery simultaneously [10], by
measuring the errors of real and imaginary parts of the equalizer output sep-
arately. The minf;-MMA and MGauss-MMA algorithms [11] outperform the
MMA by combining the multi-modulus criterion and an alphabet-matching

penalty term.



In the last decade, new blind equalization techniques, based on infor-
mation theoretic criteria and pdf estimation of transmitted data, have been
proposed. These criteria are optimized adaptively, in general by means of
stochastic gradient techniques. Among these techniques, Renyi’s entropy has
been used as a cost function [12|. It involves pdf estimation with the Parzen
window kernel method. This equalizer is very sensitive to noise and provides
excellent results for some channels but fails to equalize some others. So, an
alternative criterion based on forcing the pdf at the equalizer output to match
the known constellation pdf has been proposed in [13|. As a cost function,
it uses the Kullback-Leibler Divergence (KLD) between the pdfs. The Eu-
clidean distance has also been proposed in [14]. It uses Parzen window with
Gaussian kernels for pdf estimation. In [15], a technique based on fitting
the pdf of the equalizer output at some relevant points that are determined
by the modulus of the constellation symbols was proposed. It is known as
sampled-pdf fitting. The authors of [15] also proposed in [16] the Stochastic
blind equalization approach that uses the Quadratic Distance (SQD) be-
tween the pdf at the equalizer output and the known constellation pdf as a
cost function. This method is designed for multilevel modulations and works
at symbol rate. Many digital transmission systems with a high number of
states use QAM modulations. As the multi-modulus approaches are well
suited for such modulations, we propose to use these techniques to equalize
QAM constellations. Therefore, in this paper, we propose a new family of
blind algorithms based on the SQD fitting, that we call Multi-Modulus SQD-
lp (MSQD-¢p). Unlike the method in [15], MSQD-¢p measures the distance

error between observed and assumed pdfs for real and imaginary parts of the



equalizer output separately. The advantage of proceeding this way is that
involved distributions show less modes, leading thus to reduced complexity,
while preserving phase recovery as for multi-modulus methods. In addition,
we benefit from the fact that 1D pdfs can be accurately estimated with less
data than 2D pdfs. In this paper, we are particularly interested in the case
p = 1 that leads to the MSQD-/1 algorithm that involves the absolute values
of the real and the imaginary parts of the equalizer output. Thus, the shape
of equalized constellation modes is Gaussian which is in accordance with the
statistical behavior of received data from a single path propagation, what
the equalizer tries to achieve.

These techniques are designed for multilevel modulations, work at the symbol
rate and admit a simple stochastic gradient-based implementation. For pdf
estimation, we use the Parzen window. The proposed methods outperform
CMA and classical pdf fitting approaches, in terms of convergence speed and
residual error. As much as possible, it is interesting to analyze the conver-
gence properties of blind equalizers to better understand their performance.
In this paper, we focus on performance analysis of the MSQD-¢1. To this
goal, we employ the Ordinary Differential Equation (ODE) method. Indeed,
the ODE approach supplies a solid theoretical framework for such a task [17].
The exact convergence analysis of adaptive blind equalization algorithms is
often difficult because they are derived from nonlinear criteria. Therefore, the
convergence analysis of the MSQD-/1 is conducted under some usual assump-
tions that are commonly met in the related literature. The contributions of

this paper to the field of blind equalization include:

1. A new family of blind equalization algorithms named MSQD-¢p that



converges faster than the CMA and the classical SQD pdf fitting |16]
and achieves lower residual error;

2. Convergence and performance analysis of the most effective MSQD-/1

algorithm based on the ODE method.

This paper is organized as follows. In section 2, we present the blind
equalization problem and the SQD pdf fitting method. In section 3, we
propose the new cost functions and their corresponding stochastic gradient
expressions. The convergence and performance analysis of the MSQD-¢1
algorithm is developed in section 4. Simulations are presented in section 5

and conclusions of our work are given in section 6.

2. SIGNAL AND EQUALIZER MODEL

2.1. Signal model

To transmit digital data, a sequence {s(n)},ez of independent identi-
cally distributed (i.i.d) complex symbols belonging to a digital modulation
constellation is sent through a channel of length L, with impulse response
h = [ho,hy, ..., 1, 1]T, where (.)T denotes the transpose operater. Trans-
mitted data are affected by multipath propagation, resulting in intersymbol
interference (ISI) at the receiver side. Therefore, an equalizer is used to
reduce this ISI. In our work, we are interested in blind equalization that
only requires knowledge of the modulation used to send the data. The basic
scheme of a blind equalization system is described in Fig.1. We assume that
{s(n)}nez is drawn from a symmetric QAM constellation.

Fig.1 summarizes the transmission model, where b = {b(n)},ez is a

circular complex additive white Gaussian noise, independent from s with
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Figure 1: Basic scheme of a blind equalization system

variance o7 = E[|b(n)]?], * = {z(n)}nez is the equalizer input, w(n) =
[wo(n), wy(n),...,wr,_1(n)]T is the equalizer impulse response, with length
L,, and y(n) is the equalized signal at time n. z(n) and y(n) can be modeled

as
Lj,—1

z(n) = Z hi s(n — i) + b(n) (1)

and
Lw—1

y(n) =Y wi(n)a(n —i) = w(n)" z(n) (2)

i=0
where x(n) = [z(n),z(n — 1), ...,x(n — L, + 1)]7.
The weights of the equalizer will be adapted by using a gradient stochastic

algorithm in the form
w(n+1) =w(n) - p Ve (w) (3)

where p is the step size and J(w) is the cost function to be minimized. In
order to increase the performance of the equalizer, in this paper, we propose

new versions of J(w) derived from the SQD pdf fitting technique [16].

2.2. SQD pdf fitting using Parzen Estimator [16]

Equalization techniques based on pdf matching intend to minimize some
distance between the data distribution at the equalizer output and some

target distribution. Transmitted symbols have a discrete distribution. But,
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since they are affected by additive Gaussian noise at the receiver side, it
can be assumed that after removing channel multipath effects, the equalizer
output should consist of a Gaussian mixture, with Gaussian modes centered
at the constellation points. Therefore, a target distribution of this form
can be chosen. Then, the stochastic blind equalization based on the Parzen
window method forces the pdf of the equalizer output to match the target
pdf. In [16], a quadratic distance between pdfs for the cost function was
proposed. It is given by

ﬂw>:/f(naa—f¢@»%z (4)

oo
where, Y? = {|y(n)|P} and S? = {|sx|P} are the sets of the moduli to the
power p of equalized symbols and constellation symbols and f7(z) denotes
the pdf of Z at 2. Thus, J(w) is intended to match p'* moment distributions
between the equalizer output and the noisy constellation.

The Parzen window method is used to estimate the current data pdf. Using
this nonparametric pdf estimator with the L last symbols, the estimates of

the pdfs at time n are given by:

) =
fre(2) = I Koy (2 — ly(n — k)|P)
k=0
. 1 X
for(2) = 5 D Koz = IsiP) ()
5 k=1

where N is the number of complex symbols in the constellation and K,
is a Gaussian kernel with standard deviation oy, also known as the kernel

bandwidth:
1 _ a2

e 2. 6
vV 2moy (6)

8
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According to [16], for p = 2 and L = 1, the expression of the cost function is

given by
Jw) = 55 33 KosOF = IsP) = = Y Kally? = (k). ()

where, ¢ = v/20¢. Then, the gradient of .J(w) with respect to the equalizer
weights is given by

Vo (w) = —N%ES:K;(\?J(H)V — [s(k)[*) y(n) 2" (n) (8)

where K (z) = v exp(%;) is the derivative of K,(z) and (.)* denotes
the complex conjugation operator. Then, the equalizer coefficients are up-
dated at symbol rate by inserting Eq.(8) in Eq.(3). This algorithm is ini-
tialized with a tap-centered equalizer. In [16], the squared modulus of the
symbols for the kernel variables (p = 2) is used to design J(w). But, squar-
ing does not preserve Gaussianity around noisy constellation points. Fig.4
illustrates this fact for p = 2: clearly the Gaussianity of modes is not pre-
served for p = 2 while it is for p = 1. Then, with a view to make the criterion
statistically more meaningful we propose, in this paper, to also address the
case p = 1. Indeed, when p = 1, since constellation points are apart from
the axes, at convergence |y(n)| will be roughly distributed according to a
mixture of Gaussian distributions around the constellation points that are in
the positive quadrant of the complex plane. This is true provided the SNR
remains in usual ranges for QAM modulations under consideration. In addi-
tion, it is well known that multimodulus approaches such as MMA [18], that
decompose equalization criteria into an in-phase term and a quadrature one,

are more efficient than criteria such as the CMA |5], that handle in-phase

9



and quadrature parts together. In the same way, the criteria that we propose
are made of a sum of two terms related to in-phase and quadrature parts of
the equalizer output. This will lead to criteria that we name Multimodulus
SQD-¢p (MSQD-¢p). The advantage of proceeding this way is that involved
distributions show less modes, leading thus to reduced complexity, while pre-
serving phase recovery. In addition, we benefit from the fact that 1D pdfs
can be accurately estimated with less data than 2D pdfs as show Fig.2 and
Fig.3. Indeed, with the SQD algorithm there are M symbols involved in the
target pdf whereas with the MSQD-¢p algorithms there are only 2v/M modes
involved, for an M-QAM modulation.

3. MSQD algorithms

3.1. MSQD-lp algorithm

MSQD family consists of algorithms based on cost functions in the form:

J(w) = / (Fiynir (2) = floupp(2))%dz + / (Fluar(2) = fisp(2))%dz (9)
where y, = R{y}, v; = I{y} and the pdf estimates are in the form

R = S Koplz — 1) (10)

x is equal to |s, [P, |s;|?, |y.|P or |y;|P. N, = Ny for x = |s,;|? and N, = L for
z = [y,qlP.

For fixed p, we denote the corresponding criterion by MSQD-/p. Expending
Eq.(9), we get

Jw) = /_ fop(2)?dz—2 /_ Fonp(2) o p(2) dz + /_ frop(2)2ds
+ /_ f:lyilp(z)2d2—2/_ ﬁy”p(z)ﬁsi‘p(z) dz+/_ f|8i|p(z)2 dz (11)
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In a stochastic gradient optimization approach, in general only instantaneous
statistics are involved in the criterion. Thus, we consider a window length

L =1 as in [16]. Then, since for Gaussian kernels we have

o 1
| Ky = OOl = Coldy = 5Ky €= Co). (12)
thus, according to Eq.(10) and Eq.(11), J(w) becomes
1 1
Jaw) = 3 Kol )l ~ s (R)P) ~ - > Kollu(l? ~ i) + Cst.
5 k=1 ¥ k=1
(13)
On another hand, y(n) = w(n)"x(n) rewrites as
y(n) = [wia,(n) — wl ()] + jlw zi(n) + w2 (n)], (14)
which leads to %y—gi) = x(n) and 85’50:‘_) = jax(n).
Therefore, the derivative of J(w) with respect to equalizer weights is
_ 0J(w) . 0J(w)
ok _ Uyr )P —|sr(0)|P)?

_ p (si p—1 p P 2

= >~ (sign (yr(n) lyr ()P~ (Jyr ()P — |5, (k)[P) e 20
2421 Nyo3 pet

~ (wi([P—|sy(R)|P)?

+ sign (i) [y () P (e ()l? — [si () e Yt (1)

3.2. MSQD-£2 and MSQD-(1 algorithms

We consider first the case p = 2 since 2 norm is often considered in the
literature and for comparison to the case p = 1 in the simulation part. From

Eq.(15) we get the gradient of the MSQD-£2 cost function:

N,
1 2 (yr(n)12=sr(k)%)?
Vad(w) = ————3 (p(n)(lye(n)? = [s.(k)?) e o
V2rNgo3 pet (
. _ Uy =lsiH2N
b gumumlP ~ s e = et s)

11



Then, Eq.(3) is used to update equalizer taps. For the case p = 1, that is
statistically more meaningful, as discussed in section 2, we get an updating
term of the equalizer in the form:

N

Vad(0) = 5t S (signlon () (o ()] — sy () e~ 8
7 k=1
+  gsign(yi(n)) (lyi(n)| — |s:(k)]) E_W)m*(n)
= oly(m)a"(n) an

In section 5, we will show on simulations that, as expected from the discussion
at the end of section 2, the MSQD-¢1 algorithm that we propose is more
effective than the existing SQD algorithm in terms of mean square error,
especially for larger constellations. Thus, in the following section, we will
restrict our interest to performance analysis of the MSQD-¢1 algorithm in

terms of stationary stable points and asymptotic steady state.

4. Performance Analysis

4.1. The ODE method

Part of the following analysis is based on the ODE method, the principle
of which we briefly recall here. We consider a stochastic gradient algorithm

in the form

O(n)=0(n—1)+ p,H(O(n —1),z(n)) (18)

where, 6(n) is the sequence of estimated parameters and the observation pro-
cess, {x(n) bnen is assumed to be a Markov and ergodic process independent
of 0, {iin}nen+ is a series of small scalar gains and H(@(n — 1), x(n)) is the

function which defines how 6(n) is adapted based on new observations.
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The ODE method associates an ordinary differential equation to the adap-

tation criterion and is defined by:

0 =h(0)= lim E[H(0,z(n))]|0] (19)

n—-4o0o

By assuming a regular behaviour of the function H, it was shown in [19]
that the behaviour of the stochastic algorithm Eq.(18) is linked to that of
the ODE Eq.(19).

4.2. Stationary Stable Points of the ODE

In this section, we denote by 6(t) the solution of the ODE. It depends on
the initial value 6(0) = 6,.
A point 6, is a stationary point of the ODE if h(8.) = 0.

4.2.1. Stationary points
Let us consider the stochastic MSQD-/1 algorithm:

w(n+1) = w(n) — pVeJ (w(n), z(n)). (20)
Letting O(n) = w(n), identifying Eq.(20) and Eq.(18) leads to

H(0(n), z(n+1)) = =V J(w(n), z(n)) = —VeJ(w,y(n)) = —¢(y(n)) *(n).

(21)
Then, the ODE is defined by
do :
i hw) = HETOOE[H(w,w(n))|w]
=l —E[VaJ(w,y(n)h]
(22)

13



The stationary points w, of the ODE are the solutions of h(w,) = 0. Then

we begin by calculating h(w).

hMw) = lim —E[V,J(w,y(n))w]

n—-+0o0o

= — | VuJ(w,y)py(y)dy (23)

R+
where, pjy|(y) is the probability density of |y|. To calculate h(w), we begin
by calculating Fly| s (y) where, |y| |s(k) = |s(k) + €] and Fly| s (y) is the

cumulative distribution of |Y| given s(k):
Eyiison(y) = P(\Y\ <y IS(k))

= P(—y<Y <ylsth)
= p(T ) Y sy

CACTEREE) e

where F' is the cumulative distribution function of the A/(0, 1) distribution.
Indeed, the IST at the output of the equalizer can be modelled as a Gaussian
distribution [20] and thus Y|y ~ N (s(k),02) where o2 is the variance of

rYE

the error (¢) between y and s(k). Then, from Eq.(24) and for y > 0,

vy y) = — [N<y —slk) 1) +N(Ls(k); 0, 1)]

20, o o
1
= §[N(y—s(k);o,a§) + N (y+ s(k):0,02)] . (25)
(y—m)2
where, N(y;m,0?) = \/21—7“76 G Summing over all possible symbols sy,

we find the following expression of pjy((y):

Ns—1

18 Z [N(y - S(k)§0,af) +N(y+s(k);0,a§)}. (26)

p|Y|(y) = ON

14



Then, we obtain the following expression of h(w) after replacing J(w,y) by

its expression and accounting for symmetry properties of J(w, y) and pjy|(y),

 (wr—lsr(0)D? \sr(k)\) _ wr=lsrD? _ rtlsrOD?
h(w) = o2 202 +e 202 d -
(w) 27TN200-€ /Z ; Z< )y

(27)

Thus, after calculating the integral,

1 Ne Moo (ar®I=-lsr@D? \sm)\>2 —Is,.(k)|o2 — |s,(1)|o?
h('LU) = [ e 2(0 +o (1 _ erfc( |S ( )|U€ |S ( )|U ))
2m(0% + 02) o 0002+ 02\/2

_ Usr®)[+]sr(D?

+ e 206%ted) (1—erfc(

—L‘r( k)|o? + s, (1)|o* ))}
00\[o2 T 022

= Vu,A(02)
dA(o?)
= Vw02 (28)

The equalized symbol y(n) can be expressed by y(n) = THS( ) +wb(n)

where,

ho  hy « hp—1 0 0
0 hy M hp—1 0 0
H=| o hoe hy o hpg (29)
0 ho hq hp—1 0
0 0 ho hi -+ hp

and s(n) = [s(D-1), ..., 5(kn), ..., s(D—L—Lw+1)}T where D is the equalizer
delay. Then, the error between y(n) and the value of the transmitted symbol

15



s(ky,) received at time n is calculated as follows

o2 = E[(y(n) = s(kn) (y(n) - s(k‘n))H}
— E[((w"H = ep)s(n) + wb(n) ((w" H = ep)s(n) + wb(n) |
(30)

where, ep = (0,...,1,...,0)T, ep(i) = ;. p. Then,
02 = a?wTﬁﬁHw* - angﬁeD - afeDTﬁHw* + o +opllw|*  (31)

Thus,

LdA(2)

P — T
h(w) =23 5 :) [ T2 HHY + 02I,,] — ageDTHH] (32)

Since in practice |s,(k,)| >> % + 02, only terms with 0 in the exponen-
. . .. . . 2 —~ 1 N
tial will be non negligible, resulting in A(c?) =~ PN ey Sooa (T4

erfc('sT—\/lz—")‘,/U%%—i)). Since at convergence, 2 >> 1 and & >> 1, it

is easy to check that d(z) < 0. Thereby, w? = o2ep”H" [agﬁﬁH +
abILw] s the only stationnary point. The very nice thing is that w, is the
MMSE filter. Thus, we have proved that the MSQD-/1 algorithm has only
one stationnary point, which is the MMSE filter, when o2 and o2 are much

smaller than constellation point amplitudes.

4.2.2. Stability analysis of stationary points
Let us recall that if w, is a stationary point of the ODE and Ay, A, ...\,

are the eigenvalues of —— dh |w —w,, the stability of w, is determined by the
dh('w

eigenvalues of . Indeed we have the following theorem [19]:

o IfVi e [|1; Ly|], R(N\) < 0, w, is asymptotically stable

16



o If Ji € [|1; Lyl|], R(N;) > 0, w, is unstable

o If Vi € [|1; Ly|], R(N\;) <0 and R(N;) = 0 for iy € [|1; Ly]|], we can not

conclude from these values.

Then we should calculate d};%”) | w=10, -
dh(w) d [d | o
anw) _ 4 A w
dw dw [dag (02) Vo
d*A(o?) 2 1T dA(a?) d(vwag)
= oz (Vo) (Vo) + Z5 0 S e, (33)

Here, we are interested in the stability of the stationary point w, = o2 [O‘?ﬁ “HT +
UgILw] _1ﬁ*6D. Thus,

dh(w)

dw

dA(o? —— T
15

dA(?)
do?

since (Jgﬁ HT 4 o2I) is a positive definite matrix and < 0. Thus, we
have proved that the MMSE equalizer is the only stationary stable point of the

MSQD-/¢1 algorithm.

4.3. Asymptotic Steady-State MSE Analysis

4.3.1. convergence in mean

The ODE analysis holds for small step size p. In this section, we study how
it should be selected to guarantee convergence. In practice, p should be chosen
small enough. The maximum possible range for p depends on the channel under
consideration and its calculation is supplied in the Appendix (Appendix A). It

can be summarized as follows:

Theorem 1. For stepsize 0 < p < ﬁ where A\paz 1S the largest eigenvalue of
the matriz H*E [s(n)*¢/ (w.x(n))s(n)?] HT + oiE (¢ (wia(n))] Iy, the MSQD-

L1 algorithm converges to the MMSE solution, regardless equalizer initialization.
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4.3.2. MSE equalizer analysis

The asymptotic covariance matrix of the residual error €(n) = (w, — w,) is
denoted by 3(n) = Ele(n)e(n)]. For small step size p, we have §(n + D) ~ s(k,)
and according to [17] (p.102 p.103) X can be approximated as the solution of the

following matrix equation, called Lyapunov’s equation:
R;3(00) + Sy (c0)RY = Ry (35)
where, R = - h(w)|w—w, and
R, = —E [H(w,, z(n))H(ws, z(n)"] = —E [|¢(y(n + D))*z*(n)z" (n)] . (36)
According to Eq.(34), we have
R, = (%)[a?ﬁﬁlf +o2Ir,]T. (37)

Let us denote Ry = Elz(n)x(n)f] = c2HHH + o3Iy, =UA, U the eigen-

value decomposition of E[z(n)x(n)"], where A, = diag(A1, A, ...., AL, ). We can
easily verify that Ry = U* Ay U7 (see Eq.(37)), where
Aj(i,1)i=1..L, =~ m We can also write R, ~ U* A, UT and we detail

the calculation of the diagonal elements of A, in the Appendix (Appendix B).
Thus, Eq.(35) becomes:

Af(UTSu(c0)U") + (UT S (00)U")A; = A, (38)

which shows that UT 2, (0c0)U* is also diagonal: X, (00) = U* Ay, UT with Ay, =
diag{Aw;; Awsys ooy Adwy,, } and

Aw; u% ~ 2uN,V27(02 + 02)3E [|¢(s(kn))[?] - (39)
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4.3.3. MSE

In this stage, we calculate the MSE. Using the classical assumption that the
tap coefficient vector w(n) are independent from the input data vector x(n) [21]
and that the symbols s(n) are independent of the noise b(n), the MSE is expanded

as follows:

02(c0) = lim E[[y(n) — s(kn)|?]

= Jim E[[w”(m)a(n) - s(ka) |’
= E[le(00)"a(00) +w. a(00) — s(koo) ]
= E [e(oo)Tm(oo)m(oo)He(oo)*] +w,'E [q;(oo)ac(oo)H] w,”

+ o2 42R [E [e(oo)T] E [m(oo)ac(oo)H] w,* — o2 (E[e(c0)] + wy)” ﬁep]

(40)
As E[e(00)] = 0 and using the independence between w, and x(co) again, we get:
02(00) = Tr (AyAy) + w.T Ryw,* + 02 — 202 Rlw! Hep] (41)

where Tr (AzA,) is the residual error of the equalizer and w,’ R,w,* + o2 —
202R[w! Hep)] is the MMSE error term [2]. What makes the MSQD-¢1 algorithm
converge close to the MMSE error is that the value of the first term is very low.

However, we had to conduct a detailed performance analysis to calculate the exact

value of the MSE.

5. Simulation Results

5.1. Adaptive adjustment of the kernel size

The kernel size o of the Parzen window influences the convergence speed of the
algorithm and its residual error. At the beginning of convergence, it is necessary to

choose a large kernel size to enable interaction of the equalized symbol with all the
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constellation symbols and thus ensure a fast convergence. On the contrary, when
approaching the perfect equalization of transmitted symbols, a small kernel size
has to be used to only allow interaction of each equalized symbol with the closest
symbol in the constellation. As in [16], the kernel size was adaptively controlled

assuming a linear relationship between the kernel size and the decision error:
o(n) =aG(n)+b (42)

where, G(n) = aG(n — 1)+ (1 —a) min ((Jy(n)* — |sk*)?), o is a forgetting
k=1,...,Ns
factor and (a,b) are empirically determined constants.

As mentioned in [16], the minimum of the stochastic cost function is a scaled
version of the desired constellation. Then, the original symbols |s|? in Eq.(8) are

substituted by |s¢|? as follows:
|s1? = Q(o)|sk|” (43)

where (o) is the compensation factor that depends on the kernel size and is
obtained by ensuring that the zero-ISI solution (y(n) = s(ky)) is a minimum of

E[J(w)]:

N
E [V (w)] = = DB [K (st — Qo)lsiP)sthn)a*(m)] =0 (44)
5 k=1

For MSQD-¢2 and MSQD-/1, we adopt the same approach to determine the ade-

quate @Q(o) for each algorithm:

E [Vwusqp-2(w)] = 0 = Qusqp-r2(0)

E [V Jusqp-e1(w)] = 0 = Qusqp-e1(0)-

Thus, the real and imaginary parts of the compensated symbols are related to

the true symbols in the constellation as follows: |s¢, > = Q(0)|sy,|* and |85, 2 =
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Q(0)]si,]?. Q(o) is calculated numerically for each modulation. Fig.5 shows the
compensation factor Q(o) for 16-QAM, 64-QAM and 256-QAM modulations when
using the MSQD-/1 algorithm. For the MSQD-¢1 and MSQD-¢2, we implement
the same steps as the algorithm summarized in [16], using the appropriate cost

functions and @ functions.

5.2. Numerical results

To compare blind equalization approaches proposed in this paper, with others

existing in the literature, we choosed the same channel as the one used in [16]:
H; = [0.2258,0.5161,0.6452, —0.5161]% . (45)

Performance of the proposed MSQD-£2 and MSQD-¢1 methods are compared with
those of the CMA, MMA and SQD. For simulations, we employed an equalizer of
length L,, = 21 initialized using the tap-centered strategy. Table 2 summarizes the
parameters which were used to draw the curves in Fig.{6, 7, 8}.

To compare the performance of the proposed algorithms in terms of convergence
speed, we set the step size p for each algorithm such as they converge with the same
speed. Thus, in Fig.6, Fig.7 and Fig.8, we can clearly notice that MSQD-¢2 and
MSQD-£1 outperform the SQD, MMA and CMA algorithms in terms of residual
error for 16-QAM, 64-QAM and 256-QAM modulations. On the other hand, when
we fix the value of p for each algorithm such as they converge to the same MSE in
Fig.9 and Fig.10, we notice that MSQD-¢£2 and MSQD-£1 converge faster. All these
figures validate the MSQD-£1 performance analysis that we have conducted, since
the experimental curve of the MSQD-£1 converges to the theoretical one. To study
the performance of the MSQD-/1 algorithm as a function of SNR, we draw in Fig.11
the Symbol Error Rate (SER) for the MMA, SQD, MSQD-/1 algorithms and for an
AWGN channel between SNR = 0 dB and SNR=20 dB for a 16-QAM modulation.
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To plot these curves, we take the optimal equalizer for each algorithm with the same
convergence rate. It is clear in this figure that the MSQD-/1 algorithm outperforms
the other algorithms in terms of the SER.We can also notice that for a value of
SER equal to 1072, the MSQD-/1 has a gain of 1.2 dB compared to the SQD.
Moreover, its performance are very close to those obtained with an AWGN channel
for any SNR.

The proposed methods were also tested with two other channels. Fig.12 and Fig.13

are obtained when using the complex channel with transfer function:

Hy(z) = 1072[(4.1+1.09i) 4 (4.95 + 1.230)27 + (6.72 4+ 1.74) 272 + (9.19 + 2.35i)z >

+ (79.2 +12.81d)27* + (39.6 + 8.710) 2" + (27.15 + 4.98i) 2~ °

+(22.91 + 4.140) 277 + (12.87 4 1.544) 278 + (10.32 + 1.19i) 277

In Fig.12 and Fig.13, it is clear that MSQD-/1 performs better than other equal-
izers. A typical channel met in communications is the frequency selective chan-
nel with an exponential decay profile. In Fig.14 and Fig.15, we show the perfor-
mance of the proposed methods when using the channel of length Lp3 = 10 with
transfer function Hs(z) = ElL:h()_l ha(1)z~t with hz(l) ~ N(0,Ge ") such that
ZlL:ho_l E[|h3(1)[?] = 1. For simulations, we chose p = 0.7. We can check that with
this channel, the MSQD-£1 ouperforms the other algorithms and converges to the
MMSE equalizer.

The figures show that convergence of the MSQD-/1 algorithm is achieved after less
than 10000 iterations.

5.3. Computational complexity analysis

For a square M-QAM modulation, the computational complexity is summa-

v M ,
rized in table 1 where N, = 2 L YM  N = Y when M > 4 and
2!(@—2)! 2 s 2
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Ngs= N ; when M = 4. Therefore, we can conclude that the MSQD-/1 is computa-
tionally less demanding than the SQD and slightly more demanding compared to
the CMA. However, it requires many fewer iterations to converge to a low MSE.
In Fig.9 and Fig.10, we can notice that the MSQD-£1 converges about 10 times
faster than the CMA. Fig.16 shows the number of multiplications required by each
algorithm per iteration and Fig.17 shows the global computational cost needed to
achieve convergence, according to Fig.9 and Fig.10. We can notice that the global

computational complexity of the MSQD-/1, is lower than that of SQD and CMA.

6. Conclusion

In this paper, we have proposed new criteria for kernel based blind equalization
techniques that force the pdf of the real and imaginary parts of the equalizer out-
put to match that of the true constellation real and imaginary parts by employing
the Parzen window method to estimate the data pdf. Performance of the proposed
methods has been compared with that of CMA and SQD. We have shown that
they converge faster with a reduced residual error. The behaviour of the MSQD-
£1, most powerful proposed method, has been examined by relating the motion of
the parameter estimate errors to a deterministic ODE. The analysis that we have
conducted and simulation results prove that the MSQD-/1 algorithm brings further
validation of the pdf fitting approach for equalization in digital transmission. Al-
though in this paper we only addressed QAM modulations, the proposed methods
can be extended to any modulation since the equalization criterion represents some
distance between the probability distribution of the equalizer output and that of

transmitted data.
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Table 1: Computational complexity of CMA, SQD and MSQD-/¢1 algorithms for one

iteration

Multiplications | Exponent

CMA 8Ly, +4 0
SQD | 4N, + 8L, +4 N,
MSQD/1 | 6N, + 8Ly, + 2 2N,
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Table 2: parameter values used for simulations

16 QAM CMA SQD MSQD-¢2 | MSQD-/1
W 3.5 x 1075 10~ 1.3x107% | 7.7 x 1074
a - 3.5 3.5 1.5
b - —-9.5 —-9.5 —1
1-a - 5x 1072 | 5x107% | 5x 1073
Ey - 7 7 )
64 QAM
L 33x1077 [ 1.2x107%| 9x 1077 | 47x107°
a - 3.5 3 2
b - -2 —18 —10
1 -« - 1073 1072 1073
Ey - ) 7 6.5
256 QAM
L 4x107% [ 15x1077 |15 x 1077 | 7x107°
a - 3.5 2.5 4
b - —4.5 —15 —1
11—« - 5x 1079 1074 2 x 1074
Ey - 7 20 7

25




Figure 3: pdfs along real and imaginary

Figure 2: 2D pdfs : M = 16 modes axes: 2vV M = 8 modes for the MSQD-/p
for the SQD algorithm algorithm
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Figure 4: Transformed constellations for l;, (p = 1) and I3 (p = 2) norms of the real and

imaginary transmitted data parts for a 16-QAM modulation
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Figure 5: Evolution of the compensation factor Q(o) for MSQD-/¢1 algorithm.
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Figure 6: MSE (dB) for 16-QAM and SNR=30 dB using H;.
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Figure 7: MSE (dB) for 64-QAM and SNR=30 dB using H;.
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Figure 11: SER for MMA, SQD, MSQD-/1 algorithms using H; and 16-QAM modulation.
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Figure 13: MSE (dB) for 64-QAM and SNR=30 dB using Ho.
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Appendix A. Calculation of the maximum possible range for p

Let us note §(n) = w.x(n). At convergence, y(n) — y(n) is small and we can

apply the taylor expansion to the function ¢(y(n)) (see Eq.(17)) at 7(n). Then,
S(yn) = 6HM) + ¢ HM)wn) - Fn)
= ¢(F(n) + ¢'((n)(Hs(n) + b(n)) " e(n) (A1)
where €(n) = w(n) — w, and Hs(n) + b(n) = x(n). In addition, we have
w(n+1) = w(n) — py(n)) z(n)". (A2)
Thus, substracting w, in both sides of Eq.(A.2) and using Eq.(A.1), we find that
e(n+1) = e(n)—p(d(F(n)z(n) +¢ ([(n)) (Hs(n)+b(n)) e(n) (H*s* (n)+b"(n)))
(A.3)

Taking the expectation on the both side of Eq.(A.3) and using the independence

between (n) and €(n), as it was assumed in [21], we get
Ele(n+1)] = Ele(n)] - p(Ep(F(n))a*(n)]
+ E[(H*s"(n) + b*(n))¢ (5(n)) (Hs(n) + b(n))"|E [en] ) (A.4)

In [22], the authors proved that E[¢(y(n))z*(n)] = 0 when the cost function

approaches one of its minima. Thus, Eq.(A.4) can be simplified to
Ele(n+1)] = (Tny — plo?H FHT + 03B [¢/ (7)) Irw) ) Ele(n)]  (A5)
where F' = LE [s*(n)¢/(§(n))s(n)”]. Consequently
Ele(n+1)) = (Tow — u(o? H FH" + 0JB{6/ (7(n)) 1)) E[e(0)]  (A.6)

This yields the following condition upon the step size of the algorithm for conver-

gence of the mean error :

O<p< (A.7)

A7’)’L[L’E

where A4 is the largest eigenvalue of O'gﬁ *FHT + o2E (¢ (5(n))] L.

40



Appendix B. Diagonalization of R, in the basis U*

R, = -E[H(w. z(n))H(w.z(n))"]
= —E[¢(s(n))z* (m)z" (n)o(s(ny,))*]
— —H'E [|o(s(m)2s(m)s” (n)] HT — E [[o(s(mi)|26" (n)b” (n)]

= —H*DH" — o2& [|¢(s(n1)) ] (B.1)

Where, D = diag(dl,...,dl,dg,dl,...,dl) with d1 = O'?E [|¢(S(nk))|2] and d2 =
E [[s(ni)|?|¢(s(ng))[?]. We have cheked numerically that |d2d;ld1|2 is very small
(around 10~%). Then, we can consider that D ~ dyI; 1, 1. Thus, we obtain the

following expression of Ry:

1

R, —diH* I, 1 H" — 0K [|¢(s(nk)) ]

1

~E [|¢(s(n))|?] (62H*H" + 021y,)

12

~E [|¢(s(n))[*] (U*AUT)

12

(U*A,UT) (B.2)

where Ay(i,1) ~ —E [|@(s(nk))[*] .
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