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Abstra
tIn this paper, we address M-QAM blind equalization by �tting the probabilitydensity fun
tions (pdf) of the equalizer output with the 
onstellation sym-bols. We propose two new 
ost fun
tions, based on kernel pdf approximation,whi
h for
e the pdf at the equalizer output to mat
h the known 
onstellationpdf. The kernel bandwidth of a Parzen estimator is updated during iterationsto improve the 
onvergen
e speed and to de
rease the residual error of thealgorithms. Unlike related existing te
hniques, the new algorithms measurethe distan
e error between observed and assumed pdfs for the real and imag-inary parts of the equalizer output separately. The advantage of pro
eedingthis way is that the distributions show less modes, whi
h fa
ilitates equalizer
onvergen
e, while as for multi-modulus methods phase re
overy keeps be-ing preserved. The proposed approa
hes outperform CMA and 
lassi
al pdf�tting methods in terms of 
onvergen
e speed and residual error. We alsoanalyse the 
onvergen
e properties of the most e�
ient proposed equalizervia the ordinary di�erential equation (ODE) method.Preprint submitted to Signal Pro
essing May 7, 2014
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eanalysis, ODE1. Introdu
tionIn transmissions, multipath propagation introdu
es intersymbols interfer-en
e (ISI) that 
an make it di�
ult to re
over transmitted data. Thus, anequalizer 
an be used to redu
e the ISI. Time domain equalization or alter-natively frequen
y domain equalization 
an be 
onsidered. The latter is veryinteresting for broadband wireless 
ommuni
ations. Indeed, for long 
hannelsit is 
omputationally simpler than the 
orresponding time domain equaliza-tion with the same e�
ien
y. However, in this paper, we 
onsider multipath
hannels with length less than or equal to about 10 and time domain equal-ization is well suited in this 
ase be
ause then both approa
hes have approxi-mately the same 
omplexity and the same performan
e [1℄. Moreover, in thispaper, we are interested in 
ontinuous �ow transmission rather than blo
ktransmission where frequen
y-domain equalization is more relevant.Without knowledge of the 
hannel, the �rst equalization methods rely on pe-riodi
 transmission of training sequen
es that are known from the re
eiver.Then, adaptation of the equalizer 
oe�
ients is done by minimizing a 
ostfun
tion that measures some distan
e between the a
tual equalizer outputand the desired referen
e signal. When the transmitter sends a trainingsequen
e, the equalizer taps 
an be easily adapted by using a sto
hasti
optimization te
hnique su
h as the Least Mean Squares (LMS) algorithm,the 
ost fun
tion of whi
h minimizes the expe
tation of the squared error[2℄. However, in many digital 
ommuni
ation systems, the transmission of2



a bandwidth 
onsuming training sequen
e is not suitable. In order to avoidtraining, blind equalization te
hniques have been developped to retrieve sym-bols transmitted through an unknown 
hannel by only using re
eived dataand some knowledge upon the statisti
s of the original sequen
e. There ex-ist many blind algorithms. Sato algorithm [3℄ was the �rst blind te
hniqueproposed. The Godard algorithm [4℄ and the Constant Modulus Algorithm(CMA) [5℄ whi
h is a parti
ular 
ase of Godard algorithm, are probablythe most popular blind equalization te
hniques. However, they require along data sequen
e to 
onverge and show relatively high residual error. Toover
ome these limitations, several approa
hes have been proposed in theliterature. For instan
e, we 
an mention the Normalized-CMA (NCMA),that a

elerates 
onvergen
e by estimating the optimal step size of the al-gorithm at ea
h iteration [6℄. The CMA with a gain stage, where the latteris inserted after the equalizer to 
ontrol the behaviour of its output powerfor faster 
onvergen
e, was proposed in [7℄. The square 
ontour algorithmminimizes dispersion of the equalizer output from a square for blind equal-ization of QAM modulations [8℄, while the regional multimodulus algorithm,also designed for QAM modulations, performs similar to the supervised nor-malized least-mean-squares algorithm [9℄. The Modi�ed Constant ModulusAlgorithm (MCMA), also known as Multi-Modulus Algorithm (MMA) per-forms blind equalization and 
arrier phase re
overy simultaneously [10℄, bymeasuring the errors of real and imaginary parts of the equalizer output sep-arately. The minℓ1-MMA and MGauss-MMA algorithms [11℄ outperform theMMA by 
ombining the multi-modulus 
riterion and an alphabet-mat
hingpenalty term. 3



In the last de
ade, new blind equalization te
hniques, based on infor-mation theoreti
 
riteria and pdf estimation of transmitted data, have beenproposed. These 
riteria are optimized adaptively, in general by means ofsto
hasti
 gradient te
hniques. Among these te
hniques, Renyi's entropy hasbeen used as a 
ost fun
tion [12℄. It involves pdf estimation with the Parzenwindow kernel method. This equalizer is very sensitive to noise and providesex
ellent results for some 
hannels but fails to equalize some others. So, analternative 
riterion based on for
ing the pdf at the equalizer output to mat
hthe known 
onstellation pdf has been proposed in [13℄. As a 
ost fun
tion,it uses the Kullba
k-Leibler Divergen
e (KLD) between the pdfs. The Eu-
lidean distan
e has also been proposed in [14℄. It uses Parzen window withGaussian kernels for pdf estimation. In [15℄, a te
hnique based on �ttingthe pdf of the equalizer output at some relevant points that are determinedby the modulus of the 
onstellation symbols was proposed. It is known assampled-pdf �tting. The authors of [15℄ also proposed in [16℄ the Sto
hasti
blind equalization approa
h that uses the Quadrati
 Distan
e (SQD) be-tween the pdf at the equalizer output and the known 
onstellation pdf as a
ost fun
tion. This method is designed for multilevel modulations and worksat symbol rate. Many digital transmission systems with a high number ofstates use QAM modulations. As the multi-modulus approa
hes are wellsuited for su
h modulations, we propose to use these te
hniques to equalizeQAM 
onstellations. Therefore, in this paper, we propose a new family ofblind algorithms based on the SQD �tting, that we 
all Multi-Modulus SQD-
ℓp (MSQD-ℓp). Unlike the method in [15℄, MSQD-ℓp measures the distan
eerror between observed and assumed pdfs for real and imaginary parts of the4



equalizer output separately. The advantage of pro
eeding this way is thatinvolved distributions show less modes, leading thus to redu
ed 
omplexity,while preserving phase re
overy as for multi-modulus methods. In addition,we bene�t from the fa
t that 1D pdfs 
an be a

urately estimated with lessdata than 2D pdfs. In this paper, we are parti
ularly interested in the 
ase
p = 1 that leads to the MSQD-ℓ1 algorithm that involves the absolute valuesof the real and the imaginary parts of the equalizer output. Thus, the shapeof equalized 
onstellation modes is Gaussian whi
h is in a

ordan
e with thestatisti
al behavior of re
eived data from a single path propagation, whatthe equalizer tries to a
hieve.These te
hniques are designed for multilevel modulations, work at the symbolrate and admit a simple sto
hasti
 gradient-based implementation. For pdfestimation, we use the Parzen window. The proposed methods outperformCMA and 
lassi
al pdf �tting approa
hes, in terms of 
onvergen
e speed andresidual error. As mu
h as possible, it is interesting to analyze the 
onver-gen
e properties of blind equalizers to better understand their performan
e.In this paper, we fo
us on performan
e analysis of the MSQD-ℓ1. To thisgoal, we employ the Ordinary Di�erential Equation (ODE) method. Indeed,the ODE approa
h supplies a solid theoreti
al framework for su
h a task [17℄.The exa
t 
onvergen
e analysis of adaptive blind equalization algorithms isoften di�
ult be
ause they are derived from nonlinear 
riteria. Therefore, the
onvergen
e analysis of the MSQD-ℓ1 is 
ondu
ted under some usual assump-tions that are 
ommonly met in the related literature. The 
ontributions ofthis paper to the �eld of blind equalization in
lude:1. A new family of blind equalization algorithms named MSQD-ℓp that5




onverges faster than the CMA and the 
lassi
al SQD pdf �tting [16℄and a
hieves lower residual error;2. Convergen
e and performan
e analysis of the most e�e
tive MSQD-ℓ1algorithm based on the ODE method.This paper is organized as follows. In se
tion 2, we present the blindequalization problem and the SQD pdf �tting method. In se
tion 3, wepropose the new 
ost fun
tions and their 
orresponding sto
hasti
 gradientexpressions. The 
onvergen
e and performan
e analysis of the MSQD-ℓ1algorithm is developed in se
tion 4. Simulations are presented in se
tion 5and 
on
lusions of our work are given in se
tion 6.2. SIGNAL AND EQUALIZER MODEL2.1. Signal modelTo transmit digital data, a sequen
e {s(n)}n∈Z of independent identi-
ally distributed (i.i.d) 
omplex symbols belonging to a digital modulation
onstellation is sent through a 
hannel of length Lh with impulse response
h = [h0, h1, ..., hLh−1]

T , where (.)T denotes the transpose operater. Trans-mitted data are a�e
ted by multipath propagation, resulting in intersymbolinterferen
e (ISI) at the re
eiver side. Therefore, an equalizer is used toredu
e this ISI. In our work, we are interested in blind equalization thatonly requires knowledge of the modulation used to send the data. The basi
s
heme of a blind equalization system is des
ribed in Fig.1. We assume that
{s(n)}n∈Z is drawn from a symmetri
 QAM 
onstellation.Fig.1 summarizes the transmission model, where b = {b(n)}n∈Z is a
ir
ular 
omplex additive white Gaussian noise, independent from s with6



Transmitter Channel h +b(n) Equalizer ws(n) x(n) y(n)Figure 1: Basi
 s
heme of a blind equalization systemvarian
e σ2
b = E [|b(n)|2], x = {x(n)}n∈Z is the equalizer input, w(n) =

[w0(n), w1(n), ..., wLw−1(n)]
T is the equalizer impulse response, with length

Lw and y(n) is the equalized signal at time n. x(n) and y(n) 
an be modeledas
x(n) =

Lh−1∑

i=0

hi s(n− i) + b(n) (1)and
y(n) =

Lw−1∑

i=0

wi(n) x(n− i) = w(n)Tx(n) (2)where x(n) = [x(n), x(n− 1), ..., x(n− Lw + 1)]T .The weights of the equalizer will be adapted by using a gradient sto
hasti
algorithm in the form
w(n+ 1) = w(n)− µ∇wJ(w) (3)where µ is the step size and J(w) is the 
ost fun
tion to be minimized. Inorder to in
rease the performan
e of the equalizer, in this paper, we proposenew versions of J(w) derived from the SQD pdf �tting te
hnique [16℄.2.2. SQD pdf �tting using Parzen Estimator [16℄Equalization te
hniques based on pdf mat
hing intend to minimize somedistan
e between the data distribution at the equalizer output and sometarget distribution. Transmitted symbols have a dis
rete distribution. But,7



sin
e they are a�e
ted by additive Gaussian noise at the re
eiver side, it
an be assumed that after removing 
hannel multipath e�e
ts, the equalizeroutput should 
onsist of a Gaussian mixture, with Gaussian modes 
enteredat the 
onstellation points. Therefore, a target distribution of this form
an be 
hosen. Then, the sto
hasti
 blind equalization based on the Parzenwindow method for
es the pdf of the equalizer output to mat
h the targetpdf. In [16℄, a quadrati
 distan
e between pdfs for the 
ost fun
tion wasproposed. It is given by
J(w) =

∫ ∞

−∞

(
fY p(z)− fSP (z)

)2
dz (4)where, Y p = {|y(n)|p} and Sp = {|sk|p} are the sets of the moduli to thepower p of equalized symbols and 
onstellation symbols and fZ(z) denotesthe pdf of Z at z. Thus, J(w) is intended to mat
h pth moment distributionsbetween the equalizer output and the noisy 
onstellation.The Parzen window method is used to estimate the 
urrent data pdf. Usingthis nonparametri
 pdf estimator with the L last symbols, the estimates ofthe pdfs at time n are given by:

f̂Y p(z) =
1

L

L−1∑

k=0

Kσ0(z − |y(n− k)|p)

f̂Sp(z) =
1

Ns

Ns∑

k=1

Kσ0(z − |sk|p) (5)where Ns is the number of 
omplex symbols in the 
onstellation and Kσ0is a Gaussian kernel with standard deviation σ0, also known as the kernelbandwidth:
Kσ0(x) =

1√
2πσ0

e
− x2

2σ2
0 . (6)8



A

ording to [16℄, for p = 2 and L = 1, the expression of the 
ost fun
tion isgiven by
J(w) =

1

N2
s

Ns∑

k=1

Ns∑

l=1

Kσ(|s(l)|2 − |s(k)|2)− 2

Ns

Ns∑

k=1

Kσ(|y(n)|2 − |s(k)|2). (7)where, σ =
√
2σ0. Then, the gradient of J(w) with respe
t to the equalizerweights is given by

∇wJ(w) = − 1

Ns

Ns∑

k=1

K
′
σ(|y(n)|2 − |s(k)|2) y(n)x∗(n) (8)where K

′
σ(x) = − x√

2πσ3 exp(
−x2

2σ2 ) is the derivative of Kσ(x) and (.)∗ denotesthe 
omplex 
onjugation operator. Then, the equalizer 
oe�
ients are up-dated at symbol rate by inserting Eq.(8) in Eq.(3). This algorithm is ini-tialized with a tap-
entered equalizer. In [16℄, the squared modulus of thesymbols for the kernel variables (p = 2) is used to design J(w). But, squar-ing does not preserve Gaussianity around noisy 
onstellation points. Fig.4illustrates this fa
t for p = 2: 
learly the Gaussianity of modes is not pre-served for p = 2 while it is for p = 1. Then, with a view to make the 
riterionstatisti
ally more meaningful we propose, in this paper, to also address the
ase p = 1. Indeed, when p = 1, sin
e 
onstellation points are apart fromthe axes, at 
onvergen
e |y(n)| will be roughly distributed a

ording to amixture of Gaussian distributions around the 
onstellation points that are inthe positive quadrant of the 
omplex plane. This is true provided the SNRremains in usual ranges for QAM modulations under 
onsideration. In addi-tion, it is well known that multimodulus approa
hes su
h as MMA [18℄, thatde
ompose equalization 
riteria into an in-phase term and a quadrature one,are more e�
ient than 
riteria su
h as the CMA [5℄, that handle in-phase9



and quadrature parts together. In the same way, the 
riteria that we proposeare made of a sum of two terms related to in-phase and quadrature parts ofthe equalizer output. This will lead to 
riteria that we name MultimodulusSQD-ℓp (MSQD-ℓp). The advantage of pro
eeding this way is that involveddistributions show less modes, leading thus to redu
ed 
omplexity, while pre-serving phase re
overy. In addition, we bene�t from the fa
t that 1D pdfs
an be a

urately estimated with less data than 2D pdfs as show Fig.2 andFig.3. Indeed, with the SQD algorithm there are M symbols involved in thetarget pdf whereas with the MSQD-ℓp algorithms there are only 2√M modesinvolved, for an M-QAM modulation.3. MSQD algorithms3.1. MSQD-ℓp algorithmMSQD family 
onsists of algorithms based on 
ost fun
tions in the form:
J(w) =

∫ ∞

−∞
(f̂|yr|p(z)− f̂|sr|p(z))

2dz +

∫ ∞

−∞
(f̂|yi|p(z)− f̂|si|p(z))

2dz (9)where yr = ℜ{y}, yi = ℑ{y} and the pdf estimates are in the form
f̂x(z) =

1

Nx

Nx∑

k=1

Kσ0(z − xk) (10)
x is equal to |sr|p, |si|p, |yr|p or |yi|p. Nx = Ns for x = |sr,i|p and Nx = L for
x = |yr,i|p.For �xed p, we denote the 
orresponding 
riterion by MSQD-ℓp. ExpendingEq.(9), we get

J(w) =

∫ ∞

−∞
f̂|yr|p(z)

2 dz − 2

∫ ∞

−∞
f̂|yr|p(z) f̂|sr |p(z) dz +

∫ ∞

−∞
f̂|sr|p(z)

2 dz

+

∫ ∞

−∞
f̂|yi|p(z)

2dz − 2

∫ ∞

−∞
f̂|yi|p(z)f̂|si|p(z) dz +

∫ ∞

−∞
f̂|si|p(z)

2 dz (11)10



In a sto
hasti
 gradient optimization approa
h, in general only instantaneousstatisti
s are involved in the 
riterion. Thus, we 
onsider a window length
L = 1 as in [16℄. Then, sin
e for Gaussian kernels we have

∫ ∞

−∞
Kσ0(y − C1)Kσ0(y − C2)dy =

1

2
Kσ0

√
2(C1 − C2), (12)thus, a

ording to Eq.(10) and Eq.(11), J(w) be
omes

J(w) = − 1

Ns

Ns∑

k=1

Kσ(|yr(n)|p − |sr(k)|p)−
1

Ns

Ns∑

k=1

Kσ(|yi(n)|p − |si(k)|p) + Cst.(13)On another hand, y(n) = w(n)Tx(n) rewrites as
y(n) = [wT

r xr(n)−wT
i xi(n)] + j[wT

r xi(n) +wT
i xr(n)], (14)whi
h leads to ∂y(n)

∂wr
= x(n) and ∂y(n)

∂wi
= j x(n).Therefore, the derivative of J(w) with respe
t to equalizer weights is

∇wJ(w) =
∂J(w)

∂wr
+ j

∂J(w)

∂wi

=
p

2
√
2πNsσ3

Ns∑

k=1

(sign (yr(n)) |yr(n)|p−1 (|yr(n)|p − |sr(k)|p) e−
(|yr(n)|p−|sr(k)|p)2

2σ2

+ j sign (yi(n)) |yi(n)|p−1 (|yi(n)|p − |si(k)|p) e−
(|yi(n)|p−|si(k)|p)2

2σ2

)
x∗(n). (15)3.2. MSQD-ℓ2 and MSQD-ℓ1 algorithmsWe 
onsider �rst the 
ase p = 2 sin
e ℓ2 norm is often 
onsidered in theliterature and for 
omparison to the 
ase p = 1 in the simulation part. FromEq.(15) we get the gradient of the MSQD-ℓ2 
ost fun
tion:

∇wJ(w) =
1√

2πNsσ3

Ns∑

k=1

(
yr(n)(|yr(n)|2 − |sr(k)|2) e−

(|yr(n)|2−|sr(k)|2)2
2σ2

+ j yi(n)(|yi(n)|2 − |si(k)|2) e−
(|yi(n)|2−|si(k)|2)2

2σ2

)
x∗(n) (16)11



Then, Eq.(3) is used to update equalizer taps. For the 
ase p = 1, that isstatisti
ally more meaningful, as dis
ussed in se
tion 2, we get an updatingterm of the equalizer in the form:
∇wJ(w) =

1

2
√
2πNsσ3

Ns∑

k=1

(sign(yr(n)) (|yr(n)| − |sr(k)|) e−
(|yr(n)|−|sr(k)|)2

2σ2

+ j sign(yi(n)) (|yi(n)| − |si(k)|) e−
(|yi(n)|−|si(k)|)2

2σ2

)
x∗(n)

= φ(y(n))x∗(n) (17)In se
tion 5, we will show on simulations that, as expe
ted from the dis
ussionat the end of se
tion 2, the MSQD-ℓ1 algorithm that we propose is moree�e
tive than the existing SQD algorithm in terms of mean square error,espe
ially for larger 
onstellations. Thus, in the following se
tion, we willrestri
t our interest to performan
e analysis of the MSQD-ℓ1 algorithm interms of stationary stable points and asymptoti
 steady state.4. Performan
e Analysis4.1. The ODE methodPart of the following analysis is based on the ODE method, the prin
ipleof whi
h we brie�y re
all here. We 
onsider a sto
hasti
 gradient algorithmin the form
θ(n) = θ(n− 1) + µnH(θ(n− 1),x(n)) (18)where, θ(n) is the sequen
e of estimated parameters and the observation pro-
ess, {x(n)}n∈N is assumed to be a Markov and ergodi
 pro
ess independentof θ, {µn}n∈N∗ is a series of small s
alar gains and H(θ(n− 1),x(n)) is thefun
tion whi
h de�nes how θ(n) is adapted based on new observations.12



The ODE method asso
iates an ordinary di�erential equation to the adap-tation 
riterion and is de�ned by:
θ̇ = h(θ) = lim

n→+∞
E
[
H(θ,x(n)) |θ

] (19)By assuming a regular behaviour of the fun
tion H , it was shown in [19℄that the behaviour of the sto
hasti
 algorithm Eq.(18) is linked to that ofthe ODE Eq.(19).4.2. Stationary Stable Points of the ODEIn this se
tion, we denote by θ(t) the solution of the ODE. It depends onthe initial value θ(0) = θ0.A point θ∗ is a stationary point of the ODE if h(θ∗) = 0.4.2.1. Stationary pointsLet us 
onsider the sto
hasti
 MSQD-ℓ1 algorithm:
w(n+ 1) = w(n)− µ∇wJ

(
w(n),x(n)

)
. (20)Letting θ(n) = w(n), identifying Eq.(20) and Eq.(18) leads to

H
(
θ(n),x(n+ 1)

)
= −∇wJ

(
w(n),x(n)

)
= −∇wJ

(
w, y(n)

)
= −φ

(
y(n)

)
x∗(n).(21)Then, the ODE is de�ned by

dθ

dt
= h(w) = lim

n→+∞
E
[
H(w,x(n))|w

]

= lim
n→+∞

−E
[
∇wJ(w, y(n))|w

] (22)13



The stationary points w∗ of the ODE are the solutions of h(w∗) = 0. Thenwe begin by 
al
ulating h(w).
h(w) = lim

n→+∞
−E

[
∇wJ(w, y(n))|w

]

= −
∫

R+

∇wJ(w, y)p|Y |(y) dy (23)where, p|Y |(y) is the probability density of |y|. To 
al
ulate h(w), we beginby 
al
ulating F|Y | |s(k)(y) where, |y| |s(k) = |s(k) + ε| and F|Y | |s(k)(y) is the
umulative distribution of |Y | given s(k):
F(|Y | |s(k))(y) = P

(
|Y | ≤ y |s(k)

)

= P
(
− y ≤ Y ≤ y |s(k)

)

= P
(−y − s(k)

σε

≤ Y − s(k)

σε

≤ y − s(k)

σε

|s(k)
)

= FY

(y − s(k)

σε

)
− FY

(−y − s(k)

σε

) (24)where F is the 
umulative distribution fun
tion of the N (0, 1) distribution.Indeed, the ISI at the output of the equalizer 
an be modelled as a Gaussiandistribution [20℄ and thus Y |s(k) ∼ N (s(k), σ2
ε) where σ2

ε is the varian
e ofthe error (ε) between y and s(k). Then, from Eq.(24) and for y ≥ 0,
p(|Y | |s(k))(y) =

1

2σε

[
N
(y − s(k)

σε

; 0, 1
)
+N

(y + s(k)

σε

; 0, 1
)]

=
1

2

[
N
(
y − s(k); 0, σ2

ε

)
+N

(
y + s(k); 0, σ2

ε

)]
. (25)where, N (y;m, σ2) = 1√

2πσ
e

−(y−m)2

2σ2 . Summing over all possible symbols sk,we �nd the following expression of p|Y |(y):
p|Y |(y) =

1

2Ns

Ns−1∑

k=0

[
N (y − s(k); 0, σ2

ε) +N (y + s(k); 0, σ2
ε)
]
. (26)14



Then, we obtain the following expression of h(w) after repla
ing J(w, y) byits expression and a

ounting for symmetry properties of J(w, y) and p|Y |(y),
h(w) =

1

2πN2
s σσε

[
∇w

∫

R+

Ns∑

k=1

e−
(yr−|sr(k)|)2

2σ2

Ns∑

l=1

(
e
− (yr−|sr(l)|)2

2σ2
ε + e

− (yr+|sr(l)|)2
2σ2

ε

)
dyr.(27)Thus, after 
al
ulating the integral,

h(w) =
1

2N2
s

√
2π(σ2 + σ2

ε)

[
∇w

Ns∑

k=1

Ns∑

l=1

e
− (|sr(k)|−|sr(l)|)2

2(σ2+σ2
ε)

(
1− erf
(−|sr(k)|σ2

ε − |sr(l)|σ2

σσε

√
σ2
ε + σ2

√
2

)
)

+ e
− (|sr(k)|+|sr(l)|)2

2(σ2+σ2
ε)

(
1− erf
(−|sr(k)|σ2

ε + |sr(l)|σ2

σσε

√
σ2
ε + σ2

√
2

)
)]

= ∇wA(σ
2
ε )

=
dA(σ2

ε )

dσ2
ε

∇wσ
2
ε . (28)The equalized symbol y(n) 
an be expressed by y(n) = wTH̃s(n) +wTb(n)where,

H̃ =




h0 h1 · · · hL−1 0 · · · 0

0 h0 h1 · · · hL−1 0 · · · 0

0
. . . h0 h1 · · · hL−1

...
0

... h0 h1 · · · hL−1 0

0 · · · 0 h0 h1 · · · hL−1




(29)
and s(n) =

[
s(D−1), ..., s(kn), ..., s(D−L−Lw+1)

]T whereD is the equalizerdelay. Then, the error between y(n) and the value of the transmitted symbol
15



s(kn) re
eived at time n is 
al
ulated as follows
σ2
ε = E

[(
y(n)− s(kn)

)(
y(n)− s(kn)

)H]

= E

[(
(wTH̃ − eD)s(n) +wTb(n)

)(
(wTH̃ − eD)s(n) +wTb(n)

)H](30)where, eD = (0, ..., 1, ..., 0)T , eD(i) = δi,D. Then,
σ2
ε = σ2

sw
TH̃H̃Hw∗ − σ2

sw
TH̃eD − σ2

seD
TH̃Hw∗ + σ2

s + σ2
b||w||2 (31)Thus,

h(w) = 2
dA(σ2

ε)

dσ2
ε

[
wT [σ2

sH̃H̃H + σ2
bILw

]− σ2
seD

TH̃H
]T (32)Sin
e in pra
ti
e |sr(kn)| >> σ2 + σ2

ε , only terms with 0 in the exponen-tial will be non negligible, resulting in A(σ2
ε) ≈ 1

2N2
s

√
2π(σ2+σ2

ε)

∑Ns

k=1

(
1 +erf
( |sr(kn)|√

2

√
1
σ2 +

1
σ2
ε
)
). Sin
e at 
onvergen
e, 1

σ2 >> 1 and 1
σ2
ε
>> 1, itis easy to 
he
k that dA(σ2

ε )
dσ2

ε
< 0. Thereby, wT

∗ = σ2
seD

TH̃H
[
σ2
sH̃H̃H +

σ2
bILw

]−1 is the only stationnary point. The very ni
e thing is that w∗ is theMMSE �lter. Thus, we have proved that the MSQD-ℓ1 algorithm has onlyone stationnary point, whi
h is the MMSE �lter, when σ2 and σ2
ε are mu
hsmaller than 
onstellation point amplitudes.4.2.2. Stability analysis of stationary pointsLet us re
all that if w∗ is a stationary point of the ODE and λ1, λ2, ...λLware the eigenvalues of dh(w)

dw
|w=w∗ , the stability of w∗ is determined by theeigenvalues of dh(w)

dw
|w=w∗. Indeed we have the following theorem [19℄:

• If ∀i ∈ [|1;Lw|] ,ℜ(λi) < 0, w∗ is asymptoti
ally stable16



• If ∃i ∈ [|1;Lw|] ,ℜ(λi) > 0, w∗ is unstable
• If ∀i ∈ [|1;Lw|] ,ℜ(λi) ≤ 0 and ℜ(λi0) = 0 for i0 ∈ [|1;Lw|], we 
an not
on
lude from these values.Then we should 
al
ulate dh(w)

dw
|w=w∗ .

dh(w)

dw
=

d

dw

[
d

dσ2
ε

A(σ2
ε)∇wσ

2
ε

]

=
d2A(σ2

ε)

d(σ2
ε)

2
(∇wσ

2
ε)(∇wσ2

ε)
T +

dA(σ2
ε)

dσ2
ε

d
(
∇wσ

2
ε

)

dw
. (33)Here, we are interested in the stability of the stationary point w∗ = σ2

s

[
σ2
sH̃

∗H̃T +

σ2
bILw

]−1
H̃∗eD. Thus,

dh(w)

dw
|w=w∗ =

dA(σ2
ε )

dσ2
ε

[
σ2
sH̃H̃H + σ2

bILw

]T
< 0 (34)sin
e (σ2

sH̃H̃H + σ2
bI) is a positive de�nite matrix and dA(σ2

ε )
dσ2

ε
< 0. Thus, wehave proved that the MMSE equalizer is the only stationary stable point of theMSQD-ℓ1 algorithm.4.3. Asymptoti
 Steady-State MSE Analysis4.3.1. 
onvergen
e in meanThe ODE analysis holds for small step size µ. In this se
tion, we study howit should be sele
ted to guarantee 
onvergen
e. In pra
ti
e, µ should be 
hosensmall enough. The maximum possible range for µ depends on the 
hannel under
onsideration and its 
al
ulation is supplied in the Appendix (Appendix A). It
an be summarized as follows:Theorem 1. For stepsize 0 < µ < 2

λmax
where λmax is the largest eigenvalue ofthe matrix H̃∗

E
[
s(n)∗φ′(w∗x(n))s(n)T

]
H̃T + σ2

bE [φ′(w∗x(n))] ILw, the MSQD-
ℓ1 algorithm 
onverges to the MMSE solution, regardless equalizer initialization.17



4.3.2. MSE equalizer analysisThe asymptoti
 
ovarian
e matrix of the residual error ǫ(n) = (wn − w∗) isdenoted by Σ(n) = E[ǫ(n)ǫ(n)H ]. For small step size µ, we have ȳ(n+D) ≈ s(kn)and a

ording to [17℄ (p.102 p.103) Σ∞ 
an be approximated as the solution of thefollowing matrix equation, 
alled Lyapunov's equation:
RfΣw(∞) +Σw(∞)RH

f = µRg (35)where, Rf = d
dw

h(w)|w=w∗ and
Rg = −E

[
H(w∗,x(n))H(w∗,x(n))

H
]
= −E

[
|φ(ȳ(n+D))|2x∗(n)xT (n)

]
. (36)A

ording to Eq.(34), we have

Rf =
(dA(σ2

ε)

dσ2
ε

)
[σ2

sH̃H̃H + σ2
bILw]

T . (37)Let us denote Rx = E[x(n)x(n)H ] = σ2
sH̃H̃H + σ2

bILw = U Λx U
H the eigen-value de
omposition of E[x(n)x(n)H ], where Λx = diag(λ1, λ2, ...., λLw ). We 
aneasily verify that Rf = U∗

Λf U
T (see Eq.(37)), where

Λf (i, i)i=1..Lw ≃ −λi

2Ns

√
2π(σ2+σ2

ε)
3
2
. We 
an also write Rg ≃ U∗

Λg U
T and we detailthe 
al
ulation of the diagonal elements of Λg in the Appendix (Appendix B).Thus, Eq.(35) be
omes:

Λf (U
T
Σw(∞)U∗) + (UT

Σw(∞)U∗)Λf = µΛg (38)whi
h shows that UT
Σw(∞)U∗ is also diagonal: Σw(∞) = U∗

Λw UT with Λw =diag{λw1 , λw2 , ...., λwLw
} and

λwi
≃ µ

Λg(i, i)

Λf (i, i)
≃ 2µNs

√
2π(σ2 + σ2

ε)
3
2E

[
|φ(s(kn))|2

]
. (39)

18



4.3.3. MSEIn this stage, we 
al
ulate the MSE. Using the 
lassi
al assumption that thetap 
oe�
ient ve
tor w(n) are independent from the input data ve
tor x(n) [21℄and that the symbols s(n) are independent of the noise b(n), the MSE is expandedas follows:
σ2
ε(∞) = lim

n→∞
E
[
|y(n)− s(kn)|2

]

= lim
n→∞

E
[
|wT (n)x(n)− s(kn)|2

]

= E
[
|ǫ(∞)Tx(∞) +w∗

Tx(∞)− s(k∞)|2
]

= E
[
ǫ(∞)Tx(∞)x(∞)Hǫ(∞)∗

]
+w∗

T
E
[
x(∞)x(∞)H

]
w∗

∗

+ σ2
s + 2ℜ

[
E
[
ǫ(∞)T

]
E
[
x(∞)x(∞)H

]
w∗

∗ − σ2
s (E [ǫ(∞)] +w∗)

T
H̃eD

](40)As E[ǫ(∞)] = 0 and using the independen
e between w∗ and x(∞) again, we get:
σ2
ε(∞) = Tr (ΛxΛw) +w∗

TRxw∗
∗ + σ2

s − 2σ2
sℜ[wT

∗ H̃eD] (41)where Tr (ΛxΛw) is the residual error of the equalizer and w∗TRxw∗∗ + σ2
s −

2σ2
sℜ[wT

∗ H̃eD] is the MMSE error term [2℄. What makes the MSQD-ℓ1 algorithm
onverge 
lose to the MMSE error is that the value of the �rst term is very low.However, we had to 
ondu
t a detailed performan
e analysis to 
al
ulate the exa
tvalue of the MSE.5. Simulation Results5.1. Adaptive adjustment of the kernel sizeThe kernel size σ of the Parzen window in�uen
es the 
onvergen
e speed of thealgorithm and its residual error. At the beginning of 
onvergen
e, it is ne
essary to
hoose a large kernel size to enable intera
tion of the equalized symbol with all the19




onstellation symbols and thus ensure a fast 
onvergen
e. On the 
ontrary, whenapproa
hing the perfe
t equalization of transmitted symbols, a small kernel sizehas to be used to only allow intera
tion of ea
h equalized symbol with the 
losestsymbol in the 
onstellation. As in [16℄, the kernel size was adaptively 
ontrolledassuming a linear relationship between the kernel size and the de
ision error:
σ(n) = aG(n) + b (42)where, G(n) = αG(n − 1) + (1 − α) min︸︷︷︸

k=1,...,Ns

(
(|y(n)|2 − |sk|2)2

), α is a forgettingfa
tor and (a, b) are empiri
ally determined 
onstants.As mentioned in [16℄, the minimum of the sto
hasti
 
ost fun
tion is a s
aledversion of the desired 
onstellation. Then, the original symbols |sk|2 in Eq.(8) aresubstituted by |sck|2 as follows:
|sck|2 = Q(σ)|sk|2 (43)where Q(σ) is the 
ompensation fa
tor that depends on the kernel size and isobtained by ensuring that the zero-ISI solution (y(n) = s(kn)) is a minimum of

E [J(w)]:
E [∇wJ(w)] =

1

Ns

Ns∑

k=1

E

[
K

′
σ(|s(kn)|2 −Q(σ)|sk|2)s(kn)x∗(n)

]
= 0 (44)For MSQD-ℓ2 and MSQD-ℓ1, we adopt the same approa
h to determine the ade-quate Q(σ) for ea
h algorithm:

E [∇wJMSQD-ℓ2(w)] = 0 → QMSQD-ℓ2(σ)
E [∇wJMSQD-ℓ1(w)] = 0 → QMSQD-ℓ1(σ).Thus, the real and imaginary parts of the 
ompensated symbols are related tothe true symbols in the 
onstellation as follows: |scrk |2 = Q(σ)|srk |2 and |scik |2 =20



Q(σ)|sik |2. Q(σ) is 
al
ulated numeri
ally for ea
h modulation. Fig.5 shows the
ompensation fa
tor Q(σ) for 16-QAM, 64-QAM and 256-QAM modulations whenusing the MSQD-ℓ1 algorithm. For the MSQD-ℓ1 and MSQD-ℓ2, we implementthe same steps as the algorithm summarized in [16℄, using the appropriate 
ostfun
tions and Q fun
tions.5.2. Numeri
al resultsTo 
ompare blind equalization approa
hes proposed in this paper, with othersexisting in the literature, we 
hoosed the same 
hannel as the one used in [16℄:
H1 = [0.2258, 0.5161, 0.6452,−0.5161]T . (45)Performan
e of the proposed MSQD-ℓ2 and MSQD-ℓ1 methods are 
ompared withthose of the CMA, MMA and SQD. For simulations, we employed an equalizer oflength Lw = 21 initialized using the tap-
entered strategy. Table 2 summarizes theparameters whi
h were used to draw the 
urves in Fig.{6, 7, 8}.To 
ompare the performan
e of the proposed algorithms in terms of 
onvergen
espeed, we set the step size µ for ea
h algorithm su
h as they 
onverge with the samespeed. Thus, in Fig.6, Fig.7 and Fig.8, we 
an 
learly noti
e that MSQD-ℓ2 andMSQD-ℓ1 outperform the SQD, MMA and CMA algorithms in terms of residualerror for 16-QAM, 64-QAM and 256-QAM modulations. On the other hand, whenwe �x the value of µ for ea
h algorithm su
h as they 
onverge to the same MSE inFig.9 and Fig.10, we noti
e that MSQD-ℓ2 and MSQD-ℓ1 
onverge faster. All these�gures validate the MSQD-ℓ1 performan
e analysis that we have 
ondu
ted, sin
ethe experimental 
urve of the MSQD-ℓ1 
onverges to the theoreti
al one. To studythe performan
e of the MSQD-ℓ1 algorithm as a fun
tion of SNR, we draw in Fig.11the Symbol Error Rate (SER) for the MMA, SQD, MSQD-ℓ1 algorithms and for anAWGN 
hannel between SNR = 0 dB and SNR=20 dB for a 16-QAM modulation.21



To plot these 
urves, we take the optimal equalizer for ea
h algorithm with the same
onvergen
e rate. It is 
lear in this �gure that the MSQD-ℓ1 algorithm outperformsthe other algorithms in terms of the SER.We 
an also noti
e that for a value ofSER equal to 10−2, the MSQD-ℓ1 has a gain of 1.2 dB 
ompared to the SQD.Moreover, its performan
e are very 
lose to those obtained with an AWGN 
hannelfor any SNR.The proposed methods were also tested with two other 
hannels. Fig.12 and Fig.13are obtained when using the 
omplex 
hannel with transfer fun
tion:
H2(z) = 10−2[(4.1 + 1.09i) + (4.95 + 1.23i)z−1 + (6.72 + 1.7i)z−2 + (9.19 + 2.35i)z−3

+ (79.2 + 12.81i)z−4 + (39.6 + 8.71i)z−5 + (27.15 + 4.98i)z−6

+ (22.91 + 4.14i)z−7 + (12.87 + 1.54i)z−8 + (10.32 + 1.19i)z−9] (46)In Fig.12 and Fig.13, it is 
lear that MSQD-ℓ1 performs better than other equal-izers. A typi
al 
hannel met in 
ommuni
ations is the frequen
y sele
tive 
han-nel with an exponential de
ay pro�le. In Fig.14 and Fig.15, we show the perfor-man
e of the proposed methods when using the 
hannel of length Lh3 = 10 withtransfer fun
tion H3(z) =
∑Lh−1

l=0 h3(l)z
−l with h3(l) ∼ N (0, Ge−ρl) su
h that

∑Lh−1
l=0 E[|h3(l)|2] = 1. For simulations, we 
hose ρ = 0.7. We 
an 
he
k that withthis 
hannel, the MSQD-ℓ1 ouperforms the other algorithms and 
onverges to theMMSE equalizer.The �gures show that 
onvergen
e of the MSQD-ℓ1 algorithm is a
hieved after lessthan 10000 iterations.5.3. Computational 
omplexity analysisFor a square M-QAM modulation, the 
omputational 
omplexity is summa-rized in table 1 where Ns =

√
M
2

!

2!(

√
(M)

2
−2)!

+
√
M
2 and N

′
s =

√
M
2 when M > 4 and22



Ns = N
′
s when M = 4. Therefore, we 
an 
on
lude that the MSQD-ℓ1 is 
omputa-tionally less demanding than the SQD and slightly more demanding 
ompared tothe CMA. However, it requires many fewer iterations to 
onverge to a low MSE.In Fig.9 and Fig.10, we 
an noti
e that the MSQD-ℓ1 
onverges about 10 timesfaster than the CMA. Fig.16 shows the number of multipli
ations required by ea
halgorithm per iteration and Fig.17 shows the global 
omputational 
ost needed toa
hieve 
onvergen
e, a

ording to Fig.9 and Fig.10. We 
an noti
e that the global
omputational 
omplexity of the MSQD-ℓ1, is lower than that of SQD and CMA.6. Con
lusionIn this paper, we have proposed new 
riteria for kernel based blind equalizationte
hniques that for
e the pdf of the real and imaginary parts of the equalizer out-put to mat
h that of the true 
onstellation real and imaginary parts by employingthe Parzen window method to estimate the data pdf. Performan
e of the proposedmethods has been 
ompared with that of CMA and SQD. We have shown thatthey 
onverge faster with a redu
ed residual error. The behaviour of the MSQD-

ℓ1, most powerful proposed method, has been examined by relating the motion ofthe parameter estimate errors to a deterministi
 ODE. The analysis that we have
ondu
ted and simulation results prove that the MSQD-ℓ1 algorithm brings furthervalidation of the pdf �tting approa
h for equalization in digital transmission. Al-though in this paper we only addressed QAM modulations, the proposed methods
an be extended to any modulation sin
e the equalization 
riterion represents somedistan
e between the probability distribution of the equalizer output and that oftransmitted data.
23



Table 1: Computational 
omplexity of CMA, SQD and MSQD-ℓ1 algorithms for oneiteration Multipli
ations ExponentCMA 8Lw + 4 0SQD 4Ns + 8Lw + 4 NsMSQDℓ1 6N
′
s + 8Lw + 2 2N

′
s
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Table 2: parameter values used for simulations16 QAM CMA SQD MSQD-ℓ2 MSQD-ℓ1
µ 3.5× 10−5 10−4 1.3× 10−4 7.7× 10−4

a - 3.5 3.5 1.5

b - −9.5 −9.5 −1

1− α - 5× 10−3 5× 10−3 5× 10−3

E0 - 7 7 564 QAM
µ 3.3× 10−7 1.2× 10−6 9× 10−7 4.7× 10−5

a - 3.5 3 2

b - −2 −18 −10

1− α - 10−3 10−2 10−3

E0 - 5 7 6.5256 QAM
µ 4× 10−8 1.5× 10−7 1.5× 10−7 7× 10−5

a - 3.5 2.5 4

b - −4.5 −15 −1

1− α - 5× 10−5 10−4 2× 10−4

E0 - 7 20 7
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Figure 2: 2D pdfs : M = 16 modesfor the SQD algorithm Figure 3: pdfs along real and imaginaryaxes: 2
√
M = 8 modes for the MSQD-ℓpalgorithm
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Figure 4: Transformed 
onstellations for l1, (p = 1) and l2 (p = 2) norms of the real andimaginary transmitted data parts for a 16-QAM modulation
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Figure 5: Evolution of the 
ompensation fa
tor Q(σ) for MSQD-ℓ1 algorithm.
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Figure 6: MSE (dB) for 16-QAM and SNR=30 dB using H1.
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Figure 7: MSE (dB) for 64-QAM and SNR=30 dB using H1.
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Figure 8: MSE (dB) for 256-QAM and SNR=30 dB using H1.
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Figure 9: MSE (dB) for 16-QAM and SNR=30 dB using H1.
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Figure 10: MSE (dB) for 64-QAM and SNR=30 dB using H1.
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Figure 12: MSE (dB) for 16-QAM and SNR=30 dB using H2.
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Figure 13: MSE (dB) for 64-QAM and SNR=30 dB using H2.
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Figure 14: MSE (dB) for 16-QAM and SNR=30 dB using H3.
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Figure 15: MSE (dB) for 64-QAM and SNR=30 dB using H3.
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Figure 16: Number of multipli
a-tions per iteration for {16, 64, 256}-QAM modulations Figure 17: Number of multipli
ationsneeded by the equalizers to 
onverge for
{16, 64}-QAM modulations
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Appendix A. Cal
ulation of the maximum possible range for µLet us note ȳ(n) = w∗x(n). At 
onvergen
e, y(n) − ȳ(n) is small and we 
anapply the taylor expansion to the fun
tion φ(y(n)) (see Eq.(17)) at ȳ(n). Then,
φ(yn) = φ(ȳ(n)) + φ′(ȳ(n))(y(n) − ȳ(n))

= φ(ȳ(n)) + φ′(ȳ(n))(H̃s(n) + b(n))T ǫ(n) (A.1)where ǫ(n) = w(n)−w∗ and H̃s(n) + b(n) = x(n). In addition, we have
w(n+ 1) = w(n)− µφ(y(n))x(n)∗. (A.2)Thus, substra
ting w∗ in both sides of Eq.(A.2) and using Eq.(A.1), we �nd that

ǫ(n+1) = ǫ(n)−µ
(
φ(ȳ(n))x(n)∗+φ′(ȳ(n))(H̃s(n)+b(n))T ǫ(n)(H̃∗s∗(n)+b∗(n))

)(A.3)Taking the expe
tation on the both side of Eq.(A.3) and using the independen
ebetween ȳ(n) and ǫ(n), as it was assumed in [21℄, we get
E [ǫ(n+ 1)] = E [ǫ(n)]− µ

(
E [φ(ȳ(n))x∗(n)]

+ E[(H̃∗s∗(n) + b∗(n))φ′(ỹ(n))(H̃s(n) + b(n))T ]E [ǫn]
)(A.4)In [22℄, the authors proved that E [φ(ȳ(n))x∗(n)] = 0 when the 
ost fun
tionapproa
hes one of its minima. Thus, Eq.(A.4) 
an be simpli�ed to

E [ǫ(n+ 1)] =
(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

bE
[
φ′(ȳn)

]
ILw)

)
E [ǫ(n)] (A.5)where F̃ = 1

σ2
s
E
[
s∗(n)φ′(ȳ(n))s(n)T

]. Consequently
E [ǫ(n+ 1)] =

(
ILw − µ(σ2

sH̃
∗F̃ H̃T + σ2

bE{φ′(ȳ(n))}ILw)
)n

E [ǫ(0)] (A.6)This yields the following 
ondition upon the step size of the algorithm for 
onver-gen
e of the mean error :
0 < µ <

2

λmax
(A.7)where λmax is the largest eigenvalue of σ2

sH̃
∗F̃ H̃T + σ2

bE [φ′(ȳ(n))] ILw.40



Appendix B. Diagonalization of Rg in the basis U∗

Rg = −E
[
H(w∗,x(n))H(w∗,x(n))

H
]

= −E
[
φ(s(nk))x

∗(n)xT (n)φ(s(nk))
∗]

= −H∗
E
[
|φ(s(nk))|2s(n)sT (n)

]
HT − E

[
|φ(s(nk))|2b∗(n)bT (n)

]

= −H∗DHT − σ2
bE

[
|φ(s(nk))|2

] (B.1)where, D = diag(d1, ..., d1, d2, d1, ..., d1) with d1 = σ2
sE

[
|φ(s(nk))|2

] and d2 =

E
[
|s(nk)|2|φ(s(nk))|2

]. We have 
heked numeri
ally that |d2−d1
d1

|2 is very small(around 10−4). Then, we 
an 
onsider that D ≃ d1IL+Lw−1. Thus, we obtain thefollowing expression of Rg:
Rg ≃ −d1H

∗IL+Lw−1H
T − σ2

bE
[
|φ(s(nk))|2

]

≃ −E
[
|φ(s(nk))|2

] (
σ2
sH

∗HT + σ2
bILw

)

≃ −E
[
|φ(s(nk))|2

] (
U∗

ΛxU
T
)

≃
(
U∗

ΛgU
T
) (B.2)where Λg(i, i) ≃ −E

[
|φ(s(nk))|2

]
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