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Numerical and analytical calculation of modal excitability for elastic

wave generation in lossy waveguides

Fabien Treyssèdea) and Laurent Laguerre
LUNAM Université, IFSTTAR, route de Bouaye, 44344 Bouguenais, France

(Dated: March 22, 2013)

In the analysis of elastic waveguides, the excitability of a given mode is an important feature
defined by the displacement-force ratio. Useful analytical expressions have been provided in the
literature for modes with real wavenumbers (propagating modes in lossless waveguides). The central
result of this paper consists in deriving a generalized expression for the modal excitability valid for
modes with complex wavenumbers (lossy waveguides or non-propagating modes). The analysis starts
from a semi-analytical finite element method and avoids solving the left eigenproblem. Analytical
expressions of modal excitability are then deduced. It is shown that the fundamental orthogonality
property to be used indeed corresponds to a form of Auld’s real orthogonality relation, involving both
positive and negative-going modes. Finally, some results obtained from the generalized excitability
are compared to the approximate lossless expression.

PACS numbers: 43.35.Cg, 43.20.Mv, 43.20.Bi

I. INTRODUCTION

Elastic guided waves are are of great interest in the con-
text of non-destructive testing of elongated structures.
Such waves are dispersive and multimodal, which compli-
cates their practical use. Dispersion curves of phase and
group velocities as functions of frequency are useful to
identify modes that propagate in a frequency range with
low dispersion and low attenuation1. Such curves repre-
sent modal properties obtained regardless excitation. Yet
for a practical inspection system, it is also essential to de-
termine and control the amplitudes of each guided modes
excited by a given source. Such an information typically
allows to optimize the type and location of sensors to be
used.

Two approaches can mainly been distinguished in or-
der to calculate the response of waveguides under excita-
tion. A first approach consists in using integral transform
techniques2–5 With this method, the response is obtained
by a contour integration in the complex plane or numeri-
cal integration of the analytical solution explicitly derived
in the wavenumber domain.

An alternative approach is based on modal analysis,
which consists in expanding the excited field as a sum
of guided modes6–8. The contribution of each mode is
obtained in terms of the associated power flow from an
orthogonality relation between eigenmodes. This second
method appears to be more suitable to achieve a better
interpretation and optimization of signals, as it directly
provides the contribution of each modes as a function of
the excitation. In particular, this method has allowed
to introduce the modal excitability9–11. For a given fre-
quency, the excitability of a particular mode can be de-
fined as the ratio of the displacement of that mode to a
point force applied in a given direction.

a)Electronic address: fabien.treyssede@ifsttar.fr

In practice, many applications involve lossy struc-
tures (e.g. made of viscoelastic materials). While
the first approach has readily been applied to lossy
waveguides12,13, analytical derivations of modal expan-
sions use the so-called Auld’s complex orthogonality re-
lation, limited to real wavenumbers only6 (propagat-
ing modes in lossless waveguides). Hence, neither non-
propagating modes nor viscoelastic materials can be con-
sidered, although Auld’s relation is sometimes applied as
a first approximation14–16.

In addition to the above mentioned results, which are
essentially analytical, the modal approach has also been
applied on the basis of a numerical method referred to as
the semi-analytical finite element (SAFE) method. The
SAFE method is particularly efficient from a computa-
tional point of view because the axial dependence eikz

is assumed before finite element (FE) discretization (k
and z denote the wavenumber and distance along the
waveguide axis, respectively). As a consequence, only
the transverse dimensions need to be discretized and
meshed – see for instance Refs. [17–19]. The waveg-
uide response can be computed thanks to finite element
eigenvectors orthogonality resulting from properties of
the matrix eigensystem20,21. The advantage of SAFE
methods is their capacity to handle complex waveg-
uides of arbitrary cross-section, together with material
anisotropy and transversely inhomogeneous properties.
Interestingly, viscoelastic materials can also be handled
with the introduction of left eigenvectors of the matrix
eigensystem22,23.

In this paper, one shows how to simply compute the
modal excitability from the numerical SAFE method
and highlights the direct link with analytical expres-
sions. In particular, the central result of this paper pro-
vides a generalized expression for the modal excitabil-
ity, which remains valid for lossy waveguides as well as
non-propagating modes in lossless waveguides. Due to
its relative simplicity, the approach adopted in this work
consists in starting from the SAFE method and then de-
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ducing the analytical expressions from the finite element
ones.

Section II briefly recalls the SAFE formulation, as
standardly presented in the literature. The concept of
eigenforces is introduced, which will greatly simplify the
interpretation of SAFE equations and their link with the
analytical results in subsequent sections. In Sec. III, a
SAFE version of the lossless analytical excitability is de-
rived for lossless waveguides, which highlights the direct
link between numerical and analytical approaches. In
Sec. IV, the excitability expression is modified and gen-
eralized to non-propagating modes and lossy waveguides.
Section V finally gives illustrative examples. Results ob-
tained with the lossless and the generalized excitabilities
are compared.

II. SAFE FORMULATION

One assumes a linearly elastic material, small strains
and displacements with a time harmonic e−iωt depen-
dence. For clarity, the variational formulation of elasto-
dynamics in the frequency domain is given by:
∫

V

δǫT
σdV −ω2

∫

V

ρδuT
udV =

∫

V

δuT
fdV +

∫

∂V

δuT
td∂V

(1)
where u, ǫ and σ are the displacement, strain and stress
vectors. ρ is the material density. δ denotes virtual fields.
The stress-strain relation is σ = Cǫ, where C is the ma-
trix of material properties. C is complex in the case
of viscoelastic materials. f represents acoustic sources
inside the structural volume V . t is the traction vec-
tor applied on the surface ∂V . In index notations, t

is related to the stress tensor by ti = σijnj , where nj

is the outward normal to the boundary ∂V . For clar-
ity, the strain and stress vectors for three-dimensional
problems are: ǫ = [ǫxx ǫyy ǫzz 2ǫxy 2ǫxz 2ǫyz]

T and
σ = [σxx σyy σzz σxy σxz σyz ]

T .
In this section, the SAFE technique is briefly recalled.

For more details on this method, the reader can refer
to [17–19, 22–25] for instance.

Also, the concept of eigenforces is introduced. Eigen-
forces are defined as modal forces associated with dis-
placement modeshapes.

A. Governing equations

Let us denote z the axis of the waveguide, x and y
the transverse coordinates. Separating transverse from
axial derivatives, the strain-displacement relation can be
rewritten as: ǫ = (Lxy + Lz∂/∂z)u, where Lxy is the
operator containing all terms except derivatives with re-
spect to z.

The SAFE technique consists in starting from a varia-
tional formulation integrated on the cross-section S, in-
stead of the formulation (1) integrated on the volume V
(dV = dSdz). After finite element discretization, the
SAFE approach yields the matrix system:

K1U − ω2
MU + (K2 − K

T
2 )U,z − K3U,zz = F (2)

with the following elementary matrices:

K
e
1 =

∫

Se N
eT

L
T
xyCLxyN

edS, K
e
2 =

∫

Se N
eT

L
T
xyCLzN

edS,
K

e
3 =

∫

Se N
eT

L
T
z CLzN

edS, M
e =

∫

Se ρNeT
N

edS
(3)

On one element Se of the cross-section, the displacement
is interpolated as u = N

e
U

e, where N
e is the matrix of

nodal interpolating functions on the element. Note that
K1, K3 and M are symmetric.

For clarity, U = U(z, ω) is the column vector con-
taining cross-section nodal displacements in the space-
frequency domain. F = F(z, ω) represents the excitation
vector in the space-frequency domain, gathering both
contributions of volume sources f and surface sources t.

In the wavenumber-frequency domain, Eq. (2) be-
comes:

{K1 − ω2
M + ik(K2 − K

T
2 ) + k2

K3}Ũ = F̃ (4)

where Ũ = Ũ(k, ω) and F̃ = F̃(k, ω). The following

Fourier spatial transform has been introduced: f̃(k) =
∫ +∞

−∞
f(z)e−ikzdz.

As standardly done in the SAFE literature, Eq. (4) can
be recast into a linear form, for instance:

(A − kB)Û = F̂ (5)

with:

A =

[

0 K1 − ω2
M

K1 − ω2
M i(K2 − K

T
2 )

]

,B =

[

K1 − ω2
M 0

0 −K3

]

(6)
and:

Û =

{

Ũ

kŨ

}

, F̂ =

{

0

F̃

}

(7)

B. Eigenvectors

Given ω and suppressing excitation, Eq. (5) corre-
sponds to a generalized linear eigenvalue problem for
finding the wavenumbers:

{A− kmB} Ûm = 0 (8)

where Û
T
m = [UT

m kmU
T
m]T . Such an eigenproblem can

be solved by standard numerical solvers26, as opposed
to the quadratic one that would be obtained from the
formulation (4). The eigensolutions (km,Um) represent
the wavenumber and the displacement vector associated
with the guided mode m (note that tilde on the Um’s
can be dropped for conciseness of notations).

From a mathematical point of view, the Ûm’s are right
eigenvectors. Because the eigenproblem (8) is generally
unsymmetric, left eigenvectors are also needed27. By
definition, the left eigenvectors V̂n satisfy the following
eigenproblem:

V̂
T
n {A− knB} = 0 (9)
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Pre-multiplying Eq. (8) by V̂
T
n , post-multipying Eq. (9)

by Ûm and subtracting both equations yields the follow-
ing biorthogonality relations:

V̂
T
n BÛm = bmδmn, V̂

T
n AÛm = kmbmδmn (10)

where bm is a normalization factor and δmn denotes Kro-
necker’s symbol. The above relations are biorthogonal
in the sense that both right and left eigenvectors are in-
volved in the expressions.

C. Forced response

The solution to Eq. (5), which is the forced response

under the excitation F̂, is now expanded as a sum of

guided modes: Û =
∑2M

m=1 αmÛm. 2M is the number
of modes, theoretically equal to twice the number of de-
grees of freedom (dofs) involved in the system (4), but
truncated in practice.

Using this eigenmode expansion into Eq. (5) and tak-
ing advantage of biorthogonality relations (10), the αm’s
are determined18,23–25. The displacement response in the
wavenumber-frequency domain is:

Ũ =

2M
∑

m=1

V̂
T
mF̂

bm(km − k)
Um (11)

Then, one applies the inverse Fourier spatial trans-

form, defined by f(z) = 1
2π

∫ +∞

−∞
f̃(k)eikzdk. Under the

assumption that F̃ is holomorphic (no pole), Cauchy
residue theorem yields the response U in the space-
frequency domain:

U = −i

M
∑

m=1

V̂
+T
m F̂(k+

m)eik+
mz

b+
m

U
+
m (12)

for the positive-going wave and for z outside the source
region (one assumes that the excitation F is zero out-
side a finite interval along z). If one is interested in the
response at a location z inside the source region, the ap-
plication of residue theorem could still be performed by
splitting the integrand into two parts28.

As opposed to Eq. (11), note that the summation
in Eq. (12) is performed over positive-going modes
(k+

m,U+
m) only (m = 1, ..., M). The expression for the

negative-going wave is obtained by replacing the super-
scripts + with − and the −i factor with +i in Eq. (12).

In practice, modal bases can be truncated by retaining
modes satisfying |Im(k±

mz)| < γ, where γ is a user-defined
parameter and z is the position at which the response is
calculated. The amplitudes of non-propagating modes
not included in the expansion are then attenuated by a
factor eγ at least.

Finally, the response in the space-time (z, t) domain
can be obtained from the inverse time Fourier transform
of U, given by 1

2π

∫ +∞

−∞
Ue−iωtdω.

For conciseness, one will consider positive-going waves
only and drop the + superscripts in the remainder of the
paper.

As a side remark, it is noteworthy that backward
modes sometimes occur in elastic waveguides (energy and
phase velocities have then opposite signs). Hence, the
traveling direction of a mode must be determined from
the sign of its energy velocity when propagating, and
from the sign of Im(km) when non-propagating.

D. Definition of eigenforces

The definition of eigenforces is now briefly introduced.
The eigenforce concept has recently been used by the
authors in Refs. [29, 30] in the context of scattering of
guided waves by inhomogeneities.

The eigenforce vector Fm, associated with the displace-
ment modeshape Um, can be defined from:

∫

S

δuT
tmdS = δUT

Fm (13)

where tm is the traction vector applied on the cross-
section S, whose unit normal is ez. Then, it can be
checked that tm = L

T
z σm = L

T
z C(Lxy + ikmLz)um, so

that modal forces can be explicitly calculated from dis-
placements by:

Fm = (KT
2 + ikmK3)Um (14)

As shown in the present paper, the introduction of
modal forces will greatly simplify the interpretation of
SAFE equations and their link with analytical results of
the literature.

III. LOSSLESS EXCITABILITY FOR PROPAGATING

MODES

In lossless waveguides, eigensolutions for which the
wavenumber is pure real, pure imaginary and fully com-
plex represent propagating waves, evanescent waves and
inhomogeneous waves (decaying but oscillatory) respec-
tively. Note that this section is focused on propagating
modes in lossless waveguides.

Based on the SAFE method, a matrix expression of
the excitability is proposed. This expression is shown to
be the counterpart of the excitability tensor found in the
literature by analytical approaches.

A. Properties of propagating modes in lossless waveguides

For lossless waveguides, the matrix of material proper-
ties C is real so that K1, K2, K3 and M are also real.
A and B are thus hermitian: A

∗T = A and B
∗T = B (∗

denotes the complex conjugate). Besides, for propagat-
ing modes, wavenumbers are purely real and km = k∗

m.
Then, taking the transpose conjugate of Eq. (9), it is
straightforward to prove that the left eigenvectors are
related to the right ones by:

V̂m = Û
∗

m (15)
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This property has been used in Ref. [31] for analyzing
the elastodynamic response of anisotropic plates.

The general biorthogonality relations (10) can now be
rewritten in an interesting manner. From Eqs. (6), (7)

and (15), the development of the expression V̂
T
n BÛm =

bmδmn yields:

U
∗T
n (K1 − ω2

M)Um − knkmU
∗T
n K3Um = bmδmn (16)

Thanks to Eq. (4) written for mode m (with F̃ = 0), one
has (K1 −ω2

M)Um = −ikm(K2 −K
T
2 )Um − k2

mK3Um.
Then after rearrangement, Eq. (16) can be rewritten as:

ikmU
∗T
n (KT

2 +ikmK3)Um−ikmU
∗T
n (K2−iknK3)Um = bmδmn

(17)
Finally using Eq. (14), the biorthogonality relation be-
comes:

iω

4
(UT

mF
∗

n − U
∗T
n Fm) = Pmmδmn (18)

with the notation (justified later):

Pmm = −ωbm/4km (19)

B. Excitability matrix

Using Eq. (15) and (19), the expansion (12) can be
rewritten as:

U =

M
∑

m=1

EmF̃(km)eikmz (20)

where:

Em =
iω

4Pmm

UmU
∗T
m (21)

Em is a N by N matrix, N denoting the number of dofs
involved in the system (4).

In the above expansion, the contribution of non-
propagating modes has been neglected (M should be
here understood as the number of propagating modes,
excluding non-propagating). Hence, the expansion (20)
together with (21) constitutes a far-field approxima-
tion, not applicable in the near-field region where non-
propagating modes may have a significant contribution
in the excited field.

It can be seen from Eq. (20) that (Em)ij represents the
displacement amplitude of the single wavemode m at dof
i when a unit force acts at dof j. In particular, diagonal
terms are ratios of modal displacement to applied force
when both quantities are measured at the same location
and direction in the cross-section. As a consequence, the
matrix Em can be viewed as the finite element version of
the excitability function given in Refs. [9, 10]. Em will be
referred to as the excitability matrix in the remainder.

C. Interpretation based on analytical Auld’s approach

With the analytical approach of Auld6,8, the starting
point for obtaining the modal expansion of the excited

field is the reciprocity relation associated with the equa-
tions of elastodynamics. Details can be found elsewhere
and calculations yield the following final result:

u(x, z) =

M
∑

m=1

em(x) · f̃(km)eikmz (22)

where the applied force f̃ is supposed to be concentrated
at point xs in the cross-section. In the above expression,
f̃ should be understood as t̃ when the excitation source is
a traction vector applied on the circumference δS of the
waveguide. em denotes the excitability tensor. Under the
assumption of propagating modes in lossless waveguides,
its expression is8,11:

em(x) =
iω

4Pmm

um(x) ⊗ u
∗

m(xs) (23)

where x = (x, y) denotes transverse variables (in the
cross-section). xs = (xs, ys) denotes the source position.

It can be observed that Eqs. (20) and (21) are the
numerical counterparts of Eqs. (22) and (23). The reason
of this direct analogy is explained below.

Indeed, the fundamental property that is used to derive
Eq. (23) is the so-called Auld’s complex orthogonality
relation for propagating modes in lossless waveguides6,
written as:

Pmn =
iω

4

∫

S

(um · t∗n − u
∗

n · tm)dS = 0 if m 6= n (24)

Such a relation indeed derives from the elastodynamic
reciprocity theorem32.

With the SAFE approach, the fundamental property
used to obtain Eq. (21) is the discrete biorthogonality
relation (10). There is no obvious link between rela-
tions (10) and (24). However, in the particular case of
propagating modes in lossless waveguides, one has shown
that Eq. (10) can be rewritten as Eq. (18). Recalling the
eigenforce definition (13), it is straightforward to see that
the SAFE relation (18) is in fact the finite element form
of Auld’s complex orthogonality relation.

As a consequence, if one restricts the analysis to propa-
gating modes in lossless waveguides, the procedure stan-
dardly followed with the SAFE method is in fact quite
analogous to Auld’s analytical approach.

Note that Eq. (24) is a biorthogonality relation in the
sense that both displacement and stress components are
involved. From a physical point of view, Pmm is equal
to the averaged power flow6 (cross-section and time aver-
aged). Pmm vanishes for non-propagating modes (evanes-
cent or inhomogeneous), so that Eq. (23) is obviously not
applicable for cut-off modes.

In the remainder of this paper, the expressions (21)
or (23) will be referred to as the lossless excitability.

IV. GENERALIZED EXCITABILITY

The SAFE expression given by Eq. (12) is general and
not restricted to propagating modes in lossless waveg-
uides. Starting from that result, this section proposes a
generalized expression of the excitability, valid for non-
propagating modes and lossy waveguides.

Excitability of lossy waveguides 4



A. General properties of the eigenproblem

From a computational point of view, the general re-
sponse given by Eq. (12) has the drawback of requir-
ing the computation of both right and left eigenvectors.
From a physical point of view, it is difficult to have a
clear interpretation of left eigenvectors.

For isotropic materials, matrices A and B can be sym-
metrized by replacing the axial displacement uz with iuz

– as done in Refs. [20, 21] – so that left and right eigen-
vectors become equal. In this paper, a simple relation
between eigenvectors is obtained in the general case of
anisotropic materials.

First, one recalls that if km is an eigenvalue of the
quadratic formulation (4), then −km is also an eigen-
value. This is due to the symmetry of K1, K3 and M and
the property detDT = detD (D is any matrix). Hence,
the eigenproblem has two sets of eigensolutions (k+

m,U+
m)

and (k−
m,U−

m), where k−
m = −k+

m (m = 1, ..., M), rep-
resenting M positive-going and M negative-going wave
modes.

Let us redenote (−km,U−m) the opposite-going mode
associated with the eigensolution (km,Um). From

Eq. (9) and the symmetry of B, the left eigenvector V̂m

of mode m, associated with the eigenvalue km, satisfies:
{

A
T − kmB

}

V̂m = 0 (25)

Then, it can be readily checked that the above eigenvalue
problem is satisfied by the following vector:

V̂m =

{

U−m

kmU−m

}

(26)

which allows to get the left eigenvectors directly from
the right ones (i.e. the guided modes). Note that thanks
to this expression, solving the left eigenproblem is not
needed.

Following the previous section, let us develop the gen-
eral biorthogonality relation V̂

T
n BÛm = bmδmn. Using

Eqs. (14) and (26), one finally gets after rearrangement:

iω

4
(UT

mF−n − U
T
−nFm) = Qm,−mδmn (27)

with the notation:

Qm,−m = −ωbm/4km (28)

One emphasizes that no specific assumption has been
made. In particular, C can be complex, as in the vis-
coelastic case. Hence, properties (26) and (27) are gen-
eral and still hold for non-propagating modes and lossy
waveguides.

B. Generalized excitability matrix

Using Eq. (26), one has: V̂
T
mF̂ = kmU

T
−mF. With

notation (28), the expansion (12) can still be rewritten in
the form of Eq. (20), but with the new modal excitability
matrix:

Em =
iω

4Qm,−m

UmU
T
−m (29)

The interpretation of (Em)ij does not change from the
previous section. Yet, the above expression is general and
not restricted to propagating modes in lossless waveg-
uides. The expansion (20) together with (29) is valid in
the far-field as well as in the near-field region (z must yet
lie outside the source region, as recalled in Sec. II).

The excitability defined by Eq. (29) will be refered to
as the generalized excitability matrix in the remainder.

For propagating modes in lossless waveguides,
Eqs. (15), (26) and (14) allow to get the following equal-
ities:

U−m = U
∗

m, F−m = F
∗

m (30)

From Eq. (27), one has Qm,−m = Pmm, and the gener-
alized excitability (29) reduces to the lossless excitabil-
ity (21).

C. Link with an analytical approach

Provided the straightforward analogy established be-
tween the analytical and numerical approaches in
Sec. III.C, it can be deduced from Eq. (29) that the an-
alytical expression of the generalized excitability is:

em(x) =
iω

4Qm,−m

um(x) ⊗ u−m(xs) (31)

and the analytical form associated with the numerical
biorthogonality relation (27) is:

Qm,−n =
iω

4

∫

S

(um · t−n − u−n · tm)dS = 0 if m 6= n

(32)
The relation (32) is encountered in the literature, un-

der the following slightly different form: Qm,n = 0 if
m 6= −n, which is usually referred to as the real biorthog-
onality relation6. Unlike the averaged power flow Pmm,
note that the normalization factor Qm,−m remains non-
zero for all modes including non-propagating ones33.

In fact, the analytical derivation of Eq. (31) can be ob-
tained from the real reciprocity relation of Auld6 (instead
of the complex relation). It could be checked that writ-
ing the real reciprocity expression for two different wave
fields, one corresponding to a given −m mode and the
other to the excited field, and applying the real biorthog-
onality relation (32) yields the generalized excitability
result given by Eq. (31).

Surprisingly, the real orthogonality relation has been
considered in scattering analysis6,33,34, but not for waveg-
uide excitation problems for which the complex orthogo-
nality relation has generally been preferred6,8,11,14,15.

D. Green’s matrix

The Green’s matrix can be conveniently expressed in
terms of modal excitabilities.

By definition, the response u(x, z) is given by the con-
volution product between the Green’s tensor G(x, z) and
the excitation f(z) in the (z, ω) domain, or equivalently

Excitability of lossy waveguides 5



in the wavenumber domain: ũ(x, k) = G̃(x, k) · f̃(k).
Applying the inverse spatial Fourier transform and the
Cauchy residue theorem, one has5,35:

u(x, z) =

M
∑

m=1

iRes(G̃(x, k); k = km) · f̃(km)eikmz (33)

where Res(f ; k) denotes the residue of f at k. Identifying
the above expression with Eq. (22), one has the equality:

iRes(G̃(x, k); k = km) = em(x).

The inverse spatial Fourier transform of G̃(x, k)
yields after application of the Cauchy residue theorem:

G(x, z) =
∑M

m=1 iRes(G̃(x, k); k = km)eikmz .
Hence, the expression of Green’s tensor can be ex-

pressed in terms of the excitability, as follows11:

G(x, z) =

M
∑

m=1

em(x)eikmz (34)

V. RESULTS

For three test cases, this section briefly compares re-
sults obtained from the lossless excitability (21) with the
generalized one (29). As already mentioned in Sec. I,
the excitability in lossy waveguides is sometimes approx-
imated with the lossless expression. The error made from
the standard formula approximation is highlighted. For
simplicity, the examples are two-dimensional and corre-
sponds to layered plates excited by line sources. For clar-
ity, Lxy=Lx and Lz are the operators of two-dimensional
plane strain given by:

Lx =





∂/∂x 0
0 0
0 ∂/∂x



 ,Lz =





0 0
0 1
1 0



 (35)

Throughout this section, the excitabilities will be com-
puted from displacement-force ratios measured at the free
surface in the normal direction (i.e. x-direction). The
SAFE method will be employed. One will also present
the lossless excitability calculated analytically from the
software Disperse36 in order to check the accuracy of nu-
merical models.

A. Viscoelastic waveguide

This first test case compares the excitabilities calcu-
lated for a bilayered plate, with and without viscoelastic-
ity. This test case is taken from the work of Simonetti37.
The relevant material parameters are summarised in Ta-
ble I.

First, let us consider the non-viscoelastic case. Fig-
ure 1 gives the SAFE dispersion curves in phase velocity
for two modes of interest, denoted M0 and M1, in agree-
ment with the results calculated in Ref. [37] from the
software Disperse. Figure 2 shows the SAFE modal ex-
citabilities, as well as Disperse lossless excitability. As

TABLE I: Characteristics of the bilayered plate

cs (m/s) cl (m/s) ρ (kg/m3) thickness (mm)
Layer 1 (elastic) 900 1700 1250 9

Layer 2 (metallic) 3260 5960 7930 8
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FIG. 1: Dispersion curves in phase velocity for modes
M0 and M1 computed from the SAFE method.

expected, the lossless excitabilities are equal to the gen-
eralized ones because both M0 and M1 modes are prop-
agating modes in a lossless waveguide.

Next, let us consider the viscoelastic case when a large
material attenuation is considered. The metallic layer is
still lossless but αs = αl = 1 is set for the viscoelastic
layer (Layer 1), αs and αl denoting the shear and longitu-
dinal bulk wave attenuations (in Neper per wavelength).
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FIG. 2: M0 and M1 excitabilities computed from the
SAFE method (black) and calculated from Disperse

(crosses).

Excitability of lossy waveguides 6



0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

f (MHz)

v p (
km

/s
)

M’
0

M’
1

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

f (MHz)

A
tte

nu
at

io
n 

(d
B

/m
)

M’
0

M’
1

FIG. 3: Dispersion curves in phase velocity (top) and
attenuation (bottom) for modes M ′

0 and M ′
1 computed

from the SAFE method.

Complex bulk wave velocities are defined from:

c̃s,l =
cs

1 + i
αs,l

2π

(36)

The matrix of elasticity coefficients C becomes complex.
The lossless excitability expression is not valid in that
case and becomes approximate.

Figure 3 shows the SAFE dispersion curves in phase
velocity and attenuation for the first two less attenu-
ated modes, denoted M ′

0 and M ′
1 (also in agreement with

Ref. [37]).
Figure 4 exhibits the modal lossless and generalized

excitabilities. In this example, it is remarkable that al-
though the material attenuation is high and the viscoelas-
ticity strongly modifies velocity curve patterns (compare
Figs. 1 and 3), the lossless excitability still yields good
modulus approximation.

For a given mode, it can be observed that the largest
amplitude difference between the lossless and the gen-
eralized formula occurs at a frequency for which the
modal attenuation is maximum (roughly 0.05MHz for
M ′

0, 0.025MHz for M ′
1): as expected, the deviation of

the approximate lossless excitability is increasing with
loss.

As shown in Fig. 4 (bottom), the phase strongly dif-
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FIG. 4: M ′
0 and M ′

1 excitabilities, lossless (gray) and
generalized (black), in modulus (top) and phase

(bottom) computed from the SAFE method. Crosses:
lossless excitability calculated from Disperse. Horizontal

gray line at +π/2: phase of lossless excitability.

fers. The generalized excitability is fully complex, with
frequency varying phase. The lossless excitability re-
mains constant and pure imaginary (the diagonal terms
of Eq. (21) are always pure positive imaginary), yielding
a constant +π/2 phase.

B. Excitation of non-propagating modes

This second test deals with a numerical experiment
simulating a zero group velocity (ZGV) resonance. A
ZGV resonance is a local resonance occurring at a fre-
quency of Lamb modes where the group velocity van-
ishes while the phase velocity remains non-zero38–40. Be-
low the ZGV frequency, the modes contributing to the
resonance are cut-off. Hence, the contribution of non-
propagating modes is expected to be significant.

A steel plate of thickness a = 1cm is considered, with
Young modulus E = 210GPa, Poisson ratio ν = 0.3 and
density ρ = 7800kg/m3. The first ZGV frequency can be
obtained from the empirical formula41,42: f0 = βcl/2a ≃
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FIG. 5: Dimensionless dispersion curves (top) and
excitabilities (bottom) computed from the SAFE

method. Black: propagating modes, gray:
non-propagating modes. Disperse lossless excitabilities

are superimposed to black lines (excluding
non-propagating modes).

280kHz, where β is a correction factor that depends on ν
(β ≃ 0.93 for ν = 0.3 – see Ref. [42]). As already proved
from theory and experiment38,42, the resonance is caused
by the interference between the two symmetric S1 and
S2b modes propagating with opposite phase velocities and
generated with comparable amplitudes (the subscript b
means that S2b is a backward mode near the resonance).

Figure 5 (top) shows the dimensionless wavenumber-
frequency dispersion curves computed from the SAFE
method. The first ZGV resonance is observed at the
zero slope point of S1 and S2b curves (k0a, ω0a/cs) =
(1.68, 5.47), giving a dimensional frequency of 280kHz in
agreement with the empirical formula.

Near the resonance, the contribution of S1 and S2

modes is expected to be significantly greater than the
other modes41,42. This is confirmed by looking at the
excitabilities shown in Fig. 5 (bottom).

Let us recall that lossless excitabilities curves cannot
be calculated for non-propagating modes (due to zero
power flow), and stop at cut-off frequencies. Such curves
hence coincide with black lines in the figure (excluding
gray ones).
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FIG. 6: Frequency spectrum of the excitation.

Now, the plate is excited by a line force (along y) lo-
cated at the surface x = 0 and oriented along the x di-
rection (normal to the plate). The time excitation is a
Hanning-windowed 5 cycles sinusoidal toneburst centred
at 250kHz, close to the first ZGV frequency. Its spectrum
is given by Fig. 6.

Figure 7 gives the response spectrum for the x-
displacement computed with the SAFE approach from
Eq. (20), with the lossless excitability (21) as well as the
generalized one (29), at a distance close to the source
z = 5mm. In order to avoid interfence nodes38,42, this
distance has been chosen as less than a quarter wave-
length of the S1 and S2b modes (λ = 2π/k0=3.74cm). In
the modal expansions, one has computed and kept the
less attenuated modes satisfying |Im(k)| 6 1mm−1. This
ensures that the contribution of higher order modes is
negligible at the position z = 5mm (less than e−1×5 ≃
0.007).

As expected, the maximum response occurs at the
ZGV frequency f0. Although the spectrum seems to be
almost identical between the lossless and the generalized
formula, a zoom in the range [260 − 320]kHz reveals dif-
ferences – see Fig. 7 (bottom). Between 280 and 300kHz,
the S1 and S2b modes are both propagating and the loss-
less excitability gives exactly the same results as the gen-
eralized one. Yet, both modes are inhomogeneous below
280kHz and the S2b mode is evanescent in a narrow fre-
quency range starting from 300kHz (i.e. ωa/cs ≃ 5.86
in Fig. 5 (top)). Then the lossless excitability, not appli-
cable to non-propagating modes, gives erroneous abrupt
changes near the cut-off frequencies 280kHz and 300kHz.

Figure 8 (top) gives the time signal obtained from the
inverse Fourier transform of the generalized formula, up
to time t = 5ms. One can observe the typical behav-
ior of a zero-group velocity wave, oscillating with a very
slow exponential decay38. As shown by Fig. 8 (bottom),
this phenomenon cannot be recovered with the lossless
formula. Indeed, neglecting the contribution of non-
propagating modes acts as non-causal modal filters (high-
or band-pass), yielding erroneous time waveforms (arti-
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FIG. 7: Top: SAFE computation of the frequency
spectrum of the x-displacement response obtained from
the generalized excitability (black lines) and from the

lossless excitability (gray lines). Bottom: zoom between
260 and 320kHz.

ficial growth at the end of the signal in the figure).
As already mentioned in Sec. II.C, one recalls that only

modes travelling in the proper direction (here, the posi-
tive direction) must be selected into the modal expansion.
It has to be noticed that Fig. 5 (top) actually shows the
dispersion curves of every mode included in the expan-
sion (positive-going modes). The negative slope observed
for the backward mode (S2b) is due to the fact that the
figure plots the absolute value of Re(ka): dropping the
absolute value, the slope becomes properly positive be-
cause the wavenumber of a positive-going backward mode
have a negative real part.

C. Excitation of a layered half-space

In this last test case, a layered half space made of three
layers is considered with characteristics given by Table II.
This example is taken from Ref. [16] and represents a
pavement construction. Layer 3 is a halfspace, soft com-
pared to the first two layers. No material attenuation is

TABLE II: Characteristics of the three-layer model

cs (m/s) cl (m/s) ρ (kg/m3) thickness (m)
Layer 1 1400 2914 2000 0.2
Layer 2 500 1041 2000 0.6
Layer 3 100 208 2000 ∞

included in this model. Nevertheless, modes are attenu-
ated in the axial direction (Im(k) > 0) due to the loss of
energy into the halfspace. Such modes are called leaky
modes.

In the numerical SAFE model, the presence of a semi-
infinite layer is simulated thanks to an absorbing layer,
which consists in truncating the unbounded layer (Layer
3) and adding an artificial growing viscoelasticity to the
material properties. The open problem is hence trans-
formed into a closed one and the numerical approach
proposed in the present paper can be applied without
difficulty (the problem becomes similar to a closed vis-
coelastic waveguide).

Following Ref. [43], the law adopted for the absorbing
layer is:

C′

ij = Cij

{

1 − is

(

x − d

h

)3
}

(37)

where d and h denotes the position and thickness of Layer
3 and s is a user-defined parameter. In the simulation,
one has set h = 0.6m. A parametric study has been
conducted leading to s = 10. Figure 9 shows the SAFE
dispersion curves in phase velocity and attenuation. In
order to validate the parameters of the absorbing layer,
Disperse results are also shown for this test case. Good
agreement is found.

Figure 10 compares the lossless and the generalized
excitabilities calculated from the SAFE approach. As al-
ready mentioned in Sec. V.A, the error in modulus made
with the lossless excitability is greater at frequencies of
highest modal attenuation. In this example, these fre-
quencies also coincide with highest excitabilities. The
amplitudes of modes 3 and 6 are particularly affected
at 500Hz and 570Hz respectively. While the excitabil-
ity of mode 3 is higher with the generalized formula, the
excitability of mode 6 becomes substantially lower. In
particular, the highest excitability is actually given by
mode 3 (instead of mode 6 with the lossless formula ap-
proximation).

Figure 10 (bottom) shows the phase of excitabilities.
As already observed in Sec. V.A, the phase is strongly
dependent on the modes and frequency (while the phase
of the lossless excitability remains equal to +π/2).

It could be argued that the results of Fig. 10 may be
dependent of the parameters of the absorbing layers with
the SAFE method. However, one has checked that in-
creasing the thickness h yields negligible differences.

Furthermore in Fig. 10 (top), the lossless excitability
calculated with Disperse has also been plotted. From a
theoretical point of view, the proof of orthogonality of
leaky modes is still an open question (beyond the scope
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FIG. 8: SAFE x-displacement time response obtained from the generalized excitability (top) and the lossless
excitability (bottom).
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of this paper) because the wave fields of such modes do
not vanish at infinity in the half-space. As a consequence,
an orthogonality relation written with an integral includ-
ing the whole half-space may be divergent, as noticed in
Ref. [33]. To circumvent this problem, these authors have
proposed to use the integral restricted over the finite area
excluding the half-space layer and have checked that such
an approximation yields small error in modal orthogonal-
ity. This explains why small discrepancies with the SAFE
lossless excitabilities are observed in Fig. 10 (top) near
the maxima of modes 3 and 6: the halfspace (i.e. Layer
3) is not included in the power integral of Disperse36.
This has been checked by a numerical test consisting of
keeping only the dofs of Layers 1 and 2 in the SAFE com-
putation of the power flow given by Eq. (18), yielding the
same results as Disperse (curves not shown for clarity of
figure).

Finally, one must emphasize that open waveguides
could be efficiently modeled by perfectly matched layers
(PML), as recently proposed in Ref. [44]. With a PML
method, SAFE matrices are complex but their symmetry
is still preserved (as in the viscoelastic case) so that the
numerical approach presented in this paper still applies.

VI. CONCLUSION

A generalized expression has been proposed for the
modal excitability of elastic waveguides. This expression
remains applicable for lossy waveguides as well as non-
propagating modes. It has been derived for analytical
and SAFE approaches. For both approaches, the proper
orthogonality relation is shown to be a form of Auld’s real
orthogonality relation, involving opposite-going modes.

From a computational point of view, only the right
eigensolutions are needed in the SAFE method. Solving
the left eigenproblem is avoided for response computa-
tions.

Differences between the lossless and the generalized ex-
citabilities have been highlighted for viscoelastic materi-
als, near field and local phenomena for which the con-
tribution of non-propagating modes is significant, as well
as leaky modes in open waveguides. In these three cases,
the lossless excitability might yield acceptable response
approximations in modulus in the frequency domain, but
not in phase leading to inaccurate time results.
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